1
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
2
|
Ávila Oliveira BD, Gomes RS, de Carvalho AM, Lima EMF, Pinto UM, da Cunha LR. Revolutionizing food safety with electrochemical biosensors for rapid and portable pathogen detection. Braz J Microbiol 2024; 55:2511-2525. [PMID: 38922532 PMCID: PMC11405362 DOI: 10.1007/s42770-024-01427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Foodborne diseases remain a worldwide concern, despite the advances made in sanitation, pathogen surveillance and food safety management systems. The methods routinely applied for detecting pathogens in foods are time consuming, labor intensive and usually require trained and qualified individuals. The objective of this review was to highlight the use of biosensors, with a focus on the electrochemical devices, as promising alternatives for detecting foodborne pathogens. These biosensors present high speed for obtaining results, with the possibility of evaluating foods in real time, at low cost, ease of use, in addition to being compact and portable. These aspects are considered advantageous and suitable for use in food safety management systems. This work also shows some limitations for the application of biosensors, and we present perspectives with the development and use of nanomaterials.
Collapse
Affiliation(s)
- Brígida D' Ávila Oliveira
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Raíssa Soares Gomes
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Alice Mendes de Carvalho
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Emília Maria França Lima
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Luciana Rodrigues da Cunha
- Department of Foods, Health and Nutrition Graduate Program, Federal University of Ouro Preto, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Bayrak S, Gergeroglu H. Graphene-based biosensors in milk analysis: A review of recent developments. Food Chem 2024; 440:138257. [PMID: 38154279 DOI: 10.1016/j.foodchem.2023.138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Cow's milk, an excellent source of fat, protein, amino acids, vitamins and minerals, is currently one of the most consumed products worldwide. Contaminations originating from diverse sources, such as biological, chemical, and physical, cause dairy product quality problems and thus dairy-related disorders, raising public health issues. For this reason, legal authorities have deemed it necessary to classify certain contaminations in commercial milk and keep them within particular limitations; therefore, it is urgent to develop next-generation detection systems that can accurately identify just the contaminants of concern to human health. This review presents a detailed investigation of biosensors based on graphene and its derivatives, which offer superior sensitivity and selectivity, by classifying the contaminants under the headings biological, chemical, and physical, in cow's milk according to their sources. We reviewed the current status of graphene-based biosensor (GBs) technology for milk or dairy analysis, highlighting its strengths and weaknesses with the help of comparative studies, tables, and charts, and we put forward a novel perspective to handle future challenges.
Collapse
Affiliation(s)
- Sule Bayrak
- Department of Food Engineering, Ege University, 35040 Izmir, Turkey.
| | - Hazal Gergeroglu
- CIC nanoGUNE, Tolosa Hiribidea 76, E-20018 Donostia - San Sebastian, Spain
| |
Collapse
|
4
|
Hsu SH, Yang HY, Chang CC, Tsai SK, Li C, Chang MY, Ko YC, Chou LF, Tsai CY, Tian YC, Yang CW. Blocking pathogenic Leptospira invasion with aptamer molecules targeting outer membrane LipL32 protein. Microbes Infect 2024; 26:105299. [PMID: 38224944 DOI: 10.1016/j.micinf.2024.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
This study aimed to develop aptamers targeting LipL32, a most abundant lipoprotein in pathogenic Leptospira, to hinder bacterial invasion. The objectives were to identify high-affinity aptamers through SELEX and evaluate their specificity and inhibitory effects. SELEX was employed to generate LipL32 aptamers (L32APs) over 15 rounds of selection. L32APs' binding affinity and specificity for pathogenic Leptospira were assessed. Their ability to inhibit LipL32-ECM interaction and Leptospira invasion was investigated. Animal studies were conducted to evaluate the impact of L32AP treatment on survival rates, Leptospira colonization, and kidney damage. Three L32APs with strong binding affinity were identified. They selectively detected pathogenic Leptospira, sparing non-pathogenic strains. L32APs inhibited LipL32-ECM interaction and Leptospira invasion. In animal studies, L32AP administration significantly improved survival rates, reduced Leptospira colonies, and mitigated kidney damage compared to infection alone. This pioneering research developed functional aptamers targeting pathogenic Leptospira. The identified L32APs exhibited high affinity, pathogen selectivity, and inhibition of invasion and ECM interaction. L32AP treatment showed promising results, enhancing survival rates and reducing Leptospira colonization and kidney damage. These findings demonstrate the potential of aptamers to impede pathogenic Leptospira invasion and aid in recovery from Leptospira-induced kidney injury (190 words).
Collapse
Affiliation(s)
- Shen-Hsing Hsu
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chen Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
| | | | - Chien Li
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Jamal RB, Bay Gosewinkel U, Ferapontova EE. Electrocatalytic aptasensor for bacterial detection exploiting ferricyanide reduction by methylene blue on mixed PEG/aptamer monolayers. Bioelectrochemistry 2024; 156:108620. [PMID: 38006817 DOI: 10.1016/j.bioelechem.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Pathogen-triggered infections are the most severe global threat to human health, and to provide their timely treatment and prevention, robust methods for rapid and reliable identification of pathogenic microorganisms are required. Here, we have developed a fast and inexpensive electrocatalytic aptamer assay enabling specific and ultrasensitive detection of E. coli. E. coli, a biomarker of environmental contamination and infections, was captured on the mixed aptamer/thiolated PEG self-assembled monolayers formed on electrochemically pre-treated gold screen-printed electrodes (SPE). Signals from aptamer - E. coli binding were amplified by electrocatalytic reduction of ferricyanide mediated by methylene blue (MB) adsorbed on bacterial and aptamer surfaces. PEG operated as an antifouling agent and inhibited direct (not MB-mediated) discharge of ferricyanide. The assay allowed from 10 to 1000 CFU mL-1E. coli detection in 30 min, with no interference from B. subtilis, in buffer and artificial urine samples. This electrocatalytic approach is fast, specific, sensitive, and can be used directly in in-field and point-of-care applications for analysis of bacteria in human environment.
Collapse
Affiliation(s)
- Rimsha B Jamal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ulrich Bay Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
6
|
Confinement of defect-rich bimetallic In 2O 3/CeO 2 nanocrystals in mesoporous nitrogen-doped carbon as a sensitive platform for photoelectrochemical aptasensing of Escherichia coli. Anal Chim Acta 2023; 1248:340893. [PMID: 36813455 DOI: 10.1016/j.aca.2023.340893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
The sensitive determination of food-borne pathogens from food products is essential to ensure food safety and to protect people's health. Herein, a novel photoelectrochemical (PEC) aptasensor was manufactured based on defect-rich bimetallic cerium/indium oxide nanocrystals confined in mesoporous nitrogen-doped carbon (denoted as In2O3/CeO2@mNC) for sensitively detecting Escherichia coli (E. coli) from real samples. A new cerium-based polymer-metal-organic framework [polyMOF(Ce)] was synthesized using polyether polymer containing 1,4-benzenedicarboxylic acid unit (L8) as ligand, trimesic acid as co-ligand, and cerium ions as coordination centers. After adsorbing trace indium ions (In3+), the gained polyMOF(Ce)/In3+ complex was calcined at high temperature under nitrogen atmosphere, resulting in the production of a series of defect-rich In2O3/CeO2@mNC hybrids. Benefitting from the advantages of high specific surface area, large pore size, and multiple functionality of polyMOF(Ce), In2O3/CeO2@mNC hybrids showed enhanced visible light absorption ability, separation performance of the photo-generated electrons and holes, promoted electron transfer, as well as the strong bioaffinity toward E. coli-targeted aptamer. Accordingly, the constructed PEC aptasensor illustrated an ultralow detection limit of 1.12 CFU mL-1, remarkably lower than most of the reported E. coli biosensors, along with high stability and selectivity, excellent reproducibility, and expected regeneration ability. The present work provides insight into the construction of a general PEC biosensing strategy based on MOF-based derivatives for the sensitive analysis of food-borne pathogens.
Collapse
|
7
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. A Short Review on Miniaturized Biosensors for the Detection of Nucleic Acid Biomarkers. BIOSENSORS 2023; 13:412. [PMID: 36979624 PMCID: PMC10046286 DOI: 10.3390/bios13030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Even today, most biomarker testing is executed in centralized, dedicated laboratories using bulky instruments, automated analyzers, and increased analysis time and expenses. The development of miniaturized, faster, low-cost microdevices is immensely anticipated for substituting for these conventional laboratory-oriented assays and transferring diagnostic results directly onto the patient's smartphone using a cloud server. Pioneering biosensor-based approaches might make it possible to test biomarkers with reliability in a decentralized setting, but there are still a number of issues and restrictions that must be resolved before the development and use of several biosensors for the proper understanding of the measured biomarkers of numerous bioanalytes such as DNA, RNA, urine, and blood. One of the most promising processes to address some of the issues relating to the growing demand for susceptible, quick, and affordable analysis techniques in medical diagnostics is the creation of biosensors. This article critically discusses a short review of biosensors used for detecting nucleic acid biomarkers, and their use in biomedical prognostics will be addressed while considering several essential characteristics.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- School of Electronics and Communication Engineering, KLE Technological University, Vidyanagar, Hubballi 580023, Karnataka, India
- Medical Physics Department, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, USA
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
8
|
Functionalized screen-printed electrodes for the thermal detection of Escherichia coli in dairy products. Food Chem 2023; 404:134653. [DOI: 10.1016/j.foodchem.2022.134653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
9
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advances in Microfluidics-Based Electrochemical Sensors for Foodborne Pathogen Detection. BIOSENSORS 2023; 13:246. [PMID: 36832012 PMCID: PMC9954504 DOI: 10.3390/bios13020246] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/22/2023]
Abstract
Using pathogen-infected food that can be unhygienic can result in severe diseases and an increase in mortality rate among humans. This may arise as a serious emergency problem if not appropriately restricted at this point of time. Thus, food science researchers are concerned with precaution, prevention, perception, and immunity to pathogenic bacteria. Expensive, elongated assessment time and the need for skilled personnel are some of the shortcomings of the existing conventional methods. Developing and investigating a rapid, low-cost, handy, miniature, and effective detection technology for pathogens is indispensable. In recent times, there has been a significant scope of interest for microfluidics-based three-electrode potentiostat sensing platforms, which have been extensively used for sustainable food safety exploration because of their progressively high selectivity and sensitivity. Meticulously, scholars have made noteworthy revolutions in signal enrichment tactics, measurable devices, and portable tools, which can be used as an allusion to food safety investigation. Additionally, a device for this purpose must incorporate simplistic working conditions, automation, and miniaturization. In order to meet the critical needs of food safety for on-site detection of pathogens, point-of-care testing (POCT) has to be introduced and integrated with microfluidic technology and electrochemical biosensors. This review critically discusses the recent literature, classification, difficulties, applications, and future directions of microfluidics-based electrochemical sensors for screening and detecting foodborne pathogens.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Renalyx Healthcare Systems (P) Limited, Bengaluru 560004, Karnataka, India
- School of Electronics and Communication Engineering, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
10
|
Paramithiotis S. Molecular Targets for Foodborne Pathogenic Bacteria Detection. Pathogens 2023; 12:pathogens12010104. [PMID: 36678453 PMCID: PMC9865778 DOI: 10.3390/pathogens12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The detection of foodborne pathogenic bacteria currently relies on their ability to grow on chemically defined liquid and solid media, which is the essence of the classical microbiological approach. Such procedures are time-consuming and the quality of the result is affected by the selectivity of the media employed. Several alternative strategies based on the detection of molecular markers have been proposed. These markers may be cell constituents, may reside on the cell envelope or may be specific metabolites. Each marker provides specific advantages and, at the same time, suffers from specific limitations. The food matrix and chemical composition, as well as the accompanying microbiota, may also severely compromise detection. The aim of the present review article is to present and critically discuss all available information regarding the molecular targets that have been employed as markers for the detection of foodborne pathogens. Their strengths and limitations, as well as the proposed alleviation strategies, are presented, with particular emphasis on their applicability in real food systems and the challenges that are yet to be effectively addressed.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
11
|
Wang P, Sun H, Yang W, Fang Y. Optical Methods for Label-Free Detection of Bacteria. BIOSENSORS 2022; 12:bios12121171. [PMID: 36551138 PMCID: PMC9775963 DOI: 10.3390/bios12121171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Pathogenic bacteria are the leading causes of food-borne and water-borne infections, and one of the most serious public threats. Traditional bacterial detection techniques, including plate culture, polymerase chain reaction, and enzyme-linked immunosorbent assay are time-consuming, while hindering precise therapy initiation. Thus, rapid detection of bacteria is of vital clinical importance in reducing the misuse of antibiotics. Among the most recently developed methods, the label-free optical approach is one of the most promising methods that is able to address this challenge due to its rapidity, simplicity, and relatively low-cost. This paper reviews optical methods such as surface-enhanced Raman scattering spectroscopy, surface plasmon resonance, and dark-field microscopic imaging techniques for the rapid detection of pathogenic bacteria in a label-free manner. The advantages and disadvantages of these label-free technologies for bacterial detection are summarized in order to promote their application for rapid bacterial detection in source-limited environments and for drug resistance assessments.
Collapse
Affiliation(s)
- Pengcheng Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Sun
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wei Yang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yimin Fang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
12
|
Su Y, Zhu L, Wu Y, Liu Z, Xu W. Progress and challenges in bacterial whole-cell-components Aptamer advanced screening and site identification. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Benserhir Y, Salaün AC, Geneste F, Oliviero N, Pichon L, Jolivet-Gougeon A. Silicon nanowires-based biosensors for the electrical detection of Escherichia coli. Biosens Bioelectron 2022; 216:114625. [PMID: 35995028 DOI: 10.1016/j.bios.2022.114625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/17/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022]
Abstract
One of the main challenges in terms of public health concerns the prevention of bacterial contamination using rapid, highly sensitive and specific detection techniques. The development of highly sensitive bacterial sensors for Escherichia coli detection based on networks of silicon nanowires has been carried out in this work. The interest of these nano-objects takes advantage in a large contact surface allowing potentially important interactions with bacteria. Their presence induces a change in electrical interaction through the silicon nanowires array and is the basis for the development of silicon nanowires based electrical resistances acting as bacteria sensors. High specificity of these sensors is ensured by chemical functionalization of the nanowires allowing the binding of specific antibodies targeting the lipopolysaccharide (anti-LPS) of E. coli, but not S. aureus. The sensor displays a sensitivity of 83 μA per decade of CFU/mL due to the nanometric dimensions of the nanowires. The electrical measurements ensure the detection of various E. coli concentrations down to 102 CFU/mL. This SiNW biosensor device demonstrated its potential as an alternative tool for real-time bacterial detection as miniaturizable and low-cost integrated electronic sensor compatible with the classical silicon technology.
Collapse
Affiliation(s)
- Yousra Benserhir
- Univ Rennes, CNRS, IETR [Institut d'Electronique et des Technologies du numéRique] UMR 6164, F-35000, Rennes, France
| | - Anne-Claire Salaün
- Univ Rennes, CNRS, IETR [Institut d'Electronique et des Technologies du numéRique] UMR 6164, F-35000, Rennes, France.
| | - Florence Geneste
- Univ Rennes, ISCR [Institut des Sciences Chimiques de Rennes] - UMR 6226, F-35000, Rennes, France
| | - Nolwenn Oliviero
- Univ Rennes, INSERM, INRAE, Institut NUMECAN [Nutrition Metabolisms and Cancer], F-35000, Rennes, France
| | - Laurent Pichon
- Univ Rennes, CNRS, IETR [Institut d'Electronique et des Technologies du numéRique] UMR 6164, F-35000, Rennes, France
| | - Anne Jolivet-Gougeon
- Univ Rennes, INSERM, INRAE, Institut NUMECAN [Nutrition Metabolisms and Cancer], F-35000, Rennes, France
| |
Collapse
|
14
|
Ye Q, Zhang Z, Liu J, Wang X. Screen-printed electrode-based biosensors modified with functional nucleic acid probes and their applications in this pandemic age: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2961-2975. [PMID: 35913361 DOI: 10.1039/d2ay00666a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical methodology has probably been the most used sensing platform in the past few years as they provide superior advantages. In particular, screen-printed electrode (SPE)-based sensing applications stand out as they provide extraordinary miniaturized but robust and user-friendly detection system. In this context, we are focusing on the modification of SPE with functional nucleic acid probes and nanostructures to improve the electrochemical detection performance in versatile sensing applications, particularly in the fight against the COVID-19 pandemic. Aptamers are immobilized on the electrode surface to detect non-nucleic acid targets and complementary probes to recognize and capture nucleic acid targets. In a step further, SPE-based biosensors with the modification of self-assembled DNA nanostructures are emphasized as they offer great potential for the interface engineering of the electrode surface and promote the excellent performance of various interface reactions. By equipping with a portable potentiostat and a smartphone monitoring device, the realization of this SPE-based miniaturized diagnostic system for the further requirement of fast and POC detection is revealed. Finally, more novel and excellent works are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Qingqing Ye
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
15
|
Zhang W, Cui C, Chen H, Liu H, Bin S, Wang D, Wang Y. Advances in Electrochemical Aptamer Biosensors for the Detection of Food‐borne Pathogenic Bacteria. ChemistrySelect 2022. [DOI: 10.1002/slct.202202190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wensi Zhang
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Chuanjin Cui
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Hongshuo Chen
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Haibin Liu
- North China University of Science and Technology College Of Life Sciences Tangshan 063210, P.R.China
| | - Shao Bin
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Dengling Wang
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| | - Yitao Wang
- North China University of Science and Technology College of Electrical Engineering Tangshan 063210 P.R.China
| |
Collapse
|
16
|
Liu R, Zhang F, Sang Y, Katouzian I, Jafari SM, Wang X, Li W, Wang J, Mohammadi Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Spagnolo S, De La Franier B, Davoudian K, Hianik T, Thompson M. Detection of E. coli Bacteria in Milk by an Acoustic Wave Aptasensor with an Anti-Fouling Coating. SENSORS 2022; 22:s22051853. [PMID: 35270999 PMCID: PMC8914748 DOI: 10.3390/s22051853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Milk is a significant foodstuff around the world, being produced and consumed in large quantities. The safe consumption of milk requires that the liquid has an acceptably low level of microbial contamination and has not been subjected to spoiling. Bacterial safety limits in milk vary by country but are typically in the thousands per mL of sample. To rapidly determine if samples contain an unsafe level of bacteria, an aptamer-based sensor specific to Escherichia coli bacteria was developed. The sensor is based on an ultra-high frequency electromagnetic piezoelectric acoustic sensor device (EMPAS), with the aptamer being covalently bound to the sensor surface by the anti-fouling linker, MEG-Cl. The sensor is capable of the selective measurement of E. coli in PBS and in cow’s milk samples down to limits of detection of 35 and 8 CFU/mL, respectively, which is well below the safe limits for commercial milk products. This sensing system shows great promise for the milk industry for the purpose of rapid verification of product safety.
Collapse
Affiliation(s)
- Sandro Spagnolo
- Faculty of Mathematics, Physics and Information, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia; (S.S.); (T.H.)
| | - Brian De La Franier
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (B.D.L.F.); (K.D.)
| | - Katharina Davoudian
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (B.D.L.F.); (K.D.)
| | - Tibor Hianik
- Faculty of Mathematics, Physics and Information, Comenius University, Mlynská dolina F1, 842 48 Bratislava, Slovakia; (S.S.); (T.H.)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (B.D.L.F.); (K.D.)
- Correspondence: ; Tel.: +1-416-978-3575
| |
Collapse
|
18
|
Zahra QUA, Fang X, Luo Z, Ullah S, Fatima S, Batool S, Qiu B, Shahzad F. Graphene Based Nanohybrid Aptasensors in Environmental Monitoring: Concepts, Design and Future Outlook. Crit Rev Anal Chem 2022; 53:1433-1454. [PMID: 35085047 DOI: 10.1080/10408347.2022.2025758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In view of ever-increasing environmental pollution, there is an immediate requirement to promote cheap, multiplexed, sensitive and fast biosensing systems to monitor these pollutants or contaminants. Aptamers have shown numerous advantages in being used as molecular recognition elements in various biosensing devices. Graphene and graphene-based materials/nanohybrids combined with several detection methods exhibit great potential owing to their exceptional optical, electronic and physicochemical properties which can be employed extensively to monitor environmental contaminants. For environmental monitoring applications, aptamers have been successfully combined with graphene-based nanohybrids to produce a wide range of innovative methodologies. Aptamers are immobilized at the surface of graphene based nanohybrids via covalent and non-covalent strategies. This review highlights the design, working principle, recent developmental advances and applications of graphene based nanohybrid aptasensors (GNH-Apts) (since January 2014 to September 2021) with a special emphasis on two major signal-transduction methods, i.e., optical and electrochemical for the monitoring of pesticides, heavy metals, bacteria, antibiotics, and organic compounds from different environmental samples (e.g., water, soil and related). Lastly, the challenges confronted by scientists and the possible future outlook have also been addressed. It is expected that high-performance graphene-based nanohybrid aptasensors would find broad applications in the field of environmental monitoring.
Collapse
Affiliation(s)
- Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaona Fang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Shazia Fatima
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Sadaf Batool
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Bensheng Qiu
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
19
|
Al Mamun M, Wahab YA, Hossain MM, Hashem A, Johan MR. Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Huang Y, Su Z, Li W, Ren J. Recent Progresses on Biosensors for Escherichia coli Detection. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02129-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Subjakova V, Oravczova V, Tatarko M, Hianik T. Advances in electrochemical aptasensors and immunosensors for detection of bacterial pathogens in food. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Machado MC, Zamani M, Daniel S, Furst AL. Bioelectrochemical platforms to study and detect emerging pathogens. MRS BULLETIN 2021; 46:840-846. [PMID: 34483472 PMCID: PMC8407123 DOI: 10.1557/s43577-021-00172-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has emphasized the importance of technologies to rapidly detect emerging pathogens and understand their interactions with hosts. Platforms based on the combination of biological recognition and electrochemical signal transduction, generally termed bioelectrochemical platforms, offer unique opportunities to both sense and study pathogens. Improved bio-based materials have enabled enhanced control over the biotic-abiotic interface in these systems. These improvements have generated platforms with the capability to elucidate biological function rather than simply detect targets. This advantage is a key feature of recent bioelectrochemical platforms applied to infectious disease. Here, we describe developments in materials for bioelectrochemical platforms to study and detect emerging pathogens. The incorporation of host membrane material into electrochemical devices has provided unparalleled insights into the interaction between viruses and host cells, and new capture methods have enabled the specific detection of bacterial pathogens, such as those that cause secondary infections with SARS-CoV-2. As these devices continue to improve through the merging of hi-tech materials and biomaterials, the scalability and commercial viability of these devices will similarly improve.
Collapse
Affiliation(s)
- Mary C. Machado
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, USA
| | - Marjon Zamani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Susan Daniel
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, USA
| | - Ariel L. Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
23
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
24
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
25
|
Curulli A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021; 26:2940. [PMID: 34063344 PMCID: PMC8156954 DOI: 10.3390/molecules26102940] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
26
|
Khan R, Radoi A, Rashid S, Hayat A, Vasilescu A, Andreescu S. Two-Dimensional Nanostructures for Electrochemical Biosensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:3369. [PMID: 34066272 PMCID: PMC8152006 DOI: 10.3390/s21103369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Current advancements in the development of functional nanomaterials and precisely designed nanostructures have created new opportunities for the fabrication of practical biosensors for field analysis. Two-dimensional (2D) and three-dimensional (3D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. Such hierarchical structures offer prospects to tune the characteristics of materials-e.g., the electronic properties, performance, and mechanical flexibility-and they provide additional functions such as structural color, organized morphological features, and the ability to recognize and respond to external stimuli. Combining these unique features of the different types of nanostructures and using them as support for bimolecular assemblies can provide biosensing platforms with targeted recognition and transduction properties, and increased robustness, sensitivity, and selectivity for detection of a variety of analytes that can positively impact many fields. Herein, we first provide an overview of the recently developed 2D nanostructures focusing on the characteristics that are most relevant for the design of practical biosensors. Then, we discuss the integration of these materials with bio-elements such as bacteriophages, antibodies, nucleic acids, enzymes, and proteins, and we provide examples of applications in the environmental, food, and clinical fields. We conclude with a discussion of the manufacturing challenges of these devices and opportunities for the future development and exploration of these nanomaterials to design field-deployable biosensors.
Collapse
Affiliation(s)
- Reem Khan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| | - Antonio Radoi
- National Institute for Research and Development in Microtechnology—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Sidra Rashid
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Akhtar Hayat
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| |
Collapse
|
27
|
Klass SH, Sofen LE, Hallberg ZF, Fiala TA, Ramsey AV, Dolan NS, Francis MB, Furst AL. Covalent capture and electrochemical quantification of pathogenic E. coli. Chem Commun (Camb) 2021; 57:2507-2510. [PMID: 33585846 PMCID: PMC9274617 DOI: 10.1039/d0cc08420d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Pathogenic E. coli pose a significant threat to public health, as strains of this species cause both foodborne illnesses and urinary tract infections. Using a rapid bioconjugation reaction, we selectively capture E. coli at a disposable gold electrode from complex solutions and accurately quantify the pathogenic microbes using electrochemical impedance spectroscopy.
Collapse
Affiliation(s)
- Sarah H Klass
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Laura E Sofen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zachary F Hallberg
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Tahoe A Fiala
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Nicholas S Dolan
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
28
|
Wang Y, Ma X, Qiao X, Yang P, Sheng Q, Zhou M, Yue T. Perspectives for Recognition and Rapid Detection of Foodborne Pathogenic Bacteria Based on Electrochemical Sensors. EFOOD 2021. [DOI: 10.2991/efood.k.210621.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
29
|
Kaur R, Kaur R. Symptoms, risk factors, diagnosis and treatment of urinary tract infections. Postgrad Med J 2020; 97:803-812. [PMID: 33234708 DOI: 10.1136/postgradmedj-2020-139090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/20/2023]
Abstract
Urinary tract infection (UTI) is a common microbial infection found in all ages and sexes which involves inflammation of the urinary tract. These infections can range from simple bladder inflammation, that is, cystitis, to severe cases of uroseptic shock. UTI ranks as the number 1 infection that leads to a prescription of antibiotics after a doctor's visit. These infections are sometimes distressing and even life threatening, and both males (12%) and females (40%) have at least one symptomatic UTI throughout their lives. Diagnostic failures in case of bacterial infections are the main contributing factor in improper use of antibiotics, delay in treatment and low survival rate in septic conditions. So, early diagnosis and appropriate therapy with antibiotics are the most significant requirements for preventing complicated UTI conditions such as urosepsis. This review article summarises the symptoms of the UTIs and the associated risk factors to it. The various conventional and recent diagnostic methods were also discussed in this review, along with treatment therapies with or without antibiotics.
Collapse
Affiliation(s)
- Rajanbir Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
30
|
Jiang Z, Feng B, Xu J, Qing T, Zhang P, Qing Z. Graphene biosensors for bacterial and viral pathogens. Biosens Bioelectron 2020; 166:112471. [PMID: 32777726 PMCID: PMC7382337 DOI: 10.1016/j.bios.2020.112471] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
The infection and spread of pathogens (e.g., COVID-19) pose an enormous threat to the safety of human beings and animals all over the world. The rapid and accurate monitoring and determination of pathogens are of great significance to clinical diagnosis, food safety and environmental evaluation. In recent years, with the evolution of nanotechnology, nano-sized graphene and graphene derivatives have been frequently introduced into the construction of biosensors due to their unique physicochemical properties and biocompatibility. The combination of biomolecules with specific recognition capabilities and graphene materials provides a promising strategy to construct more stable and sensitive biosensors for the detection of pathogens. This review tracks the development of graphene biosensors for the detection of bacterial and viral pathogens, mainly including the preparation of graphene biosensors and their working mechanism. The challenges involved in this field have been discussed, and the perspective for further development has been put forward, aiming to promote the development of pathogens sensing and the contribution to epidemic prevention.
Collapse
Affiliation(s)
- Zixin Jiang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Jin Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China.
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan Province, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, Hunan Province, China.
| |
Collapse
|
31
|
Amiri M, Nekoueian K, Saberi RS. Graphene-family materials in electrochemical aptasensors. Anal Bioanal Chem 2020; 413:673-699. [PMID: 32939567 DOI: 10.1007/s00216-020-02915-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/02/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The study of graphene-based carbon nanocomposites has remarkably increased in recent years. Functionalized graphene-based nanostructures, including graphene oxide and reduced graphene oxide, have great potential as new innovative electrode materials in the fabrication of novel electrochemical sensors. Electrochemical sensors based on aptamers attracted great attention because of their high sensitivity and selectivity, and simple instrumentation, as well as low production cost. Aptamers as a potent alternative to antibodies are functional nucleic acids with a high tendency to specific analytes. Electrochemical aptasensors show specific recognition ability for a wide range of analytes. Although aptamers are selected in vitro in contrast to antibodies, they are interesting due to advantages like high stability, easy chemical modifications, and the potential to be employed in nanostructured device fabrication or electrochemical sensing devices. Recently, new nanomaterials have shown a significant impact on the production of electrochemical sensors with high efficiency and performance. This review aims to give an outline of electrochemical aptasensors based on the graphene family materials and discuss the detection mechanism in this type of aptasensors. The present review summarizes some of the recent achievements in graphene-based aptasensors and includes their recent electroanalytical applications. Graphical Abstract Graphical Abstract.
Collapse
Affiliation(s)
- Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, 56199-11367, Iran.
| | - Khadijeh Nekoueian
- Department of Chemistry, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil, 56199-11367, Iran
| | - Reyhaneh Sadat Saberi
- East Sage Investigative Corporation, Isfahan Science and Technology Town, Isfahan, 8415683111, Iran
| |
Collapse
|
32
|
Kaur H, Shorie M, Sabherwal P. Biolayer interferometry-SELEX for Shiga toxin antigenic-peptide aptamers & detection via chitosan-WSe 2 aptasensor. Biosens Bioelectron 2020; 167:112498. [PMID: 32814208 DOI: 10.1016/j.bios.2020.112498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
We report biolayer interferometry based in-vitro selection technique (BLI-SELEX) for fishing out specific aptamers against E. coli Shiga toxin subtypes viz., stx1 & stx2 via epitopic peptides. BLI-SELEX is a one-step technique for rapidly generating aptamers against protein biomarkers in a microtiter plate format, obliterating the need for multiple enrichment rounds to harvest high-affinity aptamers as in conventional SELEX. Two unique aptamers selected against stx1 & stx2 with picomolar Kd (~47 pM & ~29 pM, respectively) were successfully used to fabricate voltammetric diagnostic assay via immobilization onto chitosan exfoliated 2D tungsten diselenide (WSe2) nanosheet platform. These aptamers modified nanosensors showed high sensitivity of ~ 5.0 μA ng-1 mL, a dynamic response range from 50 pg mL-1 to 100 ng mL-1, with a detection limit of 44.5 pg mL-1 & 41.3 pg mL-1 for stx subtypes, respectively and showed low cross-reactivity in spiked urine, serum and milk samples. The synergistic effect of selective aptamers & high sensitivity imparted by 2D transition metal dichalcogenide (TMD) highlights the superior potential of a fabricated nanosensor for bacterial toxin detection.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Institute of Nano Science & Technology, Mohali, 160062, India
| | - Munish Shorie
- Institute of Nano Science & Technology, Mohali, 160062, India
| | | |
Collapse
|
33
|
Kaur H, Shorie M, Sabherwal P. Electrochemical aptasensor using boron-carbon nanorods decorated by nickel nanoparticles for detection of E. coli O157:H7. Mikrochim Acta 2020; 187:461. [PMID: 32685985 DOI: 10.1007/s00604-020-04444-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022]
Abstract
The development of a label-free impedimetric aptasensor is reported for rapid and sensitive detection of Escherichia coli O157:H7 employing boron-carbon nanorods decorated by nickel nanoparticles (BC-Ni) nanostructured platform. These highly electroactive BC-Ni nanorods were synthesized to increase the sensitivity of the sensor surface and subsequently functionalized with a specific anti-E. coli O157:H7 aptamer (Kd = 69 nM) as bio-recognition moiety. This fully characterized high-affinity DNA aptamer against the bacteria was selected using a facile microtiter plate-based cell-SELEX methodology. The fabricated electrochemical aptasensor is demonstrated to detect E. coli O157:H7 selectively with a detection limit of 10 cfu and a dynamic detection range of 100 to 105 cfu in water, juice, and fecal samples. Graphical abstract.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Institute of Nano Science and Technology, 160062, Mohali, India
| | - Munish Shorie
- Institute of Nano Science and Technology, 160062, Mohali, India
| | - Priyanka Sabherwal
- Institute of Nano Science and Technology, 160062, Mohali, India.
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, 400098, Mumbai, India.
| |
Collapse
|
34
|
Trunzo NE, Hong KL. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications. Int J Mol Sci 2020; 21:ijms21145074. [PMID: 32708376 PMCID: PMC7404326 DOI: 10.3390/ijms21145074] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
Aptamers have gained an increasing role as the molecular recognition element (MRE) in diagnostic assay development, since their first conception thirty years ago. The process to screen for nucleic acid-based binding elements (aptamers) was first described in 1990 by the Gold Laboratory. In the last three decades, many aptamers have been identified for a wide array of targets. In particular, the number of reports on investigating single-stranded DNA (ssDNA) aptamer applications in biosensing and diagnostic platforms have increased significantly in recent years. This review article summarizes the recent (2015 to 2020) progress of ssDNA aptamer research on bacteria, proteins, and lipids of bacterial origins that have implications for human infections. The basic process of aptamer selection, the principles of aptamer-based biosensors, and future perspectives will also be discussed.
Collapse
|
35
|
Sannigrahi S, Arumugasamy SK, Mathiyarasu J, K S. Magnetosome-anti-Salmonella antibody complex based biosensor for the detection of Salmonella typhimurium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111071. [PMID: 32993971 DOI: 10.1016/j.msec.2020.111071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
Epidemic Salmonellosis contracted through the consumption of contaminated food substances is a global concern. Thus, simple and effective diagnostic methods are needed. Magnetosome-based biosensors are gaining attention because of their promising features. Here, we developed a biosensor employing a magnetosome-anti-Salmonella antibody complex to detect lipopolysaccharide (somatic "O" antigen) and Salmonella typhimurium in real samples. Magnetosome was extracted from Magnetospirillum sp. RJS1 and characterized by microscopy. The magnetosome samples (1 and 2 mg/mL) were directly conjugated to anti-Salmonella antibody (0.8-200 μg/mL) and confirmed by spectroscopy and zeta potential. The concentrations of magnetosome, antibody and lipopolysaccharide were optimized by ELISA. The 2 mg/mL-0.8 μg/mL magnetosome-antibody complex was optimal for detecting lipopolysaccharide (0.001 μg/mL). Our assay is a cost-effective (60%) and sensitive (50%) method in detection of lipopolysaccharide. The optimized magnetosome-antibody complex was applied to an electrode surface and stabilized using an external magnetic field. Increased resistance confirmed the detection of lipopolysaccharide (at 0.001-0.1 μg/mL) using impedance spectroscopy. Significantly, the R2 value was 0.960. Then, the developed prototype biosensor was applied to food and water samples. ELISA confirmed the presence of lipopolysaccharide in homogenized infected samples and cross reactivity assays confirmed the specificity of the biosensor. Further, the biosensor showed low detection limit (101 CFU/mL) in water and milk sample demonstrating its sensitivity. Regression coefficient of 0.974 in water and 0.982 in milk was obtained. The magnetosome-antibody complex captured 90% of the S. typhimurium in real samples which was also confirmed in FE-SEM. Thus, the developed biosensor is selective, specific, rapid and sensitive for detection of S. typhimurium.
Collapse
Affiliation(s)
- Sumana Sannigrahi
- Marine Biotechnology and Bioproducts Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Shiva Kumar Arumugasamy
- Electrodics and Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Jayaraman Mathiyarasu
- Electrodics and Electrocatalysis Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Suthindhiran K
- Marine Biotechnology and Bioproducts Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
36
|
DNA-based nanobiosensors for monitoring of water quality. Int J Hyg Environ Health 2020; 226:113485. [DOI: 10.1016/j.ijheh.2020.113485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
|
37
|
Simoska O, Stevenson KJ. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 2020; 144:6461-6478. [PMID: 31603150 DOI: 10.1039/c9an01747j] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial infections remain the principal cause for high morbidity and mortality rates. While approximately 1400 human pathogens have been recognized, the majority of healthcare-associated infectious diseases are caused by only a few opportunistic pathogens (e.g., Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli), which are associated with increased antibiotic and antimicrobial resistance. Rapid detection, reliable identification and real-time monitoring of these pathogens remain not only a scientific problem but also a practical challenge of vast importance, especially in tailoring effective treatment strategies. Although the development of vaccinations and antibacterial drug treatments are the leading research, progress, and implementation of early warning, quantitative systems indicative of confirming pathogen presence are necessary. Over the years, various approaches, such as conventional culturing, straining, molecular methods (e.g., polymerase chain reaction and immunological assays), microscopy-based and mass spectrometry techniques, have been employed to identify and quantify pathogenic agents. While being sensitive in some cases, these procedures are costly, time-consuming, mostly qualitative, and are indirect detection methods. A great challenge is therefore to develop rapid, highly sensitive, specific devices with adequate figures of merit to corroborate the presence of microbes and enable dynamic real-time measurements of metabolism. As an alternative, electrochemical sensor platforms have been developed as powerful quantitative tools for label-free detection of infection-related biomarkers with high sensitivity. This minireview is focused on the latest electrochemical-based approaches for pathogen sensing, putting them into the context of standard sensing methods, such as cell culturing, mass spectrometry, and fluorescent-based approaches. Description of the latest, impactful electrochemical sensors for pathogen detection will be presented. Recent breakthroughs will be highlighted, including the use of micro- and nano-electrode arrays for real-time detection of bacteria in polymicrobial infections and microfluidic devices for pathogen separation analysis. We will conclude with perspectives and outlooks to understand shortcomings in designing future sensing schemes. The need for high sensitivity and selectivity, low-cost implementation, fast detection, and screening increases provides an impetus for further development in electrochemical detectors for microorganisms and biologically relevant targets.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, TX 78712, USA
| | | |
Collapse
|
38
|
McConnell EM, Morrison D, Rey Rincon MA, Salena BJ, Li Y. Selection and applications of synthetic functional DNAs for bacterial detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115785] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Kaur H, Shorie M. Nanomaterial based aptasensors for clinical and environmental diagnostic applications. NANOSCALE ADVANCES 2019; 1:2123-2138. [PMID: 36131986 PMCID: PMC9418768 DOI: 10.1039/c9na00153k] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/28/2019] [Indexed: 05/06/2023]
Abstract
Nanomaterials have been exploited extensively to fabricate various biosensors for clinical diagnostics and food & environmental monitoring. These materials in conjugation with highly specific aptamers (next-gen antibody mimics) have enhanced the selectivity, sensitivity and rapidness of the developed aptasensors for numerous targets ranging from small molecules such as heavy metal ions to complex matrices containing large entities like cells. In this review, we highlight the recent advancements in nanomaterial based aptasensors from the past five years also including the basics of conventionally used detection methodologies that paved the way for futuristic sensing techniques. The aptasensors have been categorised based upon these detection techniques and their modifications viz., colorimetric, fluorometric, Raman spectroscopy, electro-chemiluminescence, voltammetric, impedimetric and mechanical force-based sensing of a multitude of targets are discussed in detail. The bio-interaction of these numerous nanomaterials with the aptameric component and that of the complete aptasensor with the target have been studied in great depth. This review thus acts as a compendium for nanomaterial based aptasensors and their applications in the field of clinical and environmental diagnosis.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Institute of Nano Science and Technology Mohali 160062 India
| | - Munish Shorie
- Institute of Nano Science and Technology Mohali 160062 India
| |
Collapse
|
40
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|
41
|
An impedimetric aptasensor for Shigella dysenteriae using a gold nanoparticle-modified glassy carbon electrode. Mikrochim Acta 2018; 185:538. [PMID: 30413894 DOI: 10.1007/s00604-018-3075-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
This work describes an aptasensor for the foodborne pathogen Shigella dysenteriae (S. dysenteriae). A glassy carbon electrode (GCE) was modified with gold nanoparticles (AuNPs) by electrodeposition. Then, thiolated aptamer for S. dysenteriae detection was self-assembled on the surface of the modified GCE, and any free residual AuNPs were blocked with 6-mercapto-1-hexanol. The size, morphology, and distribution of the AuNPs were characterized by field emission scanning electron microscopy. Detection of S. dysenteriae was performed measurement of the charge transfer resistance (Rct) before and after addition of S. dysenteriae using hexacyanoferrate as an electrochemical probe. The interaction between the aptamer and outer-membrane proteins of S. dysenteriae lead to an increase in the Rct of the sensor. The assay has a linear dynamic range that extends from 101 to 106 CFU.mL-1 and a limit of detection of 100 CFU.mL-1. It can differentiate between alive S. dysenteriae and other pathogens. Dead S. dysenteriae cells do not have any effect on selectivity. Unpasteurized and pasteurized skim milk and some water samples were spiked with S. dysenteriae and then successfully examined by this method. The results were validated by real-time PCR. The method is fast, low-cost, highly sensitive, and specific. Hence, it represents a valuable tool in food quality control. Graphical abstract Schematic presentation of a label free impedimetric aptasensor for Shigella dysenteriae using a glassy carbon electrode modified with gold nanoparticles (AuNPs) and 6-mercapto-1-hexanol (MCH). The limit of detection of this aptasensor is as low as 1 CFU.mL-1 for target bacteria.
Collapse
|
42
|
Shorie M, Kaur H. Microtitre Plate Based Cell-SELEX Method. Bio Protoc 2018; 8:e3051. [PMID: 34532522 DOI: 10.21769/bioprotoc.3051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/22/2018] [Accepted: 10/09/2018] [Indexed: 11/02/2022] Open
Abstract
Aptamers have emerged as a novel category in the field of bioreceptors due to their wide applications ranging from biosensing to therapeutics. Several variations of their screening process, called SELEX have been reported which can yield sequences with desired properties needed for their final use. We report a facile microtiter plate-based Cell-SELEX method for a gram-negative bacteria E. coli. The optimized protocol allows the reduction of number of rounds for SELEX by offering higher surface area and longer retention times. In addition, this protocol can be modified for other prokaryotic and eukaryotic cells, and glycan moieties as target for generation of high affinity bio-receptors in a short course of time in-vitro.
Collapse
Affiliation(s)
- Munish Shorie
- Institute of Nano Science and Technology, Mohali-160062, India
| | - Harmanjit Kaur
- Institute of Nano Science and Technology, Mohali-160062, India
| |
Collapse
|
43
|
Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Wang L, Wang R, Wei H, Li Y. Selection of aptamers against pathogenic bacteria and their diagnostics application. World J Microbiol Biotechnol 2018; 34:149. [PMID: 30220026 DOI: 10.1007/s11274-018-2528-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Aptamers are short nucleotide sequences which can specifically bind to a variety of targets with high affinity. They are identified and selected via systematic evolution of ligands by exponential enrichment (SELEX). Compared to antibodies, aptamers offer several advantages including easy labeling, high stability and lower cost. Those advantages make it possible to be a potential for use as a recognition probe to replace antibody in the diagnostic field. This article is intended to provide a comprehensive review, which is focused on systemizing recent advancements concerning SELEX procedures, with special emphasis on the key steps in SELEX procedures. The principles of various aptamer-based detections of pathogenic bacteria and their application are discussed in detail, including colorimetric detection, fluorescence detection, electrochemical detection, lateral flow strip test, mass sensitive detection and PCR-based aptasensor. By discussing recent research and future trends based on many excellent publications and reviews, we attempt to give the readers a comprehensive view in the field of aptamer selection against pathogenic bacteria and their diagnostics application. Authors hope that this review will promote lively and valuable discussions in order to generate new ideas and approaches towards the development of aptamer-based methods for application in pathogenic bacteria diagnosis.
Collapse
Affiliation(s)
- Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.,Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ronghui Wang
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hua Wei
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Yanbin Li
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA. .,Center of Excellence for Poultry Science, University of Arkansas, 203 Engineering Hall, Fayetteville, AR, 72701, USA.
| |
Collapse
|
45
|
Application of Aptamer-Based Biosensor for Rapid Detection of Pathogenic Escherichia coli. SENSORS 2018; 18:s18082518. [PMID: 30071682 PMCID: PMC6111995 DOI: 10.3390/s18082518] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
Pathogenic Escherichia coli (E. coli) widely exist in Nature and have always been a serious threat to the human health. Conventional colony forming units counting-based methods are quite time consuming and not fit for rapid detection for E. coli. Therefore, novel strategies for improving detection efficiency and sensitivity are in great demand. Aptamers have been widely used in various sensors due to their extremely high affinity and specificity. Successful applications of aptamers have been found in the rapid detection of pathogenic E. coli. Herein, we present the latest advances in screening of aptamers for E. coli, and review the preparation and application of aptamer-based biosensors in rapid detection of E. coli. Furthermore, the problems and new trends in these aptamer-based biosensors for rapid detection of pathogenic microorganism are also discussed.
Collapse
|
46
|
Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S. Electrochemical Methodologies for the Detection of Pathogens. ACS Sens 2018; 3:1069-1086. [PMID: 29756447 DOI: 10.1021/acssensors.8b00239] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current electrochemical-based microorganism recognition approaches and putting them into context of other sensing devices for pathogens such as culturing the microorganism on agar plates and the polymer chain reaction (PCR) method, able to identify the DNA of the microorganism. Recent breakthroughs will be highlighted, including the utilization of microfluidic devices and immunomagnetic separation for multiple pathogen analysis in a single device. We will conclude with some perspectives and outlooks to better understand shortcomings. Indeed, there is currently no adequate solution that allows the selective and sensitive binding to a specific microorganism, that is fast in detection and screening, cheap to implement, and able to be conceptualized for a wide range of biologically relevant targets.
Collapse
Affiliation(s)
- Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hamed Jafari
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rabah Boukherroub
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| |
Collapse
|
47
|
Shorie M, Kumar V, Kaur H, Singh K, Tomer VK, Sabherwal P. Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Mikrochim Acta 2018; 185:158. [PMID: 29594650 DOI: 10.1007/s00604-018-2705-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/23/2018] [Indexed: 11/26/2022]
Abstract
A nanohybrid mediated SERS substrate was prepared by in-situ synthesis and assembly of gold nanoparticles (AuNPs) on exfoliated nanosheets of tungsten disulfide (WS2) to form plasmonic hotspots. The nanohybrid surface was functionalized with specific aptamers which imparted high selectivity for the cardiac marker myoglobin (Mb). The fabricated aptasensor was read by SERS using a 532 nm laser and demonstrated significant signal enhancement, and this allowed Mb to be determined in the 10 f. mL-1 to 0.1 μg mL-1 concentration range. The study presents an approach to synergistically exploit the unique chemical and electromagnetic properties of both WS2 and AuNPs for many-fold enhancement of SERS signals. Graphical abstract Schematic presentation of a nanohybrid-mediated SERS substrate prepared by in-situ assembly of gold nanoparticles (AuNPs) reduced on exfoliated nanosheets of tungsten disulfide (WS2) to form plasmonic hot spots. Specific aptamers immobilized on the SERS surface impart high sensitivity and selectivity for the cardiac marker myoglobin (Mb).
Collapse
Affiliation(s)
- Munish Shorie
- Institute of Nano Science and Technology, Mohali, -160062, India
| | - Vinod Kumar
- Institute of Nano Science and Technology, Mohali, -160062, India
| | - Harmanjit Kaur
- Institute of Nano Science and Technology, Mohali, -160062, India
| | - Kulvinder Singh
- Institute of Nano Science and Technology, Mohali, -160062, India
| | - Vijay K Tomer
- Institute of Nano Science and Technology, Mohali, -160062, India
| | | |
Collapse
|
48
|
Liu X, Jiang H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2805. [PMID: 29207528 PMCID: PMC5750678 DOI: 10.3390/s17122805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China.
| | - Hui Jiang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|