1
|
Gupta K, Soni N, Nema RK, Sahu N, Srivastava RK, Ratre P, Mishra PK. Microcystin-LR in drinking water: An emerging role of mitochondrial-induced epigenetic modifications and possible mitigation strategies. Toxicol Rep 2024; 13:101745. [PMID: 39411183 PMCID: PMC11474209 DOI: 10.1016/j.toxrep.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Algal blooms are a serious menace to freshwater bodies all over the world. These blooms typically comprise cyanobacterial outgrowths that produce a heptapeptide toxin, Microcystin-LR (MC-LR). Chronic MC-LR exposure impairs mitochondrial-nuclear crosstalk, ROS generation, activation of DNA damage repair pathways, apoptosis, and calcium homeostasis by interfering with PC/MAPK/RTK/PI3K signaling. The discovery of the toxin's biosynthesis pathways paved the way for the development of molecular techniques for the early detection of microcystin. Phosphatase inhibition-based bioassays, high-performance liquid chromatography, and enzyme-linked immunosorbent tests have recently been employed to identify MC-LR in aquatic ecosystems. Biosensors are an exciting alternative for effective on-site analysis and field-based characterization. Here, we present a synthesis of evidence supporting MC-LR as a mitotoxicant, examine various detection methods, and propose a novel theory for the relevance of MC-LR-induced breakdown of mitochondrial machinery and its myriad biological ramifications in human health and disease.
Collapse
Affiliation(s)
- Kashish Gupta
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Ram Kumar Nema
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Neelam Sahu
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Xu R, Yu X, Jiang C, Wei Q, Wang L. Dye-sensitized NiO photocathode sensor based on signal-sensitive change strategy for MC-LR detection. Mikrochim Acta 2024; 191:567. [PMID: 39196429 DOI: 10.1007/s00604-024-06640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A novel photoelectrochemical (PEC) sensor for the detection of microcystic toxins (MC-LR) was developed on the basis of signal-sensitive change strategy. NiO nanoarray as a basic photoactive material was grown directly on the ITO glass electrode via calcination after hydrothermal reaction, while dye N719 was used to sensitize the electrode for enhancing visible light absorption, and the first signal-on stage was obtained. In the meantime, p-type Cu2O was applied as the signal probe attached to probe DNA (DNA2) to improve the sensitivity, and the second "signal-on" stage appeared because of its synergistic effect with NiO nanoarrays. The PEC signal decreases after the target analyte MC-LR is modified on the electrode due to the stronger affinity between MC-LR and its complementary aptamer DNA; part of the Cu2O-DNA2 will dissociate from the electrode. This sensitive signal change strategy allows the detection limit of the MC-LR sensor to be as low as 1.7 pM, which offers an optional method for the sensitive and selective detection of other target molecules, with potential applications in environmental monitoring and toxin determination.
Collapse
Affiliation(s)
- Rui Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, Shandong, China
| | - Xiaolin Yu
- Jinan Science and Technology Innovation Promotion Center, Jinan, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China.
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, Shandong, China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Le Wang
- Physical Education Department, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| |
Collapse
|
3
|
Li J, Zheng W, Gao Y, Liu X, Li Z, Zhang L. Nanopillar array-based electrochemical aptamer sensor for STX sensitivity detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39041298 DOI: 10.1039/d4ay00932k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Saxitoxin (STX) is a cyanotoxin with high toxicity, and therefore, there is an urgent need to develop a facile detection method for STX. In this study, an ordered nanopillar array-based electrochemical aptasensor was fabricated for the high-performance detection of STX. The anti-STX aptamer with methylene blue (MB) incorporated at the 3'-end (MB-Apt) was immobilized at the surface of an Au@PAN nanopillar array electrode and used as the recognition element. The proposed aptasensor demonstrated highly sensitive and selective STX detection because of synergistic catalysis effects of MB and ordered nanopillar arrays along with the selection of MB-Apt. The nanopillar array-based electrochemical aptasensor exhibited high sensitivity over a wide linear concentration range of 1 pM-3 nM with a linear regression equation of ΔI (μA) = 28.0 + 6.9 × log[STX] (R2 = 0.98079) and 3-100 nM with a linear regression equation of ΔI (μA) = 10.7 + 43.4 × log[STX] (R2 = 0.98772), where R is the correlation coefficient. In addition, the limit of detection (LOD) was as low as 1 pM. Furthermore, the designed aptasensor demonstrated excellent selectivity toward STX, preventing interference from neo-STX, okadaic acid, and common metal ions. The presented orderly nanopillar array-based strategy to develop an electrochemical aptasensor for STX detection offers a promising method for developing high-performance electrochemical sensors, and the presented aptasensor should find useful application in the detection of shellfish poison.
Collapse
Affiliation(s)
- Jinsong Li
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| | - Weixian Zheng
- Biotechnology Center of Anhui Agricultural University, Anhui Agricultural University, Hefei, 230009, China
| | - Ya Gao
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| | - Xinyu Liu
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| | - Zhongbo Li
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| | - Lijun Zhang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, School of Materials and Chemistry, Anhui Agricultural University, China.
| |
Collapse
|
4
|
Na Y, Zhang J, Zhang S, Liang N, Zhao L. Fluorescence Sensor for Zearalenone Detection Based on Oxidized Single-walled Carbon Nanohorns/N-doped Carbon Quantum Dots-aptamer. J Fluoresc 2023:10.1007/s10895-023-03466-y. [PMID: 37831356 DOI: 10.1007/s10895-023-03466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Zearalenone (ZEN), a resorcinolactone toxin, which has been a potential threat to agricultural production and human health. In this study, a sample and rapid fluorescence sensor was established for the detection of ZEN, which is based on the fluorescence properties of N-doped carbon dots-aptamer (NCDs-apt) and the quenching ability of oxidized single-walled carbon nanohorns (oxSWCNHs). NCDs synthesized by one-step hydrothermal method were connected with ZEN-aptamer (ZEN-apt), and oxSWCNHs were added to quench the fluorescence of NCDs-apt. Therefore, an oxSWCNHs/NCDs-apt aptasensor based on fluorescence "on-off" for the determination of ZEN in food was formed. Under optimum conditions, the limit of detection (LOD) of this method was 18 ng/mL and the linear range was 20 ~ 100 ng/mL. The possible interfering substances were investigated, and the results showed excellent selectivity. The recoveries were in the range of 99.5%~114.3%, and the relative standard deviations (RSDs) were not more than 6.5%, which demonstrated that this aptasensor was successfully applied for the detection of ZEN in food samples with satisfactory result.
Collapse
Affiliation(s)
- Yue Na
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, P. R. China
| | - Jiaxin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, P. R. China
| | - Shunhua Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, P. R. China
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, P. R. China.
| |
Collapse
|
5
|
Sun J, Zhu R, Du X, Zhang B, Zheng M, Ji X, Geng L. An ultrasensitive photo-driven self-powered aptasensor for microcystin-RR assay based on ZnIn 2S 4/Ti 3C 2 MXenes integrated with a matching capacitor for multiple signal amplification. Analyst 2023; 148:5060-5069. [PMID: 37668261 DOI: 10.1039/d3an00914a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A photo-driven self-powered aptasensor was constructed based on a matching capacitor and the ZnIn2S4/Ti3C2 heterojunction as the photoanode and Cu2O as the photocathode in a dual-photoelectrode sensing matrix for multiple signal amplification for the ultrasensitive detection of microcystin-RR (MC-RR). The introduction of Ti3C2 MXene nanosheets on the photoanode surface can not only accelerate the transfer and separation of photoinduced electron/hole pairs, thus enhancing the output signal of the photo-driven self-powered system, but also provide a larger specific surface area for the immobilization of the bio-recognition unit aptamer. More importantly, for a portable and miniaturized device, a micro-workstation with the size of a universal serial bus (USB) disk and a novel short-circuit current access was proposed to capture the instantaneous output electrical signal for real-time data tracking. In such a way, a sensitivity of 2.7 mA pM-1 was achieved when the matching capacitor was integrated into the self-powered system, which was 22 times that without a capacitor. After the interaction between MC-RR and the corresponding aptamer, a 'signal-off' detection configuration was formed via the steric hindrance effect. Therefore, such a multiple signal amplification system realized the ultrasensitive and selective determination of MC-RR successfully. Under optimal conditions, the linear range of the self-powered aptasensor was 0.1 to 100 pM and the detection limit was 0.033 pM (S/N = 3). The aptasensor was applied to the detection of MC-RR in fish, exhibiting good reproducibility (≈3.88%), paving the way for detecting microcystins in real-life samples.
Collapse
Affiliation(s)
- Jun Sun
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Rongquan Zhu
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaojiao Du
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Bing Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Min Zheng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Xingyu Ji
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Long Geng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
6
|
Kim G, Li YG, Seo Y, Baek C, Choi JH, Park H, An J, Lee M, Noh S, Min J, Lee T. Fabrication of graphene oxide-based pretreatment filter and Electrochemical-CRISPR biosensor for the field-ready cyanobacteria monitoring system. Biosens Bioelectron 2023; 237:115474. [PMID: 37364302 DOI: 10.1016/j.bios.2023.115474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Microcystis aeruginosa (M. aeruginosa) cause the eutrophication of lakes and rivers. To effectively control the overgrowth of M. aeruginosa, a suitable measurement method should be required in the aquatic fields. To address this, we developed a field-ready cyanobacterial pretreatment device and an electrochemical clustered regularly interspaced short palindromic repeats (EC-CRISPR) biosensor. The cyanobacterial pretreatment device consists of a syringe, glass bead, and graphene oxide (GO) bead. Then, the M. aeruginosa dissolved in the freshwater sample was added to fabricated filter. After filtration, the purified gene was loaded onto a CRISPR-based electrochemical biosensor chip to detect M. aeruginosa gene fragments. The biosensor was composed of CRISPR/Cpf1 protein conjugated with MXene on an Au microgap electrode (AuMGE) integrated into a printed circuit board (PCB). This AuMGE/PCB system maximizes the signal-to-noise ratio, which controls the working and counter electrode areas requiring only 3 μL samples to obtain high reliability. Using the extracted M. aeruginosa gene with a pre-treatment filter, the CRISPR biosensor showed a limit of detection of 0.089 pg/μl in fresh water. Moreover, selectivity test and matrix condition test carried out using the EC-CRISPR biosensor. These handheld pre-treatment kit and biosensors can enable field-ready detection of CyanoHABs.
Collapse
Affiliation(s)
- Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yun Guang Li
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Myoungro Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul 06974, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
7
|
Wu P, Zhang M, Xue X, Ding P, Ye L. Dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase-tethered magnetic microspheres for colorimetric detection of microcystin-LR. Mikrochim Acta 2023; 190:314. [PMID: 37474872 PMCID: PMC10359370 DOI: 10.1007/s00604-023-05887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
A novel dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase (HRP) was developed for colorimetric determination of MC-LR. This dual-amplification was accomplished by combining the nuclease activity of CRISPR-Cas12a with the redox activity of HRP. HRP linked to magnetic beads through an ssDNA (MB-ssDNA-HRP) was used to induce a color change of the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 chromogenic substrate solution. Specific binding of MC-LR with its aptamer initiated the release of a complementary DNA (cDNA), which was designed to activate the trans-cleavage activity of CRISPR-Cas12a. Upon activation, Cas12a cut the ssDNA linker in MB-ssDNA-HRP, causing a reduction of HRP on the magnetic beads. Consequently, the UV-Vis absorbance of the HRP-catalyzed reaction was decreased. The dual-signal amplification facilitated by CRISPR-Cas12a and HRP enabled the colorimetric detection of MC-LR in the range 0.01 to 50 ng·mL-1 with a limit of detection (LOD) of 4.53 pg·mL-1. The practicability of the developed colorimetric method was demonstrated by detecting different levels of MC-LR in spiked real water samples. The recoveries ranged from 86.2 to 118.5% and the relative standard deviation (RSD) was 8.4 to 17.6%. This work provides new inspiration for the construction of effective signal amplification platforms and demonstrates a simple and user-friendly colorimetric method for determination of trace MC-LR.
Collapse
Affiliation(s)
- Pian Wu
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Man Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
8
|
Su C, Jiang D, Jia S, Shan X, Chen Z. Fast cathodic electrodeposition of ZnTCPP-functionalized metal-organic framework films for preparation of a fluorescent aptamer sensor for microcystin determination. Mikrochim Acta 2023; 190:180. [PMID: 37043083 DOI: 10.1007/s00604-023-05711-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
A one-step electrodeposition-assisted self-assembly technique has been developed for preparation of ZnTCPP@MOF films with three-dimensional mesoporous structure in a three-electrode system. The internal structure of the ZnTCPP@MOF films was tuned by adjusting the electrochemical deposition voltage, deposition time, and the concentration of ZnTCPP at room temperature. The ZnTCPP@MOF films under different deposition conditions were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy, and X-ray photoelectron spectroscopy. The prepared ZnTCPP@MOF films exhibited excellent fluorescence properties, in which ZnTCPP molecules were encapsulated inside the MOF as fluorescent signal probes and structure-directing agents, which affected the electrochemical response of the ZnTCPP@MOF films. The sensing platform based on ZnTCPP@MOF film was used to detect microcystin with a wide determination range (1.0 × 10-12 mol/L ~ 1.0 × 10-5 mol/L), low determination limit (3.8 × 10-13 mol/L), and high sensitivity. More importantly, the strategy is simple, low-cost, green, and environmentally friendly, and it provides a new strategy for the direct use of MOFs films as signaling components.
Collapse
Affiliation(s)
- Chang Su
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Shuyong Jia
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
- Lite-On OPTO Tech(CZ) Co., Ltd, No. 88, Yanghu Rd., Wujin Hi-Tech. Industrial Development Zone, Changzhou City, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Zhidong Chen
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
9
|
Li B, Wang Q, Sohail M, Zhang X, He H, Lin L. Facilitating the determination of microcystin toxins with bio-inspired sensors. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Yang P, Zhang P, Deng Y, Liao Y, Guo X, Sun M, Yin L, Liu R. Comprehensive proteomic and phosphoproteomic reveal that Microcystin-LR contributed to the malignant progression of gastric cancer by estrogenic potency. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120744. [PMID: 36436660 DOI: 10.1016/j.envpol.2022.120744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
The widespread cyanotoxins in drinking water pose a threat to public health induced by Microcystins (MCs). MC-LR, a predominant toxic form of MCs, has been found to play critical roles in cancer progression. The role of MC-LR in hepatocarcinogenesis has attracted extensive attention. However, as a critical digestive organ, the precise mechanism of MC-LR-induced gastric cancer is still unclear. We found that 100 nM MC-LR promoted the proliferation, migration, invasion, and anti-apoptosis of SGC-7901 cells. Quantitative proteome and phosphoproteome analysis identified differential expression patterns and aberrant pathways of SGC-7901 cells exposed to MC-LR. The results indicated that 48,109 unique peptides from 6320 proteins and 1375 phosphoproteins with 3473 phosphorylation sites were detected after 24 h treatment of MC-LR. Proteome and phosphoproteome conjoint analysis indicated estrogen signaling pathway might play an essential step in MC-LR-treated molecular events. The mechanism underlying these changes may involve MC-LR excessively activating the estrogen signaling pathway by reducing Hsp90 phosphorylation, which results in nucleus translocation of activated ERα and Krt16 overexpression in gastric cells. In general, our results indicate multiple crucial signals triggered by MC-LR, among which MC-LR may promote the development of gastric cancer by exerting estrogenic potency.
Collapse
Affiliation(s)
- Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Yali Deng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yinghao Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Detection and Characterization of Nodularin by Using Label-Free Surface-Enhanced Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms232415741. [PMID: 36555384 PMCID: PMC9779585 DOI: 10.3390/ijms232415741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Nodularin (NOD) is a potent toxin produced by Nodularia spumigena cyanobacteria. Usually, NOD co-exists with other microcystins in environmental waters, a class of cyanotoxins secreted by certain cyanobacteria species, which makes identification difficult in the case of mixed toxins. Herein we report a complete theoretical DFT-vibrational Raman characterization of NOD along with the experimental drop-coating deposition Raman (DCDR) technique. In addition, we used the vibrational characterization to probe SERS analysis of NOD using colloidal silver nanoparticles (AgNPs), commercial nanopatterned substrates with periodic inverted pyramids (KlariteTM substrate), hydrophobic Tienta® SpecTrimTM slides, and in-house fabricated periodic nanotrenches by nanoimprint lithography (NIL). The 532 nm excitation source provided more well-defined bands even at LOD levels, as well as the best performance in terms of SERS intensity. This was reflected by the results obtained with the KlariteTM substrate and the silver-based colloidal system, which were the most promising detection approaches, providing the lowest limits of detection. A detection limit of 8.4 × 10-8 M was achieved for NOD in solution by using AgNPs. Theoretical computation of the complex vibrational modes of NOD was used for the first time to unambiguously assign all the specific vibrational Raman bands.
Collapse
|
12
|
Design strategies, current applications and future perspective of aptasensors for neurological disease biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Tran Ngoc Huy D, Iswanto AH, Catalan Opulencia MJ, Al-Saikhan F, Timoshin A, Abed AM, Ahmad I, Blinova SA, Hammid AT, Mustafa YF, Van Tuan P. Optical and Electrochemical Aptasensors Developed for the Detection of Alpha-Fetoprotein. Crit Rev Anal Chem 2022; 54:857-871. [PMID: 35969067 DOI: 10.1080/10408347.2022.2099221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early diagnosis of hepatocellular carcinoma (HCC), a leading cause of cancer mortality, is decisive for successful treatment of this type of cancer and increasing the patients' survival rate. Alpha-fetoprotein (AFP) is a glycoprotein that has been currently employed as a potential serological biomarker for determination of HCC and several other cancers. Achieving highly sensitive and specific detection of this biomarker is an effective strategy to inhibit developing issues caused by the cancer. Though, traditional procedures cannot meet the requirements due to the technical drawbacks. Recently, growing number of aptamer-based biosensors (aptasensors) attracted important attention as superior diagnostic tools because of their unique properties such as high stability, target versatility and remarkable affinity and selectivity. Nanomaterials, which broadly employed in the structure of these aptasensors, can considerably enhance the detection limit and sensitivity of analytes determination. Therefore, this review selectively investigated the recent progresses in several different optical and electrochemical aptasensors and nano-aptasensors designed for AFP assay.
Collapse
Affiliation(s)
- Dinh Tran Ngoc Huy
- MBA, Banking University HCMC, Ho Chi Minh City, Vietnam
- International University of Japan, Niigata, Japan
| | - A Heri Iswanto
- Public Health Department, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | | | - Fahad Al-Saikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Anton Timoshin
- Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Azher M Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College, Babylon, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sofiya A Blinova
- Department of Histology, Embryology, and Cytology, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | | |
Collapse
|
14
|
Bouteiller P, Lance E, Guérin T, Biré R. Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review. Toxins (Basel) 2022; 14:toxins14080550. [PMID: 36006212 PMCID: PMC9416067 DOI: 10.3390/toxins14080550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microcystins (MCs) are cyclic heptapeptidic toxins produced by many cyanobacteria. Microcystins can be accumulated in various matrices in two forms: a free cellular fraction and a covalently protein-bound form. To detect and quantify the concentration of microcystins, a panel of techniques on various matrices (water, sediments, and animal tissues) is available. The analysis of MCs can concern the free or the total (free plus covalently bound) fractions. Free-form analyses of MCs are the most common and easiest to detect, whereas total-form analyses are much less frequent and more complex to achieve. The objective of this review is to summarize the different methods of extraction and analysis that have been developed for total forms. Four extraction methods were identified: MMPB (2-methyl-3-methoxy-4-phenylbutyric acid) method, deconjugation at basic pH, ozonolysis, and laser irradiation desorption. The study of the bibliography on the methods of extraction and analysis of the total forms of MCs showed that the reference method for the subject remains the MMPB method even if alternative methods and, in particular, deconjugation at basic pH, showed results encouraging the continuation of the methodological development on different matrices and on naturally-contaminated samples.
Collapse
Affiliation(s)
- Pierre Bouteiller
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| | - Emilie Lance
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- UMR MNHN/CNRS MCAM, Muséum National d’Histoire Naturelle, F-75005 Paris, France
- Correspondence:
| | - Thierry Guérin
- Strategy and Programs Department, ANSES, F-94701 Maisons-Alfort, France
| | - Ronel Biré
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| |
Collapse
|
15
|
Li B, Liu Y, Liu Y, Xie P. Excluding interference and detecting Microcystin-LR in the natural lakes and cells based a unique fluorescence method. WATER RESEARCH 2022; 221:118811. [PMID: 35810636 DOI: 10.1016/j.watres.2022.118811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria blooms that cause the death of aquatic and terrestrial organisms have attracted considerable attention since the 19th century. The most typical toxin in cyanobacteria blooms is cyanobacteria toxin, particularly microcystin-LR (MC-LR). Therefore, a simple and highly efficient method for detecting MC-LR plays a role in studying the ecological toxicology of MC-LR. However, as MC-LR itself is located in a complex environment, traditional techniques present complex and false-positive defects. To address the above issues, novel technologies should be explored and discovered. Herein, we describe the development of MC-BDKZ as the first paradigm of probes that can concurrently report MC-LR in natural lakes and cells. This novel material shows large Stokes Shift and possesses good photostability and high sensitivity. Considering the properties mentioned above, MC-BDKZ not only achieves the detection of MC-LR in the lake water samples, but also completes the imaging of exogenous MC-LR in cells. Moreover, the interference of many factors in the lake and cells is excluded completely in the process of MC-LR detection. We comprehensively analyzed the response principle and potential application of MC-BDKZ in the process of MC-LR detection. Compared with the conventional MC-LR detection technologies, fluorescence probe technology shows better convenience and greatly reduces distance from the practical application in vitro and in vivo. We envisioned that the development of this visual research tool could provide crucial clues for exploring the pathogenesis of MC-LR in body.
Collapse
Affiliation(s)
- Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
16
|
Geleta GS. A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods. Anal Bioanal Chem 2022; 414:7103-7122. [PMID: 35902394 DOI: 10.1007/s00216-022-04227-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
Abstract
Frequent contamination of foods with microbial toxins produced by microorganisms such as bacteria, fungi, and algae represents an increasing public health problem that requires the development of quick and easy tools to detect them at trace levels. Recently, it has been found that colorimetric detection methods may replace traditional methods in the field because of their ease of use, quick response, ease of manufacture, low cost, and naked-eye visibility. Therefore, it is suitable for fieldwork, especially for work in remote areas of the world. However, the development of colorimetric detection methods with low detection limits is a challenge that limits their wide applicability in the detection of food contaminants. To address these challenges, nanomaterial-based transduction systems are used to construct colorimetric biosensors. For example, gold nanoparticles (AuNPs) provide an excellent platform for the development of colorimetric biosensors because they offer the advantages of easy synthesis, biocompatibility, advanced surface functionality, and adjustable physicochemical properties. The selectivity of the colorimetric biosensor can be achieved by the combination of aptamers and gold nanoparticles, which provides an unprecedented opportunity to detect microbial toxins. Compared to antibodies, aptamers have significant advantages in the analysis of microbial toxins due to their smaller size, higher binding affinity, reproducible chemical synthesis and modification, stability, and specificity. Two colorimetric mechanisms for the detection of microbial toxins based on AuNPs have been described. First, sensors that use the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles can exhibit very strong colors in the visible range because of changes caused by aggregation or disaggregation. Second, the detection mechanism of AuNPs is based on their enzyme mimetic properties and it is possible to construct a colorimetric biosensor based on the 3,3',5,5'-tetramethylbenzidine/Hydrogen peroxide, TMB/H2O2 reaction to detect microbial toxins. Therefore, this review summarizes the recent applications of AuNP-based colorimetric aptasensors for detecting microbial toxins, including bacterial toxins, fungal toxins, and algal toxins focusing on selectivity, sensitivity, and practicality. Finally, the most important current challenges in this field and future research opportunities are discussed.
Collapse
Affiliation(s)
- Girma Salale Geleta
- Department of Chemistry, College of Natural Sciences, Salale University, P.O. Box 245, Oromia, Fiche, Ethiopia.
| |
Collapse
|
17
|
Lei Z, Lei P, Guo J, Wang Z. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins. Talanta 2022; 248:123607. [PMID: 35661001 DOI: 10.1016/j.talanta.2022.123607] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The existence of cyanotoxins poses serious threats to human health, it is highly desirable to develop specific and sensitive methods for rapid detection of cyanotoxins in food and water. Due to the distinct advantages of aptamer including high specificity, good stability and easy preparation, various aptamer-based sensors (aptasensors) have been proposed to promote the detection of cyanotoxins. In this review, we summarize recent advance in optical and electrochemical aptasensors for cyanotoxins sensing by integrating with versatile nanomaterials or innovative sensing strategies, such as colorimetric aptasensors, fluorescent aptasensors, surface enhancement Raman spectroscopy-based aptasensors, voltammetric aptasensors, electrochemical impedance spectroscopy-based aptasensors and photoelectrochemical aptasensors. We highlight the accomplishments and advancements of aptasensors with improved performance. Furthermore, the current challenges and future prospects in cyanotoxins detection are discussed from our perspectives, which we hope to provide more ideas for future researchers.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Peng Lei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, PR China
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
18
|
A Simple and Selective Colorimetric Aptasensor for Detection of Toxins Microcystin-LR in Fish Tissue Using a Truncated Aptamer. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02283-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Liu Y, Li B, Zhang H, Liu Y, Xie P. Participation of fluorescence technology in the cross-disciplinary detection of microcystins. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Bilibana MP, Citartan M, Fuku X, Jijana AN, Mathumba P, Iwuoha E. Aptamers functionalized hybrid nanomaterials for algal toxins detection and decontamination in aquatic system: Current progress, opportunities, and challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113249. [PMID: 35104779 DOI: 10.1016/j.ecoenv.2022.113249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Purification and detection of algal toxins is the most effective technique to ensure that people have clean and safe drinking water. To achieve these objectives, various state-of-the-art technologies were designed and fabricated to decontaminate and detect algal toxins in aquatic environments. Amongst these technologies, aptamer-functionalized hybrid nanomaterials conjugates have received significant consideration as a result of their several benefits over other methods, such as good controllable selectivity, low immunogenicity, and biocompatibility. Because of their excellent properties, aptamer-functionalized hybrid nanomaterials conjugates are one of several remarkable agents. Several isolated aptamer sequences for algal toxins are addressed in this review, as well as aptasensor and decontamination aptamer functionalized metal nanoparticle-derived hybrid nanocomposites applications. In addition, we present diverse aptamer-functionalized hybrid nanomaterial conjugates designs and their applications for sensing and decontamination.
Collapse
Affiliation(s)
- Mawethu Pascoe Bilibana
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Xolile Fuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Abongile Nwabisa Jijana
- National Innovation Centre, Advanced Material Division, Mintek, 200 Malibongwe Drive, Private Bag x 3015, Johannesburg, Gauteng, South Africa
| | - Penny Mathumba
- National Innovation Centre, Advanced Material Division, Mintek, 200 Malibongwe Drive, Private Bag x 3015, Johannesburg, Gauteng, South Africa
| | - Emmanuel Iwuoha
- SensorLab (University of Western Cape Sensor Laboratories), Chemical Sciences Building, University of the Western Cape, Bellville, 7535 Cape Town, South Africa
| |
Collapse
|
21
|
Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108684] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Zhang H, Li B, Liu Y, Chuan H, Liu Y, Xie P. Immunoassay technology: Research progress in microcystin-LR detection in water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127406. [PMID: 34689091 DOI: 10.1016/j.jhazmat.2021.127406] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Increasing global warming and eutrophication have led to frequent outbreaks of cyanobacteria blooms in freshwater. Cyanobacteria blooms cause the death of aquatic and terrestrial organisms and have attracted considerable attention since the 19th century. Microcystin-LR (MC-LR) is one of the most typical cyanobacterial toxins. Therefore, the fast, sensitive, and accurate determination of MC-LR plays an important role in the health of humans and animals. Immunoassay refers to a method that uses the principle of immunology to determine the content of the tested substance in a sample using the tested substance as an antigen or antibody. In analytical applications, the immunoassay technology could use the specific recognition of antibodies for MC-LR detection. In this review, we firstly highlight the immunoassay detection of MC-LR over the past two decades, including classical enzyme-link immunosorbent assay (ELISA), modern immunoassay with optical signal, and modern immunoassay with electrical signal. Among these detection methods, the water environment was used as the main detection system. The advantages and disadvantages of the different detection methods were compared and analyzed, and the principles and applications of immunoassays in water samples were elaborated. Furthermore, the current challenges and developmental trends in immunoassay were systematically introduced to enhance MC-LR detection performance, and some critical points were given to deal with current challenges. This review provides novel insight into MC-LR detection based on immunoassay method.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
23
|
A novel labeled and label-free dual electrochemical detection of endotoxin based on aptamer-conjugated magnetic reduced graphene oxide-gold nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Li H, Li Q, Zhao S, Wang X, Li F. Aptamer-Target Recognition-Promoted Ratiometric Electrochemical Strategy for Evaluating the Microcystin-LR Residue in Fish without Interferences. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:680-686. [PMID: 35012307 DOI: 10.1021/acs.jafc.1c06476] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Given the significance of food safety, it is highly urgent to develop a sensitive yet reliable sensor for the practical analysis of algal toxins. As most of the developed sensors are disturbed by interfering substances and the target toxin is detected in a single-signal manner based on the immunoassay technology. Herein, we developed an aptamer-based dual-signal ratiometric electrochemical sensor for the sensitive and accurate analysis of microcystin-LR (MC-LR), using it as a proof-of-concept analyte. Methylene blue-tagged ssDNA (MB-ssDNA) was immobilized at the gold electrode surface accompanied with the absence of ferrocene-tagged ssDNA (Fc-ssDNA), resulting in a high differential pulse voltammetry (DPV) current of MB and a low DPV current of Fc. The recognition of MB-ssDNA by MC-LR stimulated the formation of MC-LR@MB-ssDNA, which induced the removal of MB-ssDNA from the electrode and the exposure of SH-ssDNA, enabling Fc-ssDNA to be captured at the electrode surface via nucleic acid hybridization. In comparison with MC-LR deficiency, the DPV signal of MB dropped along with an improved DPV signal of Fc, contributing to the ratiometric detection of MC-LR, with the limit of detection down to 0.0015 nM. Furthermore, this ratiometric electrochemical sensor was successfully explored to assess the bioaccumulated amount of MC-LR in the liver and meat of fish. The aptamer-based ratiometric strategy to develop an electrochemical MC-LR assay will offer a promising avenue to develop high-performance sensors, and the sensor will find more useful application in MC-LR-related aquatic product safety studies.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Suixin Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xuemei Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
25
|
Wang S, Ding P, Lu S, Wu P, Wei X, Huang R, Kai T. Cell density-dependent regulation of microcystin synthetase genes (mcy) expression and microcystin-LR production in Microcystis aeruginosa that mimics quorum sensing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112330. [PMID: 34020285 DOI: 10.1016/j.ecoenv.2021.112330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
As the secondary metabolites of cyanobacterial harmful algal blooms (Cyano-HABs), microcystins (MCs) were generated under various environmental and cellular conditions. The understanding of the causes of MCs generation is of great interest in the field of water treatment and environmental science. In this work, we studied how Microcystis aeruginosa (FACHB-905) cell densities affect the MCs synthetase genes (mcy) expression, microcystin-LR (MC-LR) and quorum sensing molecules (Acyl-homoserine lactones (AHLs)) production. An electrochemical sensor was developed here for sensitive and quantitative detection of MC-LR that cultured at different cell densities. The results showed that mcy expression and MC-LR concentration started to increase when the cell density reached ca. 22 × 106 cells/mL, and was significantly increased with increasing cell densities. Moreover, the up-regulation of AHLs with increasing cell densities revealed that MC-LR is quorum sensing-mediated. Our results undoubtedly confirmed that MC-LR was produced in a cell density-dependent way that mimics quorum sensing, and the minimum cell density (ca. 22 × 106 cells/mL) that was required to produce MC-LR was provided and offered a reference standard for the prevention and control of MCs pollution in the actual water environment.
Collapse
Affiliation(s)
- Shanlin Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Siyu Lu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Xiaoqian Wei
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Ruixue Huang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan 410078, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan 410078, China; College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
26
|
Li B, Liu Y, Zhang H, Liu Y, Liu Y, Xie P. Research progress in the functionalization of microcystin-LR based on interdisciplinary technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Yuan R, Wen Z, You F, Jiang D, Wang K. Catalysis-induced performance enhancement of an electrochemical microcystin-LR aptasensor based on cobalt-based oxide on a B, N co-doped graphene hydrogel. Analyst 2021; 146:2574-2580. [PMID: 33899062 DOI: 10.1039/d1an00236h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microcystin detection is of great significance and an urgent need because of its damage to water environments and human health. In this paper, an electrochemical aptasensor was developed by combining a 3D cobalt-based oxide modified boron and nitrogen co-doped graphene hydrogel (3D BNG/Co) with a DNA aptamer for sensitive detection of microcystin (MC-LR) through differential pulse voltammetry (DPV) technology. By using 3D BNG/Co as a catalyst and [Fe(CN)6]3-/4- as a redox probe, the catalytic current signal was 3.8 times higher than that of the bare glassy carbon electrode, which can better monitor the electron conduction on the electrode surface and then improve the sensitivity. The as-fabricated electrochemical aptasensor displayed a wide detection range (0.1-1000 pmol L-1), low detection limit (0.03 pmol L-1), good sensitivity, and repeatability, which has potential applications for the protection of the ecological environment and human health.
Collapse
Affiliation(s)
- Ruishuang Yuan
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Zuorui Wen
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Fuheng You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| | - Ding Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China.
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China.
| |
Collapse
|
28
|
Dowlatshahi S, Abdekhodaie MJ. Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers. Clin Chim Acta 2021; 516:111-135. [PMID: 33545110 DOI: 10.1016/j.cca.2021.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity. Electrochemical biosensors overcome these limitations because they are rapid, cost-effective, simple to use and ultrasensitive. This article reviews electrochemical PSA biosensors using electroconductive nanomaterials such as carbon-, metal-, metal oxide- and peptide-based nanostructures, as well as polymers to significantly improve conductivity and enhance sensitivity. Challenges associated with the development of these devices are discussed thus providing additional insight into their analytic strength as well as their potential use in early PCa detection.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Yeates School of Graduate Studies, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
29
|
Suo T, Sohail M, Xie S, Li B, Chen Y, Zhang L, Zhang X. DNA nanotechnology: A recent advancement in the monitoring of microcystin-LR. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123418. [PMID: 33265072 DOI: 10.1016/j.jhazmat.2020.123418] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 07/05/2020] [Indexed: 06/12/2023]
Abstract
The Microcystin-Leucine-Arginine (MC-LR) is the most toxic and widely distributed microcystin, which originates from cyanobacteria produced by water eutrophication. The MC-LR has deleterious effects on the aquatic lives and agriculture, and this highly toxic chemical could severely endanger human health when the polluted food was intaken. Therefore, the monitoring of MC-LR is of vital importance in the fields including environment, food, and public health. Utilizing the complementary base pairing between DNA molecules, DNA nanotechnology can realize the programmable and predictable regulation of DNA molecules. In analytical applications, DNA nanotechnology can be used to detect targets via target-induced conformation change and the nano-assemblies of nucleic acids. Compared with the conventional analytical technologies, DNA nanotechnology has the advantages of sensitive, versatile, and high potential in real-time and on-site applications. According to the molecular basis for recognizing MC-LR, the strategies of applying DNA nanotechnology in the MC-LR monitoring are divided into two categories in this review: DNA as a recognition element and DNA-assisted signal processing. This paper introduces state-of-the-art analytical methods for the detection of MC-LR based on DNA nanotechnology and provides critical perspectives on the challenges and development in this field.
Collapse
Affiliation(s)
- Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing 211166, China.
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
30
|
Impedimetric Microcystin-LR Aptasensor Prepared with Sulfonated Poly(2,5-dimethoxyaniline)–Silver Nanocomposite. Processes (Basel) 2021. [DOI: 10.3390/pr9010179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper presents a novel impedimetric aptasensor for cyanobacterial microcystin-LR (L, l-leucine; R, l-arginine) (MC-LR) containing a 5′ thiolated 60-mer DNA aptamer (i.e., 5′-SH-(CH2)6GGCGCCAAACAGGACCACCATGACAATTACCCATACCACCTCATTATGCCCCATCT CCGC-3′). A nanocomposite electrode platform comprising biocompatible poly(2,5-dimethoxyaniline) (PDMA)-poly(vinylsulfonate) (PVS) and silver nanoparticle (Ag0) on a glassy carbon electrode (GCE), i.e., (GCE/PDMA–PVS–Ag0) was used in the biosensor development. Small-angle X-ray scattering (SAXS) spectroscopic analysis revealed that the PDMA–PVS–Ag0 nanocomposites were polydispersed and contained embedded Ag0. Electrochemical impedance spectroscopy (EIS) responses of the aptasensor gave a dynamic linear range (DLR) and limit of detection (LOD) values of 0.01–0.1 ng L−1 MC-LR and 0.003 ng L−1 MC-LR, respectively. The cross-reactivity studies, which was validated with enzyme-linked immunosorbent assay (ELISA), showed that the aptasensor possesses excellent selectivity for MC-LR.
Collapse
|
31
|
Massey IY, Wu P, Wei J, Luo J, Ding P, Wei H, Yang F. A Mini-Review on Detection Methods of Microcystins. Toxins (Basel) 2020; 12:E641. [PMID: 33020400 PMCID: PMC7601875 DOI: 10.3390/toxins12100641] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) produce microcystins (MCs) which are associated with animal and human hepatotoxicity. Over 270 variants of MC exist. MCs have been continually studied due of their toxic consequences. Monitoring water quality to assess the presence of MCs is of utmost importance although it is often difficult because CyanoHABs may generate multiple MC variants, and their low concentration in water. To effectively manage and control these toxins and prevent their health risks, sensitive, fast, and reliable methods capable of detecting MCs are required. This paper aims to review the three main analytical methods used to detect MCs ranging from biological (mouse bioassay), biochemical (protein phosphatase inhibition assay and enzyme linked immunosorbent assay), and chemical (high performance liquid chromatography, liquid chromatography-mass spectrometry, high performance capillary electrophoresis, and gas chromatography), as well as the newly emerging biosensor methods. In addition, the current state of these methods regarding their novel development and usage, as well as merits and limitations are presented. Finally, this paper also provides recommendations and future research directions towards method application and improvement.
Collapse
Affiliation(s)
- Isaac Yaw Massey
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
- School of Public Health, University of South China, Hengyang 421001, China
| |
Collapse
|
32
|
Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020; 8:5808-5825. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxins are one of the major threatening factors to human and animal health, as well as economic growth. There is therefore an urgent demand from various communities to develop novel analytical methods for the sensitive detection of toxins in complex matrixes. Among the as-developed toxin detection strategies, nanocomposite-based aptamer sensors (termed as aptasensors) show tremendous potential for combating toxin pollution; in particular electrochemical (EC) aptasensors have received significant attention because of their unique advantages, including simplicity, rapidness, high sensitivity, low cost and suitability for field-testing. This paper reviewed the recently published approaches for the development of nanocomposite-/nanomaterial-based EC aptasensors for the detection of toxins with high assaying performance, and their potential applications in environmental monitoring, clinical diagnostics, and food safety control by summarizing the detection of different types of toxins, including fungal mycotoxins, algal toxins and bacterial enterotoxins. The effects of nanocomposite properties on the detection performance of EC aptasensors have been fully addressed for supplying readers with a comprehensive understanding of their improvement. The current technical challenges and future prospects of this subject have also been discussed.
Collapse
Affiliation(s)
- Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | |
Collapse
|
33
|
Li M, Lin H, Paidi SK, Mesyngier N, Preheim S, Barman I. A Fluorescence and Surface-Enhanced Raman Spectroscopic Dual-Modal Aptasensor for Sensitive Detection of Cyanotoxins. ACS Sens 2020; 5:1419-1426. [PMID: 32314582 DOI: 10.1021/acssensors.0c00307] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to detect trace analytes without necessitating solid surface attachment or complicated processing steps would facilitate the translation of sensors for monitoring environmental toxins in the field. To address a critical unmet need in fresh water ecology, we have developed a dual-modal aptamer-based biosensor (aptasensor), featuring fluorescence and surface-enhanced Raman spectroscopy (SERS), for sensitive and selective detection of hepatotoxin microcystin-LR (MC-LR). The rational sensor design is based on the high affinity of the cyanine (Cy3) dye-modified complementary DNA (Cy3-cDNA) strand toward the plasmonic gold nanostars (GNSs) in comparison to the Cy3-cDNA/aptamer duplex. The preferential binding of MC-LR toward the MC-LR-specific aptamer triggers the dissociation of Cy3-cDNA/aptamer duplexes, which switches the Cy3's fluorescence "off" and SERS "on" due to the proximity of Cy3 dye to the GNS surface. Both fluorescence and SERS intensities are observed to vary linearly with the MC-LR concentration over the range of investigation. We have achieved high sensitivity and excellent specificity with the aptasensor toward MC-LR, which can be attributed to the fluorescence quenching effect, significant SERS enhancement by the GNSs, and the high affinity of the aptamer toward the MC-LR analytes. We further demonstrate the applicability of the present aptasensor for detection of MC-LR in a diverse set of real water samples with high accuracy and excellent reproducibility. With further refinement, we believe that the aptamer-driven complementary assembly of the SERS and fluorescence sensing constructs can be applied for rapid, multiplexed, and robust measurements of environmental toxins in the field.
Collapse
Affiliation(s)
- Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hangduo Lin
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Santosh Kumar Paidi
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nicolas Mesyngier
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sarah Preheim
- Department of Environmental Health and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
34
|
Pang P, Lai Y, Zhang Y, Wang H, Conlan XA, Barrow CJ, Yang W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Yanqiong Lai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Xavier A. Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Colin J. Barrow
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Wenrong Yang
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| |
Collapse
|
35
|
DNA-based nanobiosensors for monitoring of water quality. Int J Hyg Environ Health 2020; 226:113485. [DOI: 10.1016/j.ijheh.2020.113485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
|
36
|
Ghorbani F, Abbaszadeh H, Mehdizadeh A, Ebrahimi-Warkiani M, Rashidi MR, Yousefi M. Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Mikrochim Acta 2019; 186:838. [DOI: 10.1007/s00604-019-3844-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
|
37
|
Yáñez-Sedeño P, Agüí L, Campuzano S, Pingarrón JM. What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications. BIOSENSORS-BASEL 2019; 9:bios9040127. [PMID: 31671772 PMCID: PMC6956127 DOI: 10.3390/bios9040127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
This article critically discusses the latest advances in the use of voltammetric, amperometric, potentiometric, and impedimetric biosensors for forensic analysis. Highlighted examples that show the advantages of these tools to develop methods capable of detecting very small concentrations of analytes and provide selective determinations through analytical responses, without significant interferences from other components of the samples, are presented and discussed, thus stressing the great versatility and utility of electrochemical biosensors in this growing research field. To illustrate this, the determination of substances with forensic relevance by using electrochemical biosensors reported in the last five years (2015–2019) are reviewed. The different configurations of enzyme or affinity biosensors used to solve analytical problems related to forensic practice, with special attention to applications in complex samples, are considered. Main prospects, challenges to focus, such as the fabrication of devices for rapid analysis of target analytes directly on-site at the crime scene, or their widespread use and successful applications to complex samples of interest in forensic analysis, and future efforts, are also briefly discussed.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Lourdes Agüí
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
38
|
Zhang Y, Zhu Z, Teng X, Lai Y, Pu S, Pang P, Wang H, Yang C, Barrow CJ, Yang W. Enzyme-free fluorescent detection of microcystin-LR using hairpin DNA-templated copper nanoclusters as signal indicator. Talanta 2019; 202:279-284. [DOI: 10.1016/j.talanta.2019.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|
39
|
Ghorbani F, Abbaszadeh H, Dolatabadi JEN, Aghebati-Maleki L, Yousefi M. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron 2019; 142:111484. [PMID: 31284103 DOI: 10.1016/j.bios.2019.111484] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early stage detection of prostate cancer, one of the main causes of mortality among men, is of great importance for better treatment of the patients. Prostate specific antigen (PSA) is a glycoprotein which has been considered as the most potential serological biomarker for the detection of prostate cancer. Among the various techniques employed for PSA detection, aptamer-based biosensors (aptasensors) have achieved notable attention because of their unique features and great potentials as diagnostic tools. A variety of strategies such as integration of nanomaterials (NMs) into the structure of aptasensors have also been applied for enhancing the sensitivity of PSA detection. This article reviews recent advances in various optical and electrochemical aptasensors used for PSA detection.
Collapse
Affiliation(s)
- Farzaneh Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Wu JF, Gao X, Ge L, Zhao GC, Wang GF. A fluorescence sensing platform of theophylline based on the interaction of RNA aptamer with graphene oxide. RSC Adv 2019; 9:19813-19818. [PMID: 35519378 PMCID: PMC9065333 DOI: 10.1039/c9ra02475a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/06/2019] [Indexed: 12/29/2022] Open
Abstract
RNA, with a structure similar to DNA, should exhibit similar behaviors when it interacts with graphene. In this work, we designed a sensing platform of theophylline based on the interaction of an RNA aptamer with graphene oxide (GO) using the fluorescence as a sensing signal. Firstly, quantum dots (QDs) were modified with the selected ssRNA that can be used as an aptamer to recognize the theophylline. The fluorescence of QDs will be quenched in the presence of GO due to the noncovalent assembly between ssRNA aptamer and GO, leading to fluorescence resonance energy transfer (FRET) from QDs to GO, fluorescence "turn-off". Then, in the presence of theophylline, the ssRNA aptamer recognizes theophylline to form a dsRNA-theophylline complex. The weak affinity between the complex and GO makes QDs move away from the GO surface, leading to the fluorescence recovery of QDs, fluorescence "turn-on". Because of the high fluorescence quenching efficiency, unique structure of GO and specificity of the RNA aptamer, the proposed sensing platform exhibits high sensitivity and excellent selectivity for the determination of theophylline. The excellent performance of the sensor based on GO provides new opportunities for sensitive and selective detection of biorecognition events.
Collapse
Affiliation(s)
- Jian-Feng Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University Wuhu China
| | - Xin Gao
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University Wuhu China
| | - Ling Ge
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University Wuhu China
| | - Guang-Chao Zhao
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University Wuhu China
| | - Guang-Feng Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University Wuhu China
| |
Collapse
|
41
|
Tian X, She C, Qi Z, Xu X. Magnetic-graphene oxide based molecularly imprinted polymers for selective extraction of microsystin-LR prior to the determination by HPLC. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Tian J. Aptamer-based colorimetric detection of various targets based on catalytic Au NPs/Graphene nanohybrids. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
43
|
Zhao L, Huang Y, Dong Y, Han X, Wang S, Liang X. Aptamers and Aptasensors for Highly Specific Recognition and Sensitive Detection of Marine Biotoxins: Recent Advances and Perspectives. Toxins (Basel) 2018; 10:E427. [PMID: 30366456 PMCID: PMC6265707 DOI: 10.3390/toxins10110427] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/13/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Marine biotoxins distribute widely, have high toxicity, and can be easily accumulated in water or seafood, exposing a serious threat to consumer health. Achieving specific and sensitive detection is the most effective way to prevent emergent issues caused by marine biotoxins; however, the previous detection methods cannot meet the requirements because of ethical or technical drawbacks. Aptamers, a kind of novel recognition element with high affinity and specificity, can be used to fabricate various aptasensors (aptamer-based biosensors) for sensitive and rapid detection. In recent years, an increasing number of aptamers and aptasensors have greatly promoted the development of marine biotoxins detection. In this review, we summarized the recent aptamer-related advances for marine biotoxins detection and discussed their perspectives. Firstly, we summarized the sequences, selection methods, affinity, secondary structures, and the ion conditions of all aptamers to provide a database-like information; secondly, we summarized the reported aptasensors for marine biotoxins, including principles, detection sensitivity, linear detection range, etc.; thirdly, on the basis of the existing reports and our own research experience, we forecast the development prospects of aptamers and aptasensors for marine biotoxins detection. We hope this review not only provides a comprehensive summary of aptamer selection and aptasensor development for marine biotoxins, but also arouses a broad readership amongst academic researchers and industrial chemists.
Collapse
Affiliation(s)
- Lianhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yunfei Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xutiange Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| |
Collapse
|