1
|
Singh PK, Kumar U, Kumar I, Dwivedi A, Singh P, Mishra S, Seth CS, Sharma RK. Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56428-56462. [PMID: 39269525 DOI: 10.1007/s11356-024-34932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Zeng J, Zhang T, Liang G, Mo J, Zhu J, Qin L, Liu X, Ni Z. A "turn off-on" fluorescent sensor for detection of Cr(Ⅵ) based on upconversion nanoparticles and nanoporphyrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124002. [PMID: 38364512 DOI: 10.1016/j.saa.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Hexavalent chromium (Cr(Ⅵ)) is a significant environmental pollutant because of its toxic and carcinogenic properties and wide use in various industries. Hence, there is an urgent need to develop accurate and selective approaches to detect the concentration of Cr(Ⅵ) in agricultural and aquaculture products to help humans avoid potential hazards of indirectly taking in Cr(Ⅵ). In this work, we report a "turn off-on" fluorescent sensor based on citric acid coated, 808 nm-excited core-shell upconversion nanoparticles (CA-UCNPs) and self-assembled copper porphyrin nanoparticles (nano CuTPyP) for sensitive and specific detection of Cr(Ⅵ). Nano copper 5, 10, 15, 20-tetra(4-pyridyl)-21H-23H- porphine obtained by acid-base neutralization micelle-confined self-assembly method function as an effective quencher due to its excellent optical property and water solubility. Through electrostatic interactions, positively charged nano CuTPyP are attracted to the surface of negatively charged CA-UCNPs, which can almost completely quench the fluorescence emission. In the presence of Cr(Ⅵ), nano CuTPyP can discriminatively interact with Cr(Ⅵ) and form nano CuTPyP/Cr(Ⅵ) complex, which separates nano CuTPyP from CA-UCNPs and restores the fluorescence. The sensing system exhibits a good linear response to Cr(Ⅵ) concentration in the range from 0.5 to 400 µM with a detection limit of 0.36 µM. The sensing method also displays high selectivity against other common ions including trivalent chromium and is applied to the analysis of Cr(Ⅵ) in actual rice and fish samples with satisfactory results.
Collapse
Affiliation(s)
- Jiaying Zeng
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Jingwen Mo
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Jianxiong Zhu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Longhui Qin
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaojun Liu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhonghua Ni
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
3
|
Mobed A, Darvishi M, Kohansal F, Dehfooli FM, Alipourfard I, Tahavvori A, Ghazi F. Biosensors; nanomaterial-based methods in diagnosing of Mycobacterium tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 34:100412. [PMID: 38222862 PMCID: PMC10787265 DOI: 10.1016/j.jctube.2023.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Diagnosis of Mycobacterium tuberculosis (Mtb) before the progression of pulmonary infection can be very effective in its early treatment. The Mtb grows so slowly that it takes about 6-8 weeks to be diagnosed even using sensitive cell culture methods. The main opponent in tuberculosis (TB) and nontuberculous mycobacterial (NTM) epidemiology, like in all contagious diseases, is to pinpoint the source of infection and reveal its transmission and dispersion ways in the environment. It is crucial to be able to distinguish and monitor specific mycobacterium strains in order to do this. In food analysis, clinical diagnosis, environmental monitoring, and bioprocess, biosensing technologies have been improved to manage and detect Mtb. Biosensors are progressively being considered pioneering tools for point-of-care diagnostics in Mtb discoveries. In this review, we present an epitome of recent developments of biosensing technologies for M. tuberculosis detection, which are categorized on the basis of types of electrochemical, Fluorescent, Photo-thermal, Lateral Flow, Magneto-resistive, Laser, Plasmonic, and Optic biosensors.
Collapse
Affiliation(s)
- Ahmad Mobed
- Infectious and Tropical Diseases Research Center, Clinical Research Institute, Tabriz University of Medical Sciences, Iran
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Fereshteh Kohansal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Iraj Alipourfard
- Institute of Medical Science and Technology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Tahavvori
- Internal Department, Medical Faculty, Urmia University of Medical Sciences, Iran
| | - Farhood Ghazi
- Internal Department, Medical Faculty, Urmia University of Medical Sciences, Iran
| |
Collapse
|
4
|
Sadeghzadeh J, Shahabi P, Farhoudi M, Ebrahimi-Kalan A, Mobed A, Shahpasand K. Tau Protein Biosensors in the Diagnosis of Neurodegenerative Diseases. Adv Pharm Bull 2023; 13:502-511. [PMID: 37646056 PMCID: PMC10460811 DOI: 10.34172/apb.2023.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/01/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Tau protein plays a crucial role in diagnosing neurodegenerative diseases. However, performing an assay to detect tau protein on a nanoscale is a great challenge for early diagnosis of diseases. Enzyme-linked immunosorbent assay (ELISA), western-blotting, and molecular-based methods, e.g., PCR and real-time PCR, are the most widely used methods for detecting tau protein. These methods are subject to certain limitations: the need for advanced equipment, low sensitivity, and specificity, to name a few. With the above said, it is necessary to discover advanced and novel methods for monitoring tau protein. Counted among remarkable approaches adopted by researchers, biosensors can largely eliminate the difficulties and limitations associated with conventional methods. The main objective of the present study is to review the latest biosensors developed to detect the tau protein. Furthermore, the problems and limitations of conventional diagnosis methods were discussed in detail.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences,Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kourosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| |
Collapse
|
5
|
Cilamkoti V, Dutta RK. Silicon dioxide quantum dots anchored on the surface of carbon nanodiscs as photoluminescent probe for Cr(VI) detection. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
A Novel, Simple, and Reliable Spectrophotometric Determination of Total Hexavalent Chromium by Complexation with a New Reagent of Thiazole Linked to 2H-Chromen-2-One. Int J Anal Chem 2023. [DOI: 10.1155/2023/2042221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Hexavalent chromium is a known environmental contaminant and carcinogen. In the current work, a simple, rapid, and reliable direct spectrophotometric method was used for the determination of total Cr (VI) in environmental samples. Acid-base equilibria and ionization constant (pKa) of the new reagent 3-(2-(2-(4-(trifluoromethyl)benzylidene)hydrazineyl) thiazol-4-yl)-2H-chromen-2-one (thiazole linked to 2H-chromen-2-one, TFZ) were investigated. The value of pKa for the reagent was found to be 7.6 which was initially reported. The reaction of the TFZ ligand with Cr (VI) was optimized to produce a highly absorbent complex at 370 nm and pH 7.0 within 1 min. With a correlation coefficient of 0.9994, the linear concentration range ranges from 2 to 20,000 ng·mL−1. The detection limit and quantification limit were 0.73 and 2.43 ng·mL−1, respectively. The method has high precision with relative standard deviations less than 1.0 and high accuracy with recovery of 100 ± 2%. A large excess of cations and anions did not interfere with the determination of Cr (VI). The proposed method was successfully applied to the determination of Cr (VI) in cement samples. The current method could be useful for the routine analysis of Cr (VI) in environmental labs.
Collapse
|
7
|
Jose J, Prakash P, Jeyaprabha B, Abraham R, Mathew RM, Zacharia ES, Thomas V, Thomas J. Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Sahoo H, Kisku K, Varadwaj KSK, Acharya P, Naik UC. Mechanism of Cr(VI) reduction by an indigenous Rhizobium pusense CR02 isolated from chromite mining quarry water (CMQW) at Sukinda Valley, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3490-3511. [PMID: 35948793 DOI: 10.1007/s11356-022-22264-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Toxicological assessment of CMQW generated due to chromite mining activities at Sukinda Valley has revealed high chromium contamination along with Zn and Fe. The present study focused on the mechanism of chromate reduction by an indigenous multi-metal tolerant bacterium, Rhizobium pusense CR02, isolated from CMQW. The isolated strain has shown resistance up to 520 mg/L of Cr(VI) with an IC50 value of 385.4 mg/L. The highest reduction rate 8.6 × 10-2/h was recorded with 20 mg/L of initial concentration of Cr(VI). Extracellular (3.06 ± 0.012 U/mL), intracellular (3.60 ± 0.13 U/mL), and membrane (1.89 ± 0.01 U/mL) associated chromate reductases were found to be involved for reduction. The extracellular polymeric substances (EPS) produced by the isolate also enhanced reduction activity of 46.32 ± 1.69 mg/L after 72 h with an initial concentration of 50 mg/L. FTIR analysis revealed the involvement of functional groups -OH, -CO, and -NH for Cr(VI) biosorption whereas P=O, -CO-NH- and -COOH interacted with Cr(III). Zeta potential with less negative surface charge favored reduction of Cr(VI). Treatment of CMQW by bacterial isolate detoxified Cr(VI) minimizing chromosomal aberrations in root cells of Allium cepa L., suggesting the role of Rhizobium pusense CR02 as a promising bio-agent for Cr(VI) detoxification.
Collapse
Affiliation(s)
- Hrudananda Sahoo
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | - Kanika Kisku
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | | | - Prasannajit Acharya
- Institute of Technical Education and Research, Department of Chemistry, Siksha 'O' Anusandhan (deemed to be University), Bhubaneswar, 751030, India
| | - Umesh Chandra Naik
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India.
| |
Collapse
|
9
|
Soozanipour A, Ejeian F, Boroumand Y, Rezayat A, Moradi S. Biotechnological advancements towards water, food and medical healthcare: A review. CHEMOSPHERE 2023; 312:137185. [PMID: 36368538 DOI: 10.1016/j.chemosphere.2022.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Collapse
Affiliation(s)
- Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Sina Moradi
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia; Artificial Intelligence Centre of Excellence (AI CoE), NCSI Australia, Sydney, NSW, 2113, Australia.
| |
Collapse
|
10
|
Singh S, Kumar Naik TSS, Chauhan V, Shehata N, Kaur H, Dhanjal DS, Marcelino LA, Bhati S, Subramanian S, Singh J, Ramamurthy PC. Ecological effects, remediation, distribution, and sensing techniques of chromium. CHEMOSPHERE 2022; 307:135804. [PMID: 35932914 DOI: 10.1016/j.chemosphere.2022.135804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Chromium is detected in most ecosystems due to the increased anthropogenic activities in addition to that developed from natural pollution. Chromium contamination in the food chain results due to its persistent and non-degradable nature. The release of chromium in the ecosystem accretes and thereafter impacts different life forms, including humans, aquatic and terrestrial organisms. Leaching of chromium into the ground and surface water triggers several health ailments, such as dermatitis, eczematous skin, allergic reactions, mucous and skin membrane ulcerations, allergic asthmatic reactions, bronchial carcinoma and gastroenteritis. Physiological and biological treatments for the removal of chromium have been discussed in depth in the present communication. Adsorption and biological treatment methods are proven to be alternatives to chemical removal techniques in terms of cost-effectiveness and low sludge formation. Chromium sensing is an alternative approach for regular monitoring of chromium in different water bodies. This review intended to explore different classes of sensors for chromium monitoring. However, the spectrochemical methods are more sensitive in chromium ions sensing than electrochemical methods. Future study should focus on miniaturization for portability and on-site measurements without requiring a large instrument provides a good aspect for future research.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - T S Sunil Kumar Naik
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Vishakha Chauhan
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Daljeet Singh Dhanjal
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Liliana Aguilar Marcelino
- Centro Nacional de Investigación Disciplinariaen Salud Animal e Inocuidad, INIFAP, Jiutepec, Morelos, C.P, 62550, Mexico
| | - Shipra Bhati
- Department of Chemistry, The Oxford College of Engineering, Bangalore, Karnataka, 560068, India
| | - S Subramanian
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Joginder Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
11
|
Yang L, Changhui S, Dong Y, Liwei Z. A Fluorescent Test Paper Fabricated by In Situ Growth of a Functional Zn-MOG for Fast and Effective Detection of Cr(VI) and Fe(III). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
ZHOU W, CHEN BL, XIE LF, LI H, YUAN MY, LIU QQ, YIN JN. Rapid and high sensitive detection of hexavalent chromium based on silver nanowire arrays SERS substrate. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Motlagh MK, Noroozifar M, Sodhi RNS, Kraatz H. Development of a Bacterial Enzyme‐Based Biosensor for the Detection and Quantification of Selenate. Chemistry 2022; 28:e202200953. [DOI: 10.1002/chem.202200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mozhgan Khorasani Motlagh
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail Toronto M1C1A4 Ontario Canada
| | - Meissam Noroozifar
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail Toronto M1C1A4 Ontario Canada
| | - Rana N. S. Sodhi
- Ontario Centre for Characterisation of Advanced Materials Department of Chemical Engineering & Applied Chemistry University of Toronto 2200 College Street Toronto M5S 3E5 Ontario Canada
| | - Heinz‐Bernhard Kraatz
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail Toronto M1C1A4 Ontario Canada
- Department of Chemistry University of Toronto 280 St. George St. Toronto M5S 3H6 Ontario Canada
| |
Collapse
|
14
|
Velusamy K, Periyasamy S, Kumar PS, Rangasamy G, Nisha Pauline JM, Ramaraju P, Mohanasundaram S, Nguyen Vo DV. Biosensor for heavy metals detection in wastewater: A review. Food Chem Toxicol 2022; 168:113307. [PMID: 35917955 DOI: 10.1016/j.fct.2022.113307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Pollution due to heavy metals is a global issue in recent years. Initially, there were fewer contaminants, which has increased exponentially owing to rapid industrialization and various anthropogenic activities. Toxicity due to heavy metals causes a lot of health problems and organ system failure in human beings. It also affects other forms of living beings such as plants, animals and even the microbiota. This has been reported by various press reports and research findings. In this review, the production of heavy metals, associated effects on the environment and the technologies employed for detecting these heavy metals are comprehensively discussed. The analytical instruments, including biosensors, have been found to be more beneficial than other techniques. Biosensor exhibits numerous special features, such as reproducibility, reusability, linearity, sensitivity, selectivity, and stability. Over the last three years, biosensors have also had a detection limit of 65.36 ng/mL for heavy metals. The design of biosensors, features and types were also explained in detail. The limit of detection for the heavy metals in wastewater using biosensors was also included with recent references up to the last five years.
Collapse
Affiliation(s)
- Karthik Velusamy
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - J Mercy Nisha Pauline
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Pradeep Ramaraju
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Sneka Mohanasundaram
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
15
|
Hui Y, Huang Z, Alahi MEE, Nag A, Feng S, Mukhopadhyay SC. Recent Advancements in Electrochemical Biosensors for Monitoring the Water Quality. BIOSENSORS 2022; 12:bios12070551. [PMID: 35884353 PMCID: PMC9313366 DOI: 10.3390/bios12070551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 05/06/2023]
Abstract
The release of chemicals and microorganisms from various sources, such as industry, agriculture, animal farming, wastewater treatment plants, and flooding, into water systems have caused water pollution in several parts of our world, endangering aquatic ecosystems and individual health. World Health Organization (WHO) has introduced strict standards for the maximum concentration limits for nutrients and chemicals in drinking water, surface water, and groundwater. It is crucial to have rapid, sensitive, and reliable analytical detection systems to monitor the pollution level regularly and meet the standard limit. Electrochemical biosensors are advantageous analytical devices or tools that convert a bio-signal by biorecognition elements into a significant electrical response. Thanks to the micro/nano fabrication techniques, electrochemical biosensors for sensitive, continuous, and real-time detection have attracted increasing attention among researchers and users worldwide. These devices take advantage of easy operation, portability, and rapid response. They can also be miniaturized, have a long-life span and a quick response time, and possess high sensitivity and selectivity and can be considered as portable biosensing assays. They are of special importance due to their great advantages such as affordability, simplicity, portability, and ability to detect at on-site. This review paper is concerned with the basic concepts of electrochemical biosensors and their applications in various water quality monitoring, such as inorganic chemicals, nutrients, microorganisms' pollution, and organic pollutants, especially for developing real-time/online detection systems. The basic concepts of electrochemical biosensors, different surface modification techniques, bio-recognition elements (BRE), detection methods, and specific real-time water quality monitoring applications are reviewed thoroughly in this article.
Collapse
Affiliation(s)
- Yun Hui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Zhaoling Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Md Eshrat E. Alahi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Correspondence: (M.E.E.A.); (S.F.)
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany;
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (M.E.E.A.); (S.F.)
| | | |
Collapse
|
16
|
Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114655. [PMID: 35131704 DOI: 10.1016/j.jenvman.2022.114655] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as an additive across various commodity and fire-retardant products, for their unique thermo-chemical stability, and to alter their surface properties towards selective liquid repellence. These properties also make PFAS highly persistent and mobile across various environmental compartments, leading to bioaccumulation, and causing acute ecotoxicity at all trophic levels particularly to human populations, thus increasing the need for monitoring at their repositories or usage sites. In this review, current nano-enabled methods towards PFAS sensing and its monitoring in wastewater are critically discussed and benchmarked against conventional detection methods. The discussion correlates the materials' properties to the sensitivity, responsiveness, and reproducibility of the sensing performance for nano-enabled sensors in currently explored electrochemical, spectrophotometric, colorimetric, optical, fluorometric, and biochemical with limits of detection of 1.02 × 10-6 μg/L, 2.8 μg/L, 1 μg/L, 0.13 μg/L, 6.0 × 10-5 μg/L, and 4.141 × 10-7 μg/L respectively. The cost-effectiveness of sensing platforms plays an important role in the on-site analysis success and upscalability of nano-enabled sensors. Environmental monitoring of PFAS is a step closer to PFAS remediation. Electrochemical and biosensing methods have proven to be the most reliable tools for future PFAS sensing endeavors with very promising detection limits in an aqueous matrix, short detection times, and ease of fabrication.
Collapse
Affiliation(s)
- Shafali Garg
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - Pankaj Kumar
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - George W Greene
- Deakin University, Institute for Frontier Materials, Burwood, Melbourne, Victoria, Australia
| | - Vandana Mishra
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India
| | - Dror Avisar
- Tel Aviv University, School for Environmental and Earth Sciences, Water Research Center, Tel Aviv, Israel
| | - Radhey Shyam Sharma
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India.
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Khalifa University, Center for Membrane and Advanced Water Technology, Abu Dhabi, United Arab Emirates; Khalifa University, Research and Innovation Center on CO(2) and Hydrogen, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
17
|
Bhatt S, Vyas G, Paul P. Rosmarinic Acid-Capped Silver Nanoparticles for Colorimetric Detection of CN - and Redox-Modulated Surface Reaction-Aided Detection of Cr(VI) in Water. ACS OMEGA 2022; 7:1318-1328. [PMID: 35036793 PMCID: PMC8757454 DOI: 10.1021/acsomega.1c05946] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Rosmarinic acid-capped silver nanoparticles (Ro-AgNPs) were prepared and applied as a probe for selective colorimetric detection of cyanide (CN-) and chromium(VI) [Cr(VI)] under different conditions in aqueous media. The carbon atom of CN- interacts with the AgNPs, and the carbon atom donates electrons from the HOMO to the vacant orbitals of the coordinatively unsaturated surface atom (Ag0). After donating electrons, CN- attached onto the surface of the nanoparticles becomes very reactive and interacts with dissolved oxygen and generates reactive oxygen species (ROS) such as superoxide (O2 -), singlet oxygen (1O2), and so forth. In this process, Ag0 oxidizes to Ag+ and combines with CN- forming water-insoluble AgCN, and the ROS (O2 -) formed reacts with Ag/Ag+ to form Ag2O. The oxidation of Ag0 to Ag+ resulted in dissolution of AgNPs, which causes disappearance of the surface plasmon resonance band and color change from yellow to colorless. For detection of Cr(VI), ascorbic acid and CN- were added first; the ascorbic acid replaced the rosmarinic acid and then reduced the added Cr(VI) to Cr(III), and, in this process, ascorbic acid was oxidized to dehydroascorbic acid, which moved away from the nanoparticles' surface. CN- then interacted with the surface Ag0 atom, got activated, and interacted with dissolved oxygen forming Ag+ and ROS, which then followed the same process as described for CN- to form AgCN and Ag2O with a color change. The limits of detection were found to be 0.01 and 0.03 μM for CN- and Cr(VI), respectively. The material was also used for sensing CN- and Cr(VI) in real samples, and the results obtained were satisfactory. For field application, agarose-based strips were prepared by immobilizing the nanoparticles onto the agarose film and successfully used for the detection of CN- and Cr(VI) in water.
Collapse
Affiliation(s)
- Shreya Bhatt
- Analytical
and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Vyas
- Analytical
and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parimal Paul
- Analytical
and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Yang ZY, Chen C, Sang X, Hong YX, Yu H, Ni CY, Lang JP. Assembly of a Zn(II) coordination polymer of tetrapyridyl tetraene ligands for selective sensing of CrO42- and Fe3+ in water via luminescence quenching and enhancement. CrystEngComm 2022. [DOI: 10.1039/d1ce01706c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four Zn(II)-based coordination polymers (CPs), [Zn(4-tkpvb)(FB)2] (CP1), [Zn(4-tkpvb)(CB)2] (CP2), [Zn(4-tkpvb)(BB)2] (CP3) and [Zn(4-tkpvb)(NTP)]n (CP4), were prepared from solvothermal reactions of Zn(NO3)2•6H2O with 1,2,4,5-tetrakis((E)-2-(pyridin-4-yl)vinyl)benzene (4-tkpvb) in the presence of 3-florobenzoic acid...
Collapse
|
19
|
Sahragard A, Alahmad W, Varanusupakul P. Electrocolorimetric gel-based sensing approach for simultaneous extraction, preconcentration, and detection of iodide and chromium (VI) ions. Talanta 2021; 235:122715. [PMID: 34517583 DOI: 10.1016/j.talanta.2021.122715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
A total integrated electrocolorimetric sensing approach consisting of gel-based electromembrane extraction and colorimetric detection in a one-step process was developed. This system was designed using colorimetric reagents preadded to the agarose gel for the determination of the following two model analytes: iodide and hexavalent chromium [Cr(VI)]. In this system, when a voltage was applied, the analytes were extracted and transferred from the sample solution (donor phase) to the gel (acceptor phase). The analytes then simultaneously reacted with the colorimetric reagents inside the gel, yielding blue and violet colors for iodide and Cr(VI), respectively. These colors were then analyzed using a portable spectrometer and could also be distinguished with the naked eye. Parameters affecting the extraction efficiency were studied and optimized for both analytes. The gel composition for iodide detection was 4% (w/v) agarose, 5% (v/v) H2O2, and 1% (w/v) starch in 2 mM HCl. The gel composition for Cr(VI) detection was 2% (w/v) agarose and 1% (w/v) DPC in 0.5 mM HNO3. Both analytes were extracted at an applied potential of 50 V, an extraction time of 15 min and a stirring rate of 600 rpm. Under the optimized conditions, the developed systems provided linear responses within 15 min for iodide concentrations ranging from 50 to 250 μg L-1 with a detection limit of 18 μg L-1 and for Cr(VI) concentrations ranging from 30 to 125 μg L-1 with a detection limit of 5 μg L-1. Finally, these systems were successfully applied to the determination of iodide in iodide food supplement samples and Cr(VI) in drinking water samples, showing a negligible matrix effect. This integration could also be extended to other analytes and detection systems to develop sensitive, on-site, and environmentally friendly sensing approaches.
Collapse
Affiliation(s)
- Ali Sahragard
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
20
|
Surface-engineered mesoporous carbon-based material for the electrochemical detection of hexavalent chromium. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01979-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Zhao K, Ge L, Wong TI, Zhou X, Lisak G. Gold-silver nanoparticles modified electrochemical sensor array for simultaneous determination of chromium(III) and chromium(VI) in wastewater samples. CHEMOSPHERE 2021; 281:130880. [PMID: 34029966 DOI: 10.1016/j.chemosphere.2021.130880] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The oxidation state of ions is a crucial aspect that often has been overlooked when determining the toxicity of chromium (Cr) species in environmental samples. In this study, a novel electrochemical sensor array based on gold-silver nanoparticles modified electrodes was developed for simultaneous determination of the two main chromium species (Cr(III) and (VI)). Specifically, the working electrodes of screen-printed carbon electrodes (SPCEs) were modified with silver-gold bimetallic nanoparticles through electrochemical deposition for detection of Cr(VI). The silver-gold bimetallic nanoparticles were further oxidized to form stable silver-gold bimetallic oxide nanoparticles for the detection of Cr(III). The results showed that the addition of silver with a theoretical value of 1% of gold could contribute to the formation and stabilization of oxides on the surface of gold nanoparticles. After characterization, the two kinds of electrodes were integrated as an electrochemical sensor array for selective and sensitive detection of Cr(VI) and Cr(III). The linear range and limit of detection (LOD, identified by three times of signal-to-noise ratio) were found to be 0.05-5 ppm and 0.1 ppb for Cr(VI), and 0.05-1 ppm and 0.1 ppb for Cr(III), respectively. Finally, the electrochemical sensor array was proven for successful detection of Cr(VI) and Cr(III) in tap water, artificial saliva and artificial sweat samples, and monitoring of Cr(VI) and Cr(III) in chromium-containing wastewater treatment process. Combined with a handheld dual-channel electrochemical device, the simultaneous determination of Cr(VI), Cr(III) and total chromium contents can be easily achieved for various samples.
Collapse
Affiliation(s)
- Ke Zhao
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Liya Ge
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore.
| | - Ten It Wong
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
| | - Xiaodong Zhou
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
22
|
Guo Z, Chen P, Yosri N, Chen Q, Elseedi HR, Zou X, Yang H. Detection of Heavy Metals in Food and Agricultural Products by Surface-enhanced Raman Spectroscopy. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Hesham R. Elseedi
- Pharmacognosy Division, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Song H, Liu W, Meng F, Yang Q, Guo N. Efficient Sequestration of Hexavalent Chromium by Graphene-Based Nanoscale Zero-Valent Iron Composite Coupled with Ultrasonic Pretreatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115921. [PMID: 34072969 PMCID: PMC8197979 DOI: 10.3390/ijerph18115921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Nanoscale zero-valent iron (nZVI) has attracted considerable attention for its potential to sequestrate and immobilize heavy metals such as Cr(VI) from an aqueous solution. However, nZVI can be easily oxidized and agglomerate, which strongly affects the removal efficiency. In this study, graphene-based nZVI (nZVI/rGO) composites coupled with ultrasonic (US) pretreatment were studied to solve the above problems and conduct the experiments of Cr(VI) removal from an aqueous solution. SEM-EDS, BET, XRD, and XPS were performed to analyze the morphology and structures of the composites. The findings showed that the removal efficiency of Cr(VI) in 30 min was increased from 45.84% on nZVI to 78.01% on nZVI/rGO and the removal process performed coupled with ultrasonic pretreatment could greatly shorten the reaction time to 15 min. Influencing factors such as the initial pH, temperature, initial Cr(VI) concentration, and co-existing anions were studied. The results showed that the initial pH was a principal factor. The presence of HPO42−, NO3−, and Cl− had a strong inhibitory effect on this process, while the presence of SO42− promoted the reactivity of nZVI/rGO. Combined with the above results, the process of Cr(VI) removal in US-nZVI/rGO system consisted of two phases: (1) The initial stage is dominated by solution reaction. Cr(VI) was reduced in the solution by Fe2+ caused by ultrasonic cavitation. (2) In the following processes, adsorption, reduction, and coprecipitation coexisted. The addition of rGO enhanced electron transportability weakened the influence of passivation layers and improved the dispersion of nZVI particles. Ultrasonic cavitation caused pores and corrosion at the passivation layers and fresh Fe0 core was exposed, which improved the reactivity of the composites.
Collapse
Affiliation(s)
- Haiyan Song
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; (H.S.); (W.L.); (N.G.)
| | - Wei Liu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; (H.S.); (W.L.); (N.G.)
| | - Fansheng Meng
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Qi Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; (H.S.); (W.L.); (N.G.)
- Correspondence:
| | - Niandong Guo
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; (H.S.); (W.L.); (N.G.)
| |
Collapse
|
24
|
Bucur B, Purcarea C, Andreescu S, Vasilescu A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:3038. [PMID: 33926034 PMCID: PMC8123588 DOI: 10.3390/s21093038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Enzymatic biosensors enjoy commercial success and are the subject of continued research efforts to widen their range of practical application. For these biosensors to reach their full potential, their selectivity challenges need to be addressed by comprehensive, solid approaches. This review discusses the status of enzymatic biosensors in achieving accurate and selective measurements via direct biocatalytic and inhibition-based detection, with a focus on electrochemical enzyme biosensors. Examples of practical solutions for tackling the activity and selectivity problems and preventing interferences from co-existing electroactive compounds in the samples are provided such as the use of permselective membranes, sentinel sensors and coupled multi-enzyme systems. The effect of activators, inhibitors or enzymatic substrates are also addressed by coupled enzymatic reactions and multi-sensor arrays combined with data interpretation via chemometrics. In addition to these more traditional approaches, the review discusses some ingenious recent approaches, detailing also on possible solutions involving the use of nanomaterials to ensuring the biosensors' selectivity. Overall, the examples presented illustrate the various tools available when developing enzyme biosensors for new applications and stress the necessity to more comprehensively investigate their selectivity and validate the biosensors versus standard analytical methods.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute for Research and Development in Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Cristina Purcarea
- Institute of Biology, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13676, USA;
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
25
|
Arivazhagan M, Manova Santhosh Y, Maduraiveeran G. Non-Enzymatic Glucose Detection Based on NiS Nanoclusters@NiS Nanosphere in Human Serum and Urine. MICROMACHINES 2021; 12:403. [PMID: 33916480 PMCID: PMC8067435 DOI: 10.3390/mi12040403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022]
Abstract
Herein, we report a non-enzymatic electrochemical glucose sensing platform based on NiS nanoclusters dispersed on NiS nanosphere (NC-NiS@NS-NiS) in human serum and urine samples. The NC-NiS@NS-NiS are directly grown on nickel foam (NF) (NC-NiS@NS-NiS|NF) substrate by a facile, and one-step electrodeposition strategy under acidic solution. The as-developed nanostructured NC-NiS@NS-NiS|NF electrode materials successfully employ as the enzyme-mimic electrocatalysts toward the improved electrocatalytic glucose oxidation and sensitive glucose sensing. The NC-NiS@NS-NiS|NF electrode presents an outstanding electrocatalytic activity and sensing capability towards the glucose owing to the attribution of great double layer capacitance, excessive electrochemical active surface area (ECASA), and high electrochemical active sites. The present sensor delivers a limit of detection (LOD) of ~0.0083 µM with a high sensitivity of 54.6 µA mM-1 cm-2 and a wide linear concentration range (20.0 µM-5.0 mM). The NC-NiS@NS-NiS|NF-based sensor demonstrates the good selectivity against the potential interferences and shows high practicability by glucose sensing in human urine and serum samples.
Collapse
Affiliation(s)
| | | | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; (M.A.); (Y.M.S.)
| |
Collapse
|
26
|
Yoon J, Cho HY, Shin M, Choi HK, Lee T, Choi JW. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B 2021; 8:7303-7318. [PMID: 32647855 DOI: 10.1039/d0tb01325k] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the interest in wearable devices has increased recently, increasing biosensor flexibility has begun to attract considerable attention. Among the various types of biosensors, electrochemical biosensors are uniquely suited for the development of such flexible biosensors due to their many advantages, including their fast response, inherent miniaturization, convenient operation, and portability. Therefore, many studies on flexible electrochemical biosensors have been conducted in recent years to achieve non-invasive and real-time monitoring of body fluids such as tears, sweat, and saliva. To achieve this, various substrates, novel nanomaterials, and detection techniques have been utilized to develop conductive flexible platforms that can be applied to create flexible electrochemical biosensors. In this review, we discussed recently reported flexible electrochemical biosensors and divided them into specific categories including materials for flexible substrate, fabrication techniques for flexible biosensor development, and recently developed flexible electrochemical biosensors to externally monitor target molecules, thereby providing a means to noninvasively examine cells and body fluid samples. In conclusion, this review will discuss the materials, methods, recent studies, and perspectives on flexible electrochemical biosensors for healthcare monitoring and wearable biosensing systems.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
27
|
Dabhade A, Jayaraman S, Paramasivan B. Development of glucose oxidase-chitosan immobilized paper biosensor using screen-printed electrode for amperometric detection of Cr(VI) in water. 3 Biotech 2021; 11:183. [PMID: 33927974 PMCID: PMC7982374 DOI: 10.1007/s13205-021-02736-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Hexavalent chromium is a toxic heavy metal getting discharged into the environment and water bodies through various industrial processes. Conventional analysis methods call for expensive equipment and complicated sample pretreatment that made unsuitable for onsite detection. Paper is used as an enzyme immobilization platform because of its property to wick the liquid by capillary action; lightweight, cheap and can be easily patterned or cut according to the requirements for developing biosensor. In this study, enzyme immobilization of glucose oxidase (GOx) on filter paper were examined using three polysaccharides such as chitosan, sodium alginate and dextran for entrapment efficiency, activity and stability of the immobilized enzyme. Among the three, chitosan proved efficient for enzyme entrapment with about 90% efficiency at 0.3% (w/v) chitosan. The stability was checked after 1 week at 4 °C and room temperature, where the chitosan entrapped enzyme retained nearly 97% stability at 4 °C. Enzyme inhibition study of GOx and Cr(VI) was carried out using chronoamperometry shown uncompetitive type of inhibition. A paper-based electrochemical biosensor strip was developed by immobilizing GOx enzyme on filter paper using chitosan as an entrapping agent and associating it with a screen-printed carbon electrode for amperometric measurements. The linear range of detection was obtained as 0.05-1 ppm with the limit of detection as 0.05 ppm for Cr(VI), which is the standard permissible limit in potable water. The relative standard deviation (5.6%) indicates good reproducibility of the fabricated biosensor.
Collapse
Affiliation(s)
- Ajinkya Dabhade
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Sivaraman Jayaraman
- Medical Electronics and Instrumentation Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Balasubramanian Paramasivan
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| |
Collapse
|
28
|
Shaikh SH, Kumar SA, Songire PP, Sounderajan S. Titanium dioxide, layered hydrazinium titanate and eggshell as potential sorbents for remediation of chromium from aqueous stream. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1742159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Samina H. Shaikh
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai, India
| | - Sanjukta A. Kumar
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai, India
| | - Pallavi P. Songire
- Process Development Division, Bhabha Atomic Research Centre, Mumbai, India
| | | |
Collapse
|
29
|
Gomes WE, Beatto TG, Marcatto LC, Matsubara EY, Mendes RK, Rosolen JM. Electrochemical Determination of Hydroquinone Using a Tyrosinase-Based Cup-Stacked Carbon Nanotube (CSCNT)/Carbon Fiber Felt Composite Electrode. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1884256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wyllerson Evaristo Gomes
- CEATEC, R. Prof. Dr. Euryclides de Jesus Zerbini, Pontifícia Universidade Católica de Campinas (PUC-CAMPINAS), Campinas, Brazil
| | - Thainá Godoy Beatto
- CEATEC, R. Prof. Dr. Euryclides de Jesus Zerbini, Pontifícia Universidade Católica de Campinas (PUC-CAMPINAS), Campinas, Brazil
| | - Lara Cristina Marcatto
- CEATEC, R. Prof. Dr. Euryclides de Jesus Zerbini, Pontifícia Universidade Católica de Campinas (PUC-CAMPINAS), Campinas, Brazil
| | - Elaine Yoshiko Matsubara
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto , Brazil
| | - Renata Kelly Mendes
- CEATEC, R. Prof. Dr. Euryclides de Jesus Zerbini, Pontifícia Universidade Católica de Campinas (PUC-CAMPINAS), Campinas, Brazil
| | - José Maurício Rosolen
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto , Brazil
| |
Collapse
|
30
|
Shellaiah M, Thirumalaivasan N, Sun KW, Wu SP. A pH cooperative strategy for enhanced colorimetric sensing of Cr(III) ions using biocompatible L-glutamic acid stabilized gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Ji P, Han G, Huang Y, Jiang H, Zhou Q, Liu X, Kong D. Ultrasensitive ratiometric detection of Pb 2+ using DNA tetrahedron-mediated hyperbranched hybridization chain reaction. Anal Chim Acta 2020; 1147:170-177. [PMID: 33485576 DOI: 10.1016/j.aca.2020.12.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
A fluorescent sensing strategy was developed for rapid, highly sensitive and specific detection of lead (II) ion (Pb2+) on the basis of Pb2+ DNAzyme-controlled tetrahedral DNA nanostructure (TDN)-mediated hyper-branched hybridization chain reaction (hHCR). In this strategy, DNA hairpins used for HCR amplification are modified on the four vertexes of TDN, which are then used to perform rapid TDN-hHCR in the presence of an initiator strand, producing large-sized cross-linked reaction products and thus giving greatly improved fluorescence resonance energy transfer (FRET) signal output. Pb2+ DNAzyme catalyzes the cleavage of the initiator strand, inhibiting the initiation of TDN-hHCR and giving decreased FRET signal. Synergetic signal amplification of Pb2+ DNAzyme-catalyzed cleavage reaction and subsequent TDN-hHCR confers the sensing platform with ultrahigh sensitivity. As low as 0.25 pM Pb2+ can be detected by using either signal "turn-on" or "turn-off" mode. The whole detection process can be finished within 20 min. Strong anti-interference capacity of FRET-based ratiometric detection and high specificity of Pb2+ DNAzyme endow the sensing platform with great practical application potential, which was demonstrated by the accurate detection of Pb2+ in real river water, fruit, vegetable and grain samples.
Collapse
Affiliation(s)
- Pingping Ji
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory for Environmental Factors Control of Agro-product quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Guimei Han
- College of Chemistry and Chemical Engineering, Jinan, 250000, PR China
| | - Yan Huang
- College of Life sciences, Nankai University, Tianjin, China
| | - Hongxin Jiang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory for Environmental Factors Control of Agro-product quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Qiwen Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory for Environmental Factors Control of Agro-product quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Xiaowei Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory for Environmental Factors Control of Agro-product quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Deming Kong
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
32
|
Hilali N, Mohammadi H, Amine A, Zine N, Errachid A. Recent Advances in Electrochemical Monitoring of Chromium. SENSORS 2020; 20:s20185153. [PMID: 32917045 PMCID: PMC7570498 DOI: 10.3390/s20185153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
The extensive use of chromium by several industries conducts to the discharge of an immense quantity of its various forms in the environment which affects drastically the ecological and biological lives especially in the case of hexavalent chromium. Electrochemical sensors and biosensors are useful devices for chromium determination. In the last five years, several sensors based on the modification of electrode surface by different nanomaterials (fluorine tin oxide, titanium dioxide, carbon nanomaterials, metallic nanoparticles and nanocomposite) and biosensors with different biorecognition elements (microbial fuel cell, bacteria, enzyme, DNA) were employed for chromium monitoring. Herein, recent advances related to the use of electrochemical approaches for measurement of trivalent and hexavalent chromium from 2015 to 2020 are reported. A discussion of both chromium species detections and speciation studies is provided.
Collapse
Affiliation(s)
- Nazha Hilali
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
- Correspondence: or ; Tel.: +212-661454198
| | - Nadia Zine
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| | - Abdelhamid Errachid
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| |
Collapse
|
33
|
Cao Q, Liang B, Yu C, Fang L, Tu T, Wei J, Ye X. High accuracy determination of multi metabolite by an origami-based coulometric electrochemical biosensor. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Natural Melanin Nanoparticle‐decorated Screen‐printed Carbon Electrode: Performance Test for Amperometric Determination of Hexavalent Chromium as Model Trace. ELECTROANAL 2020. [DOI: 10.1002/elan.202000038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Polyaniline as an On−Off−On bright green fluorescent probe: Solvent directed synthesis, characterization and recognition of chromium through the inner filter effect. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Nayak S, S R, P B, Kale P. A review of chromite mining in Sukinda Valley of India: impact and potential remediation measures. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:804-818. [PMID: 32028787 DOI: 10.1080/15226514.2020.1717432] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sukinda Valley, one of the highly polluted areas of the world is generating tons of mining waste and causing serious health and environmental issues in its surroundings. Several reports are available reporting the severity of hexavalent chromium, yet little efforts have been made to address the pollution and its remediation due to a lack of proper remedial measures. The review highlights the pros and cons of various physical, chemical and biological techniques used worldwide for the treatment of chromium waste and also suggests better and reliable bioremediation measures. Microbes such as Acidophilium and Acidithiobacillus caldus (Bioleaching), Pseudomonas, Micrococcus and Bacillus (Bioreduction), Aereobacterium and Saccharomyces (Biosorption), are widely used for bioremediation of hexavalent chromium owing to their unique metabolic activities, ionic movement through an extracellular membrane, and other cellular adsorptions and reduction properties. The use of native and hybrid combinations of microbes supported by organic supplements is projected as a fast and efficient technique that not only reduces chromium quantity but also maintains the integrity of the microbial sources. Innovation and emphasis on nano-based products like nanocomposite, nano adsorbent, nanoscale zerovalent iron (nZVI) particles and multifunctional plant-growth-promoting bacteria (PGPB) will serve as the next generation environmental remediation technologies in the near future.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | | | - Balasubramanian P
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Paresh Kale
- Department of Electrical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
37
|
Yang T, Li N, Wang X, Zhai J, Hu B, Chen M, Wang J. Dual functional AgNPs-M13 phage composite serves as antibacterial film and sensing probe for monitoring the corrosion of chromium-containing dental alloys. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Rigo AA, Cezaro AMD, Muenchen DK, Martinazzo J, Manzoli A, Steffens J, Steffens C. Heavy metals detection in river water with cantilever nanobiosensor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:239-249. [PMID: 31680618 DOI: 10.1080/03601234.2019.1685318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metals can be highly toxic depending on the dose and the chemical form. In this context, sensing devices such as nanobiosensors have been presented as a promising tool to monitor contaminants at micro and nanoscale. In this work, cantilever nanobiosensors with phosphatase alkaline were developed and applied to detect heavy metals (Pb, Ni, Cd, Zn, Co, and Al) in river water. The nanobiosensor surface was functionalized by the self-assembled monolayers (SAM) technique using 16-mercaptohexadecanoic acid, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N- hydroxysuccinimide (NHS), and phosphatase alkaline enzyme. The sensing layer deposited on the cantilever surface presented a uniform morphology, at nanoscale, with 80 nm of thickness. The nanobiosensor showed a detection limit in the ppb range and high sensitivity, with a stability of fifteen days. The developed cantilever nanobiosensor is a simple tool, suitable for the direct detection of contaminants in river water.
Collapse
Affiliation(s)
| | | | | | | | | | - Juliana Steffens
- Department of Food Engineering, URI - Erechim, Erechim, RS, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI - Erechim, Erechim, RS, Brazil
| |
Collapse
|
39
|
Thangaraj B, Solomon PR, Ranganathan S. Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Review. Curr Pharm Des 2019; 25:1455-1476. [DOI: 10.2174/1381612825666190618154518] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
Quantum dots (QDs) have received much attention due to their extraordinary optical application in
medical diagnostics, optoelectronics and in energy storage devices. The most conventional QDs are based on
semiconductors that comprise heavy metals whose applications are limited due to toxicity and potential environmental
hazard. Of late, researchers are focusing on carbon-based quantum dots, which have recently emerged as a
new family of zero-dimensional nanostructured materials. They are spherical in shape with a size below 10 nm
and exhibit excitation-wavelength-dependent photoluminescence (PL). Carbon quantum dots (CQDs) have
unique optical, photoluminescence and electrochemical properties. They are environment-friendly with low toxicity
as compared to toxic heavy metal quantum dots. Generally, CQDs are derived from chemical precursor materials,
but recently researchers have focused their attention on the production of CQDs from waste biomass materials
due to the economic and environmental exigency. In this review, recent advances in the synthesis of CQDs
from waste biomass materials, functionalization and modulation of CQDs and their potential application of biosensing
are focused. This review also brings out some challenges and future perspectives for developing smart
biosensing gadgets based on CQDs.
Collapse
Affiliation(s)
- Baskar Thangaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang -212013, Zhenjiang, China
| | - Pravin R. Solomon
- School of Chemical & Biotechnology, SASTRA-Deemed University, Thanjavur - 613401, Tamil Nadu, India
| | | |
Collapse
|
40
|
Shahim S, Sukesan R, Sarangadharan I, Wang YL. Multiplexed Ultra-Sensitive Detection of Cr(III) and Cr(VI) Ion by FET Sensor Array in a Liquid Medium. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1969. [PMID: 31035499 PMCID: PMC6539384 DOI: 10.3390/s19091969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
Chromium, one of the top five toxic heavy metals ranked according to significance in public health by WHO, exists as Cr(III) which is naturally occurring or Cr(VI) which is anthropogenic in origin. The EPA specifies the maximum contaminant level in drinking water to be 10-6 M or 0.1 mg/L or 100 ppb for the total dissolved Cr. To ensure the water consumed by the population has these pollutants below the safe threshold, this report demonstrates a field effect transistor (FET) based sensor design incorporating a highly target specific ion-selective membrane combined with extended gate technology which manifests sensitivity exceeding the Nernst limit aided by the high field effect in the short gap region of extended gate technology. Characterization and repeated testing of the portable device revealed a commendable calibration sensitivity of 99 mV/log [Cr3+] and 71 mV/log [Cr6+] for Cr(III) and Cr(VI) respectively, well surpassing the Nernst limits of sensitivity and offering a detection limit lower than ion-selective electrodes (10-6 M), and comparable to the expensive benchtop laboratory instrument, ICP-MS. This report presents a robust, easy to fabricate, economic and efficient handheld biosensor to detect the chromium in a liquid sample whether it exists as Cr(III) or Cr(VI).
Collapse
Affiliation(s)
- Suman Shahim
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Revathi Sukesan
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Indu Sarangadharan
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yu-Lin Wang
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
41
|
Li J, Zheng X, Ma X, Xu X, Du Y, Lv Q, Li X, Wu Y, Sun H, Yu L, Zhang Z. Melatonin protects against chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway. J Inorg Biochem 2019; 197:110698. [PMID: 31054488 DOI: 10.1016/j.jinorgbio.2019.110698] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Chromium (Cr) threatens health by causing oxidative stress. However, effective therapy for cardiac damage mediated by potassium dichromate (K2Cr2O7) still has not been defined. Melatonin (MT) possesses a number of biological activities. Our study was performed to explore the effect and mechanism of MT on Cr(VI)-induced cardiac damage by conducting both in vitro and in vivo studies. Twenty eight male Wistar rats were randomly assigned to four groups: control, MT (20 mg/kg subcutaneously), K2Cr2O7 (4 mg/kg intraperitoneally), and K2Cr2O7 + MT. We measured biomarkers of oxidative stress and cardiac function, and performed histopathological analysis, assay of terminal deoxynucleotidyl transferase-mediated deoxyuracil nucleoside triphosphate nick end labeling and protein levels, and the viability assay of cultured cardiomyocytes in vitro. Our results showed that MT ameliorated K2Cr2O7-induced oxidative stress, apoptosis, and the release of inflammatory mediators in the rat heart. MT also promoted adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, upregulated expression of proteins that nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, and nicotinamide adenine dinucleotide phosphatase: quinone-acceptor 1, and inhibited nuclear factor kappa B in the heart of rats exposed to K2Cr2O7. Furthermore, MT increased B-cell lymphoma gene 2 (Bcl-2) and B-cell lymphoma extra large protein levels and decreased cleaved caspase 3, P53, and Bcl-2-associated X protein levels. Furthermore, the experiment in vitro showed that MT increased the cells viability and protein levels of Nrf2 and phosphorylated-AMPK in H9C2 cells treated with K2Cr2O7. Collectively, our results demonstrate that MT protects against Cr-induced cardiac damage via activating the AMPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xiangyu Ma
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xinyue Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yu Du
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Qingjie Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xuerui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yuan Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Hongxing Sun
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Lanjie Yu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
42
|
Inhibition assays of free and immobilized urease for detecting hexavalent chromium in water samples. 3 Biotech 2019; 9:124. [PMID: 30863703 DOI: 10.1007/s13205-019-1661-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
The present work describes the inhibition studies of free as well as immobilized urease by different heavy metals. Porous silicon (PS) films prepared by electrochemical etching were used for urease immobilization by physical adsorption. The enzyme was subjected to varying concentrations of Cr6+, Cr3+, Cu2+, Fe2+, Cd2+ and Ni2+ and analyzed for the variation in the activity. To study the effect of other heavy metals on the interaction of urease and Cr6+, free as well as immobilized urease was subjected to the combination of each metal ion with Cr6+. Results proved the sensitivity of free as well as immobilized urease towards heavy metals by observed reduction in activity. Immobilized urease showed less degree of inhibition compared to free urease when tested for inhibition by individual metal ions and in combination with Cr6+. IC50 values were found higher for inhibition by the combination of metal ions with Cr6+. Interaction of heavy metal ions with functional groups in active site of urease and limitations of mass transfer are the two factors responsible for the variation in activity of urease. Relation between the variation of urease activity and amount of heavy metals can be applied in biosensor development for determining the concentration of Cr6+ present in the water samples.
Collapse
|
43
|
Cheng C, Hu Y, Shao S, Yu J, Zhou W, Cheng J, Chen Y, Chen S, Chen J, Zhang L. Simultaneous Cr(VI) reduction and electricity generation in Plant-Sediment Microbial Fuel Cells (P-SMFCs): Synthesis of non-bonding Co 3O 4 nanowires onto cathodes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:647-657. [PMID: 30711820 DOI: 10.1016/j.envpol.2019.01.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Development of low-cost cathode materials for Plant-Sediment Microbial Fuel Cells (P-SMFCs) has gained increasing interest, due to improved performance levels in terms of power and pollutant removal. A novel low cost three-dimensional cathode prepared by simple three-step strategy with growth of Co3O4 in-situ biofilm was successfully prepared. Different cathodes were applied to the six parallel P-SMFCs systems (reactor: R1-R6), such as graphite felt (GF), Pt/C, GF@Co3O4 (non-bonding Co3O4 nanowires on GF), GF@SG-Co3O4 (using argon as shielding gas (SG)). Its performances (R1, R2: control groups) were evaluated by electricity generation and Cr(VI) reduction at initial cadmium concentrations (4.97, 10.29 and 21.16 mg L-1). A significant Cr(VI) removal efficiency of 99.76%, maximum power density of 75.12 ± 2.90 mW m-2 and Cr(VI) adsorption capacity of 1.67 mg g-1 were obtained at initial Cr(VI) concentration of 21.16 mg L-1 with non-bonding GF@Co3O4 and bio-GF@SG-Co3O4 as cathodes. This indicated that these two materials were better than others (GF, Pt/C and GF@Co3O4) as cathodes. Characterization analysis including scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Polarization curve, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) showed that high current generation Cr(VI) removal mainly attributed to transportation of plants, adsorption of bio-cathode, formation of a relatively high concentration region and abundant oxygen vacancies of GF@SG-Co3O4. The results show that P-SMFCs with GF@SG-Co3O4 cathode may be a potentially novel approach for remediating Cr(VI) contaminated waster or soil.
Collapse
Affiliation(s)
- Ce Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Sicheng Shao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Jiayuan Yu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Weijia Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Shengnan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Junfeng Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Lihua Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
44
|
Three-Stage Single-Chambered Microbial Fuel Cell Biosensor Inoculated with Exiguobacterium aestuarii YC211 for Continuous Chromium (VI) Measurement. SENSORS 2019; 19:s19061418. [PMID: 30909431 PMCID: PMC6471213 DOI: 10.3390/s19061418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Chromium (VI) [Cr(VI)] compounds display high toxic, mutagenic, and carcinogenic potential. Biological analysis techniques (e.g., such as enzyme-based or cell-based sensors) have been developed to measure Cr(VI); however, these biological elements are sensitive to the environment, limited to measuring trace Cr(VI), and require deployment offsite. In this study, a three-stage single-chambered microbial fuel cell (SCMFC) biosensor inoculated with Exiguobacterium aestuarii YC211 was developed for in situ, real-time, and continuous Cr(VI) measurement. A negative linear relationship was observed between the Cr(VI) concentration (5–30 mg/L) and the voltage output using an SCMFC at 2-min liquid retention time. The theoretical Cr(VI) measurement range of the system could be extended to 5–90 mg/L by connecting three separate SCMFCs in series. The three-stage SCMFC biosensor could accurately measure Cr(VI) concentrations in actual tannery wastewater with low deviations (<7%). After treating the wastewater with the SCMFC, the original inoculated E. aestuarii remained dominant (>92.5%), according to the next-generation sequencing analysis. The stable bacterial community present in the SCMFC favored the reliable performance of the SCMFC biosensor. Thus, the three-stage SCMFC biosensor has potential as an early warning device with wide dynamic range for in situ, real-time, and continuous Cr(VI) measurement of tannery wastewater.
Collapse
|
45
|
Cai W, Lesnik KL, Wade MJ, Heidrich ES, Wang Y, Liu H. Incorporating microbial community data with machine learning techniques to predict feed substrates in microbial fuel cells. Biosens Bioelectron 2019; 133:64-71. [PMID: 30909014 DOI: 10.1016/j.bios.2019.03.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
The complicated interactions that occur in mixed-species biotechnologies, including biosensors, hinder chemical detection specificity. This lack of specificity limits applications in which biosensors may be deployed, such as those where an unknown feed substrate must be determined. The application of genomic data and well-developed data mining technologies can overcome these limitations and advance engineering development. In the present study, 69 samples with three different substrate types (acetate, carbohydrates and wastewater) collected from various laboratory environments were evaluated to determine the ability to identify feed substrates from the resultant microbial communities. Six machine learning algorithms with four different input variables were trained and evaluated on their ability to predict feed substrate from genomic datasets. The highest accuracies of 93 ± 6% and 92 ± 5% were obtained using NNET trained on datasets classified at the phylum and family taxonomic level, respectively. These accuracies corresponded to kappa values of 0.87 ± 0.10, 0.86 ± 0.09, respectively. Four out of six of the algorithms used maintained accuracies above 80% and kappa values higher than 0.66. Different sequencing method (Roche 454 or Illumina sequencing) did not affect the accuracies of all algorithms, except SVM at the phylum level. All algorithms trained on NMDS-compressed datasets obtained accuracies over 80%, while models trained on PCoA-compressed datasets presented a 10-30% reduction in accuracy. These results suggest that incorporating microbial community data with machine learning algorithms can be used for the prediction of feed substrate and for the potential improvement of MFC-based biosensor signal specificity, providing a new use of machine learning techniques that has substantial practical applications in biotechnological fields.
Collapse
Affiliation(s)
- Wenfang Cai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Department of Biological and Ecological Engineering, Oregon State University, Corvallis OR 97331, USA
| | - Keaton Larson Lesnik
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis OR 97331, USA
| | - Matthew J Wade
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Department of Mathematics & Statistics, McMaster University, Hamilton, Canada L8S 4K1
| | | | - Yunhai Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hong Liu
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis OR 97331, USA.
| |
Collapse
|
46
|
Fopase R, Nayak S, Mohanta M, Kale P, Balasubramanian P. Inhibition Assays of Urease for Detecting Trivalent Chromium in Drinking Water. SPRINGER TRANSACTIONS IN CIVIL AND ENVIRONMENTAL ENGINEERING 2019. [DOI: 10.1007/978-981-13-1202-1_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Yin J, Zhang W, Zhang Z, Jin H, Gao W, Jian J, Jin Q. Batch microfabrication and testing of a novel silicon-base miniaturized reference electrode with an ion-exchanging nanochannel array for nitrite determination. RSC Adv 2019; 9:19699-19706. [PMID: 35519384 PMCID: PMC9065324 DOI: 10.1039/c9ra01987a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/03/2022] Open
Abstract
The reference electrode (RE) provides a stable potential for electrochemical detection; therefore, the RE plays an important role in environmental monitoring. In this paper, a novel batch of microfabricated silicon-base miniaturized Ag/AgCl RE was reported. A specially designed mini-tank for saturated KCl solution storage and a nanochannel array for ion-exchange were fabricated on a 4 inch (100) silicon wafer using a two-step KOH anisotropic etching process. An Ag/AgCl electrode was fabricated on a 4 inch Pyrex 7740 glass substrate. Finally, the finished silicon and glass substrates were anode bonded to form the entire system. By comparing with a conventional solid-state Ag/AgCl RE in electrochemical microsensors, a pre-packaged saturated KCl solution in the mini-tank provided a stable working environment for the Ag/AgCl electrode to ensure a constant reference potential. Compared with a routine glass-structured RE and by replacing the ion-exchange membrane with a nanochannel array, the miniaturized RE achieved a longer lifetime. The size of the finished miniaturized RE electrode was 11 mm × 14 mm. The reference potential variation was only 0.1 mV under continuous testing for 3000 s. The standard deviation in the reference potential was only 1.314 mV in different Na2SO4 buffer concentrations ranging from 3 mM to 30 mM. To verify the practicality of the novel silicon-base miniaturized RE, the fabricated RE was applied to measure the amount of nitrite in a water sample and achieved a better linearity of R2 = 0.998. This miniaturized RE showed better reference potential stability and consistency because of the batch fabrication technique. This novel strategy for the design and manufacture of the miniaturized RE shows a bright future in the wide use of electrochemical sensors in online monitoring of water pollutants. In this paper, a miniaturized Ag/AgCl reference electrode, which can be mass-produced by micro–nano manufacturing technology, was developed and demonstrated to have good stability and a long lifetime.![]()
Collapse
Affiliation(s)
- Jiawen Yin
- Faculty of Electrical Engineering and Computer Science
- Ningbo University
- Ningbo
- P. R. China
| | - Wei Zhang
- State Key Laboratory of Transducer Technology
- Center for Excellence in Superconducting Electronics
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
| | - Zan Zhang
- Faculty of Electrical Engineering and Computer Science
- Ningbo University
- Ningbo
- P. R. China
| | - Han Jin
- Faculty of Electrical Engineering and Computer Science
- Ningbo University
- Ningbo
- P. R. China
| | - Wanlei Gao
- Faculty of Electrical Engineering and Computer Science
- Ningbo University
- Ningbo
- P. R. China
| | - Jiawen Jian
- Faculty of Electrical Engineering and Computer Science
- Ningbo University
- Ningbo
- P. R. China
| | - Qinghui Jin
- Faculty of Electrical Engineering and Computer Science
- Ningbo University
- Ningbo
- P. R. China
- State Key Laboratory of Transducer Technology
| |
Collapse
|
48
|
Arshavsky-Graham S, Massad-Ivanir N, Segal E, Weiss S. Porous Silicon-Based Photonic Biosensors: Current Status and Emerging Applications. Anal Chem 2018; 91:441-467. [DOI: 10.1021/acs.analchem.8b05028] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- Institute of Technical Chemistry, Leibniz Universität Hannover, Callinstrasse 5, 30167 Hanover, Germany
| | - Naama Massad-Ivanir
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa 3200003, Israel
- The Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa 3200003, Israel
| | - Sharon Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
49
|
Wang W, Amiri M, Kozma K, Lu J, Zakharov LN, Nyman M. Reaction Pathway to the Only Open‐Shell Transition‐Metal Keggin Ion without Organic Ligation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wei Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West 350002 Fuzhou Fujian People's Republic of China
| | - Mehran Amiri
- Department of Chemistry Fujian Institute of Research on the Structure of Matter Oregon State University 97330 Corvallis OR USA
| | - Karoly Kozma
- Department of Chemistry Fujian Institute of Research on the Structure of Matter Oregon State University 97330 Corvallis OR USA
| | - Jian Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West 350002 Fuzhou Fujian People's Republic of China
| | - Lev N. Zakharov
- Department of Chemistry Fujian Institute of Research on the Structure of Matter Oregon State University 97330 Corvallis OR USA
| | - May Nyman
- Department of Chemistry Fujian Institute of Research on the Structure of Matter Oregon State University 97330 Corvallis OR USA
| |
Collapse
|
50
|
A paper-based optical probe for chromium by using gold nanoparticles modified with 2,2′-thiodiacetic acid and smartphone camera readout. Mikrochim Acta 2018; 185:374. [DOI: 10.1007/s00604-018-2875-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/17/2018] [Indexed: 01/20/2023]
|