1
|
Mollarasouli F, Bahrani S, Amrollahimiyandeh Y, Paimard G. Nanomaterials-based immunosensors for avian influenza virus detection. Talanta 2024; 279:126591. [PMID: 39059066 DOI: 10.1016/j.talanta.2024.126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza viruses (AIV) are capable of infecting a considerable proportion of the world's population each year, leading to severe epidemics with high rates of morbidity and mortality. The methods now used to diagnose influenza virus A include the Western blot test (WB), hemagglutination inhibition (HI), and enzyme-linked immunosorbent assays (ELISAs). But because of their labor-intensiveness, lengthy procedures, need for costly equipment, and inexperienced staff, these approaches are considered inappropriate. The present review elucidates the recent advancements in the field of avian influenza detection through the utilization of nanomaterials-based immunosensors between 2014 and 2024. The classification of detection techniques has been taken into account to provide a comprehensive overview of the literature. The review encompasses a detailed illustration of the commonly employed detection mechanisms in immunosensors, namely, colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), electrochemical detection, quartz crystal microbalance (QCM) piezoelectric, and field-effect transistor (FET). Furthermore, the challenges and future prospects for the immunosensors have been deliberated upon. The present review aims to enhance the understanding of immunosensors-based sensing platforms for virus detection and to stimulate the development of novel immunosensors by providing novel ideas and inspirations. Therefore, the aim of this paper is to provide an updated information about biosensors, as a recent detection technique of influenza with its details regarding the various types of biosensors, which can be used for this review.
Collapse
Affiliation(s)
| | - Sonia Bahrani
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Amrollahimiyandeh
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran
| | - Giti Paimard
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
2
|
Long W, Patra I, Rahi Alhachami F, Akhrarovich Sherbekov U, Majdi A, Abed SA. Aptamer Based Nanoprobes for Detection of Foodborne Virus in Food and Environment Samples: Recent Progress and Challenges. Crit Rev Anal Chem 2024; 54:1368-1380. [PMID: 35998062 DOI: 10.1080/10408347.2022.2114785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Accepting the fact that there is a huge number of virus particles in food that lead to several infectious diseases, eliminating of the foodborne virus from food is tangible. In 2020, the appearance of new SARS-CoV-2 variants had remarked the importance of food safety in our lives. Detection virus is a dynamic domain. Recently, many papers have tried to detect several foodborne viruses by using conventional sensing platforms including ELISA (enzyme-linked immunosorbent assay), PCR (polymerase chain reaction-based methods) and NASBA (nucleic acid sequence-based amplification). However, small sizes, low infective doses and discrete distribution of the foodborne virus have converted these microorganisms into the most challengeable pathogen in the food samples matrix. Foodborne virus detection exploiting aptamer-based biosensors has attracted considerable attention toward the numerous benefits of sourcing from aptamers in which a variety of viruses could be detected by conjugation of aptamer-virus. The development of multiple sensing methodologies and platforms in terms of aptasensor application in real food and environment samples has demonstrated promising results. In this review, we present the latest developments in myriad types of aptasensors (including electrochemical, optical and piezoelectric aptasensor) for the quantification of foodborne viruses. Working strategies, benefits and disadvantages of these platforms are argued.
Collapse
Affiliation(s)
- Wei Long
- College of chemistry, Guangdong University of Petrochemical Technology, Maoming, PR China
| | | | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technology, Al-Ayen University, Iraq
| | | | | | | |
Collapse
|
3
|
Katiyar D, Manish. Recent Advances in Electrochemical Biosensors Targeting Stress Markers. Comb Chem High Throughput Screen 2024; 27:1877-1886. [PMID: 38279751 DOI: 10.2174/0113862073278547231210170007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION When the body experiences a change in its internal environment due to factors such as mood (euphoria, stress) and illness, it releases biomarkers in large quantities. These biomarkers are used for detecting a disease at its early stages. This involves the detection of insufficient quantities of biocomponents, which can be done by using nanomaterials, conventional materials, and biotechnology; thus, scientists can increase the sensitivity of electrochemical sensors. According to studies conducted in this area, electrochemical sensors have shown promise as a diagnostic tool due to their ability to identify and pinpoint illness biomarkers. The present review article was compiled to gather the latest information on electrochemical biosensors targeting stress markers. MATERIALS AND METHODS The authors searched scholarly databases like ScienceDirect, Pubmed, Medline, and Scopus for information on electrochemical biosensors targeting stress markers. RESULTS In this article, we looked at the recent developments in electrochemical sensors for stress monitoring. Because of advances in nanomaterial and biomolecule processes, electrochemical biosensors have been developed with the sensitivity to detect several biomarkers in real-time in therapeutically relevant materials. CONCLUSION This biomarker sensor strategy can analyze various biofluids (sweat, plasma, urine, and saliva).
Collapse
Affiliation(s)
- Deepti Katiyar
- Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Manish
- Department of Electronics and Communication Engineering, ABES Engineering College, 19th KM Stone, NH-09 Ghaziabad, 201009, Uttar Pradesh, India
| |
Collapse
|
4
|
Fu X, Wang Q, Ma B, Zhang B, Sun K, Yu X, Ye Z, Zhang M. Advances in Detection Techniques for the H5N1 Avian Influenza Virus. Int J Mol Sci 2023; 24:17157. [PMID: 38138987 PMCID: PMC10743243 DOI: 10.3390/ijms242417157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Avian influenza is caused by avian influenza virus infection; the H5N1 avian influenza virus is a highly pathogenic subtype, affecting poultry and human health. Since the discovery of the highly pathogenic subtype of the H5N1 avian influenza virus, it has caused enormous losses to the poultry farming industry. It was recently found that the H5N1 avian influenza virus tends to spread among mammals. Therefore, early rapid detection methods are highly significant for effectively preventing the spread of H5N1. This paper discusses the detection technologies used in the detection of the H5N1 avian influenza virus, including serological detection technology, immunological detection technology, molecular biology detection technology, genetic detection technology, and biosensors. Comparisons of these detection technologies were analyzed, aiming to provide some recommendations for the detection of the H5N1 avian influenza virus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China; (X.F.); (Q.W.); (B.M.); (B.Z.); (K.S.); (X.Y.); (Z.Y.)
| |
Collapse
|
5
|
Seok Y, Mauk MG, Li R, Qian C. Trends of respiratory virus detection in point-of-care testing: A review. Anal Chim Acta 2023; 1264:341283. [PMID: 37230728 DOI: 10.1016/j.aca.2023.341283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
In resource-limited conditions such as the COVID-19 pandemic, on-site detection of diseases using the Point-of-care testing (POCT) technique is becoming a key factor in overcoming crises and saving lives. For practical POCT in the field, affordable, sensitive, and rapid medical testing should be performed on simple and portable platforms, instead of laboratory facilities. In this review, we introduce recent approaches to the detection of respiratory virus targets, analysis trends, and prospects. Respiratory viruses occur everywhere and are one of the most common and widely spreading infectious diseases in the human global society. Seasonal influenza, avian influenza, coronavirus, and COVID-19 are examples of such diseases. On-site detection and POCT for respiratory viruses are state-of-the-art technologies in this field and are commercially valuable global healthcare topics. Cutting-edge POCT techniques have focused on the detection of respiratory viruses for early diagnosis, prevention, and monitoring to protect against the spread of COVID-19. In particular, we highlight the application of sensing techniques to each platform to reveal the challenges of the development stage. Recent POCT approaches have been summarized in terms of principle, sensitivity, analysis time, and convenience for field applications. Based on the analysis of current states, we also suggest the remaining challenges and prospects for the use of the POCT technique for respiratory virus detection to improve our protection ability and prevent the next pandemic.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA.
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Ruijie Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Cheng Qian
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
6
|
Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, Md Yasin IS, Wasoh H. Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application. BIOSENSORS 2022; 12:bios12110922. [PMID: 36354431 PMCID: PMC9687594 DOI: 10.3390/bios12110922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
Collapse
Affiliation(s)
- Zixuen Gan
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | | | - Mohd Yunus Abd Shukor
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Murni Halim
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Nur Adeela Yasid
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Ina Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Helmi Wasoh
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| |
Collapse
|
7
|
Gautam V, Kumar R, Jain VK, Nagpal S. An overview of advancement in aptasensors for influenza detection. Expert Rev Mol Diagn 2022; 22:705-724. [PMID: 35994712 DOI: 10.1080/14737159.2022.2116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The platforms for early identification of infectious diseases such as influenza has seen a surge in recent years as delayed diagnosis of such infections can lead to dreadful effects causing large numbers of deaths. The time taken in detection of an infectious disease may vary from a few days to a few weeks depending upon the choice of the techniques. So, there is an urgent need for advanced methodologies for early diagnosis of the influenza. AREAS COVERED The emergence of "Aptasensor" synergistically with biosensors for diagnosis has opened a new era for sensitive, selective and early detection approaches. This review described various conventional as well as advanced methods based on artificial immunogenic nucleotide sequences complementing a part of the virus, i.e., aptamers based aptasensors for influenza diagnosis and the challenges faced in their commercialization. EXPERT OPINION Although numerous traditional methods are available for influenza detection but mostly associated with low sensitivity, specificity, high cost, trained personnel, and animals required for virus culture/ antibody raising as the major drawbacks. Aptamers can be manufactured invitro as 'chemical antibodies' at commercial level, no animal required. Following these advantages, aptamers can pave the way for an efficient diagnostic technique as compared to other existing conventional methods..
Collapse
Affiliation(s)
- Varsha Gautam
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Ramesh Kumar
- Department of Biotechnology, Indira Gandhi University, Meerpur, India
| | - Vinod Kumar Jain
- Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Noida India, India
| | - Suman Nagpal
- Department of Environmental sciences, Indira Gandhi University, Meerpur, India
| |
Collapse
|
8
|
Bruno JG. Applications in Which Aptamers Are Needed or Wanted in Diagnostics and Therapeutics. Pharmaceuticals (Basel) 2022; 15:693. [PMID: 35745612 PMCID: PMC9228505 DOI: 10.3390/ph15060693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
One strategy for bringing aptamers more into the mainstream of biomedical diagnostics and therapeutics is to exploit niche applications where aptamers are truly needed or wanted for their innate differences versus antibodies. This brief review article highlights some of those relatively rare applications in which aptamers are necessary or better suited to the user requirements than antibodies with explanations for why the aptamer is a necessary or superior choice. These situations include when no commercial antibody exists, when antibodies are excessively difficult to develop against a particular target because the target is highly toxic to host animals, when antibodies fail to discriminate closely related targets, when a smaller size is preferable to penetrate a tissue, when humanized monoclonal antibodies are too expensive and when the target is rapidly evolving or mutating. Examples of each are provided to illustrate these points.
Collapse
Affiliation(s)
- John G Bruno
- Nanohmics Inc., 6201 E. Oltorf Street, Suite 400, Austin, TX 78640, USA
| |
Collapse
|
9
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
10
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Lee D, Bhardwaj J, Jang J. Paper-based electrochemical immunosensor for label-free detection of multiple avian influenza virus antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. Sci Rep 2022; 12:2311. [PMID: 35145121 PMCID: PMC8831593 DOI: 10.1038/s41598-022-06101-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Many studies have been conducted on measuring avian influenza viruses and their hemagglutinin (HA) antigens via electrochemical principles; most of these studies have used gold electrodes on ceramic, glass, or silicon substrates, and/or labeling for signal enhancement. Herein, we present a paper-based immunosensor for label-free measurement of multiple avian influenza virus (H5N1, H7N9, and H9N2) antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. These flexible electrodes on a paper substrate can complement the physical weakness of the paper-based sensors when wetted, without affecting flexibility. The relative standard deviation of the peak currents was 1.88% when the electrodes were repeatedly bent and unfolded twenty times with deionized water provided each cycle, showing the stability of the electrodes. For the detection of HA antigens, approximately 10-μl samples (concentration: 100 pg/ml–100 ng/ml) were needed to form the antigen–antibody complexes during 20–30 min incubation, and the immune responses were measured via differential pulse voltammetry. The limits of detections were 55.7 pg/ml (0.95 pM) for H5N1 HA, 99.6 pg/ml (1.69 pM) for H7N9 HA, and 54.0 pg/ml (0.72 pM) for H9N2 HA antigens in phosphate buffered saline, and the sensors showed good selectivity and reproducibility. Such paper-based sensors are economical, flexible, robust, and easy-to-manufacture, with the ability to detect several avian influenza viruses.
Collapse
Affiliation(s)
- Daesoon Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jyoti Bhardwaj
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea. .,Department of Urban and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
12
|
Gupta S, Yadav AK. Emerging trend of chondroitin sulfate in nanoparticles preparation, targeting, and pharmaceutical applications. POLYSACCHARIDE NANOPARTICLES 2022:65-90. [DOI: 10.1016/b978-0-12-822351-2.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Amouzadeh Tabrizi M, Nazari L, Acedo P. A photo-electrochemical aptasensor for the determination of severe acute respiratory syndrome coronavirus 2 receptor-binding domain by using graphitic carbon nitride-cadmium sulfide quantum dots nanocomposite. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 345:130377. [PMID: 34219971 PMCID: PMC8240452 DOI: 10.1016/j.snb.2021.130377] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 05/18/2023]
Abstract
Herein, a photoelectrochemical aptasensor for the quantitive measurement of the severe acute respiratory syndrome coronavirus-2 receptor-binding domain (Sars-Cov-2 RBD) has been reported for the first time. For this purpose, first, graphitic carbon nitride and (gC3N4) and cadmium sulfide (CdS) quantum dots were fabricated and characterized. After that, gC3N4 and CdS were mixed well. The fabricated nanomaterials were characterized by scanning transmission electron microscopy. Then, the CdS QDs-gC3N4 nanocomposite was added to the solution containing chitosan as an amine-rich polymer to generate a Chitosan/CdS-gC3N4 nanocomposite. Subsequently, the surface of the ITO electrode was modified with Chitosan/CdS-gC3N4. After that, the amine-terminal aptamer probes were immobilized on the surface of the Chitosan/CdS QDs-gC3N4/ITO electrode by using glutaraldehyde as an amine-amine crosslinker. The electrochemical performances of the electrodes were studied using cyclic voltammetry (CV), electrochemical Impedance Spectroscopy (EIS), and photo-electrochemistry (PEC). The surface coverage of the immobilized aptamer probe was founded to be 26.2 pmol.cm-2. The obtained results demonstrated that the proposed photo-electrochemical aptasensor can be used for the measurement of Sars-Cov-2 RBD within 0.5-32.0 nM. The limit of detection (LOD) was obtained to be 0.12 nM (at 3σ/slope). The affinity of the Aptamer/Chitosan/CdS QDs-gC3N4/ITO was also founded to be 3.4 nM by using Langmuir-typical adsorption systems. The proposed photo-electrochemical aptasensor was applied for the measurement of the spiked Sars-Cov-2 RBD in human saliva samples at two concentrations. The effect of the interfering biomaterials such as human immunoglobulin G human immunoglobulin A, human immunoglobulin M, and human serum albumin was also studied.
Collapse
Affiliation(s)
| | - Leila Nazari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Gava Zang, Zanjan, Iran
| | - Pablo Acedo
- Electronic Technology Department, Universidad Carlos III de Madrid, Leganés, Spain
| |
Collapse
|
14
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
15
|
|
16
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
17
|
Zhao Q, Du P, Wang X, Huang M, Sun LD, Wang T, Wang Z. Upconversion Fluorescence Resonance Energy Transfer Aptasensors for H5N1 Influenza Virus Detection. ACS OMEGA 2021; 6:15236-15245. [PMID: 34151102 PMCID: PMC8210407 DOI: 10.1021/acsomega.1c01491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Influenza A virus (IAV) poses a significant threat to human health, which calls for the development of efficient detection methods. The present study constructed a fluorescence resonance energy transfer (FRET) system based on novel fluorescent probes and graphene oxide (GO) for detecting H5N1 IAV hemagglutinin (HA). Here, we synthesized small (sub-20 nm) sandwich-structured upconversion nanoparticles (UCNPs) (SWUCNPs for short) with a high energy transfer efficiency, which allows for controlling the emitter in a thin shell. The π-π stacking interaction between the aptamer and GO shortens the distance between the fluorescent probe and the receptor, thereby realizing fluorescence resonance energy transfer (FRET). When HA is present, the aptamer enables changes in their conformations and move away from GO surface. Fluorescence signals display a linear relationship between HA quantitation in the range of 0.1-15 ng mL-1 and a limit of detection (LOD) of 60.9 pg mL-1. The aptasensor was also applicable in human serum samples with a linear range from 0.2 to 12 ng mL-1 and a limit of detection of 114.7 pg mL-1. This strategy suggested the promising prospect of the aptasensor in clinical applications because of the excellent sensing performance and sensitivity. This strategy may be promising for vitro diagnostics and provides new insights into the functioning of the SWUCNPs system.
Collapse
Affiliation(s)
- Qiuzi Zhao
- School
of Life Sciences, Tianjin University, 92 Weijin Road,
Nankai District, Tianjin 300072, China
| | - Ping Du
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Xiaoyong Wang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Mengqian Huang
- School
of Life Sciences, Tianjin University, 92 Weijin Road,
Nankai District, Tianjin 300072, China
| | - Ling-Dong Sun
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Tao Wang
- School
of Life Sciences, Tianjin University, 92 Weijin Road,
Nankai District, Tianjin 300072, China
| | - Zhiyun Wang
- School
of Environmental Science and Engineering, 135 Yaguang Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
18
|
Zhao Z, Huang C, Huang Z, Lin F, He Q, Tao D, Jaffrezic-Renault N, Guo Z. Advancements in electrochemical biosensing for respiratory virus detection: A review. Trends Analyt Chem 2021; 139:116253. [PMID: 33727755 PMCID: PMC7952277 DOI: 10.1016/j.trac.2021.116253] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory viruses are real menace for human health which result in devastating epidemic disease. Consequently, it is in urgent need of identifying and quantifying virus with a rapid, sensitive and precise approach. The study of electrochemical biosensors for respiratory virus detection has become one of the most rapidly developing scientific fields. Recent developments in electrochemical biosensors concerning respiratory virus detection are comprehensively reviewed in this paper. This review is structured along common detecting objects of respiratory viruses, electrochemical biosensors, electrochemical biosensors for respiratory virus detection and future challenges. The electrochemical biosensors for respiratory virus detection are introduced, including nucleic acids-based, immunosensors and other affinity biosensors. Lastly, for Coronavirus disease 2019 (COVID-19) diagnosis, the future challenges regarding developing electrochemical biosensor-based Point-of-Care Tests (POCTs) are summarized. This review is expected to provide a helpful guide for the researchers entering this interdisciplinary field and developing more novel electrochemical biosensors for respiratory virus detection.
Collapse
Affiliation(s)
- Zhi Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Changfu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Ziyu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Fengjuan Lin
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Qinlin He
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
19
|
Goud KY, Reddy KK, Khorshed A, Kumar VS, Mishra RK, Oraby M, Ibrahim AH, Kim H, Gobi KV. Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens Bioelectron 2021; 180:113112. [PMID: 33706158 PMCID: PMC7921732 DOI: 10.1016/j.bios.2021.113112] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by viruses can elevate up to undesired pandemic conditions affecting the global population and normal life function. These in turn impact the established world economy, create jobless situations, physical, mental, emotional stress, and challenge the human survival. Therefore, timely detection, treatment, isolation and prevention of spreading the pandemic infectious diseases not beyond the originated town is critical to avoid global impairment of life (e.g., Corona virus disease - 2019, COVID-19). The objective of this review article is to emphasize the recent advancements in the electrochemical diagnostics of twelve life-threatening viruses namely - COVID-19, Middle east respiratory syndrome (MERS), Severe acute respiratory syndrome (SARS), Influenza, Hepatitis, Human immunodeficiency virus (HIV), Human papilloma virus (HPV), Zika virus, Herpes simplex virus, Chikungunya, Dengue, and Rotavirus. This review describes the design, principle, underlying rationale, receptor, and mechanistic aspects of sensor systems reported for such viruses. Electrochemical sensor systems which comprised either antibody or aptamers or direct/mediated electron transfer in the recognition matrix were explicitly segregated into separate sub-sections for critical comparison. This review emphasizes the current challenges involved in translating laboratory research to real-world device applications, future prospects and commercialization aspects of electrochemical diagnostic devices for virus detection. The background and overall progress provided in this review are expected to be insightful to the researchers in sensor field and facilitate the design and fabrication of electrochemical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Ahmed Khorshed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - V Sunil Kumar
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India
| | - Rupesh K Mishra
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mohamed Oraby
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Alyaa Hatem Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Hern Kim
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India.
| |
Collapse
|
20
|
Bizyaeva AA, Bunin DA, Moiseenko VL, Gambaryan AS, Balk S, Tashlitsky VN, Arutyunyan AM, Kopylov AM, Zavyalova EG. The Functional Role of Loops and Flanking Sequences of G-Quadruplex Aptamer to the Hemagglutinin of Influenza a Virus. Int J Mol Sci 2021; 22:2409. [PMID: 33673708 PMCID: PMC7957560 DOI: 10.3390/ijms22052409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleic acid aptamers are generally accepted as promising elements for the specific and high-affinity binding of various biomolecules. It has been shown for a number of aptamers that the complexes with several related proteins may possess a similar affinity. An outstanding example is the G-quadruplex DNA aptamer RHA0385, which binds to the hemagglutinins of various influenza A virus strains. These hemagglutinins have homologous tertiary structures but moderate-to-low amino acid sequence identities. Here, the experiment was inverted, targeting the same protein using a set of related, parallel G-quadruplexes. The 5'- and 3'-flanking sequences of RHA0385 were truncated to yield parallel G-quadruplex with three propeller loops that were 7, 1, and 1 nucleotides in length. Next, a set of minimal, parallel G-quadruplexes with three single-nucleotide loops was tested. These G-quadruplexes were characterized both structurally and functionally. All parallel G-quadruplexes had affinities for both recombinant hemagglutinin and influenza virions. In summary, the parallel G-quadruplex represents a minimal core structure with functional activity that binds influenza A hemagglutinin. The flanking sequences and loops represent additional features that can be used to modulate the affinity. Thus, the RHA0385-hemagglutinin complex serves as an excellent example of the hypothesis of a core structure that is decorated with additional recognizing elements capable of improving the binding properties of the aptamer.
Collapse
Affiliation(s)
- Anastasia A. Bizyaeva
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Dmitry A. Bunin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Valeria L. Moiseenko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Alexandra S. Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia;
| | | | - Vadim N. Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Alexander M. Arutyunyan
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Alexey M. Kopylov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| | - Elena G. Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.A.B.); (V.L.M.); (V.N.T.); (A.M.K.)
| |
Collapse
|
21
|
Gribanyov D, Zhdanov G, Olenin A, Lisichkin G, Gambaryan A, Kukushkin V, Zavyalova E. SERS-Based Colloidal Aptasensors for Quantitative Determination of Influenza Virus. Int J Mol Sci 2021; 22:1842. [PMID: 33673314 PMCID: PMC7918581 DOI: 10.3390/ijms22041842] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Development of sensitive techniques for rapid detection of viruses is on a high demand. Surface-enhanced Raman spectroscopy (SERS) is an appropriate tool for new techniques due to its high sensitivity. DNA aptamers are short structured oligonucleotides that can provide specificity for SERS biosensors. Existing SERS-based aptasensors for rapid virus detection had several disadvantages. Some of them lacked possibility of quantitative determination, while others had sophisticated and expensive implementation. In this paper, we provide a new approach that combines rapid specific detection and the possibility of quantitative determination of viruses using the example of influenza A virus.
Collapse
Affiliation(s)
- Dmitry Gribanyov
- Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Gleb Zhdanov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| | - Andrei Olenin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| | - Georgii Lisichkin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia;
| | - Vladimir Kukushkin
- Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (A.O.); (G.L.)
| |
Collapse
|
22
|
Selection and applications of functional nucleic acids for infectious disease detection and prevention. Anal Bioanal Chem 2021; 413:4563-4579. [PMID: 33506341 PMCID: PMC7840224 DOI: 10.1007/s00216-020-03124-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms such as viruses and bacteria pose a great threat to human health. Although a significant progress has been obtained in the diagnosis and prevention of infectious diseases, it still remains challenging to develop rapid and cost-effective detection approaches and overcome the side effects of therapeutic agents and pathogen resistance. Functional nucleic acids (FNAs), especially the most widely used aptamers and DNAzymes, hold the advantages of high stability and flexible design, which make them ideal molecular recognition tools for bacteria and viruses, as well as potential therapeutic drugs for infectious diseases. This review summarizes important advances in the selection and detection of bacterial- and virus-associated FNAs, along with their potential prevention ability of infectious disease in recent years. Finally, the challenges and future development directions are concluded.
Collapse
|
23
|
Bhardwaj SK, Bhardwaj N, Kumar V, Bhatt D, Azzouz A, Bhaumik J, Kim KH, Deep A. Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. ENVIRONMENT INTERNATIONAL 2021; 146:106183. [PMID: 33113463 DOI: 10.1016/j.envint.2020.106183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 05/25/2023]
Abstract
Airborne pathogens are small microbes that can cause a multitude of diseases (e.g., the common cold, flu, asthma, anthrax, tuberculosis, botulism, and pneumonia). As pathogens are transmitted from infected hosts via a number of routes (e.g., aerosolization, sneezing, and coughing), there is a great demand to accurately monitor their presence and behavior. Despite such need, conventional detection methods (e.g., colony counting, immunoassays, and various molecular techniques) generally suffer from a number of demerits (e.g., complex, time-consuming, and labor-intensive nature). To help overcome such limitations, nanomaterial-based biosensors have evolved as alternative candidates to realize portable, rapid, facile, and direct on-site identification of target microbes. In this review, nano-biosensors developed for the detection of airborne pathogens are listed and discussed in reference to conventional options. The prospects for the development of advanced nano-biosensors with enhanced accuracy and portability are also discussed.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh 160025, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Deepanshu Bhatt
- Central Scientific Instruments Organisation, Sector 30 C, Chandigarh 160030, India
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tétouan, Morocco
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 133-791, Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organisation, Sector 30 C, Chandigarh 160030, India.
| |
Collapse
|
24
|
Determination of protein tyrosine kinase-7 concentration using electrocatalytic reaction and an aptamer-antibody sandwich assay platform. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Dave PK, Rojas-Cessa R, Dong Z, Umpaichitra V. Survey of Saliva Components and Virus Sensors for Prevention of COVID-19 and Infectious Diseases. BIOSENSORS 2020; 11:14. [PMID: 33396519 PMCID: PMC7824170 DOI: 10.3390/bios11010014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022]
Abstract
The United States Centers for Disease Control and Prevention considers saliva contact the lead transmission means of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). Saliva droplets or aerosols expelled by heavy breathing, talking, sneezing, and coughing may carry this virus. People in close distance may be exposed directly or indirectly to these droplets, especially those droplets that fall on surrounding surfaces and people may end up contracting COVID-19 after touching the mucosa tissue on their faces. It is of great interest to quickly and effectively detect the presence of SARS-CoV-2 in an environment, but the existing methods only work in laboratory settings, to the best of our knowledge. However, it may be possible to detect the presence of saliva in the environment and proceed with prevention measures. However, detecting saliva itself has not been documented in the literature. On the other hand, many sensors that detect different organic components in saliva to monitor a person's health and diagnose different diseases that range from diabetes to dental health have been proposed and they may be used to detect the presence of saliva. This paper surveys sensors that detect organic and inorganic components of human saliva. Humidity sensors are also considered in the detection of saliva because a large portion of saliva is water. Moreover, sensors that detect infectious viruses are also included as they may also be embedded into saliva sensors for a confirmation of the virus' presence. A classification of sensors by their working principle and the substance they detect is presented. This comparison lists their specifications, sample size, and sensitivity. Indications of which sensors are portable and suitable for field application are presented. This paper also discusses future research and challenges that must be resolved to realize practical saliva sensors. Such sensors may help minimize the spread of not only COVID-19 but also other infectious diseases.
Collapse
Affiliation(s)
- Priya Kishor Dave
- Networking Research Laboratory, Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Roberto Rojas-Cessa
- Networking Research Laboratory, Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Ziqian Dong
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY 10023, USA;
| | - Vatcharapan Umpaichitra
- Department of Pediatrics, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| |
Collapse
|
26
|
Ribeiro BV, Cordeiro TAR, Oliveira E Freitas GR, Ferreira LF, Franco DL. Biosensors for the detection of respiratory viruses: A review. TALANTA OPEN 2020; 2:100007. [PMID: 34913046 PMCID: PMC7428963 DOI: 10.1016/j.talo.2020.100007] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
The recent events of outbreaks related to different respiratory viruses in the past few years, exponentiated by the pandemic caused by the coronavirus disease 2019 (COVID-19), reported worldwide caused by SARS-CoV-2, raised a concern and increased the search for more information on viruses-based diseases. The detection of the virus with high specificity and sensitivity plays an important role for an accurate diagnosis. Despite the many efforts to identify the SARS-CoV-2, the diagnosis still relays on expensive and time-consuming analysis. A fast and reliable alternative is the use of low-cost biosensor for in loco detection. This review gathers important contributions in the biosensor area regarding the most current respiratory viruses, presents the advances in the assembly of the devices and figures of merit. All information is useful for further biosensor development for the detection of respiratory viruses, such as for the new coronavirus.
Collapse
Affiliation(s)
- Brayan Viana Ribeiro
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| | - Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Guilherme Ramos Oliveira E Freitas
- Laboratory of Microbiology (MICRO), Biotechnology Institute, Federal University of Uberlândia - campus Patos de Minas - Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais, Brazil
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| |
Collapse
|
27
|
Alhalaili B, Popescu IN, Kamoun O, Alzubi F, Alawadhia S, Vidu R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6591. [PMID: 33218097 PMCID: PMC7698809 DOI: 10.3390/s20226591] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is considered a public health emergency of international concern. The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused this pandemic has spread rapidly to over 200 countries, and has drastically affected public health and the economies of states at unprecedented levels. In this context, efforts around the world are focusing on solving this problem in several directions of research, by: (i) exploring the origin and evolution of the phylogeny of the SARS-CoV-2 viral genome; (ii) developing nanobiosensors that could be highly effective in detecting the new coronavirus; (iii) finding effective treatments for COVID-19; and (iv) working on vaccine development. In this paper, an overview of the progress made in the development of nanobiosensors for the detection of human coronaviruses (SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV) is presented, along with specific techniques for modifying the surface of nanobiosensors. The newest detection methods of the influenza virus responsible for acute respiratory syndrome were compared with conventional methods, highlighting the newest trends in diagnostics, applications, and challenges of SARS-CoV-2 (COVID-19 causative virus) nanobiosensors.
Collapse
Affiliation(s)
- Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ileana Nicoleta Popescu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, 130004 Targoviste, Romania
| | - Olfa Kamoun
- Physics of Semiconductor Devices Unit, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 1068, Tunisia;
| | - Feras Alzubi
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Sami Alawadhia
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ruxandra Vidu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
28
|
Kim SM, Kim J, Noh S, Sohn H, Lee T. Recent Development of Aptasensor for Influenza Virus Detection. BIOCHIP JOURNAL 2020; 14:327-339. [PMID: 33224441 PMCID: PMC7670017 DOI: 10.1007/s13206-020-4401-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
In nowadays, we have entered the new era of pandemics and the significance of virus detection deeply impacts human society. Viruses with genetic mutations are reported nearly every year, and people have prepared tools to detect the virus and vaccines to ensure proper treatments. Influenza virus (IV) is one of the most harmful viruses reporting various mutations, sub-types, and rapid infection speed for humans and animals including swine and poultry. Moreover, IV infection presents several harmful symptoms including cough, fever, diarrhea, chills, even causing death. To reduce the IV-induced harm, its proper and rapid detection is highly required. Conventional techniques were used against various IV sub-types including H1N1, H3N2, and H5N1. However, some of the techniques are time-consuming, expensive, or labor-intensive for detecting IV. Recently, the nucleic acid-based aptamer has gained attention as a novel bioprobe for constructing a biosensor. In this review, the authors discuss the recent progress in aptasensors for detecting IV in terms of an electrochemical and an optical biosensor.
Collapse
Affiliation(s)
- Soo Min Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| |
Collapse
|
29
|
Ganganboina AB, Khoris IM, Chowdhury AD, Li TC, Park EY. Ultrasensitive Detection of the Hepatitis E Virus by Electrocatalytic Water Oxidation Using Pt-Co 3O 4 Hollow Cages. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50212-50221. [PMID: 32967416 DOI: 10.1021/acsami.0c13247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A sensitive virus detection method applicable for an early stage increases the probability of survival. Here, we develop a simple and rapid detection strategy for the detection of the hepatitis E virus (HEV) by an electrocatalytic water oxidation reaction (WOR) using a platinum (Pt)-incorporated cobalt (Co)-based zeolite imidazole framework (ZIF-67). The surface cavity of ZIF-67 enables the rich loading of Pt NPs, and subsequent calcination etches the cavity, promoting the electrocatalytic activity of Pt-Co3O4 HCs. The Pt-Co3O4 HCs show excellent behavior for the WOR due to the synergistic interaction of Pt and Co3O4, evaluated by voltammetry and chronoamperometry. The synthesized Pt-Co3O4 HCs are conjugated with anti-HEV antibody (Ab@Pt-Co3O4 HCs); the electrocatalytic activity of Ab@Pt-Co3O4 HCs is combined with that of antibody-conjugated magnetic nanoparticles (MNPs) for HEV detection by a magneto-and-nanocomposite sandwich immunoassay. The sensor is challenged to detect the HEV in spiked serum samples and HEV G7 genotypes collected from the cell culture supernatant, reaching a low limit of detection down to 61 RNA copies mL-1. This work establishes a free-indicator one-step approach with the controlled design of Pt-Co3O4 HCs, which presents an effective WOR technique for virus detection in a neutral pH solution, which can be extended to electrocatalytic studies in the future integrated biosensing systems.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Indra Memdi Khoris
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Ankan Dutta Chowdhury
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Tian-Cheng Li
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayam-shi, Tokyo 208-0011, Japan
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
30
|
Yi J, Xiao W, Li G, Wu P, He Y, Chen C, He Y, Ding P, Kai T. The research of aptamer biosensor technologies for detection of microorganism. Appl Microbiol Biotechnol 2020; 104:9877-9890. [PMID: 33047168 DOI: 10.1007/s00253-020-10940-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
The activities and transmissions of microorganisms are closely related to human, and all kinds of diseases caused by pathogenic microorganisms have attracted attention in the world and brought many challenges to human health and public health. The traditional microbial detection technologies have characteristics of longer detection cycle and complicated processes, therefore, which can no longer meet the detection requirements in the field of public health. At present, it is the focus to develop and design a novel, rapid, and simple microbial detection method in the field of public health. Herein, this article summarized the development of aptamer biosensor technologies for detection of microorganism in the aspect of bacteria, viruses, and toxins in detail, including optical aptamer sensors such as fluorometry and colorimetry, electrochemical aptamer sensors, and other technologies combined with aptamer. KEY POINTS: • Aptamer biosensor is a good platform for microbial detection. • Aptamer biosensors include optical sensors and electrochemical sensors. • Aptamer sensors have been widely used in the detection of bacteria, viruses, and other microorganisms.
Collapse
Affiliation(s)
- Jiecan Yi
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.,School of Public Health, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Wen Xiao
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, 410000, Hunan, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541014, Guangxi, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yayuan He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Cuimei Chen
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yafei He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Tianhan Kai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
31
|
Song S, Kim YJ, Kang HL, Yoon S, Hong DK, Kim WH, Shin IS, Seong WK, Lee KN. Sensitivity Improvement in Electrochemical Immunoassays Using Antibody Immobilized Magnetic Nanoparticles with a Clean ITO Working Electrode. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4309-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Roberts A, Chauhan N, Islam S, Mahari S, Ghawri B, Gandham RK, Majumdar SS, Ghosh A, Gandhi S. Graphene functionalized field-effect transistors for ultrasensitive detection of Japanese encephalitis and Avian influenza virus. Sci Rep 2020; 10:14546. [PMID: 32884083 PMCID: PMC7471952 DOI: 10.1038/s41598-020-71591-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023] Open
Abstract
Graphene, a two-dimensional nanomaterial, has gained immense interest in biosensing applications due to its large surface-to-volume ratio, and excellent electrical properties. Herein, a compact and user-friendly graphene field effect transistor (GraFET) based ultrasensitive biosensor has been developed for detecting Japanese Encephalitis Virus (JEV) and Avian Influenza Virus (AIV). The novel sensing platform comprised of carboxy functionalized graphene on Si/SiO2 substrate for covalent immobilization of monoclonal antibodies of JEV and AIV. The bioconjugation and fabrication process of GraFET was characterized by various biophysical techniques such as Ultraviolet-Visible (UV-Vis), Raman, Fourier-Transform Infrared (FT-IR) spectroscopy, optical microscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The change in the resistance due to antigen-antibody interaction was monitored in real time to evaluate the electrical response of the sensors. The sensors were tested in the range of 1 fM to 1 μM for both JEV and AIV antigens, and showed a limit of detection (LOD) upto 1 fM and 10 fM for JEV and AIV respectively under optimised conditions. Along with ease of fabrication, the GraFET devices were highly sensitive, specific, reproducible, and capable of detecting ultralow levels of JEV and AIV antigen. Moreover, these devices can be easily integrated into miniaturized FET-based real-time sensors for the rapid, cost-effective, and early Point of Care (PoC) diagnosis of JEV and AIV.
Collapse
Affiliation(s)
- Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Neha Chauhan
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Saurav Islam
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Bhaskar Ghawri
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Ravi Kumar Gandham
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - S S Majumdar
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science (IISc), Bangalore, 560012, India
- Center for Nanoscience and Engineering, Indian Institute of Science (IISc), Bangalore, 560012, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, 500032, India.
| |
Collapse
|
33
|
A surface plasmon resonance biosensor in conjunction with a DNA aptamer-antibody bioreceptor pair for heterogeneous nuclear ribonucleoprotein A1 concentrations in colorectal cancer plasma solutions. Biosens Bioelectron 2020; 154:112065. [PMID: 32056960 DOI: 10.1016/j.bios.2020.112065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
A new DNA aptamer and antibody pair was incorporated into surface plasmon resonance (SPR) sensing platform to detect heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in plasma at clinically relevant native concentrations for the diagnosis of colorectal cancer (CRC). SPR detection of hnRNP A1 was realized via formation of the surface sandwich complex of aptamer/hnRNP A1/anti-hnRNP A; the specific adsorption of hnRNP A1 onto a gold chip surface modified with a DNA aptamer followed by the adsorption of anti-hnRNP A1. Changes in the refractive unit (RU) with respect to the hnRNP A1 concentration in buffer solutions were monitored at a fixed anti-hnRNP A1 concentration of 90 nM, resulting in a dynamic range of 0.1-10 nM of hnRNP A1. The surface sandwich SPR biosensor was further applied to the direct analysis of undiluted human normal and pooled CRC patient plasma solutions. Our plasma analysis results were compared to those obtained with a commercial enzyme-linked immunosorbent assay kit.
Collapse
|
34
|
Abstract
Infectious diseases are caused from pathogens, which need a reliable and fast diagnosis. Today, expert personnel and centralized laboratories are needed to afford much time in diagnosing diseases caused from pathogens. Recent progress in electrochemical studies shows that biosensors are very simple, accurate, precise, and cheap at virus detection, for which researchers find great interest in this field. The clinical levels of these pathogens can be easily analyzed with proposed biosensors. Their working principle is based on affinity between antibody and antigen in body fluids. The progress still continues on these biosensors for accurate, rapid, reliable sensors in future.
Collapse
|
35
|
Zou X, Wu J, Gu J, Shen L, Mao L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front Microbiol 2019; 10:1462. [PMID: 31333603 PMCID: PMC6618307 DOI: 10.3389/fmicb.2019.01462] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Viral infections can cause serious diseases for humans and animals. Accurate and early detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are mostly single-stranded nucleotide sequences that are artificially synthesized by an in vitro technology known as the Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Similar to antibodies, aptamers bind specifically to their targets. However, compared with antibody, aptamers are easy to synthesize and modify and can bind to a broad range of targets. Thus, aptamers are promising for detecting viruses and treating viral infections. In this review, we briefly introduce aptamer-based biosensors (aptasensors) and describe their applications in rapid detection of viruses and as antiviral agents in treating infections. We summarize available data about the use of aptamers to detect and inhibit viruses. Furthermore, for the first time, we list aptamers specific to different viruses that have been screened out but have not yet been used for detecting viruses or treating viral infections. Finally, we analyze barriers and developing perspectives in the application of aptamer-based virus detection and therapeutics.
Collapse
Affiliation(s)
- Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Astill J, Dara RA, Fraser EDG, Sharif S. Detecting and Predicting Emerging Disease in Poultry With the Implementation of New Technologies and Big Data: A Focus on Avian Influenza Virus. Front Vet Sci 2018; 5:263. [PMID: 30425995 PMCID: PMC6218608 DOI: 10.3389/fvets.2018.00263] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023] Open
Abstract
Future demands for food will place agricultural systems under pressure to increase production. Poultry is accepted as a good source of protein and the poultry industry will be forced to intensify production in many countries, leading to greater numbers of farms that house birds at elevated densities. Increasing farmed poultry can facilitate enhanced transmission of infectious pathogens among birds, such as avian influenza virus among others, which have the potential to induce widespread mortality in poultry and cause considerable economic losses. Additionally, the capability of some emerging poultry pathogens to cause zoonotic human infection will be increased as greater numbers of poultry operations could increase human contact with poultry pathogens. In order to combat the increased risk of spread of infectious disease in poultry due to intensified systems of production, rapid detection and diagnosis is paramount. In this review, multiple technologies that can facilitate accurate and rapid detection and diagnosis of poultry diseases are highlighted from the literature, with a focus on technologies developed specifically for avian influenza virus diagnosis. Rapid detection and diagnostic technologies allow for responses to be made sooner when disease is detected, decreasing further bird transmission and associated costs. Additionally, systems of rapid disease detection produce data that can be utilized in decision support systems that can predict when and where disease is likely to emerge in poultry. Other sources of data can be included in predictive models, and in this review two highly relevant sources, internet based-data and environmental data, are discussed. Additionally, big data and big data analytics, which will be required in order to integrate voluminous and variable data into predictive models that function in near real-time are also highlighted. Implementing new technologies in the commercial setting will be faced with many challenges, as will designing and operating predictive models for poultry disease emergence. The associated challenges are summarized in this review. Intensified systems of poultry production will require new technologies for detection and diagnosis of infectious disease. This review sets out to summarize them, while providing advantages and limitations of different types of technologies being researched.
Collapse
Affiliation(s)
- Jake Astill
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Rozita A. Dara
- School of Computer Science, University of Guelph, Guelph, ON, Canada
| | - Evan D. G. Fraser
- Arrell Food Institute and Department of Geography, Environment and Geomatics, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
Dziąbowska K, Czaczyk E, Nidzworski D. Detection Methods of Human and Animal Influenza Virus-Current Trends. BIOSENSORS-BASEL 2018; 8:bios8040094. [PMID: 30340339 PMCID: PMC6315519 DOI: 10.3390/bios8040094] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
The basic affairs connected to the influenza virus were reviewed in the article, highlighting the newest trends in its diagnostic methods. Awareness of the threat of influenza arises from its ability to spread and cause a pandemic. The undiagnosed and untreated viral infection can have a fatal effect on humans. Thus, the early detection seems pivotal for an accurate treatment, when vaccines and other contemporary prevention methods are not faultless. Public health is being attacked with influenza containing new genes from a genetic assortment between animals and humankind. Unfortunately, the population does not have immunity for mutant genes and is attacked in every viral outbreak season. For these reasons, fast and accurate devices are in high demand. As currently used methods like Rapid Influenza Diagnostic Tests lack specificity, time and cost-savings, new methods are being developed. In the article, various novel detection methods, such as electrical and optical were compared. Different viral elements used as detection targets and analysis parameters, such as sensitivity and specificity, were presented and discussed.
Collapse
Affiliation(s)
- Karolina Dziąbowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Elżbieta Czaczyk
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| |
Collapse
|
38
|
Colino CI, Millán CG, Lanao JM. Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. Int J Mol Sci 2018; 19:E1627. [PMID: 29857492 PMCID: PMC6032068 DOI: 10.3390/ijms19061627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/09/2023] Open
Abstract
Advances in nanoparticle-based systems constitute a promising research area with important implications for the treatment of bacterial infections, especially against multidrug resistant strains and bacterial biofilms. Nanosystems may be useful for the diagnosis and treatment of viral and fungal infections. Commercial diagnostic tests based on nanosystems are currently available. Different methodologies based on nanoparticles (NPs) have been developed to detect specific agents or to distinguish between Gram-positive and Gram-negative microorganisms. Also, biosensors based on nanoparticles have been applied in viral detection to improve available analytical techniques. Several point-of-care (POC) assays have been proposed that can offer results faster, easier and at lower cost than conventional techniques and can even be used in remote regions for viral diagnosis. Nanoparticles functionalized with specific molecules may modulate pharmacokinetic targeting recognition and increase anti-infective efficacy. Quorum sensing is a stimuli-response chemical communication process correlated with population density that bacteria use to regulate biofilm formation. Disabling it is an emerging approach for combating its pathogenicity. Natural or synthetic inhibitors may act as antibiofilm agents and be useful for treating multi-drug resistant bacteria. Nanostructured materials that interfere with signal molecules involved in biofilm growth have been developed for the control of infections associated with biofilm-associated infections.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - Carmen Gutiérrez Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
39
|
Bokhari H. Exploitation of microbial forensics and nanotechnology for the monitoring of emerging pathogens. Crit Rev Microbiol 2018. [PMID: 29513060 DOI: 10.1080/1040841x.2018.1444013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging infectious diseases remain among the leading causes of global mortality. Traditional laboratory diagnostic approaches designed to detect and track infectious disease agents provide a framework for surveillance of bio threats. However, surveillance and outbreak investigations using such time-consuming approaches for early detection of pathogens remain the major pitfall. Hence, reasonable real-time surveillance systems to anticipate threats to public health and environment are critical for identifying specific aetiologies and preventing the global spread of infectious disease. The current review discusses the growing need for monitoring and surveillance of pathogens with the same zeal and approach as adopted by microbial forensics laboratories, and further strengthening it by integrating with the innovative nanotechnology for rapid detection of microbial pathogens. Such innovative diagnostics platforms will help to track pathogens from high risk areas and environment by pre-emptive approach that will minimize damages. The various scenarios with the examples are discussed where the high risk associated human pathogens in particular were successfully detected using various nanotechnology approaches with potential future prospects in the field of microbial forensics.
Collapse
Affiliation(s)
- Habib Bokhari
- a Microbiology & Public Health Lab, Department of Biosciences , COMSATS Institute of Information Technology , Islamabad , Pakistan
| |
Collapse
|
40
|
Hassanpour S, Baradaran B, Hejazi M, Hasanzadeh M, Mokhtarzadeh A, de la Guardia M. Recent trends in rapid detection of influenza infections by bio and nanobiosensor. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Moulick A, Richtera L, Milosavljevic V, Cernei N, Haddad Y, Zitka O, Kopel P, Heger Z, Adam V. Advanced nanotechnologies in avian influenza: Current status and future trends - A review. Anal Chim Acta 2017; 983:42-53. [PMID: 28811028 PMCID: PMC7094654 DOI: 10.1016/j.aca.2017.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023]
Abstract
In the last decade, the control of avian influenza virus has experienced many difficulties, which have caused major global agricultural problems that have also led to public health consequences. Conventional biochemical methods are not sufficient to detect and control agricultural pathogens in the field due to the growing demand for food and subsidiary products; thus, studies aiming to develop potent alternatives to conventional biochemical methods are urgently needed. In this review, emerging detection systems, their applicability to diagnostics, and their therapeutic possibilities in view of nanotechnology are discussed. Nanotechnology-based sensors are used for rapid, sensitive and cost-effective diagnostics of agricultural pathogens. The application of different nanomaterials promotes interactions between these materials and the virus, which enables researchers to construct portable electroanalytical biosensing analyser that should effectively detect the influenza virus. The present review will provide insights into the guidelines for future experiments to develop better techniques to detect and control influenza viruses.
Collapse
Affiliation(s)
- Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
42
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
43
|
Zhu G, Lee HJ. Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosens Bioelectron 2016; 89:959-963. [PMID: 27816594 DOI: 10.1016/j.bios.2016.09.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Abstract
A novel sandwich-type biosensor was developed for the electrochemical detection of α-1 antitrypsin (AAT, a recognized biomarker for Alzheimer's disease). The biosensor was composed of 3, 4, 9, 10-perylene tetracarboxylic acid/carbon nanotubes (PTCA-CNTs) as a sensing platform and alkaline phosphatase-labeled AAT antibody functionalized silver nanoparticles (ALP-AAT Ab-Ag NPs) as a signal enhancer. CNTs offer high surface area and good electrical conductivity. Importantly, Ag NPs could increase the amount of ALP on the sensing surface and the ALP could dephosphorylate 4-amino phenyl phosphate (APP) enzymatically to produce electroactive species 4-aminophenol (AP). For detecting AAT based on the sandwich-type biosensor, the results show that the peak current value of AP using ALP-AAT Ab-Ag NPs as signal enhancer is much higher than that by using ALP-AAT Ab bioconjugate (without Ag NPs), the biosensor exhibited desirable performance for AAT determination with a wide linearity in the range from 0.05 to 20.0pM and a low detection limit of 0.01pM. Finally, the developed sensor was successfully applied to the analysis of AAT concentration in serum samples.
Collapse
Affiliation(s)
- Gangbing Zhu
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea.
| |
Collapse
|
44
|
Yadavalli T, Shukla D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:219-230. [PMID: 27575283 DOI: 10.1016/j.nano.2016.08.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/24/2016] [Accepted: 08/11/2016] [Indexed: 01/30/2023]
Abstract
Nanotechnology is increasingly playing important roles in various fields including virology. The emerging use of metal or metal oxide nanoparticles in virus targeting formulations shows the promise of improved diagnostic or therapeutic ability of the agents while uniquely enhancing the prospects of targeted drug delivery. Although a number of nanoparticles varying in composition, size, shape, and surface properties have been approved for human use, the candidates being tested or approved for clinical diagnosis and treatment of viral infections are relatively less in number. Challenges remain in this domain due to a lack of essential knowledge regarding the in vivo comportment of nanoparticles during viral infections. This review provides a broad overview of recent advances in diagnostic, prophylactic and therapeutic applications of metal and metal oxide nanoparticles in human immunodeficiency virus, hepatitis virus, influenza virus and herpes virus infections. Types of nanoparticles commonly used and their broad applications have been explained in this review.
Collapse
Affiliation(s)
- Tejabhiram Yadavalli
- Nanotechnology Research Centre, SRM University, Kattankulathur, India; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, USA.
| |
Collapse
|
45
|
Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Nübel C, Appel B, Hospach I, Mai M, Krasteva N, Nelles G, Petruschka L, Müller S. Challenges and Opportunities in the Development of Aptamers for TNFα. Appl Biochem Biotechnol 2016; 179:398-414. [PMID: 26922730 DOI: 10.1007/s12010-016-2002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
Abstract
RNA aptamers for tumor necrosis factor-alpha (TNFα), for which functionality was demonstrated in L929 cells, show only little affinity for the protein in vitro. Detailed investigation of the aptamer-protein interaction by surface plasmon resonance and quartz crystal microbalance analysis revealed that affinity is not the only crucial parameter for efficacy and functionality of those aptamers. Instead, the sensitive equilibrium of the monomeric and homotrimeric form of soluble TNFα decides on aptamer binding. Our results show that the field of application and the source of TNFα have to be carefully defined before selection of aptamer sequences.
Collapse
Affiliation(s)
- Claudia Nübel
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Bettina Appel
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Ingeborg Hospach
- Materials Science Laboratory, Sony Deutschland GmbH, Stuttgart, Germany.,Institute of Electronics and Sensor Materials, Technical University Freiberg, Freiberg, Germany
| | - Michaela Mai
- Materials Science Laboratory, Sony Deutschland GmbH, Stuttgart, Germany
| | - Nadejda Krasteva
- Materials Science Laboratory, Sony Deutschland GmbH, Stuttgart, Germany
| | - Gabriele Nelles
- Materials Science Laboratory, Sony Deutschland GmbH, Stuttgart, Germany
| | - Lothar Petruschka
- Interfakultäres Institut für Genetik und funktionelle Genomforschung, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany.
| |
Collapse
|
47
|
Ma Y, Wei M, Zhang X, Zhao T, Liu X, Zhou G. Spectral study of interaction between chondroitin sulfate and nanoparticles and its application in quantitative analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:445-450. [PMID: 26363470 DOI: 10.1016/j.saa.2015.08.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/14/2015] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
In this work, the interaction between chondroitin sulfate (CS) and gold nanoparticles (GNPs) and silver nanoparticles (SNPs) was characterized for the first time. Plasma resonance scattering (PRS) and plasma resonance absorption (PRA) were used to investigate the characteristics of their spectrum. The results suggested that the CS with negative charge could interact with metal nanoparticles with negative charge and the adsorption of CS on the surface of SNPs was more regular than that of GNPs. The resonance scattering spectra also further confirmed the interaction between CS and SNPs. A new method for detection of CS based on the interaction was developed. CS concentrations in the range of 0.02-3.5 μg/mL were proportional to the decreases of absorbance of SNPs. Compared with other reported methods, the proposed method is simple and workable without complex process, high consumption and expensive equipments. The developed method was applied to the determination of the CS contents from different biological origins and the results were compared with those obtained by the method of Chinese Pharmacopeia. The effects of matrix in plasma and other glycosaminoglycans on the determination of CS were also investigated. The results showed that a small quantity of blood plasma had no effect on the determination of CS and when the concentration ratio of CS to heparin was more than 10:1, the influence of heparin on the detection of CS could be ignored. This work gave a specific research direction for the detection of CS in the presence of metal nanoparticles.
Collapse
Affiliation(s)
- Yi Ma
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Maojie Wei
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Xiao Zhang
- Quality Assurance Department, Shandong Lukang Pharmaceutical Co., Ltd., Jining 272021, China
| | - Ting Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Guanglian Zhou
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
48
|
Zhao SN, Wu LL, Feng J, Song SY, Zhang HJ. An ideal detector composed of a 3D Gd-based coordination polymer for DNA and Hg2+ ion. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00252d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3D Gd-based CP was employed as an effective fluorescent sensing platform for DNA and Hg2+ ion detection with sensitivity and selectivity, due to its ability to highly quench fluorescence and its different affinities toward ssDNA and dsDNA.
Collapse
Affiliation(s)
- Shu-Na Zhao
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P.R. China
| | - Lan-Lan Wu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P.R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P.R. China
| | - Shu-Yan Song
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P.R. China
| | - Hong-Jie Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P.R. China
| |
Collapse
|
49
|
Wang J, Liu Z, Hu C, Hu S. Ultrasensitive Photoelectrochemical Biosensing of Multiple Biomarkers on a Single Electrode by a Light Addressing Strategy. Anal Chem 2015; 87:9368-75. [DOI: 10.1021/acs.analchem.5b02148] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Juan Wang
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihong Liu
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengguo Hu
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shengshui Hu
- Key Laboratory of Analytical
Chemistry for Biology and Medicine (Ministry of Education), College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|