1
|
Sathishkumar N, Toley BJ. Direct comparison of colorimetric signal amplification techniques in lateral flow immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7200-7209. [PMID: 39315859 DOI: 10.1039/d4ay01416b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The lateral flow immunoassay (LFIA) is widely adopted for point-of-care testing, but its limit of detection (LoD) falls short of that of laboratory-based immunoassays. Several techniques have been proposed to enhance the LoD of LFIAs using visual colorimetric readouts, yet a direct comparison of the LoDs achieved by these techniques has not been performed. In this work, we measure the LoDs of LFIAs designed for the detection of a malaria protein, PfHRP2, using four different colorimetric signal generation techniques: (i) AuNP(40 nm)-tagged detection antibodies (base case), (ii) AuNP-based enhancement of AuNP(40 nm) signal, (iii) oxidation of chloronaphthol/diaminobenzidine (CN/DAB) using HRP-tagged detection antibodies, and (iv) oxidation of CN/DAB using polyHRP(400)-tagged detection antibodies. The LoDs and the 95% confidence intervals of the LoDs achieved by the 4 techniques were 19.34 (13.37-27.62) ng mL-1, 9.57 (6.76-13.28) ng mL-1, 21.57 (14.26-32.18) ng mL-1, and 6.09 (2.23-13.47) ng mL-1, respectively. Contrary to popular perception, enzymatic signal generation using HRP-tagged detection antibodies did not improve the LoD compared to the base case of AuNP-based signal generation. Further studies revealed that the very high extinction coefficient of gold nanoparticles renders them an excellent choice for colorimetric detection, surpassing the performance of enzymatic signal generation using HRP-tagged antibodies. However, enzymatic signal generation using polyHRP-tagged antibodies improved the LoD compared to the base case. These results show that enzymatic signal amplification should not be a priori assumed to be superior to AuNP-based signal generation; and provide a reference point to LFIA developers to select an appropriate signal generation modality.
Collapse
Affiliation(s)
- N Sathishkumar
- Department of Chemical Engineering, Indian Institute of Science, Malleswaram, Bengaluru, Karnataka 560012, India.
| | - Bhushan J Toley
- Department of Chemical Engineering, Indian Institute of Science, Malleswaram, Bengaluru, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
2
|
Kakkar S, Gupta P, Singh Yadav SP, Raj D, Singh G, Chauhan S, Mishra MK, Martín-Ortega E, Chiussi S, Kant K. Lateral flow assays: Progress and evolution of recent trends in point-of-care applications. Mater Today Bio 2024; 28:101188. [PMID: 39221210 PMCID: PMC11364909 DOI: 10.1016/j.mtbio.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Paper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits. The review highlights the synergistic aspects of assay designing, sample enrichment strategies, novel nanomaterials-based signal transducers, and high-end analytical techniques that contribute significantly towards sensitivity and specificity enhancement. Various recent studies are discussed supporting the innovations in LFA systems that focus upon the accuracy and reliability of rapid PoC testing. The review also provides a comprehensive overview of all the possible difficulties in commercialization of LFAs subjecting its applicability to pathogen surveillance, water and food testing, disease diagnostics, as well as to agriculture and environmental issues.
Collapse
Affiliation(s)
- Saloni Kakkar
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, India
| | - Shiv Pratap Singh Yadav
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Garima Singh
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Sakshi Chauhan
- Dept. of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Elena Martín-Ortega
- IFCAE, Research Institute of Physics and Aerospace Science, Universidade de Vigo, Ourense, 32004, Spain
| | - Stefano Chiussi
- CINTECX, Universidade de Vigo, New Materials Group, Vigo, 36310, Spain
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo, 36310, Spain
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, U.P., India
| |
Collapse
|
3
|
Li W, Yang X, Wang D, Xie J, Wang S, Rong Z. A handheld fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of methamphetamine and tramadol. Talanta 2024; 277:126438. [PMID: 38897012 DOI: 10.1016/j.talanta.2024.126438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The escalating issue of drug abuse poses a significant threat to public health and societal stability worldwide. An on-site drug detection platform is vital for combating drug abuse and trafficking, as it eliminates the need for additional tools, extensive processes, or specialized training. Therefore, it is imperative to develop a fast, sensitive, non-invasive, and reliable multiplex drug testing platform. In this study, we have presented a silica core@dual quantum dot-shell nanocomposite (SI/DQD)-based fluorescent lateral flow immunoassay (LFIA) platform for the highly sensitive and simultaneous point-of-care (POC) detection of methamphetamine (MET) and tramadol (TR). A 3D-printed attachment was designed to integrate optical and electrical components, facilitating the miniaturization of the instrument and reducing both cost and complexity. The device's advanced hardware and effective fluorescence extraction algorithm with waveform reconstruction enable swift, automatic noise reduction and data analysis. SI/DQD nanocomposites were utilized as fluorescent nanotags in the LFIA strips due to their outstanding luminous efficiency and robustness. This LFIA platform achieves impressive detection limits (LODs) of 0.11 ng mL-1 for MET and 0.017 ng mL-1 for TR. The method has also successfully detected MET and TR in complex biological samples, demonstrating its practical application capabilities. The proposed fluorescent LFIA platform, based on SI/DQD technology, holds significant promise for the swift and accurate POC detection of these substances. Its affordability, compact size, and excellent analytical performance make it suitable for on-site drug testing, including at borders and roadside checks, and open up new possibilities for the design and implementation of drug testing methods.
Collapse
Affiliation(s)
- Weijia Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Beijing, 100850, China
| | | | - Dongfeng Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Toxicology and Pharmacology, Beijing, 100850, China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing, 100850, China.
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing, 100850, China.
| |
Collapse
|
4
|
Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel) 2024; 16:2319. [PMID: 39204541 PMCID: PMC11359747 DOI: 10.3390/polym16162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| |
Collapse
|
5
|
Li ZH, Liu XC, Wang D, Zhang ZL, Chen G, Yu ZL, Tian ZQ. Simultaneous detection of two subtypes of extracellular vesicles using ultrabright fluorescent nanosphere-based test strips. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39036899 DOI: 10.1039/d4ay00712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In recent years, the cargo profiles of extracellular vesicles (EVs), which were inherited from their parent cells, have emerged as a reliable biomarker for liquid biopsy (LB) in disease diagnosis, prognosis, and treatment monitoring. EVs secreted by different cells exhibit distinct characteristics, particularly in terms of disease diagnosis and prediction. However, currently available techniques for the quantitative analysis of EV cargoes, including enzyme-linked immunosorbent assay (ELISA), cannot specifically identify the cellular origin of EVs, thus seriously affecting the accuracy of EV-based liquid biopsy. In light of this, we here developed ultrabright fluorescent nanosphere (FNs)-based test strips which have the unique capability to specifically assess the levels of PD-L1-positive EVs (PD-L1+ EVs) derived from both tumor cells and immune cells in bodily fluids. The levels of PD-L1+ EV subpopulations in human saliva were quantified using the ultrabright fluorescent nanosphere-based test strips with more convenience and higher efficiency (detection time <30 min). Results demonstrated that the fluorescence intensity of the test line exhibited a good linear relationship respectively with the PD-L1 levels of tumor cell- (R2 = 0.993) and immune cell-derived EVs (R2 = 0.982) in human saliva. By assessing the levels of PD-L1+ EV subpopulations, our test strips hold immense potential for advancing the application of PD-L1+ EV subpopulation-based predictions in tumor diagnosis and prognosis evaluation. In summary, by integrating the benefits of FNs and lateral flow chromatography, we here provide a strategy to accurately measure the cargo levels of EVs originating from diverse cell sources in bodily fluids.
Collapse
Affiliation(s)
- Zhi-Hua Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xing-Chi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Dan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi-Quan Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Environmental Engineering and Pollution Control on Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
6
|
Huang Y, Li R, Zhu W, Zhao J, Wang H, Zhang Z, Lin H, Li W, Li Z. Development of a fluorescent multiplexed lateral flow immunoassay for the simultaneous detection of crustacean allergen tropomyosin, sarcoplasmic calcium binding protein and egg allergen ovalbumin in different matrices and commercial foods. Food Chem 2024; 440:138275. [PMID: 38150909 DOI: 10.1016/j.foodchem.2023.138275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
A quantum dot (QD) based multiplexed lateral flow immunoassay (xLFIA) for the simultaneous detection of egg allergen ovalbumin, crustacean allergen tropomyosin (TM) and sarcoplasmic calcium binding protein (SCP) was developed in this study. QD-labeled rabbit anti-ovalbumin, SCP and TM antibodies were applied as fluorescent detection probes. The chromatography system was optimized to reduce the mutual interference of different test lines. Visual and instrumental detection limits of the xLFIA were 0.1 and 0.05 μg/mL for SCP, both 0.05 μg/mL for ovalbumin and both 0.5 μg/mL for TM. As low as 0.10 % crab powder, 0.01 % egg white powder and 0.05 % shrimp powder could be detected in all three model foods using xLFIA. Besides, the xLFIA detection results of 23 of 28 commercial foods were consistent with ingredient labels. These findings indicate that the developed xLFIA is a practical tool for point-of-care detection of egg and crustacean allergens in processed and commercial foods.
Collapse
Affiliation(s)
- Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Ranran Li
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Wenye Zhu
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Wenjie Li
- Clinical Laboratory, Qingdao Women & Children Hospital, No.6, Tongfu Road, Qingdao, Shandong Province 266034, PR China.
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China.
| |
Collapse
|
7
|
Lin M, Gao Z, Qian Z, Deng Y, Chen Y, Wang Y, Li X. Ultrasensitive Ti 3C 2Tx@Pt-Based Immunochromatography with Catalytic Amplification and a Dual Signal for the Detection of Chloramphenicol in Animal-Derived Foods. Foods 2024; 13:1416. [PMID: 38731787 PMCID: PMC11083481 DOI: 10.3390/foods13091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Herein, a catalytic amplification enhanced dual-signal immunochromatographic assay (ICA) based on Pt nanoparticles (Pt NPs) modified with Ti3C2Tx MXene (Ti3C2Tx@Pt) was first developed for chloramphenicol (CAP) in animal-derived foods. Due to the large specific surface area and abundant active sites of Ti3C2Tx@Pt, they can be loaded with hundreds of Pt NPs to enhance their catalytic activity, resulting in a significant increase in the detection sensitivity; the sensitivity was up to 50-fold more sensitive than the reported ICA for CAP. The LODs of the developed method for milk/chicken/fish were 0.01 μg/kg, the LOQs were 0.03 μg/kg and the recovery rates were 80.5-117.0%, 87.2-118.1% and 92.7-117.9%, with corresponding variations ranging from 3.1 to 9.6%, 6.0 to 12.7% and 6.0 to 13.6%, respectively. The linear range was 0.0125-1.0 μg/kg. The results of the LC-MS/MS confirmation test on 30 real samples had a good correlation with that of our established method (R2 > 0.98), indicating the practical reliability of the established method. The above results indicated that an ICA based on the Ti3C2Tx@Pt nanozyme has excellent potential as a food safety detection tool.
Collapse
Affiliation(s)
- Mengfang Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Y.D.)
| | - Zhimin Gao
- Guangdong Agricultural Product Quality and Safety Center (Guangdong Green Food Development Center), Guangzhou 510230, China;
| | - Zhenjie Qian
- Guangzhou Institute for Food Inspection, Guangzhou 511410, China; (Z.Q.); (Y.C.)
| | - Youwen Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Y.D.)
| | - Yanhong Chen
- Guangzhou Institute for Food Inspection, Guangzhou 511410, China; (Z.Q.); (Y.C.)
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou 511410, China; (Z.Q.); (Y.C.)
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Y.D.)
| |
Collapse
|
8
|
Gul AR, Bal J, Xu P, Ghosh S, Yun T, Kailasa SK, Kim YH, Park TJ. Serodiagnosis of multiple cancers using an extracellular protein kinase A autoantibody-based lateral flow platform. Biosens Bioelectron 2024; 246:115902. [PMID: 38056339 DOI: 10.1016/j.bios.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Extracellular protein kinase A autoantibody (ECPKA-AutoAb) has been suggested as a universal cancer biomarker due to its higher amounts in serum of several types of cancer patients than that of normal individuals. Herein, we first developed a lateral flow immunoassay (LFIA) tool, using a sandwich format, toward ECPKA-AutoAb in human serum. For this format, 3G2 as a capture antibody was identified using hybridoma technique and a series of screenings where it showed superior capacity to recognize Enzo PKA catalytic subunit alpha (Cα), compared to other PKA antibodies and antigens. Using these components, we performed sandwich ELISA toward a mimic and real sample of ECPKA-AutoAb. As per the results, limit of detection (LOD) was found to be 135 ng/mL and ECPKA-AutoAb levels were higher in various cancer patients than in normal individuals like previous studies. Based on these results, we applied this sandwich format into LFIA tool and found that the LOD of the fabricated LFIA tool showed about 3.8 ng/mL using spiked PKA-Ab, which is significantly improved compared to the LOD of sandwich ELISA. Also, the developed LFIA tool demonstrated a remarkable ability to detect significant differences in ECPKA-AutoAb levels between normal and cancer patients within 15 min, showing a potential for point-of-care (PoC) detection. One interesting point is that our LFIA strip contains an additional conjugation pad II, named because of its position behind the conjugation pad, in which PKA Cα is dried, enabling a sandwich format.
Collapse
Affiliation(s)
- Anam Rana Gul
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jyotiranjan Bal
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ping Xu
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Subhadeep Ghosh
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Taehyun Yun
- KNAX Ltd., D-1414, (Hanam Techno Valley U1 Center) 947, Hanam-daero, Hanam-si, Gyeonggi-do, 12982, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, Gujrat, India
| | - Yeong Hyeock Kim
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
Hou J, Cao Y, Deng Q, Zhang Q, Deng X, Chen Z, Zhong Z. A fluorescence-based immunochromatographic assay using quantum dot-encapsulated nanoparticles for the rapid and sensitive detection of fetuin-B. Anal Chim Acta 2024; 1288:342143. [PMID: 38220278 DOI: 10.1016/j.aca.2023.342143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Earlier detection of CAD improves treatment outcomes and secondary prevention. The circulating fetuin-B protein is considered to be a promising biomarker for the early detection of CAD. However, a facile and reliable clinical test for fetuin-B is still lacking. Herein, we describe a reliable fluorescent biosensor for detecting fetuin-B in plasma that combines quantum dots-doped polystyrene nanoparticles with an immunochromatographic assay strip (QNPs-ICAS). The QNPs served as detection signals in the QNPs-ICAS sensor system, which was based on a double-antibody sandwich structure. Under optimum experimental conditions, the biosensor exhibited a broad linear range of 1-200 ng mL-1 and a low detection limit of 0.299 ng mL-1. Furthermore, the proposed immunosensor demonstrated high sensitivity, satisfactory selectivity, good reproducibility, and excellent recovery. Finally, the performance and applicability of our QNPs-based ICAS system were validated in clinical samples using a commercial ELISA kit with excellent correlations (r = 0.98451, n = 116). To conclude, the proposed sensor served as a rapid, sensitive, and accurate method for detecting fetuin-B in actual clinical samples, thereby demonstrating its potential for preliminary CAD screening and diagnosis.
Collapse
Affiliation(s)
- Jingyuan Hou
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China; GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Yue Cao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510180, China
| | - Qiaoting Deng
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhenhua Chen
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China; GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
10
|
Wang Y, Zhang G, Xiao X, Shu X, Fei D, Guang Y, Zhou Y, Lai W. High-Performance Fluorescent Microspheres Based on Fluorescence Resonance Energy Transfer Mode for Lateral Flow Immunoassays. Anal Chem 2023; 95:17860-17867. [PMID: 38050676 DOI: 10.1021/acs.analchem.3c03986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The label with a large Stokes shift and strong fluorescence properties could improve the sensitivity of the lateral flow immunoassay (LFIA). Herein, two aggregation-induced emission (AIE) luminogens with spectral overlap were encapsulated in polymers by using the microemulsion method as a label, and the construction of a fluorescence resonance energy transfer mode was further verified via theoretical calculation and spectral analysis. Satisfactorily, the doped AIE polymer microspheres (DAIEPMs) exhibited a large Stokes shift of 285 nm and a 10.8-fold fluorescence enhancement compared to those of the AIEPMs loaded with acceptors. Benefiting from the excellent optical performance, DAIEPMs were applied to the LFIA for sensitive detection of chlorothalonil, which is an organochlorine pesticide. The limit of detection of the proposed DAIEPMs-LFIA was 1.2 pg/mL, which was 4.8-fold and 11.6-fold lower than those of quantum dot bead LFIA and gold nanoparticle LFIA, respectively. This work provides a new strategy to improve the optical properties of fluorescent materials and construct a sensitive and reliable detection platform.
Collapse
Affiliation(s)
- Yumeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinhui Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Dan Fei
- Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yelan Guang
- Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yaomin Zhou
- Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
11
|
Pang J, Tian X, Han X, Yuan J, Li L, You Y, Zhou Y, Xing G, Li R, Wang Z. Computationally-driven epitope identification of PEDV N-protein and its application in development of immunoassay for PEDV detection. J Pharm Biomed Anal 2023; 235:115660. [PMID: 37598469 DOI: 10.1016/j.jpba.2023.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
The nucleocapsid (N) protein is a suitable candidate for early diagnosis of porcine epidemic diarrhea virus (PEDV). Here, we identified the linear B-cell epitopes of the PEDV N-protein by integrating a computational-experimental framework and constructed three-dimensional (3D) structure model of the N protein using the ColabFold program in Google Colaboratory. Furthermore, we prepared the monoclonal antibodies against the predicted epitopes and recombinant N protein, respectively, and selected pairing mAbs (named 9C4 and 3C5) to develop a double-antibody sandwich immunochromatographic test strip using CdSe/ZnS quantum dots (QDs)-labelled 9C4 and 3C5 as capture and detection antibodies, respectively. This strip can specifically detect PEDV within 10 min with a detection limit of less than 6.25 × 103 TCID50/mL. In comparison with RT-PCR for testing 90 clinical samples, the relative sensitivity and specificity of the strip were found to be 98.0% and 100%, respectively, with a concordance rate of 98.9% and a kappa value of 0.978, indicating that QDs-ICTS is a reliable method for the application of PEDV detection in clinical samples.
Collapse
Affiliation(s)
- Junzeng Pang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiao Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiakang Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Linyue Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yonghe You
- Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Yanlin Zhou
- Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
12
|
Dey MK, Iftesum M, Devireddy R, Gartia MR. New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4351-4376. [PMID: 37615701 DOI: 10.1039/d3ay00844d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Lateral flow assays (LFAs) are a popular method for quick and affordable diagnostic testing because they are easy to use, portable, and user-friendly. However, LFA design has always faced challenges regarding sensitivity, accuracy, and complexity of the operation. By integrating new technologies and reagents, the sensitivity and accuracy of LFAs can be improved while minimizing the complexity and potential for false positives. Surface enhanced Raman spectroscopy (SERS), photoacoustic techniques, fluorescence resonance energy transfer (FRET), and the integration of smartphones and thermal readers can improve LFA accuracy and sensitivity. To ensure reliable and accurate results, careful assay design and validation, appropriate controls, and optimization of assay conditions are necessary. Continued innovation in LFA technology is crucial to improving the reliability and accuracy of rapid diagnostic testing and expanding its applications to various areas, such as food testing, water quality monitoring, and environmental testing.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Maria Iftesum
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
Mousseau F, Féraudet Tarisse C, Simon S, Gacoin T, Alexandrou A, Bouzigues CI. Multititration: The New Method for Implementing Ultrasensitive and Quantitative Multiplexed In-Field Immunoassays Despite Cross-Reactivity? Anal Chem 2023; 95:13509-13518. [PMID: 37639578 DOI: 10.1021/acs.analchem.3c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The accurate in-field titration of multiple pathogens is essential to efficiently describe and monitor environmental or biological contamination, isolate, act, and treat adequately. This underscores the requirement of portable, fast, quantitative, and multiplexed detection technologies, which, however, have not been properly developed so far, notably because it has been hindered by the phenomenon of cross-reactivity. In this work, we proposed a new analytical method based on the imaging through a portable device of lanthanide-based nanoparticles (YVO4:Eu) for spatially multiplexed detection, relying on a multiparameter analysis, i.e., a simultaneous analysis of all of the luminescence signals through the comparison to a calibration surface built in the presence of multiple analytes of interest. We then demonstrated the possibility to simultaneously quantify by multiplexed lateral flow assay (xLFA) the three enterotoxins SEG, SEH, and SEI in unknown mixtures, over two concentration decades (from a dozen of pg·mL-1 to few ng·mL-1). Assays were performed in less than an hour (25 min of strip migration followed by 30 min of drying at room temperature), the time during which the presence of the operator was not required for more than 5 min, in order to dip the strip and have it imaged by the reader. The concepts of nominal concentration recovery, coefficient of variation (CV), limit of blank (LOB), and limit of detection (LOD) were discussed in detail in the context of multiplexed assays. With our new definitions, quantitative results demonstrated a high recovery of the nominal concentrations (115%), reliability (CV = 20%), and sensitivity (LOBs of 3, 27, and 6 pg·mL-1 for SEG, SEH, and SEI respectively, and LODs of 6, 48, and 11 pg·mL-1 for SEG, SEH, and SEI, respectively). Based on this method, we observed an increase in sensitivity of 100 compared to the other multiplexed LFA labeled with gold particles and we approached the sensitivity of the simplex enzyme-linked immunosorbent assay (ELISA) performed with the same capture and detection antibodies. To conclude, our results, which are applicable to virtually any kind of multiplexed test, pave the way to the next generation of in-field analytical immunoassays by providing fast, quantitative, and highly sensitive multiplexed detection of biomarkers or pathogens.
Collapse
Affiliation(s)
- Fanny Mousseau
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France
| | - Cécile Féraudet Tarisse
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Stéphanie Simon
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, Route de Saclay, 91128 Palaiseau, France
| | - Antigoni Alexandrou
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France
| | - Cédric Ismael Bouzigues
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
14
|
Mousavi SM, Kalashgrani MY, Gholami A, Omidifar N, Binazadeh M, Chiang WH. Recent Advances in Quantum Dot-Based Lateral Flow Immunoassays for the Rapid, Point-of-Care Diagnosis of COVID-19. BIOSENSORS 2023; 13:786. [PMID: 37622872 PMCID: PMC10452855 DOI: 10.3390/bios13080786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The COVID-19 pandemic has spurred demand for efficient and rapid diagnostic tools that can be deployed at point of care to quickly identify infected individuals. Existing detection methods are time consuming and they lack sensitivity. Point-of-care testing (POCT) has emerged as a promising alternative due to its user-friendliness, rapidity, and high specificity and sensitivity. Such tests can be conveniently conducted at the patient's bedside. Immunodiagnostic methods that offer the rapid identification of positive cases are urgently required. Quantum dots (QDs), known for their multimodal properties, have shown potential in terms of combating or inhibiting the COVID-19 virus. When coupled with specific antibodies, QDs enable the highly sensitive detection of viral antigens in patient samples. Conventional lateral flow immunoassays (LFAs) have been widely used for diagnostic testing due to their simplicity, low cost, and portability. However, they often lack the sensitivity required to accurately detect low viral loads. Quantum dot (QD)-based lateral flow immunoassays have emerged as a promising alternative, offering significant advancements in sensitivity and specificity. Moreover, the lateral flow immunoassay (LFIA) method, which fulfils POCT standards, has gained popularity in diagnosing COVID-19. This review focuses on recent advancements in QD-based LFIA for rapid POCT COVID-19 diagnosis. Strategies to enhance sensitivity using QDs are explored, and the underlying principles of LFIA are elucidated. The benefits of using the QD-based LFIA as a POCT method are highlighted, and its published performance in COVID-19 diagnostics is examined. Overall, the integration of quantum dots with LFIA holds immense promise in terms of revolutionizing COVID-19 detection, treatment, and prevention, offering a convenient and effective approach to combat the pandemic.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
15
|
Zhang Y, Liao T, Wang G, Xu J, Wang M, Ren F, Zhang H. An ultrasensitive NIR-IIa' fluorescence-based multiplex immunochromatographic strip test platform for antibiotic residues detection in milk samples. J Adv Res 2023; 50:25-34. [PMID: 36280143 PMCID: PMC10403655 DOI: 10.1016/j.jare.2022.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Widely used in livestock breeding, residues of antibiotic drugs in milk have become a threat to food safety and human health. Current rapid detection technologies using colorimetric immunochromatographic strip tests (IST) lack the necessary sensitivity for on-site trace monitoring. Fluorescence-based detection in the near-infrared IIa' (NIR-IIa') region (1000 ∼ 1300 nm) has enormous potential due to greatly minimized auto-fluorescence and light scattering. OBJECTIVES The aim of this work is to develop an ultrasensitive IST platform using NIR-IIa' fluorescent nanoparticles as labels for multiplex antibiotic residues detection in milk. METHODS NIR-IIa' fluorescent nanoparticles were assembled by encapsulating synthesized NIR-IIa' fluorophores into carboxyl - modified polystyrene nanoparticles. The NIR-IIa' nanoparticles were subsequently used as labels in an IST platform to detect sulfonamides, quinolones, and lincomycin simultaneously in milk. A portable fluorescent reader was fabricated to provide on-site detection. To further validate the developed IST platform, the detection was compared with LC-MS/MS in 22 real milk samples. RESULTS Fluorescent nanoparticles were synthesized with low energy emission (1030 nm) and large Stokes shift (>250 nm) showing a much higher signal-to-noise ratio compared with fluorophores emitting in the NIR-I region. The developed IST platform yielded a highly sensitive, simultaneous quantification of sulfonamides, quinolones, and lincomycin in milk with detection limits of 46.7, 27.6 and 51.4 pg/mL, respectively, achieving a wide detection range (up to 50 ng/mL). The IST platform showed good accuracy, reproducibility, and specificity with the portable fluorescent reader which could rapidly quantify in 10 s. These results were better than reported immunochromatographic assays using fluorescent labels, and remarkably, showed a higher recognition ability than LC-MS/MS for real samples. CONCLUSION The utility of NIR-IIa' fluorescence-based IST platform for the fast, sensitive, and accurate detection of antibiotics in milk was demonstrated, successfully verifying the potential of this platform in detecting trace materials in complex matrices.
Collapse
Affiliation(s)
- Yunyue Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Tao Liao
- WWHS Biotech. Inc. Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518100, PR China
| | - Guoxin Wang
- WWHS Biotech. Inc. Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518100, PR China
| | - Juan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Mohan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, PR China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, PR China.
| |
Collapse
|
16
|
Kaur J, Deng F, Morris MJ, Goldys E. QDs-based fluorescent lateral flow assays for Point-of-care testing of insulin. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082853 DOI: 10.1109/embc40787.2023.10340110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Point-of-care testing (POCT) can be performed near the site of the patient to achieve results in a few minutes. Different POCT devices are available in the market, such as microfluidic chips and paper-based lateral flow assays (LFAs). The paper-based LFAs have certain advantages, such as being cheap and disposable, able to detect a wide range of biomolecules, and the fluid flows through them via capillary action eliminating the need for external forces. The LFAs can be optimized for the sensitive and rapid detection of biomolecules. In this study, paper-based fluorescent LFAs platforms using aptamers as the biorecognition molecules were developed for the POCT of insulin. Various parameters were optimized such as concentrations of aptamers, the type of reporter molecules, the volume of sample, and the assay time to quantify insulin levels using a standard LFA reader. The fluorescent LFAs exhibited a linear detection range of 0.1-4 ng.mL-1 with a limit of detection (LOD) 0.1 ng.mL-1. The developed LFAs will help to achieve insulin measurement in a few minutes and will be easy to perform by end-users without the requirement of sophisticated instruments, laboratory set-up, and trained personnel. The developed device will be useful for the measurement of insulin levels in biological samples without the need for pretreatment, reducing the overall cost and time of testing. Moreover, the POCT device were fabricated using paper which is a low-cost (approximately AUD 2 per strip) option and is disposable.Clinical Relevance- POCT monitoring of insulin can facilitate both disease diagnosis and management. The developed LFAs have the capability of rapidly testing insulin concentration within several minutes. It will benefit both patients for at-home daily insulin monitoring and clinicians for hospital rapid insulin testing.
Collapse
|
17
|
Kumari S, Islam M, Gupta A. Paper-based multiplex biosensors for inexpensive healthcare diagnostics: a comprehensive review. Biomed Microdevices 2023; 25:17. [PMID: 37133791 DOI: 10.1007/s10544-023-00656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Multiplex detection is a smart and an emerging approach in point-of-care testing as it reduces analysis time and testing cost by detecting multiple analytes or biomarkers simultaneously which are crucial for disease detection at an early stage. Application of inexpensive substrate such as paper has immense potential and matter of research interest in the area of point of care testing for multiplexed analysis as it possesses several unique advantages. This study presents the use of paper, strategies adopted to refine the design created on paper and lateral flow strips to enhance the signal, increase the sensitivity and specificity of multiplexed biosensors. An overview of different multiplexed detection studies performed using biological samples has also been reviewed along with the challenges and advantages offered by multiplexed analysis.
Collapse
Affiliation(s)
- Shrishti Kumari
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur 342037, Rajasthan, India
| | - Monsur Islam
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur 342037, Rajasthan, India.
| |
Collapse
|
18
|
Niu C, Yao Z, Jiang S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163565. [PMID: 37080319 DOI: 10.1016/j.scitotenv.2023.163565] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can accumulate in the human body through the food chain, which may seriously impact human health. Therefore, it is of vital importance to develop quick, simple, accurate and sensitive (respond quickly) technologies to evaluate the concentration of environmental pollutants in food. Quantum dots (QDs)-based fluorescence detection methods have great potential to overcome the shortcomings of traditional detection methods, such as long detection time, cumbersome detection procedures, and low sensitivity. This paper reviews the types and synthesis methods of QDs with a focus on green synthesis and the research progress on rapid detection of environmental pollutants (e.g., heavy metals, pesticides, and antibiotics) in food. Metal-based QDs, carbon-based QDs, and "top-down" and "bottom-up" synthesis methods are discussed in detail. In addition, research progress of QDs in detecting different environmental pollutants in food is discussed, especially, the practical application of these methods is analyzed. Finally, current challenges and future research directions of QDs-based detection technologies are critically discussed. Hydrothermal synthesis of carbon-based QDs with low toxicity from natural materials has a promising future. Research is needed on green synthesis of QDs, direct detection without pre-processing, and simultaneous detection of multiple contaminants. Finally, how to keep the mobile sensor stable, sensitive and easy to store is a hot topic in the future.
Collapse
Affiliation(s)
- Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
19
|
Chen J, Jiang J, Liang J, Wu H, Chen L, Xu Z, Lei H, Li X. Bifunctional magnetic ZnCdSe/ZnS quantum dots nanocomposite-based lateral flow immunoassay for ultrasensitive detection of streptomycin and dihydrostreptomycin in milk, muscle, liver, kidney, and honey. Food Chem 2023; 406:135022. [PMID: 36455313 DOI: 10.1016/j.foodchem.2022.135022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
In this study, bifunctional magnetic ZnCdSe/ZnS quantum dots nanocomposite (MQNs) were synthesized, and firstly used to develop a lateral flow immunoassay (LFIA) for streptomycin (STR) and dihydrostreptomycin (DHSTR) detection in milk, muscle, liver, kidney, and honey simultaneously. The fluorescence signal of MQNs was 9-fold stronger than that of the original quantum dots. The detection limits of the established MQNs-LFIA for STR and DHSTR in five samples were 0.08-1.78 μg/kg, the quantitation limits were 0.26-5.87 μg/kg, the recoveries were between 85.0% and 120.0%, and the coefficient of variations were between 0.8% and 19.3%, respectively. The sensitivity was up to 42-fold more sensitive than the reported LFIAs. The single blind test results of 25 samples were consistent with that of the confirmation method (R2 ≥ 0.99). Besides, a portable reader was self-developed and used for rapid quantification. Our study demonstrated MQNs as a promising signal-amplifying tag can be used for ultrasensitive detection of chemical contaminants in foods.
Collapse
Affiliation(s)
- Jiayi Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Jiang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinxuan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liping Chen
- Shenzhen Zhenrui Biological Technology Co., Ltd., Shenzhen 518109, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Li Z, Liu Y, Chen X, Wang Y, Niu H, Li F, Gao H, Yu H, Yuan Y, Yin Y, Li D. Affinity-Based Analysis Methods for the Detection of Aminoglycoside Antibiotic Residues in Animal-Derived Foods: A Review. Foods 2023; 12:foods12081587. [PMID: 37107381 PMCID: PMC10137665 DOI: 10.3390/foods12081587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
With the increasingly serious problem of aminoglycoside antibiotic residues, it is imperative to develop rapid, sensitive and efficient detection methods. This article reviews the detection methods of aminoglycoside antibiotics in animal-derived foods, including enzyme-linked immunosorbent assay, fluorescent immunoassay, chemical immunoassay, affinity sensing assay, lateral flow immunochromatography and molecular imprinted immunoassay. After evaluating the performance of these methods, the advantages and disadvantages were analyzed and compared. Furthermore, development prospects and research trends were proposed and summarized. This review can serve as a basis for further research and provide helpful references and new insights for the analysis of aminoglycoside residues. Accordingly, the in-depth investigation and analysis will certainly make great contributions to food safety, public hygiene and human health.
Collapse
Affiliation(s)
- Zhaozhou Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yanyan Liu
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiujin Chen
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yao Wang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Huawei Niu
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Fang Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Hongli Gao
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Huichun Yu
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yunxia Yuan
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yong Yin
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Daomin Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
21
|
Haque M, Konthoujam I, Lyndem S, Koley S, Aguan K, Singha Roy A. Formation of ZnS quantum dots using green tea extract: applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J Mater Chem B 2023; 11:1998-2015. [PMID: 36752685 DOI: 10.1039/d2tb02265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biocompatible quantum dots (QDs) have attracted a lot of attention due to their potential biological applications (drug delivery, sensing and diagnosis). Here, we have synthesized 2-4 nm sized biocompatible zinc sulphide (ZnS) QDs using a plant leaf extract as an immobilizing and stabilizing agent via a green route. We have investigated the biological effects of ZnS QDs in a variety of applications, including (1) anti-bacterial activity, (2) cell cytotoxicity, (3) bio-sensing and (4) protein binding. Studies on the anti-bacterial activity of the as-synthesized ZnS QDs against E. coli and E. faecalis inhibited bacterial growth effectively and showed a cytotoxic effect on the HeLa cell line. The biosynthesized ZnS QDs act as a fluorescence probe to detect bilirubin and rifampicin (RFP) with a wide linear range, high sensitivity, good selectivity, and a low limit of detection (LOD), with LOD values of 22.12 ± 0.25 ng mL-1 and 122.37 ± 0.42 ng mL-1, respectively. In a biological matrix, the QDs can form a complex with biomacromolecules; therefore, we studied the interaction between a carrier protein (HSA) and the as-synthesized ZnS QDs. The surface functionalized and nano-sized ZnS-GT QDs were observed to form complexes with the human serum albumin (HSA) protein and quenched the intrinsic fluorescence of HSA through static and dynamic quenching modes. The binding affinity was observed to be of the order of 105 M-1 for the HSA-ZnS-GT QD interactions, which can be considered as a reversible mode of binding. The effect of the ZnS QDs on other ligands and protein interactions was also studied. Enhanced binding affinities for HSA-quercetin ((5.994 ± 0.139) × 105 M-1) and HSA-luteolin ((3.068 ± 0.127) × 105 M-1) interactions were also observed in the presence of ZnS-GT QDs.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Sudipta Koley
- Department of Physics, Amity University, Kolkata 700135, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| |
Collapse
|
22
|
Xu G, Fan X, Chen X, Liu Z, Chen G, Wei X, Li X, Leng Y, Xiong Y, Huang X. Ultrasensitive Lateral Flow Immunoassay for Fumonisin B1 Detection Using Highly Luminescent Aggregation-Induced Emission Microbeads. Toxins (Basel) 2023; 15:79. [PMID: 36668898 PMCID: PMC9861643 DOI: 10.3390/toxins15010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Lateral flow immunoassay (LFIA) based on fluorescent microbeads has attracted much attention for its use in rapid and accurate food safety monitoring. However, conventional fluorescent microbeads are limited by the aggregation-caused quenching effect of the loaded fluorophores, thus resulting in low signal intensity and insufficient sensitivity of fluorescent LFIA. In this study, a green-emitting fluorophore with an aggregation-induced emission (AIE) characteristic was encapsulated in polymer nanoparticles via an emulsification technique to form ultrabright fluorescent microbeads (denoted as AIEMBs). The prepared AIEMBs were then applied in a competitive LFIA (AIE-LFIA) as signal reporters for the rapid and highly sensitive screening of fumonisin B1 (FB1) in real corn samples. High sensitivity with a detection limit of 0.024 ng/mL for FB1 was achieved by the developed AIE-LFIA. Excellent selectivity, good accuracy, and high reliability of the AIE-LFIA were demonstrated, indicating a promising platform for FB1 screening.
Collapse
Affiliation(s)
- Ge Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaojing Fan
- School of Future Technology, Nanchang University, Nanchang 330047, China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zilong Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Guoxin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaxia Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
23
|
M V, Bhatt A, Thekkuveettil A, Ganapathy S, Panniyammakal J, Sivadasanpillai H, Gopi M. To evaluate the feasibility of cadmium/tellurium (Cd/Te) quantum dots for developing N-terminal Natriuretic Peptide (NT-proBNP) in-vitro diagnostics. J Immunoassay Immunochem 2023; 44:31-40. [PMID: 35880389 DOI: 10.1080/15321819.2022.2103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quantum dots have been widely used for biomedical applications like imaging, targeted drug delivery, and in-vitro diagnostics for better sensitivity. In-vitro diagnostic, lateral flow-based assay systems are gaining attention in the field of biomarker analysis mainly due to ease of test and quick availability of results. In the study, the potential of water-soluble carboxylic (-COOH) functionalized photoluminescent Cadmium Telluride Quantum Dots (CdTe) nanoparticles for lateral flow-based detection of N-terminal Natriuretic Peptide (NT-proBNP) biomarker (for heart failure) detection has been evaluated. Monoclonal antibodies were conjugated with COOH functionalized CdTe with EDC-NHS coupling chemistry, and conjugation was confirmed using FTIR. The CdTe nanoparticle exhibited an emission maximum at 715 nm when it is excited with 375 nm. The COOH functionalized CdTe showed an antigen concentration-dependent linearity in the lateral flow applications when the dye was prepared freshly and used. However, a relative reduction in CdTe quantum dot fluorescence intensity with time was observed. Factors such as low stability could be due to the quenching of the fluorescence of CdTe. This limits its commercial viability as an in-vitro diagnostic tool; thus, modifications of the quantum dots are required to have a stable preparation for its commercial potential for quantifications.
Collapse
Affiliation(s)
- Vani M
- Division of Artificial Internal Organs, Department of Medical Devices Engineering, BMT Wing, SCTIMST, Trivandrum, India
| | - Anugya Bhatt
- Thrombosis Research Unit, Department of Applied Biology, BMT Wing, SCTIMST, Trivandrum, India
| | - Anoopkumar Thekkuveettil
- Division of Molecular Medicine, Department of Applied Biology, BMT Wing, SCTIMST, Trivandrum, India
| | | | | | | | - Manoj Gopi
- Division of Artificial Internal Organs, Department of Medical Devices Engineering, BMT Wing, SCTIMST, Trivandrum, India
| |
Collapse
|
24
|
Colorimetric and Raman dual-mode lateral flow immunoassay detection of SARS-CoV-2 N protein antibody based on Ag nanoparticles with ultrathin Au shell assembled onto Fe 3O 4 nanoparticles. Anal Bioanal Chem 2023; 415:545-554. [PMID: 36414739 PMCID: PMC9685096 DOI: 10.1007/s00216-022-04437-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Serological antibody tests are useful complements of nuclei acid detection for SARS-CoV-2 diagnosis, which can significantly improve diagnostic accuracy. However, antibody detection in serum or plasma remains challenging to do with high sensitivity. In this study, Ag nanoparticles with ultra-thin Au shells embedded with 4-mercaptobenzoic acid (MBA) (AgMBA@Au) were manufactured and then assembled onto Fe3O4 surface by electrostatic interaction to construct the Fe3O4-AgMBA@Au nanoparticles (NPs) with magnetic-Raman-colorimetric properties. Based on the composite nanoparticles, a colorimetric and Raman dual-mode lateral flow immunoassay (LFIA) for ultrasensitive identification of SARS-CoV-2 nucleocapsid (N) protein antibody was constructed. The magnetic nanoparticles (Fe3O4 NPs) were acted as the core and coated a layer of AgMBA@Au particles on the surface by electrostatic interaction to prepare Fe3O4-AgMBA@Au NPs, which can amplify the SERS signal due to multiple AgMBA@Au particles concentrated on a single magnetic nanoparticle. Moreover, the Fe3O4-AgMBA@Au NPs facilitated pre-purifying sample using magnetic separation, and complex matrix interference would be greatly decreased in the detection. The Fe3O4-AgMBA@Au NPs modified with N protein recognized and bound with N protein antibodies, which were trapped on the T-line, forming color band for observing detection. Under optimal conditions, the N protein antibodies could be qualitatively detected in colorimetric mode with the visual limit of 10-8 mg/mL and quantitatively detected by SERS signals between 10-6 and 10-10 mg /mL with 0.08 pg/mL detection limit. The coefficients variations (CV) of intra-assay was 8.0%, whereas of inter-assay was 11.7%, confirming of good reproducibility. Finally, this approach was able to discriminate between positive, negative, and weakly positive samples when detecting 107 clinical serum samples. The process enables highly sensitive quantitative assays that are valuable for evaluating disease processes and guiding treatment. Colorimetric and Raman dual-mode LFIA detection of SARS-CoV-2 N protein antibody based on Fe3O4-AgMBA@Au nanoparticles.
Collapse
|
25
|
A SERS-based immunochromatographic assay for ultrasensitive and quantitative detection of florfenicol using long wavelength absorption of Au nanocubes. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Berlina AN, Ragozina MY, Komova NS, Serebrennikova KV, Zherdev AV, Dzantiev BB. Сomparison of Au, Au-Pt, and Au-Ag nanoparticles as markers for immunochromatographic determination of nonylphenol. CHIMICA TECHNO ACTA 2022. [DOI: 10.15826/chimtech.2023.10.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gold spherical nanoparticles, gold-platinum nanoflowers, and gold-silver nanostars were obtained and compared as labels for immunochromatographic analysis. The nanoparticles were synthesized by chemical reduction from various precursors and then conjugated with staphylococcal protein A to be used in indirect immunochromatographic determination of nonylphenol. The results obtained were evaluated in terms of analytical characteristics and R2 value, as well as the color intensity of the test band. According to the comparison results, it was revealed that the R2 value varied from 0.82 for the gold-silver nanostars to 0.96 for the spherical gold nanoparticles. The working range of determined concentrations was from 2 to 100 μg/mL for unspherical and from 2 to 50 μg/mL – for spherical markers used; the analysis time was 20 min.
Collapse
|
27
|
Ince B, Sezgintürk MK. Lateral flow assays for viruses diagnosis: Up-to-date technology and future prospects. Trends Analyt Chem 2022; 157:116725. [PMID: 35815063 PMCID: PMC9252863 DOI: 10.1016/j.trac.2022.116725] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Bacteria, viruses, and parasites are harmful microorganisms that cause infectious diseases. Early detection of diseases is critical to prevent disease transmission and provide epidemic preparedness, as these can cause widespread deaths and public health crises, particularly in resource-limited countries. Lateral flow assay (LFA) systems are simple-to-use, disposable, inexpensive diagnostic devices to test biomarkers in blood and urine samples. Thus, LFA has recently received significant attention, especially during the pandemic. Here, first of all, the design principles and working mechanisms of existing LFA methods are examined. Then, current LFA implementation strategies are presented for communicable disease diagnoses, including COVID-19, zika and dengue, HIV, hepatitis, influenza, malaria, and other pathogens. Furthermore, this review focuses on an overview of current problems and accessible solutions in detecting infectious agents and diseases by LFA, focusing on increasing sensitivity with various detection methods. In addition, future trends in LFA-based diagnostics are envisioned.
Collapse
Affiliation(s)
- Bahar Ince
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
28
|
Pan Y, Yang H, Wen K, Ke Y, Shen J, Wang Z. Current advances in immunoassays for quinolones in food and environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
30
|
Calidonio JM, Gomez-Marquez J, Hamad-Schifferli K. Nanomaterial and interface advances in immunoassay biosensors. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17804-17815. [PMID: 38957865 PMCID: PMC11218816 DOI: 10.1021/acs.jpcc.2c05008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Biosensors have been used for a remarkable array of applications, including infectious diseases, environmental monitoring, cancer diagnosis, food safety, and numerous others. In particular, the global COVID-19 pandemic has exposed a need for rapid tests, so the type of biosensor that has gained considerable interest recently are immunoassays, which are used for rapid diagnostics. The performance of paper-based lateral flow and dipstick immunoassays is influenced by the physical properties of the nanoparticles (NPs), NP-antibody conjugates, and paper substrate. Many materials innovations have enhanced diagnostics by increasing sensitivity or enabling unique readouts. However, negative side effects can arise at the interface between the biological sample and biomolecules and the NP or paper substrate, such as non-specific adsorption and protein denaturation. In this Perspective, we discuss the immunoassay components and highlight chemistry and materials innovations that can improve sensitivity. We also explore the range of bio-interface issues that can present challenges for immunoassays.
Collapse
Affiliation(s)
| | | | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA 02125
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
31
|
New Advances in Lateral Flow Immunoassay (LFI) Technology for Food Safety Detection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196596. [PMID: 36235132 PMCID: PMC9571384 DOI: 10.3390/molecules27196596] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
Abstract
With the continuous development of China’s economy and society, people and the government have higher and higher requirements for food safety. Testing for food dopants and toxins can prevent the occurrence of various adverse health phenomena in the world’s population. By deploying new and powerful sensors that enable rapid sensing processes, the food industry can help detect trace adulteration and toxic substances. At present, as a common food safety detection method, lateral flow immunochromatography (LFI) is widely used in food safety testing, environmental testing and clinical medical treatment because of its advantages of simplicity, speed, specificity and low cost, and plays a pivotal role in ensuring food safety. This paper mainly focuses on the application of lateral flow immunochromatography and new technologies combined with test strips in food safety detection, such as aptamers, surface-enhanced Raman spectroscopy, quantum dots, electrochemical test strip detection technology, biosensor test strip detection, etc. In addition, sensing principles such as fluorescence resonance energy transfer can also more effective. Different methods have different characteristics. The following is a review of the application of these technologies in food safety detection.
Collapse
|
32
|
Recent advances in the rapid detection of microRNA with lateral flow assays. Biosens Bioelectron 2022; 211:114345. [DOI: 10.1016/j.bios.2022.114345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
|
33
|
Rainbow latex microspheres lateral flow immunoassay with smartphone-based device for simultaneous detection of three mycotoxins in cereals. Anal Chim Acta 2022; 1221:340138. [DOI: 10.1016/j.aca.2022.340138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022]
|
34
|
Comparison of lateral flow immunoassays based on oriented and nonoriented immobilization of antibodies for the detection of aflatoxin B1. Anal Chim Acta 2022; 1221:340135. [DOI: 10.1016/j.aca.2022.340135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
|
35
|
Zhou J, Qian W, Yang Q, Liang C, Chen Y, Wang A, Zhang G. Analysis of virginiamycin M1 in swine feed, muscle and liver samples by quantum dots-based fluorescent immunochromatographic assay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1390-1400. [PMID: 35679322 DOI: 10.1080/19440049.2022.2081366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Based on a highly sensitive and specific monoclonal antibody (mAb) against virginiamycin M1 (VIR M1), a quantum dots-based fluorescent immunochromatographic assay (QDs-ICA) for quick and sensitive analysis of VIR M1 was established for the first time. The mAb showed a half-maximal inhibitory concentration (IC50) of 0.5 ng/mL and cross-reactivity (CR) values below 0.1% for other three analogues when used in enzyme-linked immunosorbent assay (ELISA). The mAb was conjugated to ZnCdSe/ZnS (core/shell) QDs with maximum emission wavelength of 610 nm (orange-red) which was selected as fluorescent probe to increase QDs-ICA sensitivity. The cut-off value of QDs-ICA was 12.5 ng/mL. QDs-ICA showed a linear range from 0.7 to 14.5 ng/mL with a limit of quantification of 0.7 ng/mL. Compared with existing methods for the analysis of VIR M1, the QDs-ICA exhibited higher sensitivity. For analysis of VIR M1 concentrations spiked into swine feed, muscle and liver samples, recovery rates ranged from 94.0% to 111.6% with the highest coefficient of variation (CV) of 6.7% for intra-assay, and for inter-assay ranged from 94.7% to 107.6% with the highest CV of 9.4%. In conclusion, the QDs-ICA could be a potential method for analyzing VIR M1 in animal feed and animal-derived food.
Collapse
Affiliation(s)
- Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Wenjing Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Qingbao Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, PR China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
36
|
Mousavi SM, Hashemi SA, Rahmanian V, Kalashgrani MY, Gholami A, Omidifar N, Chiang WH. Highly Sensitive Flexible SERS-Based Sensing Platform for Detection of COVID-19. BIOSENSORS 2022; 12:bios12070466. [PMID: 35884269 PMCID: PMC9312648 DOI: 10.3390/bios12070466] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/26/2023]
Abstract
COVID-19 continues to spread and has been declared a global emergency. Individuals with current or past infection should be identified as soon as possible to prevent the spread of disease. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique that has the potential to be used to detect viruses at the site of therapy. In this context, SERS is an exciting technique because it provides a fingerprint for any material. It has been used with many COVID-19 virus subtypes, including Deltacron and Omicron, a novel coronavirus. Moreover, flexible SERS substrates, due to their unique advantages of sensitivity and flexibility, have recently attracted growing research interest in real-world applications such as medicine. Reviewing the latest flexible SERS-substrate developments is crucial for the further development of quality detection platforms. This article discusses the ultra-responsive detection methods used by flexible SERS substrate. Multiplex assays that combine ultra-responsive detection methods with their unique biomarkers and/or biomarkers for secondary diseases triggered by the development of infection are critical, according to this study. In addition, we discuss how flexible SERS-substrate-based ultrasensitive detection methods could transform disease diagnosis, control, and surveillance in the future. This study is believed to help researchers design and manufacture flexible SERS substrates with higher performance and lower cost, and ultimately better understand practical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran;
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
37
|
Liu H, Liu Y, Zhou T, Zhou P, Li J, Deng A. Ultrasensitive and Specific Detection of Anticancer Drug 5-Fluorouracil in Blood Samples by a Surface-Enhanced Raman Scattering (SERS)-Based Lateral Flow Immunochromatographic Assay. Molecules 2022; 27:4019. [PMID: 35807264 PMCID: PMC9268288 DOI: 10.3390/molecules27134019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
5-Fluorouracil (5-FU) is an effective anticancer drug widely used in the world. To improve therapy efficiency and reduce side effects, it is very important to frequently detect the concentration of 5-FU in blood samples of patients. In this work, a new type of lateral flow immunochromatographic assay (LFIA) based on surface-enhanced Raman scattering (SERS) for ultrasensitive and specific detection of 5-FU in blood samples was developed. Au@Ag/Au nanoparticles (NPs) employing Au particles as the core and Ag/Au alloy as the shell were synthesized, characterized and used as the substrate in SERS-LFIA due to their high SERS enhancement and biocompatibility. The immunoprobe was made in the form of AuMBA@Ag/Au-Ab in which mercaptobenzoic acid (MBA, a common Raman active reporter) was embedded in the core-shell layer and the monoclonal antibody (mAb) against 5-FU was immobilized on the surface. The performance of SERS-LFIA was similar to that in colloidal gold based-LFIA, and the entire assay time was within 20 min. According to the color intensity on the testing (T) lines of LFIA strips visualized by eyes, the contents of 5-FU in the samples could be qualitatively or semi-quantitatively identified. Furthermore, by measuring the characteristic Raman intensities of MBA on T lines, quantitative detection of 5-FU in the samples were achieved. The IC50 and limit of detection (LOD) of the LFIA for 5-FU were found to be 20.9 pg mL-1 and 4.4 pg mL-1, respectively. There was no cross-reactivity (CR) of the LFIA with nine relative compounds, and the CR with cytosine, tegafur and carmofur were less than 4.5%. The recoveries of 5-FU from spiked blood samples were in the range of 78.6~86.4% with the relative standard deviation (RSD) of 2.69~4.42%. Five blood samples containing 5-FU collected from the Cancer Hospital were measured by SERS-LFIA, and the results were confirmed by LC-MS/MS. It was proven that the proposed method was able to simply and rapidly detect 5-FU in blood samples with high sensitivity, specificity, accuracy and precision.
Collapse
Affiliation(s)
| | | | | | | | - Jianguo Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (H.L.); (Y.L.); (T.Z.); (P.Z.)
| | - Anping Deng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Renai Road 199, Suzhou 215123, China; (H.L.); (Y.L.); (T.Z.); (P.Z.)
| |
Collapse
|
38
|
Liu J, Lin L, Yao P, Zhao W, Hu J, Shi XH, Zhang S, Zhu X, Pang DW, Liu AA. Immunoprofiling of Severity and Stage of Bacterial Infectious Diseases by Ultrabright Fluorescent Nanosphere-Based Dyad Test Strips. Anal Chem 2022; 94:8818-8826. [PMID: 35686482 DOI: 10.1021/acs.analchem.2c02028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial infectious diseases are common clinical diseases that seriously threaten human health, especially in countries and regions with poor environmental hygiene. Due to the lack of characteristic clinical symptoms and signs, it is a challenge to distinguish a bacterial infection from other infections, leading to misdiagnosis and antibiotic overuse. Therefore, there is an urgent need to develop a specific method for detection of bacterial infections. Herein, utilizing ultrabright fluorescent nanospheres (FNs) as reporters, immunochromatographic dyad test strips are developed for the early detection of bacterial infections and distinction of different stages of bacterial infectious diseases in clinical samples. C-reactive protein (CRP) and heparin-binding protein (HBP) are quantified and assayed because their levels in plasma are varied dynamically and asynchronously during the progression of the disease. The detection limits of CRP and HBP can reach as low as 0.51 and 0.65 ng/mL, respectively, due to the superior fluorescence intensity of each FN, which is 570 times stronger than that of a single quantum dot. The assay procedure can be achieved in 22 min, fully meeting the needs of rapid and ultrasensitive detection in the field. This constructed strip has been successfully used to profile the stage and severity of bacterial infections by monitoring the levels of CRP and HBP in human plasma samples, showing great potential as a point-of-care biosensor for clinical diagnosis. In addition to bacterial infections, the developed ultrabright FN-based point-of-care testing can be readily expanded for rapid, quantitative, and ultrasensitive detection of other trace substances in complex systems.
Collapse
Affiliation(s)
- Juanzu Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| | - Leping Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China.,Wuhan Jiayuan Quantum Dots Co., Ltd., Wuhan 430074, P. R. China
| | - Peiyu Yao
- Department of Emergency, Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| | - Jiao Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| | - Shiwu Zhang
- Department of Emergency, Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P. R. China
| | - Xiaobo Zhu
- Wuhan Jiayuan Quantum Dots Co., Ltd., Wuhan 430074, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
39
|
Liang P, Guo Q, Zhao T, Wen CY, Tian Z, Shang Y, Xing J, Jiang Y, Zeng J. Ag Nanoparticles with Ultrathin Au Shell-Based Lateral Flow Immunoassay for Colorimetric and SERS Dual-Mode Detection of SARS-CoV-2 IgG. Anal Chem 2022; 94:8466-8473. [PMID: 35657150 PMCID: PMC9211040 DOI: 10.1021/acs.analchem.2c01286] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Immunoglobulin detection is essential for diagnosing progression of SARS-CoV-2 infection, for which SARS-CoV-2 IgG is one of the most important indexes. In this paper, Ag nanoparticles with ultrathin Au shells (∼2 nm) embedded with 4-mercaptobenzoic acid (MBA) (AgMBA@Au) were manufactured via a ligand-assisted epitaxial growth method and integrated into lateral flow immunoassay (LFIA) for colorimetric and SERS dual-mode detection of SARS-CoV-2 IgG. AgMBA@Au possessed not only the surface chemistry advantages of Au but also the superior optical characteristics of Ag. Moreover, the nanogap between the Ag core and the Au shell also greatly enhanced the Raman signal. After being modified with anti-human antibodies, AgMBA@Au recognized and combined with SARS-CoV-2 IgG, which was captured by the SARS-CoV-2 spike protein on the T line. Qualitative analysis was achieved by visually observing the color of the T line, and quantitative analysis was conducted by measuring the SERS signal with a sensitivity four orders of magnitude higher (detection limit: 0.22 pg/mL). The intra-assay and inter-assay variation coefficients were 7.7 and 10.3%, respectively, and other proteins at concentrations of 10 to 20 times higher than those of SARS-CoV-2 IgG could hardly produce distinguishable signals, confirming good reproducibility and specificity. Finally, this method was used to detect 107 clinical serum samples. The results agreed well with those obtained from enzyme-linked immunosorbent assay kits and were significantly better than those of the colloidal gold test strips. Therefore, this dual-mode LFIA has great potential in clinical practical applications and can be used to screen and trace the early immune response of SARS-CoV-2.
Collapse
Affiliation(s)
- Penghui Liang
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Qi Guo
- The
Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Tianyu Zhao
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Cong-Ying Wen
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Zhangyu Tian
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Yanxue Shang
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| | - Jinyan Xing
- The
Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yongzhong Jiang
- Hubei
Provincial Center for Disease Control and Prevention, Wuhan 430065, China
| | - Jingbin Zeng
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, P. R.
China
| |
Collapse
|
40
|
Development of Fluorescent Immunochromatographic Test Strip for Qualitative and Quantitative Detection of Zearalenone. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02295-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Wang Y, Chen H, Wei H, Rong Z, Wang S. Tetra-primer ARMS-PCR combined with dual-color fluorescent lateral flow assay for the discrimination of SARS-CoV-2 and its mutations with a handheld wireless reader. LAB ON A CHIP 2022; 22:1531-1541. [PMID: 35266944 DOI: 10.1039/d1lc01167g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Several virulent variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged along with the spread of this virus throughout the population. Some variants can exhibit increased transmissibility and reduced immune neutralization reactivity. These changes are deeply concerning issues that may hinder the ongoing effort of epidemic control measures, especially mass vaccination campaigns. The accurate discrimination of SARS-CoV-2 and its emerging variants is essential to contain the coronavirus disease 2019 pandemic. Herein, we report a low-cost, facile, and highly sensitive diagnostic platform that can simultaneously distinguish wild-type (WT) SARS-CoV-2 and its two mutations, namely, D614G and N501Y, within 2 h. WT or mutant (M) nucleic acid fragments at each allelic locus were selectively amplified by the tetra-primer amplification refractory mutation system (ARMS)-PCR assay. Allele-specific amplicons were simultaneously detected by two test lines on a quantum dot nanobead (QB)-based dual-color fluorescent test strip, which could be interpreted by the naked eye or by a home-made fluorescent strip readout device that was wirelessly connected to a smartphone for quantitative data analysis and result presentation. The WT and M viruses were indicated and were strictly discriminated by the presence of a green or red band on test line 1 for the D614G site and test line 2 for the N501Y site. The limits of detection (LODs) for the WT and M D614G were estimated as 78.91 and 33.53 copies per μL, respectively. This assay was also modified for the simultaneous detection of the N and ORF1ab genes of SARS-CoV-2 with LODs of 1.90 and 6.07 copies per μL, respectively. The proposed platform can provide a simple, accurate, and affordable diagnostic approach for the screening of SARS-CoV-2 and its variants of concern even in resource-limited settings.
Collapse
Affiliation(s)
- Yunxiang Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| | - Hong Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| | - Hongjuan Wei
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing 100850, P. R. China
| |
Collapse
|
43
|
Haque M, Lyndem S, Singha Roy A. Interaction Properties of Biosynthesized Cadmium Sulphide Quantum Dots with Human Serum Albumin: Further Investigation of Antibacterial Activities and Sensing Applications. LUMINESCENCE 2022; 37:837-853. [PMID: 35297173 DOI: 10.1002/bio.4228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Abstract
Synthesis of low dimensional quantum dots (QDs) (1-10 nm) via green route has garnered great interest having the prospective use in many biological applications (diagnosis, drug delivery and in vivo sensing), which is difficult to achieve by chemical synthesize methods having larger QDs particles or hazardous reagents required for synthesizing of QDs. Here, we have synthesized biogenic cadmium sulphide (CdS) QDs using green tea extract as reducing agents that were homogeneous and smaller size particles 2-4 nm. We also elucidate the (a) protein binding, (b) antibacterial and (c) sensing applications of biogenic CdS QDs in this present work. The biosynthesized CdS QDs were found to have extensive antibacterial activity against both gram-negative E. coli and gram-positive E. faecalis bacterial strains. Since the introduction of QDs in biological media, they can form protein-QDs complex; hence we investigate the binding interaction of CdS QDs with the carrier protein human serum albumin (HSA) in vitro. The synthesized CdS QDs quenched the intrinsic fluorescence of HSA through static quenching mechanism and binding constant (Kb ) was found in order of 104 M-1 . It was also observed that presence of biogenic CdS QDs affects the HSA-ligand interactions in vitro. The synthesized CdS showed highly effective sensors for tetracycline, rifampicin and bilirubin with LOD values of 99, 141 and 29 ng/mL respectively.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| |
Collapse
|
44
|
Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022; 21:1868-1912. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Pegah Khaki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Guan T, Xu Z, Wang J, Liu Y, Shen X, Li X, Sun Y, Lei H. Multiplex optical bioassays for food safety analysis: Toward on-site detection. Compr Rev Food Sci Food Saf 2022; 21:1627-1656. [PMID: 35181985 DOI: 10.1111/1541-4337.12914] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Food safety analysis plays a significant role in controlling food contamination and supervision. In recent years, multiplex optical bioassays (MOBAs) have been widely applied to analyze multiple hazards due to their efficiency and low cost. However, due to the challenges such as multiplexing capacity, poor sensitivity, and bulky instrumentation, the further application of traditional MOBAs in food screening has been limited. In this review, effective strategies regarding food safety MOBAs are summarized, such as spatial-resolution modes performed in multi-T lines/dots strips or arrays of strip/microplate/microfluidic chip/SPR chip and signal-resolution modes employing distinguishable colorimetric/luminescence/fluorescence/surface plasma resonance/surface-enhanced Raman spectrum as signal tags. Following this, new trends on how to design engineered sensor architecture and exploit distinguishable signal reporters, how to improve both multiplexing capacity and sensitivity, and how to integrate these formats into smartphones so as to be mobile are summarized systematically. Typically, in the case of enhancing multiplexing capacity and detection throughput, microfluidic array chips with multichannel architecture would be a favorable approach to overcome the spatial and physical limitations of immunochromatographic assay (ICA) test strips. Moreover, noble metal nanoparticles and single-excitation, multiple-emission luminescence nanomaterials hold great potential in developing ultrasensitive MOBAs. Finally, the exploitation of innovative multiplexing strategy hybridized with powerful and widely available smartphones opens new perspectives to MOBAs. In future, the MOBAs should be more sensitive, have higher multiplexing capacity, and easier instrumentation.
Collapse
Affiliation(s)
- Tian Guan
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yingju Liu
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
46
|
Jiang J, Luo P, Liang J, Shen X, Lei H, Li X. A highly sensitive and quantitative time resolved fluorescent microspheres lateral flow immunoassay for streptomycin and dihydrostreptomycin in milk, honey, muscle, liver, and kidney. Anal Chim Acta 2022; 1192:339360. [DOI: 10.1016/j.aca.2021.339360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/01/2022]
|
47
|
Upconversion fluorescence-based paper disc for multiplex point-of-care testing in water quality monitoring. Anal Chim Acta 2022; 1192:339388. [DOI: 10.1016/j.aca.2021.339388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
|
48
|
Sohrabi H, Majidi MR, Fakhraei M, Jahanban-Esfahlan A, Hejazi M, Oroojalian F, Baradaran B, Tohidast M, Guardia MDL, Mokhtarzadeh A. Lateral flow assays (LFA) for detection of pathogenic bacteria: A small point-of-care platform for diagnosis of human infectious diseases. Talanta 2022; 243:123330. [DOI: 10.1016/j.talanta.2022.123330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
|
49
|
Lou D, Fan L, Jiang T, Zhang Y. Advances in nanoparticle‐based lateral flow immunoassay for point‐of‐care testing. VIEW 2022. [DOI: 10.1002/viw.20200125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Doudou Lou
- Jiangsu Institute for Food and Drug Control 17 Kangwen Road Nanjing P. R. China
| | - Lin Fan
- School of Geographic and Biologic Information Nanjing University of Posts and Telecommunications Nanjing P. R. China
| | - Tao Jiang
- Army of Reserve Infantry Division in Heilongjiang Province Harbin Heilongjiang Province P. R. China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Southeast University Nanjing P. R. China
| |
Collapse
|
50
|
Sathishkumar N, Toley BJ. Paper-microfluidic signal-enhanced immunoassays. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:267-288. [PMID: 35033288 DOI: 10.1016/bs.pmbts.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the past decade, paper-based microfluidic devices have become popular for their simplicity and ability to conduct diagnostic tests at a low cost. An important class of diagnostic assays that paper-based analytical devices have been used for is immunoassays. The lateral flow immunoassay (LFIA), of which the home pregnancy test is the most prominent example, has been one of the most commercially successful membrane-based diagnostic tests. Yet, the analytical sensitivity of LFIAs is lower than the corresponding laboratory technique called ELISA (enzyme-linked immunoassay). As a consequence, traditional LFIAs fail to deliver on the promise of bedside diagnostic testing for many applications. Recognizing this shortcoming, several new developments have been made by researchers to enhance the sensitivity of membrane-based immunoassays. In this chapter, we present the various strategies that have been employed to this end. In the end, we present a brief SWOT analysis to guide future work in this area.
Collapse
Affiliation(s)
- N Sathishkumar
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, KA, India
| | - Bhushan J Toley
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, KA, India.
| |
Collapse
|