1
|
Chen P, Wang J, Xue Y, Wang C, Sun W, Yu J, Guo H. From challenge to opportunity: Revolutionizing the monitoring of emerging contaminants in water with advanced sensors. WATER RESEARCH 2024; 265:122297. [PMID: 39208686 DOI: 10.1016/j.watres.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Emerging contaminants in water represent long-term and unpredictable threats to both environmental and human health due to their persistence and bioaccumulation. Current research predominantly focuses on their removal rather than sustained monitoring. This review comprehensively investigates advanced sensor technologies for detecting these contaminants in water, critically evaluating biosensors, optical sensors, electrochemical sensors, and nanomaterial sensors. Elucidating the operational principles, performance metrics such as detection thresholds, and the pros and cons of their practical applications, the review addresses a significant research gap in environmental monitoring. Moreover, it enhances understanding of sensor effectiveness, which in turn guides researchers in selecting the right sensor types for various environmental scenarios. Furthermore, by emphasizing the integration of nanotechnology and the standardization of evaluation protocols, it promotes the development of robust, deployable sensing solutions. Ultimately, this leads to the proposal of a strategic framework aimed at significantly improving the detection capabilities of emerging contaminants and supporting the preservation of environmental health.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chunmiao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Han G, Cai J, Yang L, Li X, Wang X. Fluorescent Paper Based on CQDs/Rhodamine B: A Ratio and Sensitive Detection Platform for On-Site Fe 3+ Sensing. Molecules 2024; 29:1658. [PMID: 38611937 PMCID: PMC11013623 DOI: 10.3390/molecules29071658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Fluorescent sensors with single reading are generally subject to unpredictable disturbs from environmental and artificial factors. In order to overcome this barrier of detection reliability, a paper-based optical sensor with proportional fluorescence was established and further combined with a smartphone for visual, on-site and quantitative detection of Fe3+, which affects the color, smell and taste of water, and endangers the health of plants and animals. The ratio fluorescent probe was fabricated by rhodamine B and carbon quantum dots derived from xylan. The red fluorescence of rhodamine B was inert to Fe3+, which was referred to as background. And blue emitting carbon quantum dots functioned as signal report units, which would be quenched by Fe3+ and make the fluorescence of the ratio probe change from purple to red. The quantitative detection of Fe3+ was conducted by investigating the RGB value of fluorescent images with a smartphone. With the increase of Fe3+ concentration, the R/B (red/blue) value of the fluorescent paper gradually increased. The linear detection range was 10-180 μM, and the limit of detection was 198.2 nM. The application of ratio fluorescent paper with a smartphone provides a facile method for the rapid detection of ions.
Collapse
Affiliation(s)
- Guangda Han
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China; (G.H.); (J.C.); (X.L.)
- Xi’an Rare Metal Materials Institute Co., Ltd., Xi’an 710016, China
| | - Jihai Cai
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China; (G.H.); (J.C.); (X.L.)
| | - Lu Yang
- School of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Xiaoyun Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China; (G.H.); (J.C.); (X.L.)
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China; (G.H.); (J.C.); (X.L.)
| |
Collapse
|
3
|
Kong W, Liu M, Zhang J, Wu H, Wang Y, Su Q, Li Q, Zhang J, Wu C, Zou WS. Room-temperature phosphorescence and fluorescence nanocomposites as a ratiometric chemosensor for high-contrast and selective detection of 2,4,6-trinitrotoluene. Anal Chim Acta 2023; 1282:341930. [PMID: 37923408 DOI: 10.1016/j.aca.2023.341930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Reports on using complementary colours for high-contrast ratiometric assays are limited to date. In this work, graphitized carbon nitride (g-C3N4) nanosheets and mercaptoethylamine (MEA) capped Mn-doped ZnS QDs were fabricated by liquid exfoliation of bulk g-C3N4, and by a coprecipitation and postmodification strategies, respectively. Mn-doped ZnS quantum dots were deposited onto g-C3N4 nanosheets through an electrostatic self-assembly to form new nanocomposites (denoted as Mn-ZnS QDs@g-C3N4). Mn-ZnS QDs@g-C3N4 can emit a pair of complementary colour light, namely, orange room-temperature phosphorescence (RTP) at 582 nm and blue fluorescence at 450 nm. After 2,4,6-trinitrotoluene (TNT) dosing into Mn-ZnS QDs@g-C3N4 aqueous solution, and pairing with MEA to generate TNT anions capable of quenching the emission of Mn-doped ZnS QDs, the fluorescence colours of the solution changed from orange to blue across white, exhibiting unusual high-contrast fluorescence images. The developed ratiometric chemosensor showed very good linearity in the range of 0-12 μM TNT with a limit of detection of 0.56 μM and an RSD of 6.4 % (n = 5). Also, the ratiometric probe had an excellent selectivity for TNT over other nitroaromatic compounds, which was applied in the ratiometric test paper to image TNT in water, and TNT sensing under phosphorescence mode to efficiently avoid background interference. A high-contrast dual-emission platform for selective ratiometric detection of TNT was therefore established.
Collapse
Affiliation(s)
- Weili Kong
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Meina Liu
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Jinhui Zhang
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Hongbo Wu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yaqin Wang
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China.
| | - Qin Su
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Qin Li
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China; New Energy Photovoltaic Industry Research Center, Qinghai University, Xining, 810016, China
| | - Chengli Wu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Wen-Sheng Zou
- School of Materials and Chemical Engineering, Key Laboratory of Functional Molecule Design and Interface Procedure, Anhui Jianzhu University, Hefei, 230022, China.
| |
Collapse
|
4
|
Siqueira GP, Araújo DAG, de Faria LV, Ramos DLO, Matias TA, Richter EM, Paixão TRLC, Muñoz RAA. A novel 3D-printed graphite/polylactic acid sensor for the electrochemical determination of 2,4,6-trinitrotoluene residues in environmental waters. CHEMOSPHERE 2023; 340:139796. [PMID: 37586488 DOI: 10.1016/j.chemosphere.2023.139796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Here, lab-made graphite and polylactic acid (Gpt-PLA) biocomposite materials were used to additively manufacture electrodes via the fused deposition modeling (FDM) technique for subsequent determination of the explosive 2,4,6-trinitrotoluene (TNT, considered a persistent organic pollutant). The surface of the 3D-printed material was characterized by SEM and Raman, which revealed high roughness and the presence of defects in the graphite structure, which enhanced the electrochemical response of TNT. The 3D-printed Gpt-PLA electrode coupled to square wave voltammetry (SWV) showed suitable performance for fastly determining the explosive residues (around 7 s). Two reduction processes at around -0.22 V and -0.36 V were selected for TNT detection, with linear ranges between 1.0 and 10.0 μM. Moreover, detection limits of 0.52 and 0.66 μM were achieved for both reduction steps. The proposed method was applied to determine TNT in different environmental water samples (tap water, river water, and seawater) without a dilution step (direct analysis). Recovery values between 98 and 106% confirmed the accuracy of the analyses. Additionally, adequate selectivity was achieved even in the presence of other explosives commonly used by military agencies, metallic ions commonly found in water, and also some electroactive camouflage species. Such results indicate that the proposed device is promising to quantify TNT residues in environmental samples, a viable on-site analysis strategy.
Collapse
Affiliation(s)
- Gilvana P Siqueira
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Diele A G Araújo
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, 05508-900, Brazil.
| | - Lucas V de Faria
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil; Universidade Federal Fluminense, Departamento de Química Analítica, Outeiro São João Batista s/n, Centro, Niterói, RJ, Brazil
| | - David L O Ramos
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Tiago A Matias
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Eduardo M Richter
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Thiago R L C Paixão
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, 05508-900, Brazil
| | - Rodrigo A A Muñoz
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Soltani-Shahrivar M, Afkhami A, Madrakian T, Jalal NR. Sensitive and selective impedimetric determination of TNT using RSM-CCD optimization. Talanta 2023; 257:124381. [PMID: 36801757 DOI: 10.1016/j.talanta.2023.124381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Detection of trace amounts of 2,4,6-Trinitrotoluene as a widely used explosive in the military and industrial sectors is of vital importance due to security and environmental concerns. The sensitive and selective measurement characteristics of the compound still is considered a challenge for analytical chemists. Unlike conventional optical and electrochemical methods, the electrochemical impedance spectroscopy technique (EIS), has a very high sensitivity, but it faces a significant challenge in that it requires complex and expensive steps to modify the electrode surface with selective agents. We reported the design and construction of an inexpensive, simple, sensitive, and selective impedimetric electrochemical TNT sensor based on the formation of a Meisenheimer complex between magnetic multiwalled carbon nanotubes modified with aminopropyl triethoxysilane (MMWCNTs @ APTES) and TNT. The formation of the mentioned charge transfer complex at the electrode-solution interface blocks the electrode surface and disrupts the charge transfer in [(Fe (CN) 6)] 3-/4- redox probe system. Charge transfer resistance changes (ΔRCT) were used as an analytical response that corresponded to TNT concentration. To investigate the influence of effective parameters on the electrode response, such as pH, contact time, and modifier percentage, the response surface methodology based on central composite design (RSM-CCD) was used. The calibration curve was achieved in the range of 1-500 nM with a detection limit of 0.15 nM under optimal conditions, which included pH of 8.29, contact time of 479 s, and modifier percentage of 12.38% (w/w). The selectivity of the constructed electrode towards several nitroaromatic species was investigated, and no significant interference was found. Finally, the proposed sensor was able to successfully measure TNT in various water samples with satisfactory recovery percentages.
Collapse
Affiliation(s)
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; D-8 International University, Hamedan, Iran.
| | | | | |
Collapse
|
6
|
Recent Advances in Nanomaterial-Based Sensing for Food Safety Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The increasing public attention on unceasing food safety incidents prompts the requirements of analytical techniques with high sensitivity, reliability, and reproducibility to timely prevent food safety incidents occurring. Food analysis is critically important for the health of both animals and human beings. Due to their unique physical and chemical properties, nanomaterials provide more opportunities for food quality and safety control. To date, nanomaterials have been widely used in the construction of sensors and biosensors to achieve more accurate, fast, and selective food safety detection. Here, various nanomaterial-based sensors for food analysis are outlined, including optical and electrochemical sensors. The discussion mainly involves the basic sensing principles, current strategies, and novel designs. Additionally, given the trend towards portable devices, various smartphone sensor-based point-of-care (POC) devices for home care testing are discussed.
Collapse
|
7
|
Santonocito R, Tuccitto N, Cantaro V, Carbonaro AB, Pappalardo A, Greco V, Buccilli V, Maida P, Zavattaro D, Sfuncia G, Nicotra G, Maccarrone G, Gulino A, Giuffrida A, Trusso Sfrazzetto G. Smartphone-Assisted Sensing of Trinitrotoluene by Optical Array. ACS OMEGA 2022; 7:37122-37132. [PMID: 36312398 PMCID: PMC9609071 DOI: 10.1021/acsomega.2c02958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Here we report the design and fabrication of an array-based sensor, containing functionalized Carbon Dots, Bodipy's and Naphthalimide probes, that shows high fluorescence emissions and sensitivity in the presence of low amounts of TNT explosive. In particular, we have fabricated the first sensor device based on an optical array for the detection of TNT in real samples by using a smartphone as detector. The possibility to use a common smartphone as detector leads to a prototype that can be also used in a real-life field application. The key benefit lies in the possibility of even a nonspecialist operator in the field to simply collect and send data (photos) to the trained artificial intelligence server for rapid diagnosis but also directly to the bomb disposal unit for expert evaluation. This new array sensor contains seven different fluorescent probes that are able to interact via noncovalent interactions with TNT. The interaction of each probe with TNT has been tested in solution by fluorescence titrations. The solid device has been tested in terms of selectivity and linearity toward TNT concentration. Tests performed with other explosives and other nitrogen-based analytes demonstrate the high selectivity for TNT molecules, thus supporting the reliability of this sensor. In addition, TNT can be detected in the range of 98 ng∼985 μg, with a clear different response of each probe to the different amounts of TNT.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Nunzio Tuccitto
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- Laboratory
for Molecular Surfaces and Nanotechnology, CSGI, 95125Catania, Italy
| | - Valentina Cantaro
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | | | - Andrea Pappalardo
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| | - Valentina Greco
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Valeria Buccilli
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Pietro Maida
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Davide Zavattaro
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Gianfranco Sfuncia
- Consiglio
Nazionale delle Ricerche, Istituto per la
Microelettronica e Microsistemi, I-95121Catania, Italy
| | - Giuseppe Nicotra
- Consiglio
Nazionale delle Ricerche, Istituto per la
Microelettronica e Microsistemi, I-95121Catania, Italy
| | - Giuseppe Maccarrone
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Antonino Gulino
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| | - Alessandro Giuffrida
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| |
Collapse
|
8
|
Analytical Chemistry: Tasks, Resolutions and Future Standpoints of the Quantitative Analyses of Environmental Complex Sample Matrices. ANALYTICA 2022. [DOI: 10.3390/analytica3030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, the challenges that analytical chemistry has to face are ever greater and more complex both from the point of view of the selectivity of analytical methods and their sensitivity. This is especially true in quantitative analysis, where various methods must include the development and validation of new materials, strategies, and procedures to meet the growing need for rapid, sensitive, selective, and green methods. In this context, given the International Guidelines, which over time, are updated and which set up increasingly stringent “limits”, constant innovation is required both in the pre-treatment procedures and in the instrumental configurations to obtain reliable, accurate, and reproducible information. In addition, the environmental field certainly represents the greatest challenge, as analytes are often present at trace and ultra-trace levels. These samples containing analytes at ultra-low concentration levels, therefore, require very labor-intensive sample preparation procedures and involve the high consumption of organic solvents that may not be considered “green”. In the literature, in recent years, there has been a strong development of increasingly high-performing sample preparation techniques, often “solvent-free”, as well as the development of hyphenated instrumental configurations that allow for reaching previously unimaginable levels of sensitivity. This review aims to provide an update of the most recent developments currently in use in sample pre-treatment and instrument configurations in the environmental field, also evaluating the role and future developments of analytical chemistry in light of upcoming challenges and new goals yet to be achieved.
Collapse
|
9
|
Li Q, Guo YM, Gao Y, Li G. Polyethyleneimine-protected silver cluster for label-free and highly selective detection of 2,4,6-trinitrotoluene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121224. [PMID: 35397448 DOI: 10.1016/j.saa.2022.121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) is critical for environmental protection and public health. In this work, a convenient synthesis strategy for preparation of fluorescent PEI-AgNCs was described and further a facile and label-free sensing strategy for detection of TNT was developed. The hyperbranched polyethyleneimine (PEI) were used as template to one-step synthesize functional PEI-AgNCs with bright fluorescence signal and rich amino groups on their surface. PEI can specifically bind to electron-deficient TNT through donor-receptor interaction to form Meissenheimer complex. Interestingly, the absorption spectra of the Meissenheimer complex overlap with the fluorescence emission peak of PEI-AgNCs, thus quenching fluorescence of PEI-Ag NCs through fluorescence resonance energy transfer (FRET). Furthermore, this bonding process also initiate aggregation of PEI-AgNCs and quench the fluorescence of PEI-AgNCs by the aggregation-induced quenching (AIQ) effect. The novel method demonstrates sensitivity with a detection limit for TNT have been obtained as 17 nM. In addition, the proposed sensing method also has good selectivity over other potential interference and displayed a good potential application value in real water samples with satisfactory recoveries, offering a promising platform for sensing TNT in public safety and security environment protection.
Collapse
Affiliation(s)
- Qing Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, 412007, China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yu-Meng Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, 412007, China
| | - Yue Gao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, 412007, China
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, 412007, China.
| |
Collapse
|
10
|
Pattaweepaiboon S, Pimpakoon V, Phongzitthiganna N, Sirisaksoontorn W, Jeamjumnunja K, Prasittichai C. Impedimetric detection of 2,4,6-trinitrotoluene using surface-functionalized halloysite nanotubes. RSC Adv 2022; 12:17794-17802. [PMID: 35765327 PMCID: PMC9201510 DOI: 10.1039/d2ra02482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the application of amine-surface-functionalized halloysite nanotubes (HAs) as active materials for the quantitative detection of 2,4,6-trinitrotoluene (TNT). The findings indicated that HA could selectively capture TNT via a strong reaction between the amine groups on its surface and the TNT molecules. Plate electrodes were fabricated from HA to evaluate its TNT-sensing capacity by electrochemical impedance spectroscopy. Upon binding with TNT, the proton conductivity on the HA plate electrodes increased linearly with the TNT concentration from 1.0 × 10−11 M to 1.0 × 10−4 M. The HA plate electrodes exhibited good sensitivity with a detection limit of 1.05 × 10−12 M. Subsequently, the cycling measurements of the TNT binding/removal were performed on the HA plate electrode, and the material exhibited high stability, good regenerative ability, and good reversibility without a significant decrease in efficiency. The present work highlights the significant application potential of HAs for the electrochemical detection of TNT. Amine-surface-functionalized halloysite nanotubes are used for electrochemical sensing TNT.![]()
Collapse
Affiliation(s)
- Supak Pattaweepaiboon
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Varuntorn Pimpakoon
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Nattida Phongzitthiganna
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Weekit Sirisaksoontorn
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Kannika Jeamjumnunja
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Chaiya Prasittichai
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|
11
|
Detection of Nitroaromatic Explosives in Air by Amino-Functionalized Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12081278. [PMID: 35457985 PMCID: PMC9027238 DOI: 10.3390/nano12081278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/17/2022]
Abstract
Nitroaromatic explosives are the most common explosives, and their detection is important to public security, human health, and environmental protection. In particular, the detection of solid explosives through directly revealing the presence of their vapors in air would be desirable for compact and portable devices. In this study, amino-functionalized carbon nanotubes were used to produce resistive sensors to detect nitroaromatic explosives by interaction with their vapors. Devices formed by carbon nanotube networks working at room temperature revealed trinitrotoluene, one of the most common nitroaromatic explosives, and di-nitrotoluene-saturated vapors, with reaction and recovery times of a few and tens of seconds, respectively. This type of resistive device is particularly simple and may be easily combined with low-power electronics for preparing portable devices.
Collapse
|
12
|
Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214305] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Ji D, Low SS, Zhang D, Liu L, Lu Y, Liu Q. Smartphone-Based Electrochemical System for Biosensors and Biodetection. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2393:493-514. [PMID: 34837196 DOI: 10.1007/978-1-0716-1803-5_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the advantages of high popularity, convenient operation, open-source operation systems, high resolution imaging, and excellent computing capabilities, smartphones have been widely used as the core of detection system for calculation, control, and real-time display. Hence, smartphones play an important role in electrochemical detection and optical detection. Smartphone-based electrochemical systems were combined with screen-printed electrode and interdigital electrodes for in situ detection. The electrodes were modified with biomaterials, chemical materials, and nanomaterials for biosensors and biodetection, such as 3-amino phenylboronic acid nanocomposites, graphene, gold nanoparticles, zinc oxide nanoparticles, carbon nanotubes, proteins, peptides, and antibodies. With the modified electrodes, the smartphone-based impedance system was used to detect acetone, bovine serum albumin, human serum albumin, and trinitrotoluene, while smartphone-based amperometric system was employed to monitor glucose, ascorbic acid, dopamine, uric acid, and levodopa. The smartphone-based electrochemical system for biosensors and biodetection has provided miniaturized and portable alternative for diagnosis, which is promising to find application in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Daizong Ji
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Sze Shin Low
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Diming Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Lei Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
14
|
Saini RV, Vaid P, Saini NK, Siwal SS, Gupta VK, Thakur VK, Saini AK. Recent Advancements in the Technologies Detecting Food Spoiling Agents. J Funct Biomater 2021; 12:67. [PMID: 34940546 PMCID: PMC8709279 DOI: 10.3390/jfb12040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
To match the current life-style, there is a huge demand and market for the processed food whose manufacturing requires multiple steps. The mounting demand increases the pressure on the producers and the regulatory bodies to provide sensitive, facile, and cost-effective methods to safeguard consumers' health. In the multistep process of food processing, there are several chances that the food-spoiling microbes or contaminants could enter the supply chain. In this contest, there is a dire necessity to comprehend, implement, and monitor the levels of contaminants by utilizing various available methods, such as single-cell droplet microfluidic system, DNA biosensor, nanobiosensor, smartphone-based biosensor, aptasensor, and DNA microarray-based methods. The current review focuses on the advancements in these methods for the detection of food-borne contaminants and pathogens.
Collapse
Affiliation(s)
- Reena V. Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Prachi Vaid
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| | - Neeraj K. Saini
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Samarjeet Singh Siwal
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Adesh K. Saini
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| |
Collapse
|
15
|
Shu T, Hunter H, Zhou Z, Sun Y, Cheng X, Ma J, Su L, Zhang X, Serpe MJ. Portable point-of-care diagnostic devices: an updated review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5418-5435. [PMID: 34787609 DOI: 10.1039/d1ay01643a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The global pandemic caused by the SARS-CoV-2 (COVID) virus indiscriminately impacted people worldwide with unquantifiable and severe impacts on all aspects of our lives, regardless of socioeconomic status. The pandemic brought to light the very real possibility of pathogens changing and shaping the way we live, and our lack of preparedness to deal with viral/bacterial outbreaks. Importantly, the quick detection of pathogens can help prevent and control the spread of disease, making the importance of diagnostic techniques undeniable. Point-of-care diagnostics started as a supplement to standard lab-based diagnostics, and are gradually becoming mainstream. Because of this, and their importance in detecting pathogens (especially in the developing world), their development has accelerated at an unprecedented rate. In this review, we highlight some important and recent examples of point-of-care diagnostics for detecting nucleic acids, proteins, bacteria, and other biomarkers, with the intent of making apparent their positive impact on society and human health.
Collapse
Affiliation(s)
- Tong Shu
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Haley Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| | - Ziping Zhou
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yanping Sun
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaojun Cheng
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jianxin Ma
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lei Su
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xueji Zhang
- Research Center for Biosensor and Nanotheranostic, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| |
Collapse
|
16
|
Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: A critical review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116344] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Niu F, Shao ZW, Tao LM, Ding Y. Si-doped graphene nanosheets as a metal-free catalyst for electrochemical detection of nitroaromatic explosives. J Colloid Interface Sci 2021; 594:848-856. [PMID: 33794406 DOI: 10.1016/j.jcis.2021.03.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 01/17/2023]
Abstract
Si-doped graphene nanosheets (SiGNS) have been successfully constructed via high temperature annealing of graphene oxide and tetraethoxysilane mixture in a sealed glass ampoule. The Si atoms doped into graphene's carbon network mainly existed as C3-Si-O and C2-Si-O2 configurations. The as-prepared SiGNS exhibited excellent electrochemical detection ability to nitroaromatic compounds in 0.1 M phosphoric acid buffer solution (PBS, pH = 8.0) via an electrochemical catalytic process. Five nitroaromatic compounds, including nitrobenzene, 2-nitrotoluene, 4-nitrotoluene, 2, 4-dinitrotoluene and 2, 4, 6-trinitrotoluene, were taken as the analyte to demonstrate the electrochemical catalytic ability of SiGNS. Density functional theory (DFT) calculation was carried out to explore the electrochemical catalytic mechanism of SiGNS. A hydrogen bond mediated electrochemical catalytic mechanism was proposed. Both the excellent electrical conductivity and the rich surface hydroxyl groups enhanced the electrochemical detection ability of SiGNS to nitroaromatic compounds. Si atoms in SiGNS played a key role for the excellent electrochemical detection ability of SiGNS due to most of the surface hydroxyl groups anchored on the Si atoms.
Collapse
Affiliation(s)
- Fang Niu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhen-Wu Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Li-Ming Tao
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China.
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
18
|
Wang J. A Simple, Rapid and Low-cost 3-Aminopropyltriethoxysilane (APTES)-based Surface Plasmon Resonance Sensor for TNT Explosive Detection. ANAL SCI 2021; 37:1029-1032. [PMID: 33191367 DOI: 10.2116/analsci.20n028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, a simple, one-step organic molecule 3-aminopropyltriethoxysilane (APTES) functionalized surface plasmon resonance (SPR) sensor was developed. APTES as an organic ligand immobilized on the SPR sensor chip was used to form the Meisenheimer complex with 2,4,6-trinitrotoluene (TNT). The results of using the APTES-based SPR sensor chip show a highly selective and sensitive (ppb level: parts per billion) detection of TNT explosive. The sensor is expected to have potential for application in the fast screening of the TNT explosive.
Collapse
Affiliation(s)
- Jin Wang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
| |
Collapse
|
19
|
Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK. Application of smartphone-based spectroscopy to biosample analysis: A review. Biosens Bioelectron 2020; 172:112788. [PMID: 33157407 DOI: 10.1016/j.bios.2020.112788] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
The emergence of the smartphones has brought extensive changes to our lifestyles, from communicating with one another, to shopping and enjoyment of entertainment, and from studying to functioning at the workplace (and in the field). At the same time, this portable device has also provided new possibilities in scientific research and applications. Based on the growing awareness of good health management, researchers have coupled health monitoring to smartphone sensing technologies. Along the way, there have been developed a variety of smartphone-based optical detection platforms for analyzing biological samples, including standalone smartphone units and integrated smartphone sensing systems. In this review, we outline the applications of smartphone-based optical sensors for biosamples. These applications focus mainly on three aspects: Microscopic imaging sensing, colorimetric sensing and luminescence sensing. We also discuss briefly some limitations of the current state of smartphone-based spectroscopy and present prospects of the future applicability of smartphone sensors.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore; National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore, 117411, Singapore; Tropical Marine Science Institute, National University of Singapore, S2S Building, 18 Kent Ridge Road, Singapore, 119227, Singapore.
| |
Collapse
|
20
|
Cardoso RM, Rocha DP, Rocha RG, Stefano JS, Silva RAB, Richter EM, Muñoz RAA. 3D-printing pen versus desktop 3D-printers: Fabrication of carbon black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene. Anal Chim Acta 2020; 1132:10-19. [PMID: 32980099 DOI: 10.1016/j.aca.2020.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The fabrication of carbon black/polylactic acid (PLA) electrodes using a 3D printing pen is presented and compared with electrodes obtained by a desktop fused deposition modelling (FDM) 3D printer. The 3D pen was used for the fast production of electrodes in two designs using customized 3D printed parts to act as template and guide the reproducible application of the 3D pen: (i) a single working electrode at the bottom of a 3D-printed cylindrical body and (ii) a three-electrode system on a 3D-printed planar substrate. Both devices were electrochemically characterized using the redox probe [Fe(CN)6]3-/4- via cyclic voltammetry, which presented similar performance to an FDM 3D-printed electrode or a commercial screen-printed carbon electrode (SPE) regarding peak-to-peak separation (ΔEp) and current density. The surface treatment of the carbon black/PLA electrodes fabricated by both 3D pen and FDM 3D-printing procedures provided substantial improvement of the electrochemical activity by removing excess of PLA, which was confirmed by scanning electron microscopic images for electrodes fabricated by both procedures. Structural defects were not inserted after the electrochemical treatment as shown by Raman spectra (iD/iG), which indicates that the use of 3D pen can replace desktop 3D printers for electrode fabrication. Inter-electrode precision for the best device fabricated using the 3D pen (three-electrode system) was 4% (n = 5) considering current density and anodic peak potential for the redox probe. This device was applied for the detection of 2,4,6-trinitrotoluene (TNT) via square-wave voltammetry of a single-drop of 100 μL placed upon the thee-electrode system, resulting in three reduction peaks commonly verified for TNT on carbon electrodes. Limit of detection of 1.5 μmol L-1, linear range from 5 to 500 μmol L-1 and RSD lower than 4% for 10 repetitive measurements of 100 μmol L-1 TNT were obtained. The proposed devices can be reused after polishing on sandpaper generating new electrode surfaces, which is an extra advantage over chemically-modified electrochemical sensors applied for TNT detection.
Collapse
Affiliation(s)
- Rafael M Cardoso
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Diego P Rocha
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Raquel G Rocha
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Jéssica S Stefano
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Rodrigo A B Silva
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Eduardo M Richter
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Rodrigo A A Muñoz
- Center for Research on Electroanalysis (NuPE), Institute of Chemistry, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil.
| |
Collapse
|
21
|
Jarczewska M, Malinowska E. The application of antibody-aptamer hybrid biosensors in clinical diagnostics and environmental analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3183-3199. [PMID: 32930180 DOI: 10.1039/d0ay00678e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The growing number of various diseases and the increase of environmental contamination are the causes for the development of novel methods for their detection. The possibility of the application of affinity-based biosensors for such purposes seems particularly promising as they provide high selectivity and low detection limits. Recently, the usage of hybrid antibody-aptamer sandwich constructs was shown to be more advantageous in terms of working parameters in comparison to aptamer-based and immune-based biosensors. This review is focused on the usage of hybrid antibody-aptamer receptor layers for the determination of clinically and environmentally important target molecules. In this work, antibodies and aptamer molecules are characterized and the methods of their immobilization as well as analytical signal generation are shown. This is followed by the critical presentation of examples of hybrid sandwich biosensors that have been elaborated in the past 12 years.
Collapse
Affiliation(s)
- Marta Jarczewska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
| | - Elżbieta Malinowska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland.
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
22
|
Zhao F, Zhang T, Yang Y, Lü C. A facile synthesis of multifunctional carbon dots as fluorescence 'turn on' and 'turn off' probes for selective detection of Al 3+ and 2,4,6-trinitrophenol. LUMINESCENCE 2020; 35:1277-1285. [PMID: 32524730 DOI: 10.1002/bio.3889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/13/2023]
Abstract
Carbon dots (CDs) have drawn increasing interests due to their unique optical properties and promising application in various fields. In this study, citric acid (CA) and 5-chloromethyl-8-hydroxyquinoline (LQ) were used to synthesize nitrogen-doped CDs as novel fluorescent probes using a one-step solvothermal route. The as-prepared CDs had strong blue-white fluorescence emission when excited at 405 nm wavelength with a quantum yield (QY) of 25%, behaving with high ion concentration stability. Water-soluble CDs with a 8-hydroxyquinoline structure on their surface could be used to detect Al3+ using a 'turn on' mechanism and trinitrophenol (TNP) using a 'turn off' mechanism with detection limits of 229 nM and 44.4 nM, respectively. Al3+ enhances the fluorescence of CDs by forming a coordination complex to generate a fluorescence synergistic role and limit CD nonradiative transition. TNP quenched the fluorescence with high selectivity and sensitivity, which was attributed to the inner filter effect and static quenching. These results indicated that these CDs with their unique 'turn on' and 'turn off' nature have potential application in the environmental protection field and in prevention of terrorist threats.
Collapse
Affiliation(s)
- Feifei Zhao
- Institute of Chemistry, Northeast Normal University, Changchun, China
| | - Tianyi Zhang
- Institute of Chemistry, Northeast Normal University, Changchun, China
| | - Yu Yang
- Institute of Chemistry, Northeast Normal University, Changchun, China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun, China
| |
Collapse
|
23
|
Komikawa T, Tanaka M, Tamang A, Evans SD, Critchley K, Okochi M. Peptide-Functionalized Quantum Dots for Rapid Label-Free Sensing of 2,4,6-Trinitrotoluene. Bioconjug Chem 2020; 31:1400-1407. [PMID: 32281783 DOI: 10.1021/acs.bioconjchem.0c00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Explosive compounds, such as 2,4,6-trinitrotoluene (TNT), pose a great concern in terms of both global public security and environmental protection. There are estimated to be hundreds of TNT contaminated sites all over the world, which will affect the health of humans, wildlife, and the ecosystem. Clearly, the ability to detect TNT in soils, water supplies, and wastewater is important for environmental studies but also important for security, such as in ports and boarders. However, conventional spectroscopic detection is not practical for on-site sensing because it requires sophisticated equipment and trained personnel. We report a rapid and simple chemical sensor for TNT by using TNT binding peptides which are conjugated to fluorescent CdTe/CdS quantum dots (QDs). QDs were synthesized in the aqueous phase, and the peptide was attached directly to the surface of the QDs by using thiol groups. The fluorescent emission from the QDs was quenched in response to the addition of TNT. The response could even be observed by the naked eye. The limit of detection from fluorescence spectroscopic measurement was estimated to be approximately 375 nM. In addition to the rapid response (within a few seconds), selective detection was demonstrated. We believe this label-free chemical sensor contributes to progress for the on-site explosive sensing.
Collapse
Affiliation(s)
- Takumi Komikawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Abiral Tamang
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kevin Critchley
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
24
|
Zhao W, Tian S, Huang L, Liu K, Dong L, Guo J. A smartphone-based biomedical sensory system. Analyst 2020; 145:2873-2891. [PMID: 32141448 DOI: 10.1039/c9an02294e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disease diagnostics, food safety monitoring and environmental quality monitoring are the key means to safeguard human health. However, conventional detection devices for health care are costly, bulky and complex, restricting their applications in resource-limited areas of the world. With the rapid development of biosensors and the popularization of smartphones, smartphone-based sensing systems have emerged as novel detection devices that combine the sensitivity of biosensors and diverse functions of smartphones to provide a rapid, low-cost and convenient detection method. In these systems, a smartphone is used as a microscope to observe and count cells, as a camera to record fluorescence images, as an analytical platform to analyze experimental data, and as an effective tool to connect detection devices and online doctors. These systems are widely used for cell analysis, biochemical analysis, immunoassays, and molecular diagnosis, which are applied in the fields of disease diagnostics, food safety monitoring and environmental quality monitoring. Therefore, we discuss four types of smartphone-based sensing systems in this review paper, specifically in terms of the structure, performance and efficiency of these systems. Finally, we give some suggestions for improvement and future prospective trends.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Tsagkaris A, Nelis J, Ross G, Jafari S, Guercetti J, Kopper K, Zhao Y, Rafferty K, Salvador J, Migliorelli D, Salentijn G, Campbell K, Marco M, Elliot C, Nielen M, Pulkrabova J, Hajslova J. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115688] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
|
28
|
Yáñez-Sedeño P, Agüí L, Campuzano S, Pingarrón JM. What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications. BIOSENSORS-BASEL 2019; 9:bios9040127. [PMID: 31671772 PMCID: PMC6956127 DOI: 10.3390/bios9040127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
This article critically discusses the latest advances in the use of voltammetric, amperometric, potentiometric, and impedimetric biosensors for forensic analysis. Highlighted examples that show the advantages of these tools to develop methods capable of detecting very small concentrations of analytes and provide selective determinations through analytical responses, without significant interferences from other components of the samples, are presented and discussed, thus stressing the great versatility and utility of electrochemical biosensors in this growing research field. To illustrate this, the determination of substances with forensic relevance by using electrochemical biosensors reported in the last five years (2015–2019) are reviewed. The different configurations of enzyme or affinity biosensors used to solve analytical problems related to forensic practice, with special attention to applications in complex samples, are considered. Main prospects, challenges to focus, such as the fabrication of devices for rapid analysis of target analytes directly on-site at the crime scene, or their widespread use and successful applications to complex samples of interest in forensic analysis, and future efforts, are also briefly discussed.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Lourdes Agüí
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
29
|
Rezazadeh M, Seidi S, Lid M, Pedersen-Bjergaard S, Yamini Y. The modern role of smartphones in analytical chemistry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
|
31
|
Liu R, Li Z, Huang Z, Li K, Lv Y. Biosensors for explosives: State of art and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
|
33
|
Iitani K, Toma K, Arakawa T, Mitsubayashi K. Ultrasensitive Sniff-Cam for Biofluorometric-Imaging of Breath Ethanol Caused by Metabolism of Intestinal Flora. Anal Chem 2019; 91:9458-9465. [PMID: 31287286 DOI: 10.1021/acs.analchem.8b05840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed a gas-imaging system (sniff-cam) for gaseous ethanol (EtOH) with improved sensitivity. The sniff-cam was applied to measure the extremely low concentration distribution of breath EtOH without the consumption of alcohol, which is related to the activity of the oral or gut bacterial flora. A ring-type ultraviolet-light-emitting diode was mounted around a camera lens as an excitation light source, which enabled simultaneous excitation and imaging of the fluorescence. In the EtOH sniff-cam, a nicotinamide adenine dinucleotide (NAD)-dependent alcohol dehydrogenase (ADH) was used to catalyze the redox reaction between EtOH and the oxidized form of NAD (NAD+). Upon application of gaseous EtOH to the ADH-immobilized mesh that was soaked in an NAD+ solution and placed in front of the camera, NADH was produced through an ADH-mediated reaction. NADH expresses fluorescence at an emission wavelength of 490 nm and excitation wavelength of 340 nm. Thus, the concentration distribution of EtOH was visualized by measuring the distribution of the fluorescence light intensity from NADH on the ADH-immobilized mesh surface. First, a comparison of image analysis methods based on the red-green-blue color (RGB) images and the optimization of the buffer pH and NAD+ solution concentration was performed. The new sniff-cam showed a 25-fold greater sensitivity and broader dynamic range (20.6-300000 ppb) in comparison to those of the previously fabricated sniff-cam. Finally, we measured the concentration distribution of breath EtOH without alcohol consumption using the improved sniff-cam and obtained a value of 116.2 ± 35.7 ppb (n = 10).
Collapse
Affiliation(s)
- Kenta Iitani
- Postdoctoral Research Fellow PD , Japan Society for the Promotion of Science , 5-3-1 Kojimatchi , Chiyoda-ku, Tokyo 102-0083 , Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering , Waseda University (TWIns) , 2-2 Wakamatsu-cho , Shinjuku-ku, Tokyo 162-8480 , Japan.,Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University , 1-5-45 Yushima , Bunkyo-ku, Tokyo 113-8510 , Japan
| | - Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai , Chiyoda-ku, Tokyo 101-0062 , Japan
| | - Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai , Chiyoda-ku, Tokyo 101-0062 , Japan
| | - Kohji Mitsubayashi
- Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University , 1-5-45 Yushima , Bunkyo-ku, Tokyo 113-8510 , Japan.,Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai , Chiyoda-ku, Tokyo 101-0062 , Japan
| |
Collapse
|
34
|
Sawhney MA, Conlan RS. POISED-5, a portable on-board electrochemical impedance spectroscopy biomarker analysis device. Biomed Microdevices 2019; 21:70. [PMID: 31273464 PMCID: PMC6609592 DOI: 10.1007/s10544-019-0406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Point-of-care medical devices offer the potential for rapid biomarker detection and reporting of medical conditions, thereby bypassing the requirements for offline clinical laboratory facilities in many cases. Label-free electrochemical techniques are suitable for use in handheld diagnostic devices due the inherent electronic detection modality and low requirement for processing reagents. While electrochemical impedance sensing is widely used in tissue analysis such as body composition measurement, its use in point-of-care patient testing is yet to be widely adopted. Here we have considered a number of issues currently limiting the translation of electrochemical impedance sensing into clinical biosensor devices. Specifically, we have addressed the current requirement for these sensors to be connected to an external processor by applying a minimum number of frequencies required for optimized biomarker detection, and subsequently delivering analytics within the measurement device. The POISED-5 device was evaluated using a sensor for the ovarian cancer biomarker cancer antigen 125 (CA125), demonstrating performance comparable to standard laboratory equipment, with direct interpretation of response signal amplitude substituting traditional impedance component calculation and model fitting.
Collapse
Affiliation(s)
- M. Anne Sawhney
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP UK
- Centre for NanoHealth, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - R. S. Conlan
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP UK
- Centre for NanoHealth, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| |
Collapse
|
35
|
Li S, Zhang D, Liu J, Cheng C, Zhu L, Li C, Lu Y, Low SS, Su B, Liu Q. Electrochemiluminescence on smartphone with silica nanopores membrane modified electrodes for nitroaromatic explosives detection. Biosens Bioelectron 2019; 129:284-291. [DOI: 10.1016/j.bios.2018.09.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 02/03/2023]
|
36
|
Zeng W, Manoj D, Sun H, Yi R, Huang X, Sun Y. One-pot synthesis of high-density Pd nanoflowers decorated 3D carbon nanotube-graphene network modified on printed electrode as portable electrochemical sensing platform for sensitive detection of nitroaromatic explosives. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Zhao Z, Wei L, Cao M, Lu M. A smartphone-based system for fluorescence polarization assays. Biosens Bioelectron 2018; 128:91-96. [PMID: 30640125 DOI: 10.1016/j.bios.2018.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/12/2023]
Abstract
This paper demonstrates the use of a smartphone-based sensor for fluorescence polarization (FP) analysis of biomolecules. The FP detection can rapidly sense ligand-analyte bindings by measuring molecule mobility, and thus, FP-based assays have been widely used for rapid diagnostics in clinics. Here, we implemented the FP detection apparatus using a 3D-printed compact holder and the built-in camera of a smartphone. The system offers accurate measurements of the degree of polarization by simultaneously detecting the fluorescence intensities parallel and perpendicular to the polarization of the excitation. The fluorescence signal of the sample is excited by a laser or light-emitting diode and separated by a polarization beam cube depending on the polarization. Parallel and perpendicular polarized emissions are projected onto two different regions of the sensor chip in the smartphone camera. A custom software app was developed to count the average intensity in the areas of interest and compute the degree of polarization. We validated the system by measuring the polarization of dye molecules dissolved in solutions with different viscosities. As an example of biomolecule sensing, a competitive FP immunoassay of Prostaglandin E2 was demonstrated using the developed system and exhibited the limit of detection of 1.57 ng/mL. The smartphone-based FP assay platform can also be implemented for the detection of toxins, disease biomarkers, and pathogens in resource-limited settings.
Collapse
Affiliation(s)
- Zijian Zhao
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, United States
| | - Le Wei
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, United States
| | - Mingfeng Cao
- Department of Chemical and Biomolecule Engineering, Iowa State University, Ames, IA 50011, United States
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, United States; Department of Mechanical Engineering, Iowa State University, Ames, IA 500110, United States.
| |
Collapse
|
38
|
An SPR Sensor Chip Based on Peptide-Modified Single-Walled Carbon Nanotubes with Enhanced Sensitivity and Selectivity in the Detection of 2,4,6-Trinitrotoluene Explosives. SENSORS 2018; 18:s18124461. [PMID: 30562931 PMCID: PMC6308464 DOI: 10.3390/s18124461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 01/22/2023]
Abstract
In this study, we developed a surface plasmon resonance (SPR) sensor chip based on 2,4,6-trinitrotoluene (TNT) recognition peptide-modified single-walled carbon nanotubes (SWCNTs). The carboxylic acid-functionalized SWCNTs were immobilized on a 3-aminopropyltriethoxysilane (APTES)-modified SPR Au chip surface. Through π-stacking between the aromatic amino acids and SWCNTs, the TNT recognition peptide TNTHCDR3 was immobilized onto the surface of the SWCNTs. The peptide–SWCNTs-modified sensor surface was confirmed and evaluated by atomic force microscope (AFM) observation. The peptide–SWCNTs hybrid SPR sensor chip exhibited enhanced sensitivity with a limit of detection (LOD) of 772 ppb and highly selective detection compared with commercialized carboxymethylated dextran matrix sensor chips.
Collapse
|
39
|
Chen X, Mei Q, Yu L, Ge H, Yue J, Zhang K, Hayat T, Alsaedi A, Wang S. Rapid and On-Site Detection of Uranyl Ions via Ratiometric Fluorescence Signals Based on a Smartphone Platform. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42225-42232. [PMID: 30403334 DOI: 10.1021/acsami.8b13765] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fluorescent quantum dots (QDs) of carbon and semiconductors have superior optical properties and show great potential in sensing applications. This paper reports a novel method for rapid detection of uranyl ions via ratiometric fluorescence signals by employing two types of QDs as the key materials. As the most soluble and stable toxic uranium species, uranyl has been recognized as an important index for nuclear industrial wastewater. However, its on-site, rapid, and sensitive determination remains challenging. This work uses the ratiometric fluorescent signal of QDs and combines a smartphone-based handheld device for on-site and rapid detection of uranyl. The ratiometric fluorescent probe is achieved by integrating carbon dots (C-dots) and CdTe QDs (MPA@CdTe QDs) through chemical hybridization. The presence of uranyl ions greatly quenches the red fluorescence of the CdTe QDs, whereas the green fluorescence keeps constant, leading to an obvious color change. An app and a 3D-printed accessory have been developed on a smartphone to analyze and calculate the content of uranyl on the basis of captured fluorescence signals from a test strip with an immobilized probe. This new designed mobile detection system displays good analytical performance for uranyl ions in a wide concentration range of 1 to 150 μM, which shows a great potential application in controlling the nuclear industrial pollution.
Collapse
Affiliation(s)
- Xinfeng Chen
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Qingsong Mei
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Long Yu
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Hongwei Ge
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Ji Yue
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering , Anhui University of Technology , Ma'anshan , Anhui 243032 , China
| | - Tasawar Hayat
- NAAM Research Group , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | - Ahmed Alsaedi
- NAAM Research Group , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | - Suhua Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| |
Collapse
|
40
|
Xie L, Zi X, Zeng H, Sun J, Xu L, Chen S. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Anal Chim Acta 2018; 1053:131-138. [PMID: 30712558 DOI: 10.1016/j.aca.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/20/2023]
Abstract
Despite that microfluidic paper-based analytical devices (μPADs) provide effective analytical platforms for point-of-care diagnosis in resource-limited areas, it remains challenging to achieve simple and low-cost fabrication of μPADs. A novel method for fabrication of μPADs is developed in this study using a folded polydimethylsiloxane (PDMS)-coated paper mask with a specific pattern to form a sandwich structure with inserted chromatographic paper. PDMS penetrates the target paper from the front and the back sides, and then is cured in the target paper to form legible channels. This method for prototyping μPADs has many favorable merits including simple operation without the need of trained personnel, fast fabrication and low cost. We further investigated colorimetric detection of melamine in the μPADs, and it showed a remarkable measurement with a detection limit of 0.1 ppm in aqueous solutions and liquid milk discriminated by the naked eye, which meets the detection limit required by USA and China. The fabricating strategy developed in this study is very promising and attractive for the development of simple μPADs for point-of-care applications, including diagnostic testing, food safety control and environmental monitoring.
Collapse
Affiliation(s)
- Liping Xie
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China.
| | - Xingyu Zi
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Hedele Zeng
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Lisheng Xu
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Shuo Chen
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, 110819, Liaoning, China
| |
Collapse
|
41
|
Affiliation(s)
- Alexander C. Sun
- Electrical and Computer Engineering; University of California in; San Diego, La Jolla, CA
| | - Drew A. Hall
- Electrical and Computer Engineering; University of California in; San Diego, La Jolla, CA
| |
Collapse
|
42
|
Ular N, Üzer A, Durmazel S, Erçağ E, Apak R. Diaminocyclohexane-Functionalized/Thioglycolic Acid-Modified Gold Nanoparticle-Based Colorimetric Sensing of Trinitrotoluene and Tetryl. ACS Sens 2018; 3:2335-2342. [PMID: 30350589 DOI: 10.1021/acssensors.8b00709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Detection of explosive residues in soil and postblast debris is an important issue in sensor design for environmental and criminological purposes. An easy-to-use and low-cost gold nanoparticle (AuNP)-based colorimetric sensor was developed for the determination of nitroaromatic explosives, i.e., trinitrotoluene (TNT) and tetryl, capable of analyte detection at picomolar (pM) levels. The sensor nanoparticles were synthesized by functionalizing the negatively charged thioglycolic acid (TGA)-modified AuNPs with positively charged (±)- trans-1,2-diaminocyclohexane (DACH) at a carefully calculated pH. The working principle of the sensor is charge-transfer (CT) interaction between the electron-rich free amino (-NH2) group of DACH and the electron-deficient -NO2 groups of TNT/tetryl, added to possible nanoparticle agglomerization via electrostatic interaction of TNT-Meisenheimer anions with more than one cationic DACH-modified AuNP. The limit of detection (LOD) and limit of quantification (LOQ) of the sensor were 1.76 pM and 5.87 pM for TNT and 1.74 pM and 5.80 pM for tetryl, respectively. TNT, tetryl, and tetrytol, extracted from a nitroaromatic explosive-contaminated soil sample, were determined with the proposed sensor, yielding good recoveries. The sensor could be selectively applied to various mixtures of TNT with common energetic materials such as RDX, HMX, and PETN. Additionally, common soil ions (Cl-, NO3-, SO42-, K+, Mg2+, Ca2+, Cu2+, Fe2+, Fe3+, and Al3+) as well as detergents, sugar, sweeteners, acetylsalicylic acid (aspirin), caffeine, and paracetamol-based painkiller drugs, which may be used as camouflage materials for explosives, either had no adverse effects or removable interferences on the detection method. The developed method was statistically validated against a GC-MS literature method.
Collapse
Affiliation(s)
- Neşe Ular
- Analytical Chemistry Division, Chemistry Department, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Avcilar, Istanbul, Turkey
| | - Ayşem Üzer
- Analytical Chemistry Division, Chemistry Department, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Avcilar, Istanbul, Turkey
| | - Selen Durmazel
- Analytical Chemistry Division, Chemistry Department, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Avcilar, Istanbul, Turkey
| | - Erol Erçağ
- Aytar Caddesi, Fecri Ebcioğlu Sokak, No. 6/8, Levent, Istanbul, 34340, Turkey
| | - Reşat Apak
- Analytical Chemistry Division, Chemistry Department, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Avcilar, Istanbul, Turkey
| |
Collapse
|
43
|
Ji D, Xu N, Liu Z, Shi Z, Low SS, Liu J, Cheng C, Zhu J, Zhang T, Xu H, Yu X, Liu Q. Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens Bioelectron 2018; 129:216-223. [PMID: 30297172 DOI: 10.1016/j.bios.2018.09.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023]
Abstract
Parkinson's disease caused by lack of dopamine in brain is a common neurodegenerative disorder. The traditional treatment is to replenish levodopa since it could pass through blood brain barrier and form dopamine. However, its accumulation can cause patients' movement disorders and uncontrollable emotion. Therefore, it is critical to control the levodopa dosage accuracy to improve the curative effect in clinical. In this study, a smartphone-based electrochemical detection system was developed for rapid monitoring of levodopa. The system involved a disposable sensor, a hand-held electrochemical detector, and a smartphone with designed application. Single-wall carbon nanotubes and gold nanoparticles modified screen-printed electrodes were used to convert and amplify the electrochemical current signals upon presence of levodopa molecules. The electrochemical detectors were used to generate electrochemical excitation signals and detect the resultant currents. Smartphone was connected to the detector, which was used to control the detector, calculate data, and plot graph in real-time. The smartphone-based differential pulse amperometry system was demonstrated to monitor levodopa at concentrations as low as 0.5 µM in human serum. Furthermore, it has also been verified to be able to distinguish levodopa from other representative substances in the body. Therefore, its performance was more sensitive and rapid than electrochemical workstation. With these advantages, the system can be used in the field of point-of-care testing (POCT) to detect levodopa and provide the possibility to solve clinical demand for levodopa detection.
Collapse
Affiliation(s)
- Daizong Ji
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China; Zhejiang University Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Ning Xu
- Institute of Automation Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Zixiang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zhouyuanjing Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Sze Shin Low
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jingjing Liu
- Institute of Automation Engineering, Northeast Electric Power University, Jilin 132012, PR China
| | - Chen Cheng
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Jingwen Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Tingkai Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haoxuan Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiongjie Yu
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China; Collaborative Innovation Center of TCM Health Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China.
| |
Collapse
|
44
|
Abstract
Meeting policy requirements is essential for advancing molecular diagnostic devices from the laboratory to real-world applications and commercialization. Considering policy as a starting point in the design of new technology is a winning strategy. Rapid developments have put mobile biosensors at the frontier of molecular diagnostics, at times outpacing policymakers, and therefore offering new opportunities for breakthroughs in global health. In this Perspective we survey influential global health policies and recent developments in mobile biosensing in order to gain a new perspective for the future of the field. We summarize the main requirements for mobile diagnostics outlined by policy makers such as the World Health Organization (WHO), the World Bank, the European Union (EU), and the Food and Drug Administration (FDA). We then classify current mobile diagnostic technologies according to the manner in which the biosensor interfaces with a smartphone. We observe a trend in reducing hardware components and substituting instruments and laborious data processing steps for user-friendly apps. From this perspective we see software application developers as key collaborators for bridging the gap between policy and practice.
Collapse
Affiliation(s)
- Steven M. Russell
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Illes Balears, Spain
| | - Roberto de la Rica
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
45
|
Smartphone based bioanalytical and diagnosis applications: A review. Biosens Bioelectron 2018; 102:136-149. [DOI: 10.1016/j.bios.2017.11.021] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
46
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
47
|
Bhalla N, Chiang HJ, Shen AQ. Cell biology at the interface of nanobiosensors and microfluidics. Methods Cell Biol 2018; 148:203-227. [DOI: 10.1016/bs.mcb.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Rong Y, Padron AV, Hagerty KJ, Nelson N, Chi S, Keyhani NO, Katz J, Datta SPA, Gomes C, McLamore ES. Post hoc support vector machine learning for impedimetric biosensors based on weak protein–ligand interactions. Analyst 2018; 143:2066-2075. [DOI: 10.1039/c8an00065d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We develop a simple, open source machine learning algorithm for analyzing impedimetric biosensor data using a mobile phone.
Collapse
Affiliation(s)
- Y. Rong
- Agricultural & Biological Engineering
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| | - A. V. Padron
- Agricultural & Biological Engineering
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| | - K. J. Hagerty
- Agricultural & Biological Engineering
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| | - N. Nelson
- Biological & Agricultural Engineering
- North Carolina State University
- USA
| | - S. Chi
- Institute of Agricultural Resources and Regional Planning
- Chinese Academy of Agricultural Sciences; Key Laboratory of Microbial Resources
- Ministry of Agriculture
- Beijing
- China
| | - N. O. Keyhani
- Department of Microbiology and Cell Sciences
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| | - J. Katz
- Department of Oral and Maxillofacial Diagnostic Sciences
- University of Florida
- USA
| | - S. P. A. Datta
- MIT Auto-ID Labs
- Department of Mechanical Engineering
- Massachusetts Institute of Technology
- USA
- Biomedical Engineering Program
| | - C. Gomes
- Department of Mechanical Engineering
- Iowa State University
- USA
| | - E. S. McLamore
- Agricultural & Biological Engineering
- Institute of Food and Agricultural Sciences
- University of Florida
- USA
| |
Collapse
|
49
|
Huang X, Xu D, Chen J, Liu J, Li Y, Song J, Ma X, Guo J. Smartphone-based analytical biosensors. Analyst 2018; 143:5339-5351. [DOI: 10.1039/c8an01269e] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the rapid development, mass production, and pervasive distribution of smartphones in recent years, they have provided people with portable, cost-effective, and easy-to-operate platforms to build analytical biosensors for point-of-care (POC) applications and mobile health.
Collapse
Affiliation(s)
- Xiwei Huang
- Ministry of Education Key Lab of RF Circuits and Systems
- Hangzhou Dianzi University
- Hangzhou 310018
- P. R. China
| | - Dandan Xu
- State Key Lab of Advanced Welding and Joining
- Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- P. R. China
- Ministry of Education Key Lab of Micro-systems and Micro-structures Manufacturing
| | - Jin Chen
- Ministry of Education Key Lab of RF Circuits and Systems
- Hangzhou Dianzi University
- Hangzhou 310018
- P. R. China
| | - Jixuan Liu
- Ministry of Education Key Lab of RF Circuits and Systems
- Hangzhou Dianzi University
- Hangzhou 310018
- P. R. China
| | - Yangbo Li
- Ministry of Education Key Lab of RF Circuits and Systems
- Hangzhou Dianzi University
- Hangzhou 310018
- P. R. China
| | - Jing Song
- School of Economics and Management
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Xing Ma
- State Key Lab of Advanced Welding and Joining
- Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- P. R. China
- Ministry of Education Key Lab of Micro-systems and Micro-structures Manufacturing
| | - Jinhong Guo
- School of Communication and Information Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| |
Collapse
|
50
|
Li Y, Chen Y, Yu H, Tian L, Wang Z. Portable and smart devices for monitoring heavy metal ions integrated with nanomaterials. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|