1
|
Yan S, Liu Q, Liang B, Zhang M, Chen W, Zhang D, Wang C, Xing D. Airborne microbes: sampling, detection, and inactivation. Crit Rev Biotechnol 2024:1-35. [PMID: 39128871 DOI: 10.1080/07388551.2024.2377191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 08/13/2024]
Abstract
The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wujun Chen
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Daijun Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Peng B, Wang Y, Xie Y, Dong X, Liu W, Li D, Chen H. An overview of influenza A virus detection methods: from state-of-the-art of laboratories to point-of-care strategies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4496-4515. [PMID: 38946516 DOI: 10.1039/d4ay00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Influenza A virus (IAV), a common respiratory infectious pathogen, poses a significant risk to personal health and public health safety due to rapid mutation and wide host range. To better prevent and treat IAV, comprehensive measures are needed for early and rapid screening and detection of IAV. Although traditional laboratory-based techniques are accurate, they are often time-consuming and not always feasible in emergency or resource-limited areas. In contrast, emerging point-of-care strategies provide faster results but may compromise sensitivity and specificity. Here, this review critically evaluates various detection methods for IAV from established laboratory-based procedures to innovative rapid diagnosis. By analyzing the recent research progress, we aim to address significant gaps in understanding the effectiveness, practicality, and applicability of these methods in different scenarios, which could provide information for healthcare strategies, guide public health response measures, and ultimately strengthen patient care in the face of the ongoing threat of IAV. Through a detailed comparison of diagnostic models, this review can provide a reliable reference for rapid, accurate and efficient detection of IAV, and to contribute to the diagnosis, treatment, prevention, and control of IAV.
Collapse
Affiliation(s)
- Bin Peng
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Yaqi Wang
- Guangzhou Institute for Food Inspection, Guangzhou, 510000, China
| | - Yueliang Xie
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510000, China
| | - Xiangyan Dong
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Wen Liu
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, 510000, China
| | - Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Qi L, Liu S, Ping J, Yao X, Chen L, Yang D, Liu Y, Wang C, Xiao Y, Qi L, Jiang Y, Fang X. Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging. BIOSENSORS 2024; 14:314. [PMID: 39056590 PMCID: PMC11274644 DOI: 10.3390/bios14070314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
Stimulated emission depletion (STED) microscopy, as a popular super-resolution imaging technique, has been widely used in bio-structure analysis and resolving the dynamics of biological processes beyond the diffraction limit. The performance of STED critically depends on the optical properties of the fluorescent probes. Ideally, the probe should process high brightness and good photostability, and exhibit a sensitive response to the depletion beam. Organic dyes and fluorescent proteins, as the most widely used STED probes, suffer from low brightness and exhibit rapid photobleaching under a high excitation power. Recently, luminescent nanoparticles (NPs) have emerged as promising fluorescent probes in biological imaging due to their high brightness and good photostability. STED imaging using various kinds of NPs, including quantum dots, polymer dots, carbon dots, aggregation-induced emission dots, etc., has been demonstrated. This review will comprehensively review recent advances in fluorescent NP-based STED probes, discuss their advantages and pitfalls, and outline the directions for future development.
Collapse
Affiliation(s)
- Liqing Qi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Songlin Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Chemistry and Materials, University of Science and Technology of China, Hefei 230026, China
| | - Jiantao Ping
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Xingxing Yao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Long Chen
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dawei Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Yijun Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Chenjing Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Yating Xiao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| | - Lubin Qi
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
| | - Yifei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Chemistry and Materials, University of Science and Technology of China, Hefei 230026, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| | - Xiaohong Fang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou 310022, China; (S.L.); (J.P.); (X.Y.); (L.C.); (D.Y.); (Y.L.); (C.W.)
- School of Chemistry and Materials, University of Science and Technology of China, Hefei 230026, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
- Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Gao Y, Shi J, Wu C, Cao L, Liu L, Wang J, Luo X, Zhang X, Zhang Y. Functional Green-Emitting Mn 2+-doped Zinc Germanate Persistent Luminescent Nanoparticles for Dual-Mode Immunochromatographic Detection. Anal Chem 2024; 96:5694-5701. [PMID: 38538547 DOI: 10.1021/acs.analchem.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Immunochromatography is a commonly used immediate detection technique, using signal labels to generate detection signals for rapid medical diagnosis. However, its detection sensitivity is affected by background fluorescence caused by the excitation light source. We have developed an immunochromatographic test strip using Zn2GeO4:Mn2+ (ZGM) persistent luminescent nanoparticles (PLNPs) for immediate fluorescence detection and highly sensitive persistent luminescence (PersL) detection without background fluorescence interference. ZGM emits a strong green light when exposed to ultraviolet (UV) excitation, and its green PersL can persist for over 30 min after the excitation light is turned off. We modified the surface of ZGM with heparin-binding protein (HBP) antibodies to create immunochromatographic test strips for the detection of HBP as the target analyte. Under UV excitation, the chromatography test paper can be visually observed at concentrations as low as 25 ng/mL. After the excitation light source is switched off, PersL can achieve a detection limit of 4.7 ng/mL without background interference. This dual-mode immunochromatographic detection, based on ZGM, shows great potential for in vitro diagnostic applications.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Chen Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Longlong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lin Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinyuan Wang
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xiaofang Luo
- School of Rare Earths University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| | - Xiao Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
5
|
Guo J, Zhou Y, Cheng J, Chen F, Xu J, Yang L, Shi H, An Z, Guo J, Ma X. Afterglow Nanoprobe-Enabled Quantitative Lateral Flow Immunoassay by a Palm-Size Device for Household Healthcare. Anal Chem 2024; 96:4891-4900. [PMID: 38462674 DOI: 10.1021/acs.analchem.3c05448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Lateral flow immunoassay (LFIA), a classical point-of-care testing (POCT) technique, plays an important role in disease screening and healthcare monitoring. However, traditional LFIA is either designed for qualitative analysis or requires expensive equipment for quantification, limiting its use in household diagnosis. In this study, we proposed a new generation of LFIA for household health monitoring by using ultralong organic phosphorescence (UOP) nanomaterials as afterglow nanoprobes with a self-developed palm-size sensing device. The UOP nanoprobes exhibit a phosphorescence signal with a second-level lifetime, which completely avoids the interference from excitation light and biological background fluorescence. Therefore, an ultraminiaturized and low-cost UOP nanosensor was successfully designed by eliminating the complex optical path and filtering systems. We chose an inflammatory factor, C-reactive protein (CRP), for household POCT validation. The whole analysis was completed within 9 min. A limit of detection (LOD) of 0.54 ng/mL of CRP antigen was achieved with high stability and good specificity, which is comparable to laboratory instruments and fully satisfying the clinical diagnosis requirement.
Collapse
Affiliation(s)
- Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yudong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jie Cheng
- University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fuli Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiahui Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lirong Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Wei-Wen Hsiao W, Fadhilah G, Lee CC, Endo R, Lin YJ, Angela S, Ku CC, Chang HC, Chiang WH. Nanomaterial-based biosensors for avian influenza virus: A new way forward. Talanta 2023; 265:124892. [PMID: 37451119 DOI: 10.1016/j.talanta.2023.124892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Avian influenza virus (AIV) is a zoonotic virus that can be transmitted from animals to humans. Although human infections are rare, the virus has a high mortality rate when contracted. Appropriate detection methods are thus crucial for combatting this pathogen. There is a growing demand for rapid, selective, and accurate methods of identifying the virus. Numerous biosensors have been designed and commercialized to detect AIV. However, they all have considerable shortcomings. Nanotechnology offers a new way forward. Nanomaterials produce more eco-friendly, rapid, and portable diagnostic systems. They also exhibit high sensitivity and selectivity while achieving a low detection limit (LOD). This paper reviews state-of-the-art nanomaterial-based biosensors for AIV detection, such as those composed of quantum dots, gold, silver, carbon, silica, nanodiamond, and other nanoparticles. It also offers insight into potential trial protocols for creating more effective methods of identifying AIV and discusses key issues associated with developing nanomaterial-based biosensors.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ryu Endo
- Department of Biomedical Engineering, The Ohio State University, 43210, USA
| | - Yu-Jou Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
| |
Collapse
|
7
|
Zhang C, Li Z, Liu J, Liu C, Zhang H, Lee WG, Yao C, Guo H, Xu F. Synthetic Gene Circuit-Based Assay with Multilevel Switch Enables Background-Free and Absolute Quantification of Circulating Tumor DNA. RESEARCH (WASHINGTON, D.C.) 2023; 6:0217. [PMID: 37789988 PMCID: PMC10543738 DOI: 10.34133/research.0217] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023]
Abstract
Circulating tumor DNA (ctDNA) detection has found widespread applications in tumor diagnostics and treatment, where the key is to obtain accurate quantification of ctDNA. However, this remains challenging due to the issue of background noise associated with existing assays. In this work, we developed a synthetic gene circuit-based assay with multilevel switch (termed CATCH) for background-free and absolute quantification of ctDNA. The multilevel switch combining a small transcription activating RNA and a toehold switch was designed to simultaneously regulate transcription and translation processes in gene circuit to eliminate background noise. Moreover, such a multilevel switch-based gene circuit was integrated with a Cas9 nickase H840A (Cas9n) recognizer and a molecular beacon reporter to form CATCH for ctDNA detection. The CATCH can be implemented in one-pot reaction at 35 °C with virtually no background noise, and achieve robust absolute quantification of ctDNA when integrated with a digital chip (i.e., digital CATCH). Finally, we validated the clinical capability of CATCH by detecting drug-resistant ctDNA mutations from the plasma of 76 non-small cell lung cancer (NSCLC) patients, showing satisfying clinical sensitivity and specificity. We envision that the simple and robust CATCH would be a powerful tool for next-generation ctDNA detection.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
- TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Jie Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| | - Won Gu Lee
- Department of Mechanical Engineering,
Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital,
Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
8
|
Hong D, Jo EJ, Bang D, Jung C, Lee YE, Noh YS, Shin MG, Kim MG. Plasmonic Approach to Fluorescence Enhancement of Mesoporous Silica-Coated Gold Nanorods for Highly Sensitive Influenza A Virus Detection Using Lateral Flow Immunosensor. ACS NANO 2023; 17:16607-16619. [PMID: 37595106 DOI: 10.1021/acsnano.3c02651] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Rapid diagnostic tests based on the lateral flow immunoassay (LFI) enable early identification of viral infection, owing to simple interpretation, short turnaround time, and timely isolation of patients to minimize viral transmission among communities. However, the LFI system requires improvement in the detection sensitivity to match the accuracy of nucleic acid amplification tests. Fluorescence-based LFIs are more sensitive and specific than absorption-based LFIs, but their performance is significantly affected by fundamental issues related to the quantum yield and photobleaching of fluorophores. Metal-enhanced fluorescence (MEF), which is a plasmonic effect in the vicinity of metallic nanoparticles, can be an effective strategy to improve the detection sensitivity of fluorescence-based LFIs. The key factors for obtaining a strong plasmonic effect include the distance and spectral overlap of the metal and fluorophore in the MEF system. In this study, MEF probes were designed based on core-shell nanostructures employing a gold nanorod core, mesoporous silica shell, and cyanine 5 fluorophore. To optimize the efficiency of MEF probes incorporated on the LFI platform (MEF-LFI), we experimentally and theoretically investigated the distance dependence of plasmonic coupling between cyanine 5 and gold nanorods by adjusting the shell thickness, resulting in significant fluorescence enhancement. The proposed MEF-LFI enabled highly sensitive detection of influenza A virus (IAV) nucleocapsid protein with a detection limit of 0.52 pg mL-1 within 20 min and showed high specificity and accuracy for determining IAV clinical samples. Overall, our findings demonstrate the potential of this method as an effective tool for molecular diagnosis under emergency conditions.
Collapse
Affiliation(s)
- Donggu Hong
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Eun-Jung Jo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Doyeon Bang
- College of AI Convergence, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 208 Cheomdangwagi-ro, Gwangju 61011, Republic of Korea
| | - Chaewon Jung
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Young Eun Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Yu-Seon Noh
- Nano Bio Research Center JBF, 123, Nanosandan-ro, Nam-Myun, Jangseong-gun, Jeollanam-do 57248, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Zhang Y, Liao T, Wang G, Xu J, Wang M, Ren F, Zhang H. An ultrasensitive NIR-IIa' fluorescence-based multiplex immunochromatographic strip test platform for antibiotic residues detection in milk samples. J Adv Res 2023; 50:25-34. [PMID: 36280143 PMCID: PMC10403655 DOI: 10.1016/j.jare.2022.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Widely used in livestock breeding, residues of antibiotic drugs in milk have become a threat to food safety and human health. Current rapid detection technologies using colorimetric immunochromatographic strip tests (IST) lack the necessary sensitivity for on-site trace monitoring. Fluorescence-based detection in the near-infrared IIa' (NIR-IIa') region (1000 ∼ 1300 nm) has enormous potential due to greatly minimized auto-fluorescence and light scattering. OBJECTIVES The aim of this work is to develop an ultrasensitive IST platform using NIR-IIa' fluorescent nanoparticles as labels for multiplex antibiotic residues detection in milk. METHODS NIR-IIa' fluorescent nanoparticles were assembled by encapsulating synthesized NIR-IIa' fluorophores into carboxyl - modified polystyrene nanoparticles. The NIR-IIa' nanoparticles were subsequently used as labels in an IST platform to detect sulfonamides, quinolones, and lincomycin simultaneously in milk. A portable fluorescent reader was fabricated to provide on-site detection. To further validate the developed IST platform, the detection was compared with LC-MS/MS in 22 real milk samples. RESULTS Fluorescent nanoparticles were synthesized with low energy emission (1030 nm) and large Stokes shift (>250 nm) showing a much higher signal-to-noise ratio compared with fluorophores emitting in the NIR-I region. The developed IST platform yielded a highly sensitive, simultaneous quantification of sulfonamides, quinolones, and lincomycin in milk with detection limits of 46.7, 27.6 and 51.4 pg/mL, respectively, achieving a wide detection range (up to 50 ng/mL). The IST platform showed good accuracy, reproducibility, and specificity with the portable fluorescent reader which could rapidly quantify in 10 s. These results were better than reported immunochromatographic assays using fluorescent labels, and remarkably, showed a higher recognition ability than LC-MS/MS for real samples. CONCLUSION The utility of NIR-IIa' fluorescence-based IST platform for the fast, sensitive, and accurate detection of antibiotics in milk was demonstrated, successfully verifying the potential of this platform in detecting trace materials in complex matrices.
Collapse
Affiliation(s)
- Yunyue Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Tao Liao
- WWHS Biotech. Inc. Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518100, PR China
| | - Guoxin Wang
- WWHS Biotech. Inc. Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518100, PR China
| | - Juan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Mohan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, PR China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, PR China.
| |
Collapse
|
10
|
Seok Y, Mauk MG, Li R, Qian C. Trends of respiratory virus detection in point-of-care testing: A review. Anal Chim Acta 2023; 1264:341283. [PMID: 37230728 DOI: 10.1016/j.aca.2023.341283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
In resource-limited conditions such as the COVID-19 pandemic, on-site detection of diseases using the Point-of-care testing (POCT) technique is becoming a key factor in overcoming crises and saving lives. For practical POCT in the field, affordable, sensitive, and rapid medical testing should be performed on simple and portable platforms, instead of laboratory facilities. In this review, we introduce recent approaches to the detection of respiratory virus targets, analysis trends, and prospects. Respiratory viruses occur everywhere and are one of the most common and widely spreading infectious diseases in the human global society. Seasonal influenza, avian influenza, coronavirus, and COVID-19 are examples of such diseases. On-site detection and POCT for respiratory viruses are state-of-the-art technologies in this field and are commercially valuable global healthcare topics. Cutting-edge POCT techniques have focused on the detection of respiratory viruses for early diagnosis, prevention, and monitoring to protect against the spread of COVID-19. In particular, we highlight the application of sensing techniques to each platform to reveal the challenges of the development stage. Recent POCT approaches have been summarized in terms of principle, sensitivity, analysis time, and convenience for field applications. Based on the analysis of current states, we also suggest the remaining challenges and prospects for the use of the POCT technique for respiratory virus detection to improve our protection ability and prevent the next pandemic.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA.
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 216 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Ruijie Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China
| | - Cheng Qian
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
11
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Hou F, Sun S, Abdullah SW, Tang Y, Li X, Guo H. The application of nanoparticles in point-of-care testing (POCT) immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2154-2180. [PMID: 37114768 DOI: 10.1039/d3ay00182b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Covid-19 pandemic has led to greater recognition of the importance of the fast and timely detection of pathogens. Recent advances in point-of-care testing (POCT) technology have shown promising results for rapid diagnosis. Immunoassays are among the most extensive POCT assays, in which specific labels are used to indicate and amplify the immune signal. Nanoparticles (NPs) are above the rest because of their versatile properties. Much work has been devoted to NPs to find more efficient immunoassays. Herein, we comprehensively describe NP-based immunoassays with a focus on particle species and their specific applications. This review describes immunoassays along with key concepts surrounding their preparation and bioconjugation to show their defining role in immunosensors. The specific mechanisms, microfluidic immunoassays, electrochemical immunoassays (ELCAs), immunochromatographic assays (ICAs), enzyme-linked immunosorbent assays (ELISA), and microarrays are covered herein. For each mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining the biosensing and related point-of-care (POC) utility. Given their maturity, some specific applications using different nanomaterials are discussed in more detail. Finally, we outline future challenges and perspectives to give a brief guideline for the development of appropriate platforms.
Collapse
Affiliation(s)
- Fengping Hou
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Hou M, Ma L, Yang H, Si F, Liu Y. Background-free and signal-amplified upconversion fluorescent biosensing platform for sensitive detection of CYFRA21-1. Talanta 2023; 262:124659. [PMID: 37220688 DOI: 10.1016/j.talanta.2023.124659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
Accurate and ultrasensitive detection of cytokeratin 19 fragment (CYFRA21-1) is of vital importance for screening and diagnosis of potential lung cancer patient. In this paper, surface-modified upconversion nanomaterials (UCNPs) capable of aggregation by atom transfer radical polymerization (ATRP) were used as luminescent materials for the first time to achieve signal-stable, low-biological background, and sensitive detection of CYFRA21-1. Upconversion nanomaterials (UCNPs) feature extremely low biological background signals and narrow emission peaks, making them ideal sensor luminescent materials. The combination of UCNPs and ATRP not only improves sensitivity, but also reduces biological background interference for detecting CYFRA21-1. The target CYFRA21-1 was captured by specific binding of the antigen and the antibody. Subsequently, the end of the sandwich structure with the initiator reacts with monomers modified on UCNPs. Then, massive UCNPs are aggregated by ATRP that amplify the detection signal exponentially. Under optimal conditions, a linear calibration plot of the logarithm of CYFRA21-1 concentration versus the upconversion fluorescence intensity was obtained in the range of 1 pg/mL to 100 μg/mL with a detection limit of 38.7 fg/mL. The proposed upconversion fluorescent platform can distinguish the analogues of the target with excellent selectivity. Besides, the precision and accuracy of the developed upconversion fluorescent platform were verified by clinical methods. As an enhanced upconversion fluorescent platform of CYFRA21-1, it is expected to be useful in screening potential patients with NSCLC and provides a promising solution for the high-performance detection of other tumor markers.
Collapse
Affiliation(s)
- Mengyuan Hou
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Lele Ma
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Fuchun Si
- Henan Provincial Key Laboratory of Prescription-Syndrome Signal Transduction of Traditional Chinese Medicine, International Joint Laboratory of Prescription-Syndrome Signal Transduction of Traditional Chinese Medicine in Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
14
|
Xu Q, Xiao F, Xu H. Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. Trends Analyt Chem 2023; 161:116999. [PMID: 36852170 PMCID: PMC9946731 DOI: 10.1016/j.trac.2023.116999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The spread of COVID-19 has caused huge economic losses and irreversible social impact. Therefore, to successfully prevent the spread of the virus and solve public health problems, it is urgent to develop detection methods with high sensitivity and accuracy. However, existing detection methods are time-consuming, rely on instruments, and require skilled operators, making rapid detection challenging to implement. Biosensors based on fluorescent nanoparticles have attracted interest in the field of detection because of their advantages, such as high sensitivity, low detection limit, and simple result readout. In this review, we systematically describe the synthesis, intrinsic advantages, and applications of organic dye-doped fluorescent nanoparticles, metal nanoclusters, up-conversion particles, quantum dots, carbon dots, and others for virus detection. Furthermore, future research initiatives are highlighted, including green production of fluorescent nanoparticles with high quantum yield, speedy signal reading by integrating with intelligent information, and error reduction by coupling with numerous fluorescent nanoparticles.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
15
|
Kim S, Ryoo S, Park EK, Cha SH, Song HS, Kim K, Lee J. On-Site Remote Monitoring System with NIR Signal-Based Detection of Infectious Disease Virus in Opaque Salivary Samples. ACS Sens 2023; 8:1299-1307. [PMID: 36786758 DOI: 10.1021/acssensors.2c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Infectious disease viruses, such as foot-and-mouth disease virus (FMDV), are highly contagious viruses that cause significant socioeconomic damage upon spreading. Developing an on-site diagnostic tool for early clinical detection and real-time surveillance of FMDV outbreaks is essential to prevent the further spread of the disease. However, early diagnosis of FMDV is still challenging due to the limited sensitivity and time-consuming manual result entry of commercial on-site tests for salivary samples. Here, we report a near-infrared (NIR) signal nanoprobe-based highly accurate detection and remote monitoring system toward FMDVs, which automates the analysis and reporting of diagnosis data. The NIR signal lateral flow immunoassay (LFA) was assembled with a nanoprobe with a stable emission intensity at 800 nm, minimizing the interference signal of opaque salivary samples. We investigated the clinical applicability of the NIR signal LFA at biosafety level 3 (BSL-3) laboratories using 147 opaque salivary samples. The NIR signal LFA achieved a 32-fold lower limit of detection (LOD) than a commercial LFA in detecting live FMDVs, including all isolates occurring in the Republic of Korea during 2010-2017. Our results showed that the NIR signal LFA successfully discriminated the FMDV-positive clinical salivary samples from healthy controls with a sensitivity of 96.9%, specificity of 100.0%, and AUC (area under the receiver operator characteristic curve) value of 0.999. Finally, we substantiated the real-time collection of diagnostic results using a customized portable NIR reader at nine different laboratories of government-certified quarantine institutions for foot-and-mouth disease (FMD).
Collapse
Affiliation(s)
- Suyeon Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Soyoon Ryoo
- Foot-and-Mouth Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | | | - Sang-Ho Cha
- Foot-and-Mouth Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | | | - Kayoung Kim
- Department of Fiber Convergence Material Engineering, Dankook University, Gyeonggi-do 16890, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
16
|
Milićević B, Periša J, Ristić Z, Milenković K, Antić Ž, Smits K, Kemere M, Vitols K, Sarakovskis A, Dramićanin MD. Hydrothermal Synthesis and Properties of Yb 3+/Tm 3+ Doped Sr 2LaF 7 Upconversion Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:30. [PMID: 36615940 PMCID: PMC9823976 DOI: 10.3390/nano13010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We report the procedure for hydrothermal synthesis of ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. These phosphors were synthesized by varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ (y = 0.75, 1, 2, and 3 mol%) with the aim to analyze their emissions in the near IR spectral range. According to the detailed structural analysis, Yb3+ and Tm3+ occupy the La3+ sites in the SLF host. The addition of Yb3+/Tm3+ ions has a huge impact on the lattice constant, particle size, and PL emission properties of the synthesized SLF nanophosphor. The results show that the optimal dopant concentrations for upconversion luminescence of Yb3+/Tm3+ co-doped SLF are 20 mol% Yb3+ and 1 mol% Tm3+ with EDTA as the chelating agent. Under 980 nm light excitation, a strong upconversion emission of Tm3+ ions around 800 nm was achieved. In addition, the experimental photoluminescence lifetime of Tm3+ emission in the SLF host is reported. This study discovered that efficient near IR emission from ultrasmall Yb3+/Tm3+ co-doped SLF phosphors may have potential applications in the fields of fluorescent labels in bioimaging and security applications.
Collapse
Affiliation(s)
- Bojana Milićević
- Centre of Excellence for Photoconversion, Vinča Insitute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Jovana Periša
- Centre of Excellence for Photoconversion, Vinča Insitute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Zoran Ristić
- Centre of Excellence for Photoconversion, Vinča Insitute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Katarina Milenković
- Centre of Excellence for Photoconversion, Vinča Insitute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Željka Antić
- Centre of Excellence for Photoconversion, Vinča Insitute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Krisjanis Smits
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Meldra Kemere
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Kaspars Vitols
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Anatolijs Sarakovskis
- Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063 Riga, Latvia
| | - Miroslav D. Dramićanin
- Centre of Excellence for Photoconversion, Vinča Insitute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| |
Collapse
|
17
|
Lou B, Liu Y, Shi M, Chen J, Li K, Tan Y, Chen L, Wu Y, Wang T, Liu X, Jiang T, Peng D, Liu Z. Aptamer-based biosensors for virus protein detection. Trends Analyt Chem 2022; 157:116738. [PMID: 35874498 PMCID: PMC9293409 DOI: 10.1016/j.trac.2022.116738] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Virus threatens life health seriously. The accurate early diagnosis of the virus is vital for clinical control and treatment of virus infection. Aptamers are small single-stranded oligonucleotides (DNAs or RNAs). In this review, we summarized aptasensors for virus detection in recent years according to the classification of the viral target protein, and illustrated common detection mechanisms in the aptasensors (colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced raman spectroscopy (SERS), electrochemical detection, and field-effect transistor (FET)). Furthermore, aptamers against different target proteins of viruses were summarized. The relationships between the different biomarkers of the viruses and the detection methods, and their performances were revealed. In addition, the challenges and future directions of aptasensors were discussed. This review will provide valuable references for constructing on-site aptasensors for detecting viruses, especially the SARS-CoV-2.
Collapse
Affiliation(s)
- Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jun Chen
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.,Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China
| |
Collapse
|
18
|
Ma Y, Song M, Li L, Lao X, Wong M, Hao J. Advances in upconversion luminescence nanomaterial-based biosensor for virus diagnosis. EXPLORATION (BEIJING, CHINA) 2022; 2:20210216. [PMID: 36713024 PMCID: PMC9874449 DOI: 10.1002/exp.20210216] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
Abstract
Various infectious viruses have been posing a major threat to global public health, especially SARS-CoV-2, which has already claimed more than six million lives up to now. Tremendous efforts have been made to develop effective techniques for rapid and reliable pathogen detection. The unique characteristics of upconversion nanoparticles (UCNPs) pose numerous advantages when employed in biosensors, and they are a promising candidate for virus detection. Herein, this Review will discuss the recent advancement in the UCNP-based biosensors for virus and biomarkers detection. We summarize four basic principles that guide the design of UCNP-based biosensors, which are utilized with luminescent or electric responses as output signals. These strategies under fundamental mechanisms facilitate the enhancement of the sensitivity of UCNP-based biosensors. Moreover, a detailed discussion and benefits of applying UCNP in various virus bioassays will be presented. We will also address some obstacles in these detection techniques and suggest routes for progress in the field. These progressions will undoubtedly pose UCNP-based biosensors in a prominent position for providing a convenient, alternative approach to virus detection.
Collapse
Affiliation(s)
- Yingjin Ma
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Menglin Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Lihua Li
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Xinyue Lao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Man‐Chung Wong
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| | - Jianhua Hao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina
| |
Collapse
|
19
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
20
|
Jaisankar A, Krishnan S, Rangasamy L. Recent developments of aptamer-based lateral flow assays for point-of-care (POC) diagnostics. Anal Biochem 2022; 655:114874. [PMID: 36027971 DOI: 10.1016/j.ab.2022.114874] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022]
Abstract
In the field of lateral flow assay (LFA), the application of aptamer as a bioreceptor has been implemented to overcome the limitations of antibodies, such as tedious in vivo processes, short shelf-life, and functionalization issues. To address these limitations aptamer-based LFA (ALFA) is preferred to antibody-based LFA that produces higher sensitivity and specificity. In principle, aptamers have a strong affinity towards their targets like small, large, and non-immunogenic molecules because of their high affinity, sensitivity, low dissociation constant, cost-effectiveness, and flexible nature. Thus, ALFA can be considered an efficient biosensor model for its superior portability, rapid detection with quick turnaround time, and usability by a non-technical person at any location with simple visual output. This review concisely overviews ALFA, its principles, formats, aptamer selection process, and biomedical applications. In addition, the critical components to design, develop, test, and amplify signals to create ALFA are discussed in brief. In addition, the aspects of conceptualization of ALFA product transforming from bench-side laboratory design and fabrication to commercial market are addressed in detail.
Collapse
Affiliation(s)
- Abinaya Jaisankar
- Drug Discovery Unit, Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Sasirekha Krishnan
- Drug Discovery Unit, Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Loganathan Rangasamy
- Drug Discovery Unit, Centre for Biomaterials, Cellular, and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
21
|
Zhang R, Liao T, Wang X, Zhai H, Yang D, Wang X, Wang H, Feng F. Second near-infrared fluorescent dye for lateral flow immunoassays rapid detection of influenza A/B virus. Anal Biochem 2022; 655:114847. [PMID: 35964731 DOI: 10.1016/j.ab.2022.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022]
Abstract
Sensitive and rapid diagnostic point of care testing (POCT) system is of great significance to prevent and control human virus infection. Here reported an immunochromatographic strip technology. The second near-infrared (NIR-II) fluorescent dye encapsulated into polystyrene (PS) nanoparticles, was integrated into a lateral flow assay platform to achieve excellent detection of influenza A/B. This surface-functionalized and mono-dispersed PS nanoparticles has been conjugated with influenza nucleoprotein monoclonal antibody as targets for influenza antigen-detection. This assay achieved the detection limit of 0.015 ng/mL for influenza A nucleoprotein and 4.3*10-5 HAU/mL (102.08 TCID50/mL) influenza A virus (influenza B: 0.037 ng/mL, 9.7*10-7 HAU/mL (100.43 TCID50/mL)). Compared with an Au-based lateral flow test strip, the strip's sensitivity is about 16-fold higher than it. Strip detection properties remain stable for 6 months under 4 °C to 30 °C storage. The assay's intra assay variation is 5.14% and the inter assay variation is 7.74%. Other potential endogenous and exogenous interfering substances (whole blood, nasal mucin, saliva, antipyretics, antihistamines and neuraminidase inhibitors) showed negative results, which verified the excellent specificity of this method. This assay was successfully applied to the POCT quantitative detection of influenza A/B virus, the sensitivity to influenza A and B viruses was 70% and 87.5% respectively, and the specificity was 100%. Therefore, these microspheres can be used as an effective material for rapid POCT detection in clinical specimens.
Collapse
Affiliation(s)
- Runxuan Zhang
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| | - Tao Liao
- WWHS Biotech, Inc, China, Shenzhen, 518000, China
| | - Xiao Wang
- Institute of Public Security, Northwest University of Political Science and Law, China, Xi'an, 710122, China
| | - Hong Zhai
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| | - Di Yang
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| | - Xin Wang
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| | - Haiyan Wang
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China.
| | - Feng Feng
- Department of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, China, Shanxi Datong University, Datong, 037009, China
| |
Collapse
|
22
|
Deng C, Li H, Qian S, Fu P, Zhou H, Zheng J, Wang Y. An Emerging Fluorescent Carbon Nanobead Label Probe for Lateral Flow Assays and Highly Sensitive Screening of Foodborne Toxins and Pathogenic Bacteria. Anal Chem 2022; 94:11514-11520. [PMID: 35959591 DOI: 10.1021/acs.analchem.2c01430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By virtue of the fascinating merits of low cost, rapid screening, and on-site detection, fluorescence lateral flow assays (FLFAs) have attracted considerable attention. Their detection limits are closely associated with the label probes used. The development of high-performance and robust phosphors remains a great challenge. Herein, we presented a new label probe, i.e., fluorescent carbon nanobeads (FCNBs), for FLFAs. Monodispersive, water-soluble, and highly emissive FCNBs were facilely prepared via a hydrothermal carbonization manner. Their abundant amino groups were beneficial for versatile surface functionalization. After being modified by biomolecules, the fabricated FCNB reporter probes were adopted for the construction of lateral flow test strips toward representative foodborne toxins, i.e., aflatoxin B1 (AFB1), and pathogenic bacteria, i.e., Staphylococcus aureus (S. aureus), respectively. The detection limits (0.01 ng/mL for AFB1 and 102 cfu/mL for S. aureus) were about 1 or 2 orders of magnitude lower than most reported methods. Furthermore, the proposed test strips were successfully applied for the quantitative, accurate, and rapid screening of AFB1 and S. aureus in food samples. This work provided a promising label probe for FLFAs and would open the opportunity to exploit a sensing platform by modifying different ligands onto the FCNBs.
Collapse
Affiliation(s)
- Chen Deng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China.,Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| | - Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| | - Sihua Qian
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| | - Hualan Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| |
Collapse
|
23
|
Li D, Zhou Z, Sun J, Mei X. Prospects of NIR fluorescent nanosensors for green detection of SARS-CoV-2. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 362:131764. [PMID: 35370362 PMCID: PMC8964475 DOI: 10.1016/j.snb.2022.131764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the novel coronavirus disease 2019 (COVID-19) is continuously causing hazards for the world. Effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can relieve the impact, but various toxic chemicals are also released into the environment. Fluorescence sensors offer a facile analytical strategy. During fluorescence sensing, biological samples such as tissues and body fluids have autofluorescence, giving false-positive/negative results because of the interferences. Fluorescence near-infrared (NIR) nanosensors can be designed from low-toxic materials with insignificant background signals. Although this research is still in its infancy, further developments in this field have the potential for sustainable detection of SARS-CoV-2. Herein, we summarize the reported NIR fluorescent nanosensors with the potential to detect SARS-CoV-2. The green synthesis of NIR fluorescent nanomaterials, environmentally compatible sensing strategies, and possible methods to reduce the testing frequencies are discussed. Further optimization strategies for developing NIR fluorescent nanosensors to facilitate greener diagnostics of SARS-CoV-2 for pandemic control are proposed.
Collapse
Key Words
- 5 G, the fifth generation technology standard for broadband cellular networks
- ACE2, Angiotensin-converting enzyme 2
- AIE, aggregation-induced emission
- AIE810NP, an aggregation-induced emission (AIE) nanoparticle (λem = 810 nm)
- AIEgens, AIE luminogens
- ASOs, antisense oligonucleotides
- AuNP, Gold nanoparticle
- CF647, a cyanine-based far-red fluorescent dye
- COVID-19, The pandemic of the novel coronavirus disease 2019
- CP-MNB, capture probe-conjugated magnetic bead particle
- CdS, core/shell lead sulfide/cadmium sulfide
- CoPhMoRe, corona phase molecular recognition
- Cy7Cl, a cationic cyanine dye
- DCNPs, Down-conversion nanoparticles
- DPV, Differential pulse voltammetry
- DSNP, down shifting nanoparticles
- DSNP@MY-1057-GPC-3, active targeting antibody glypican-3 (GPC-3) was conjugated with DSNP@MY-1057
- E, envelope
- EB-NS, prepared by the layered pigment CaCuSi4O10 (Egyptian Blue, EB) via ball milling and facile tip sonication into NIR fluorescent nanosheets
- ENMs, electrospun nanofibrous membranes
- Environmental-friendly
- FLU, an infectious disease caused by influenza viruses
- FRET, fluorescence resonance energy transfer
- Green synthesis
- HA1, hemagglutinin subunit.
- HA1., hemagglutinin subunit
- HAS, serum albumin
- HCC, hepatocellular carcinoma
- IONPs, iron oxide nanoparticles.
- IONPs., iron oxide nanoparticles
- IgG A, IgG aggregation
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LED, light emitting diode
- LICOR, IRDye-800CW
- Low-toxic
- M, membrane
- MCU, microcontroller unit
- MERS, Middle East respiratory syndrome coronavirus
- N protein, nucleocapsid protein
- N, nucleocapsid
- NIR
- NIR, Near-Infrared
- NIR775, an H2S-inert fluorophore
- Nanosensor
- P, FITC-labelled GzmB substrate peptides
- PBS, Phosphate-buffered saline
- PCR, Polymerase Chain Reaction
- PEG, branched by Polyethylene glycol
- PEG1000 PE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)− 1000]
- PEG2000 PE, (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)− 2000);
- POC, point-of-care
- PS, polystyrene
- Pb-Ag2S ODs, lead doped Ag2S quantum dots
- QDs, quantum dots
- QY, quantum yield
- R, R represents a common recognition element for the target
- RCA, rolling circle amplification
- RNA, ribonucleic acid
- S RBD, SARS-CoV-2 spike receptor-binding domain
- S protein, spike protein
- S, spike
- SAM, self-assembled monolayer
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus
- SPNs, semiconducting polymer nanoparticles.
- SPNs., semiconducting polymer nanoparticles
- SWCNTs, single-walled carbon nanotubes
- Si-RP, silica-reporter probe
- VIS, visible
- VTM, viral transport medium
- pGOLD, plasmonic gold
Collapse
Affiliation(s)
- Dan Li
- Department of Basic Science, Jinzhou Medical University, 40 Songpo Road, Jinzhou 121001, China
| | - Zipeng Zhou
- Department of Key Laboratory of Medical Tissue Engineering of Liaoning, Jinzhou Medical University, 40 Songpo Road, Jinzhou 121001, China
| | - Jiachen Sun
- Department of Key Laboratory of Medical Tissue Engineering of Liaoning, Jinzhou Medical University, 40 Songpo Road, Jinzhou 121001, China
| | - Xifan Mei
- Department of Key Laboratory of Medical Tissue Engineering of Liaoning, Jinzhou Medical University, 40 Songpo Road, Jinzhou 121001, China
| |
Collapse
|
24
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
25
|
Shapoval O, Brandmeier JC, Nahorniak M, Oleksa V, Makhneva E, Gorris HH, Farka Z, Horák D. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta 2022; 244:123400. [PMID: 35395457 DOI: 10.1016/j.talanta.2022.123400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Surface engineering of upconverting nanoparticles (UCNPs) is crucial for their bioanalytical applications. Here, an antibody specific to cardiac troponin I (cTnI), an important biomarker for acute myocardial infection, was covalently immobilized on the surface of UCNPs to prepare a label for the detection of cTnI biomarker in an upconversion-linked immunoassay (ULISA). Core-shell UCNPs (NaYF4:Yb,Tm@NaYF4) were first coated with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and then conjugated to antibodies. The morphology (size and uniformity), hydrodynamic diameter, chemical composition, and amount of coating on the of UCNPs, as well as their upconversion luminescence, colloidal stability, and leaching of Y3+ ions into the surrounding media, were determined. The developed ULISA allowed reaching a limit of detection (LOD) of 0.13 ng/ml and 0.25 ng/ml of cTnI in plasma and serum, respectively, which represents 12- and 2-fold improvement to conventional enzyme-linked immunosorbent based on the same immunoreagents.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Mykhailo Nahorniak
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Ekaterina Makhneva
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic.
| |
Collapse
|
26
|
Wu P, Xue F, Zuo W, Yang J, Liu X, Jiang H, Dai J, Ju Y. A Universal Bacterial Catcher Au-PMBA-Nanocrab-Based Lateral Flow Immunoassay for Rapid Pathogens Detection. Anal Chem 2022; 94:4277-4285. [PMID: 35244383 DOI: 10.1021/acs.analchem.1c04909] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In traditional lateral flow immunoassays (LFIA) for pathogens detection, capture antibody (CA) is necessary and usually conjugated to Au nanoparticles (NPs) in order to label the target analyte. However, the acquisition process of the Au-CA nanoprobe is relatively complicated and costly, which will limit the application of LFIA. Herein, p-mercaptophenylboronic acid-modified Au NPs (namely Au-PMBA nanocrabs), were synthesized and applied for a new CA-independent LFIA method. The stable Au-PMBA nanocrabs showed outstanding capability to capture both Gram-negative bacteria and Gram-positive bacteria through covalent bonding. The acquired Au-PMBA-bacteria complexes were dropped onto the strip, and then captured by the detection antibody on the test line (T-line). Take Escherichia coli O157:H7 as an example, the gray value of T-line was proportional to the bacteria concentration and the linear range was 103-107 cfu·mL-1. This CA-independent strategy exhibited higher sensitivity than the traditional CA-dependent double antibody sandwich method, because detection limit of the former one was 103 cfu·mL-1 only by visual observation, which was reduced by 3 orders of magnitude. Besides, this platform successfully screened E. coli O157:H7 in four food samples with recoveries ranging from 90.25% to 107.25%. This CA-independent LFIA showed great advantages and satisfactory potential for rapid foodborne pathogens detection in real samples.
Collapse
Affiliation(s)
- Pengcheng Wu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanchao Zuo
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Xinmei Liu
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
27
|
Bing-Shuai ZHOU, Shi-Han XU, Song-Tao HU, Li-Heng SUN, Jie-Kai LYU, Rui SUN, Wei LIU, Xue BAI, Lin XU, Lin WANG, Bing HAN, Biao DONG. Recent progress of upconversion nanoparticles in the treatment and detection of various diseases. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Yurash B, Dixon A, Espinoza C, Mikhailovsky A, Chae S, Nakanotani H, Adachi C, Nguyen TQ. Efficiency of Thermally Activated Delayed Fluorescence Sensitized Triplet Upconversion Doubled in Three-Component System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103976. [PMID: 34793602 DOI: 10.1002/adma.202103976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
As in many fields, the most exciting endeavors in photon upconversion research focus on increasing the efficiency (upconversion quantum yield) and performance (anti-Stokes shift) while diminishing the cost of production. In this vein, studies employing metal-free thermally activated delayed fluorescence (TADF) sensitizers have garnered increased interest. Here, for the first time, the strategy of ternary photon upconversion is utilized with the TADF sensitizer 2,4,5,6-tetrakis(carbazol-9-yl)isophthalonitrile (4CzIPN), resulting in a doubling of the upconversion quantum yield in comparison to the binary system employing p-terphenyl as the emitter. In this ternary blend, the sensitizer 4CzIPN is paired with an intermediate acceptor, 1-methylnaphthalene, in addition to the emitter molecule, p-terphenyl, yielding a normalized upconversion quantum yield of 7.6% while maintaining the 0.83 eV anti-Stokes shift. These results illustrate the potential benefits of utilizing this strategy of energy-funneling, previously used only with heavy-metal based sensitizers, to increase the performance of these photon upconversion systems.
Collapse
Affiliation(s)
- Brett Yurash
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Alana Dixon
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Carolina Espinoza
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Alexander Mikhailovsky
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids (CPOS) and Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
29
|
Kong B, Cai J, Tuo S, Wen L, Jiang H, He L, Luo L, Zhang Y, Chen A, Tang J, Pang T, Zhang H, Zhong K, Zeng Z. Rapid Construction of an Optimal Model for Near-Infrared Spectroscopy (NIRS) by Particle Swarm Optimization (PSO). ANAL LETT 2022. [DOI: 10.1080/00032719.2021.2021534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Bo Kong
- China Tobacco Hunan Industrial Company, Changsha, Hunan, China
| | - Jiaxiao Cai
- China Tobacco Hunan Industrial Company, Changsha, Hunan, China
| | - Suxing Tuo
- China Tobacco Hunan Industrial Company, Changsha, Hunan, China
| | - Liliang Wen
- Dalian ChemDataSolution Information Technology Company, Dalian, Liaoning, China
| | - Hui Jiang
- Dalian ChemDataSolution Information Technology Company, Dalian, Liaoning, China
| | - Liping He
- China Tobacco Yunnan Industrial Company, Kunming, Yunnan, China
| | - Lin Luo
- China Tobacco Yunnan Industrial Company, Kunming, Yunnan, China
| | - Yipeng Zhang
- China Tobacco Yunnan Industrial Company, Kunming, Yunnan, China
| | - Aiming Chen
- Dalian ChemDataSolution Information Technology Company, Dalian, Liaoning, China
| | - Jun Tang
- China Tobacco Yunnan Industrial Company, Kunming, Yunnan, China
| | - Tao Pang
- Yunnan Academy of Tobacco agriculture Science, Yuxi, Yunnan, China
| | - Haitao Zhang
- China Tobacco Yunnan Industrial Company, Kunming, Yunnan, China
| | - Kejun Zhong
- China Tobacco Hunan Industrial Company, Changsha, Hunan, China
| | - Zhongda Zeng
- Dalian ChemDataSolution Information Technology Company, Dalian, Liaoning, China
- College of Environmental and Chemical Engineering, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
30
|
Wu N, Wei Y, Pan L, Yang X, Qi H, Gao Q, Zhang C, Li CZ. Sensitive and rapid determination of heat shock protein 70 using lateral flow immunostrips and upconversion nanoparticle fluorescence probes. Analyst 2022; 147:3444-3450. [DOI: 10.1039/d2an00742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat shock protein 70 (Hsp70), belonging to the heat shock protein (HSP) family, is reported to be a potential diagnostic biomarker.
Collapse
Affiliation(s)
- Nengying Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
- Guizhou Academy of Forestry, Guiyang, 550000, P.R. China
| | - Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Lanlan Pan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Chen-zhong Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
31
|
Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species: The intertwine of nanotechnology with sensing strategies. Trends Analyt Chem 2021; 145:116460. [PMID: 34697511 PMCID: PMC8529554 DOI: 10.1016/j.trac.2021.116460] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are responsible for multiple infections in humans that impose huge health burdens on individuals and populations worldwide. Therefore, numerous diagnostic methods and strategies have been developed for prevention, management, and decreasing the burden of viral diseases, each having its advantages and limitations. Viral infections are commonly detected using serological and nucleic acid-based methods. However, these conventional and clinical approaches have some limitations that can be resolved by implementing other detector devices. Therefore, the search for sensitive, selective, portable, and costless approaches as efficient alternative clinical methods for point of care testing (POCT) analysis has gained much attention in recent years. POCT is one of the ultimate goals in virus detection, and thus, the tests need to be rapid, specific, sensitive, accessible, and user-friendly. In this review, after a brief overview of viruses and their characteristics, the conventional viral detection methods, the clinical approaches, and their advantages and shortcomings are firstly explained. Then, LFA systems working principles, benefits, classification are discussed. Furthermore, the studies regarding designing and employing LFAs in diagnosing different types of viruses, especially SARS-CoV-2 as a main concern worldwide and innovations in the LFAs' approaches and designs, are comprehensively discussed here. Furthermore, several strategies addressed in some studies for overcoming LFA limitations like low sensitivity are reviewed. Numerous techniques are adopted to increase sensitivity and perform quantitative detection. Employing several visualization methods, using different labeling reporters, integrating LFAs with other detection methods to benefit from both LFA and the integrated detection device advantages, and designing unique membranes to increase reagent reactivity, are some of the approaches that are highlighted.
Collapse
|
33
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
34
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
35
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
36
|
Yin X, Dou L, Yao X, Liu S, Zhang L, Zhao M, Su L, Sun J, Wang J, Zhang D. Controllable assembly metal-organic frameworks and gold nanoparticles composites for sensitive immunochromatographic assay. Food Chem 2021; 367:130737. [PMID: 34384985 DOI: 10.1016/j.foodchem.2021.130737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Creating universal signal labels from fundamental building blocks with excellent biocompatibility and well-controlled size/uniformity simultaneously for immunochromatographic assay (ICA) is highly desired but extremely challenging. Here, a nano-signal label strategy was reported, in which the amino-terminated zirconium MOFs (NU66) are adopted to construct powerful matrix materials and gold nanoparticles (AuNPs) act as the linker between metal-organic frameworks (MOFs) and antibodies. Particularly, AuNPs were immobilized directly on the surface of NU66, giving NU66 excellent biocompatibility with bright color signal labels and improving the salt ion stability of AuNPs. As a proof of concept, the furazolidone residues was monitored by the developed NU66@AuNPs-ICA in food samples (pork, shrimp and eggs). With 3-[(4-carboxyphenyl) monomethyl] amino-2-oxazolidinone (CPAOZ) as analyte target, the visual limit of detection (vLOD) and cut-off level were 0.6 ng/mL and 3.0 ng/mL, respectively. This work may open a new avenue for the application of MOFs in immunochromatography assays.
Collapse
Affiliation(s)
- Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Leina Dou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiaolin Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Man Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
37
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
38
|
Kumar B, Malhotra K, Fuku R, Van Houten J, Qu GY, Piunno PA, Krull UJ. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116256] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
An NIR dual-emitting/absorbing inorganic compact pair: A self-calibrating LRET system for homogeneous virus detection. Biosens Bioelectron 2021; 190:113369. [PMID: 34098357 DOI: 10.1016/j.bios.2021.113369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022]
Abstract
Many conventional optical biosensing systems use a single responsive signal in the visible light region. This limits their practical applications, as the signal can be readily perturbed by various external environmental factors. Herein, a near-infrared (NIR)-based self-calibrating luminescence resonance energy transfer (LRET) system was developed for background-free detection of analytes in homogeneous sandwich-immunoassays. The inorganic LRET pair was comprised of NIR dual-emitting lanthanide-doped nanoparticles (LnNPs) as donors and NIR-absorbing LnNPs as acceptors, which showed a narrow absorption peak (800 nm) and long-term stability, enabling stable LRET with a built-in self-calibrating signal. Screened single-chain variable fragments (scFvs) were used as target avian influenza virus (AIV)-binding antibodies to increase the LRET efficiency in sandwich-immunoassays. The compact sensor platform successfully detected AIV nucleoproteins with a 0.38 pM limit of detection in buffer solution and 64 clinical samples. Hence, inorganic LnNP pairs may be effective for self-calibrating LRET systems in the background-free NIR region.
Collapse
|
40
|
Wiriyachaiporn N, Sirikaew S, Bamrungsap S, Limcharoen T, Polkankosit P, Roeksrungruang P, Ponlamuangdee K. A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1687-1694. [PMID: 33861235 DOI: 10.1039/d0ay01988g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening as a model target molecule was successfully developed. In this work, Cy5-loaded silica nanoparticles were directly conjugated to monoclonal antibodies, specific to the influenza B nucleoprotein, via a direct physisorption method and used as detector probes. Using this approach, the signal response to the detection was further determined using a fluorescent signal intensity measurement method via a portable reader, in combination with fluorescence imaging analysis. The degree to which the fluorescence signal response is detected is proportional to the amount of the target virus protein present in the system, reflected by the accumulation of the formed particle-antibody conjugates within the test system. Under optimized conditions, the system is capable of detecting the influenza B virus protein at a level of 0.55 μg per test within 30 min, using small sample volumes as low as 100 μL (R2 = 0.9544). In addition to its simplicity, further application of the system in detecting the influenza B virus protein was demonstrated using the viral transport media as specimen matrices. It was also shown that the system can perform the detection without cross-reactivity to other closely related respiratory viruses.
Collapse
Affiliation(s)
- Natpapas Wiriyachaiporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | | | | | | | | | | | | |
Collapse
|
41
|
Brazaca LC, Dos Santos PL, de Oliveira PR, Rocha DP, Stefano JS, Kalinke C, Abarza Muñoz RA, Bonacin JA, Janegitz BC, Carrilho E. Biosensing strategies for the electrochemical detection of viruses and viral diseases - A review. Anal Chim Acta 2021; 1159:338384. [PMID: 33867035 PMCID: PMC9186435 DOI: 10.1016/j.aca.2021.338384] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Viruses are the causing agents for many relevant diseases, including influenza, Ebola, HIV/AIDS, and COVID-19. Its rapid replication and high transmissibility can lead to serious consequences not only to the individual but also to collective health, causing deep economic impacts. In this scenario, diagnosis tools are of significant importance, allowing the rapid, precise, and low-cost testing of a substantial number of individuals. Currently, PCR-based techniques are the gold standard for the diagnosis of viral diseases. Although these allow the diagnosis of different illnesses with high precision, they still present significant drawbacks. Their main disadvantages include long periods for obtaining results and the need for specialized professionals and equipment, requiring the tests to be performed in research centers. In this scenario, biosensors have been presented as promising alternatives for the rapid, precise, low-cost, and on-site diagnosis of viral diseases. This critical review article describes the advancements achieved in the last five years regarding electrochemical biosensors for the diagnosis of viral infections. First, genosensors and aptasensors for the detection of virus and the diagnosis of viral diseases are presented in detail regarding probe immobilization approaches, detection methods (label-free and sandwich), and amplification strategies. Following, immunosensors are highlighted, including many different construction strategies such as label-free, sandwich, competitive, and lateral-flow assays. Then, biosensors for the detection of viral-diseases-related biomarkers are presented and discussed, as well as point of care systems and their advantages when compared to traditional techniques. Last, the difficulties of commercializing electrochemical devices are critically discussed in conjunction with future trends such as lab-on-a-chip and flexible sensors.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| | - Pãmyla Layene Dos Santos
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Paulo Roberto de Oliveira
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Diego Pessoa Rocha
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Jéssica Santos Stefano
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Cristiane Kalinke
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Rodrigo Alejandro Abarza Muñoz
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil; Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Juliano Alves Bonacin
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, 13083-859, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências Naturais, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil.
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
42
|
Zheng C, Yin M, Su B, Peng A, Guo Z, Chen X, Chen X. A novel near-infrared light-responsive photoelectrochemical platform for detecting microcystin-LR in fish based on Ag2S cubes and plasmonic Au nanoparticles. Talanta 2021; 221:121447. [DOI: 10.1016/j.talanta.2020.121447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
|
43
|
Chand R, Mittal N, Srinivasan S, Rajabzadeh AR. Upconverting nanoparticle clustering based rapid quantitative detection of tetrahydrocannabinol (THC) on lateral-flow immunoassay. Analyst 2021; 146:574-580. [DOI: 10.1039/d0an01850c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cannabis, also known as marijuana, is the most abused psychoactive drug worldwide.
Collapse
Affiliation(s)
- Rohit Chand
- W Booth School of Engineering Practice and Technology
- McMaster University
- Hamilton
- Canada
| | - Neha Mittal
- W Booth School of Engineering Practice and Technology
- McMaster University
- Hamilton
- Canada
| | - Seshasai Srinivasan
- W Booth School of Engineering Practice and Technology
- McMaster University
- Hamilton
- Canada
| | - Amin Reza Rajabzadeh
- W Booth School of Engineering Practice and Technology
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
44
|
Kim Y, Gonzales J, Zheng Y. Sensitivity-Enhancing Strategies in Optical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004988. [PMID: 33369864 PMCID: PMC7884068 DOI: 10.1002/smll.202004988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/30/2020] [Indexed: 05/07/2023]
Abstract
High-sensitivity detection of minute quantities or concentration variations of analytes of clinical importance is critical for biosensing to ensure accurate disease diagnostics and reliable health monitoring. A variety of sensitivity-improving concepts have been proposed from chemical, physical, and biological perspectives. In this review, elements that are responsible for sensitivity enhancement are classified and discussed in accordance with their operating steps in a typical biosensing workflow that runs through sampling, analyte recognition, and signal transduction. With a focus on optical biosensing, exemplary sensitivity-improving strategies are introduced, which can be developed into "plug-and-play" modules for many current and future sensors, and discuss their mechanisms to enhance biosensing performance. Three major strategies are covered: i) amplification of signal transduction by polymerization and nanocatalysts, ii) diffusion-limit-breaking systems for enhancing sensor-analyte contact and subsequent analyte recognition by fluid-mixing and analyte-concentrating, and iii) combined approaches that utilize renal concentration at the sampling and recognition steps and chemical signal amplification at the signal transduction step.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John Gonzales
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
45
|
Recent advances in sensitivity enhancement for lateral flow assay. Mikrochim Acta 2021; 188:379. [PMID: 34647157 PMCID: PMC8513549 DOI: 10.1007/s00604-021-05037-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/25/2021] [Indexed: 12/04/2022]
Abstract
Conventional lateral flow assay (LFA) is typically performed by observing the color changes in the test lines by naked eyes, which achieves considerable commercial success and has a significant impact on the fields of food safety, environment monitoring, disease diagnosis, and other applications. However, this qualitative detection method is not very suitable for low levels of disease biomarkers' detection. Although many nanomaterials are used as new labels for LFA, additional readers limit their application to some extent. Fortunately, a lot of work has been done for improving the sensitivity of LFA. In this review, currently reported LFA sensitivity enhancement methods with an objective evaluation are summarized, such as sample pretreatment, the change of flow rate, and label evolution, and future development direction and challenges of LFAs are discussed.
Collapse
|
46
|
Lee I, Seok Y, Jung H, Yang B, Lee J, Kim J, Pyo H, Song CS, Choi W, Kim MG, Lee J. Integrated Bioaerosol Sampling/Monitoring Platform: Field-Deployable and Rapid Detection of Airborne Viruses. ACS Sens 2020; 5:3915-3922. [PMID: 33090778 DOI: 10.1021/acssensors.0c01531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Airborne pathogens causing infectious diseases are often highly transmittable between humans. Therefore, an airborne pathogen-monitoring system capable of on-site detection and identification would aid tremendously in preventing and controlling the early stages of pathogen spread. Here, we describe an integrated sampling/monitoring platform for on-site and real-time detection of airborne viruses. We used MS2 bacteriophage and avian influenza virus (AIV) H1N1 to evaluate bioaerosol sampling and detection performance of the platform. Our results show that, within 20 min, aerosolized viruses can be detected using the signal of near-infrared (NIR)-to-NIR nanoprobes. The pretreatment of the sampling pad improved the transfer efficiency of MS2 viruses to the detection zone, compared to an untreated pad. Our platform could detect concentrations as low as 104.294 50% egg infectious dose (EID50)/m3 AIVs collected from a cloacal swab sample (104.838 EID50/mL). These results indicate that our sampling/monitoring platform could be applied for the early detection of biological hazards in various fields.
Collapse
Affiliation(s)
- Inae Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Youngung Seok
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Huijin Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byungjin Yang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jiho Lee
- Avian Disease and Infectious Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jaeyoung Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Heesoo Pyo
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chang-Seon Song
- Avian Disease and Infectious Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Won Choi
- Department of Landscape Architecture and Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Joonseok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 Republic of Korea
| |
Collapse
|
47
|
Ji T, Xu X, Wang X, Cao N, Han X, Wang M, Chen B, Lin Z, Jia H, Deng M, Xia Y, Guo X, Lei M, Liu Z, Zhou Q, Chen G. Background-Free Chromatographic Detection of Sepsis Biomarker in Clinical Human Serum through Near-Infrared to Near-Infrared Upconversion Immunolabeling. ACS NANO 2020; 14:16864-16874. [PMID: 33295753 DOI: 10.1021/acsnano.0c05700] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Luminescence nanomaterial-based lateral flow assay (LFA) is promising for point-of-care tests. However, the detection sensitivity and accuracy are often affected by the interferences of autofluorescence and photon scattering from nitrocellulose membrane and colored plasma. Here, we describe a near-infrared to near-infrared upconversion nanoparticle (UCNP) immunolabeled LFA for background-free chromatographic detection of sepsis biomarker procalcitonin (PCT) in clinical human plasma. This upconversion immunolabeling enables both light excitation (at ∼980 nm) and anti-Stokes emission (at 800 nm) to be adopted within the first biological window (700-1000 nm), which eliminates background autofluorescence as well as photon scattering interferences, empowering a high-sensitivity detection without complicated procedures. After optimization, the described assay presented a limit of detection reaching down to 0.03 ng/mL, lower than the normal level (0.05 ng/mL), while having a detection range of 0.03-50 ng/mL that covers the clinical PCT level of interest (0.5-10 ng/mL). The assay recoveries in human serum samples were evaluated to be about 95-110%, whereas the inter- and intra-assay coefficient variations were both determined to be below 15%. Importantly, measured PCT concentrations in clinical samples are in good correlation with that of the electrochemiluminescence immunoassay (Roche) widely applied in large clinical settings. This near-infrared to near-infrared upconversion immunolabeling approach has direct implications for ultrasensitive and background-free point-of-care detection of other serum biomarkers in resource-limited clinical settings.
Collapse
Affiliation(s)
- Tianxing Ji
- Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xinqiang Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-Structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- Clinical Laboratory Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510260, China
| | - Xindong Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-Structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Ning Cao
- Department of Learning and Instruction, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Xiaorui Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-Structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Minhong Wang
- Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Bo Chen
- Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhen Lin
- Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hongyun Jia
- Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Min Deng
- Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yong Xia
- Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xuguang Guo
- Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Meng Lei
- Clinical Laboratory Medicine, Yichun People's Hospital, Yichun 336000, China
| | - Zhenwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Qiang Zhou
- Clinical Laboratory Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-Structures, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
48
|
Ribeiro BV, Cordeiro TAR, Oliveira E Freitas GR, Ferreira LF, Franco DL. Biosensors for the detection of respiratory viruses: A review. TALANTA OPEN 2020; 2:100007. [PMID: 34913046 PMCID: PMC7428963 DOI: 10.1016/j.talo.2020.100007] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
The recent events of outbreaks related to different respiratory viruses in the past few years, exponentiated by the pandemic caused by the coronavirus disease 2019 (COVID-19), reported worldwide caused by SARS-CoV-2, raised a concern and increased the search for more information on viruses-based diseases. The detection of the virus with high specificity and sensitivity plays an important role for an accurate diagnosis. Despite the many efforts to identify the SARS-CoV-2, the diagnosis still relays on expensive and time-consuming analysis. A fast and reliable alternative is the use of low-cost biosensor for in loco detection. This review gathers important contributions in the biosensor area regarding the most current respiratory viruses, presents the advances in the assembly of the devices and figures of merit. All information is useful for further biosensor development for the detection of respiratory viruses, such as for the new coronavirus.
Collapse
Affiliation(s)
- Brayan Viana Ribeiro
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| | - Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Guilherme Ramos Oliveira E Freitas
- Laboratory of Microbiology (MICRO), Biotechnology Institute, Federal University of Uberlândia - campus Patos de Minas - Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais, Brazil
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| |
Collapse
|
49
|
Miller BS, Bezinge L, Gliddon HD, Huang D, Dold G, Gray ER, Heaney J, Dobson PJ, Nastouli E, Morton JJL, McKendry RA. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics. Nature 2020; 587:588-593. [PMID: 33239800 DOI: 10.1038/s41586-020-2917-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/16/2020] [Indexed: 01/06/2023]
Abstract
The quantum spin properties of nitrogen-vacancy defects in diamond enable diverse applications in quantum computing and communications1. However, fluorescent nanodiamonds also have attractive properties for in vitro biosensing, including brightness2, low cost3 and selective manipulation of their emission4. Nanoparticle-based biosensors are essential for the early detection of disease, but they often lack the required sensitivity. Here we investigate fluorescent nanodiamonds as an ultrasensitive label for in vitro diagnostics, using a microwave field to modulate emission intensity5 and frequency-domain analysis6 to separate the signal from background autofluorescence7, which typically limits sensitivity. Focusing on the widely used, low-cost lateral flow format as an exemplar, we achieve a detection limit of 8.2 × 10-19 molar for a biotin-avidin model, 105 times more sensitive than that obtained using gold nanoparticles. Single-copy detection of HIV-1 RNA can be achieved with the addition of a 10-minute isothermal amplification step, and is further demonstrated using a clinical plasma sample with an extraction step. This ultrasensitive quantum diagnostics platform is applicable to numerous diagnostic test formats and diseases, and has the potential to transform early diagnosis of disease for the benefit of patients and populations.
Collapse
Affiliation(s)
- Benjamin S Miller
- London Centre for Nanotechnology, University College London, London, UK. .,Division of Medicine, University College London, London, UK.
| | - Léonard Bezinge
- London Centre for Nanotechnology, University College London, London, UK
| | - Harriet D Gliddon
- London Centre for Nanotechnology, University College London, London, UK
| | - Da Huang
- London Centre for Nanotechnology, University College London, London, UK
| | - Gavin Dold
- London Centre for Nanotechnology, University College London, London, UK.,Department of Electronic and Electrical Engineering, University College London, London, UK
| | - Eleanor R Gray
- London Centre for Nanotechnology, University College London, London, UK
| | - Judith Heaney
- Advanced Pathogens Diagnostic Unit, University College London Hospitals, London, UK
| | | | - Eleni Nastouli
- Department of Virology, University College London Hospitals, London, UK
| | - John J L Morton
- London Centre for Nanotechnology, University College London, London, UK.,Department of Electronic and Electrical Engineering, University College London, London, UK
| | - Rachel A McKendry
- London Centre for Nanotechnology, University College London, London, UK. .,Division of Medicine, University College London, London, UK.
| |
Collapse
|
50
|
Kim SM, Kim J, Noh S, Sohn H, Lee T. Recent Development of Aptasensor for Influenza Virus Detection. BIOCHIP JOURNAL 2020; 14:327-339. [PMID: 33224441 PMCID: PMC7670017 DOI: 10.1007/s13206-020-4401-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
In nowadays, we have entered the new era of pandemics and the significance of virus detection deeply impacts human society. Viruses with genetic mutations are reported nearly every year, and people have prepared tools to detect the virus and vaccines to ensure proper treatments. Influenza virus (IV) is one of the most harmful viruses reporting various mutations, sub-types, and rapid infection speed for humans and animals including swine and poultry. Moreover, IV infection presents several harmful symptoms including cough, fever, diarrhea, chills, even causing death. To reduce the IV-induced harm, its proper and rapid detection is highly required. Conventional techniques were used against various IV sub-types including H1N1, H3N2, and H5N1. However, some of the techniques are time-consuming, expensive, or labor-intensive for detecting IV. Recently, the nucleic acid-based aptamer has gained attention as a novel bioprobe for constructing a biosensor. In this review, the authors discuss the recent progress in aptasensors for detecting IV in terms of an electrochemical and an optical biosensor.
Collapse
Affiliation(s)
- Soo Min Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01899 Republic of Korea
| |
Collapse
|