1
|
Martín-Sánchez C, Sánchez-Iglesias A, Barreda-Argüeso JA, Itié JP, Chauvigne P, Liz-Marzán LM, Rodríguez F. Origin of the Rich Polymorphism of Gold in Penta-Twinned Nanoparticles. NANO LETTERS 2025. [PMID: 39964189 DOI: 10.1021/acs.nanolett.4c06473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
We report on the crystallographic structure of penta-twinned gold nanoparticles. Although gold typically exhibits a face-centered cubic (fcc) lattice, other phases have been reported in some nanoscale systems. We show that the crystallographic system and the lattice parameters of the gold unit cell strongly depend on the nanoparticle geometry, for a wide size range. Specifically, we show that decahedra exhibit a body-centered tetragonal structure (I4/mmm), whereas rods and bipyramids exhibit a body-centered orthorhombic structure (Immm). These changes in the crystallographic structure are explained by the elastic lattice distortions required to close the mismatch gap in penta-twinned nanoparticles, with respect to fcc single-crystal gold nanoparticles. The effects of nanoparticle shape and size on the surface pressure and the subsequent distortions are additionally discussed.
Collapse
Affiliation(s)
- Camino Martín-Sánchez
- Faculté des Sciences, Département de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, CH-1211 Genève, Switzerland
- MALTA Consolider, DCITIMAC, Facultad de Ciencias, University of Cantabria, Av. Los Castros 48, Santander 39005, Spain
| | - Ana Sánchez-Iglesias
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián 20118, Spain
| | - José Antonio Barreda-Argüeso
- MALTA Consolider, DCITIMAC, Facultad de Ciencias, University of Cantabria, Av. Los Castros 48, Santander 39005, Spain
| | - Jean-Paul Itié
- Synchrotron SOLEIL, L'Orme des Merisiers St. Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Paul Chauvigne
- Synchrotron SOLEIL, L'Orme des Merisiers St. Aubin, BP48, 91192 Gif-sur-Yvette, France
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 43018, Spain
| | - Fernando Rodríguez
- MALTA Consolider, DCITIMAC, Facultad de Ciencias, University of Cantabria, Av. Los Castros 48, Santander 39005, Spain
| |
Collapse
|
2
|
Loyez M, Adolphson M, Liao J, Thakur S, Yang L. pH-responsive hydrogels embedded in hollow-core optical resonators. OPTICS EXPRESS 2024; 32:48449-48462. [PMID: 39876149 DOI: 10.1364/oe.511126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2025]
Abstract
Whispering-gallery-mode (WGM) microresonators are typically studied for surface (bio)chemical sensing, mainly relying on small refractive index changes occurring within a nanometer range from their walls surface. This high sensitivity, reaching up to 10-5 refractive index unit (RIU, ∼2.5 nm/RIU and measured at a femtometer resolution) leads to broad ranges of applications, especially for biosensing purposes through the monitoring of molecular binding events. In this article, we investigate the gelling of thin layers of poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) hydrogels inside a WGM microbubble resonator (MBR), fabricated from a silica capillary. The formation of such layers is achieved by withdrawing a liquid solution of 25% PVA/PAA in pure water into the MBR and locally heating the microbubble region, leading to hydrogel formation only in the WGM cavity. The capillary is then rinsed and tested under varying pH solutions. The swelling ability of these hydrogels is proportional to the pH of samples brought into contact with the cavity, leading to physical deformations of the layers consequently leading to changes in the WGM resonance condition. We show the preliminary results obtained for the gelling and characterization of these thin layers in microbubble resonators and present the related wavelength shifts observed for several pH values. We discuss the kinetics and practical uses, such as reversibility and tunable detection of small pH changes.
Collapse
|
3
|
Loyez M, Fasseaux H, Lobry M, Wattiez R, Caucheteur C. Insulin biotrapping using plasmofluidic optical fiber chips: A benchmark. Biosens Bioelectron 2024; 254:116189. [PMID: 38507927 DOI: 10.1016/j.bios.2024.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Plasmonic optical fiber-based biosensors are currently in their early stages of development as practical and integrated devices, gradually making their way towards the market. While the majority of these biosensors operate using white light and multimode optical fibers (OFs), our approach centers on single-mode OFs coupled with tilted fiber Bragg gratings (TFBGs) in the near-infrared wavelength range. Our objective is to enhance surface sensitivity and broaden sensing capabilities of OF-based sensors to develop in situ sensing with remote interrogation. In this study, we comprehensively assess their performance in comparison to the gold-standard plasmonic reference, a commercial device based on the Kretschmann-Raether prism configuration. We present their refractive index sensitivity and their capability for insulin sensing using a dedicated microfluidics approach. By optimizing a consistent surface biotrapping methodology, we elucidate the dynamic facets of both technologies and highlight their remarkable sensitivity to variations in bulk and surface properties. The one-to-one comparison between both technologies demonstrates the reliability of optical fiber-based measurements, showcasing similar experimental trends obtained with both the prismatic configuration and gold-coated TFBGs, with an even enhanced limit of detection for the latter. This study lays the foundation for the detection of punctual molecular interactions and opens the way towards the detection of spatially and temporally localized events on the surface of optical probes.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons (UMONS), 7000, Belgium; Electromagnetism and Telecom. Department, University of Mons (UMONS), 7000, Belgium.
| | - Hadrien Fasseaux
- Electromagnetism and Telecom. Department, University of Mons (UMONS), 7000, Belgium
| | - Maxime Lobry
- Electromagnetism and Telecom. Department, University of Mons (UMONS), 7000, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons (UMONS), 7000, Belgium
| | | |
Collapse
|
4
|
Bekmurzayeva A, Nurlankyzy M, Abdossova A, Myrkhiyeva Z, Tosi D. All-fiber label-free optical fiber biosensors: from modern technologies to current applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1453-1473. [PMID: 38495725 PMCID: PMC10942689 DOI: 10.1364/boe.515563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Biosensors are established as promising analytical tools for detecting various analytes important in biomedicine and environmental monitoring. Using fiber optic technology as a sensing element in biosensors offers low cost, high sensitivity, chemical inertness, and immunity to electromagnetic interference. Optical fiber sensors can be used in in vivo applications and multiplexed to detect several targets simultaneously. Certain configurations of optical fiber technology allow the detection of analytes in a label-free manner. This review aims to discuss recent advances in label-free optical fiber biosensors from a technological and application standpoint. First, modern technologies used to build label-free optical fiber-based sensors will be discussed. Then, current applications where these technologies are applied are elucidated. Namely, examples of detecting soluble cancer biomarkers, hormones, viruses, bacteria, and cells are presented.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Marzhan Nurlankyzy
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Albina Abdossova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
5
|
Mo Y, Adu-Amankwaah J, Qin W, Gao T, Hou X, Fan M, Liao X, Jia L, Zhao J, Yuan J, Tan R. Unlocking the predictive potential of long non-coding RNAs: a machine learning approach for precise cancer patient prognosis. Ann Med 2023; 55:2279748. [PMID: 37983519 PMCID: PMC11571739 DOI: 10.1080/07853890.2023.2279748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
The intricate web of cancer biology is governed by the active participation of long non-coding RNAs (lncRNAs), playing crucial roles in cancer cells' proliferation, migration, and drug resistance. Pioneering research driven by machine learning algorithms has unveiled the profound ability of specific combinations of lncRNAs to predict the prognosis of cancer patients. These findings highlight the transformative potential of lncRNAs as powerful therapeutic targets and prognostic markers. In this comprehensive review, we meticulously examined the landscape of lncRNAs in predicting the prognosis of the top five cancers and other malignancies, aiming to provide a compelling reference for future research endeavours. Leveraging the power of machine learning techniques, we explored the predictive capabilities of diverse lncRNA combinations, revealing their unprecedented potential to accurately determine patient outcomes.
Collapse
Affiliation(s)
- Yixuan Mo
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| | - Wenjie Qin
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Tan Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Xiaoqing Hou
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Mengying Fan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Xuemei Liao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Liwei Jia
- Department of Pathology, UT Southwestern Medical Center, Dallas, UT, USA
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Pathology, The First Hospital of China Medical University, Shenyang, China
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, China
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Shaimerdenova M, Ayupova T, Bekmurzayeva A, Sypabekova M, Ashikbayeva Z, Tosi D. Spatial-Division Multiplexing Approach for Simultaneous Detection of Fiber-Optic Ball Resonator Sensors: Applications for Refractometers and Biosensors. BIOSENSORS 2022; 12:1007. [PMID: 36421126 PMCID: PMC9688048 DOI: 10.3390/bios12111007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Fiber-optic ball resonators are an attractive technology for refractive index (RI) sensing and optical biosensing, as they have good sensitivity and allow for a rapid and repeatable manufacturing process. An important feature for modern biosensing devices is the multiplexing capacity, which allows for interrogating multiple sensors (potentially, with different functionalization methods) simultaneously, by a single analyzer. In this work, we report a multiplexing method for ball resonators, which is based on a spatial-division multiplexing approach. The method is validated on four ball resonator devices, experimentally evaluating both the cross-talk and the spectral shape influence of one sensor on another. We show that the multiplexing approach is highly efficient and that a sensing network with an arbitrary number of ball resonators can be designed with reasonable penalties for the sensing capabilities. Furthermore, we validate this concept in a four-sensor multiplexing configuration, for the simultaneous detection of two different cancer biomarkers across a widespread range of concentrations.
Collapse
Affiliation(s)
- Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- Department of Bioengineering and Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Marzhan Sypabekova
- School of Engineering and Computer Science, Baylor University, Waco, TX 76798, USA
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| |
Collapse
|
7
|
Guimarães CF, Cruz-Moreira D, Caballero D, Pirraco RP, Gasperini L, Kundu SC, Reis RL. Shining a Light on Cancer - Photonics in Microfluidic Tumor Modelling and Biosensing. Adv Healthc Mater 2022:e2201442. [PMID: 35998112 DOI: 10.1002/adhm.202201442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, we review the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives. First, we look at optical-driven technologies that allow biomaterials and living cells to be manipulated with micro-sized precision and the opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, we delve into the growing field of optofluidics, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, we review advances in optical cancer biosensing, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. We overview photonic technologies' current challenges and caveats in microfluidic 3D cancer models, outlining future research avenues that may catapult the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Daniela Cruz-Moreira
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - David Caballero
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| |
Collapse
|
8
|
Sypabekova M, Amantayeva A, Vangelista L, González-Vila Á, Caucheteur C, Tosi D. Ultralow Limit Detection of Soluble HER2 Biomarker in Serum with a Fiber-Optic Ball-Tip Resonator Assisted by a Tilted FBG. ACS MEASUREMENT SCIENCE AU 2022; 2:309-316. [PMID: 36785571 PMCID: PMC9885947 DOI: 10.1021/acsmeasuresciau.2c00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An optical-fiber biosensor has been developed for the detection of the breast cancer biomarker soluble human epidermal growth factor receptor-2 (sHER2). The sensor was fabricated by combining a tilted fiber Bragg grating (TFBG) with a ball resonator, allowing us to achieve an excellent sensitivity compared to other optical-fiber-based sensors. The sensor exhibits a resonance comb excited by the TFBG and the spectral profile of the ball resonator. The detection of sHER2 at extremely low concentrations was carried out by tracking the amplitude change of selected resonances. The therapeutic anti-HER2 monoclonal antibody Trastuzumab has been used to functionalize the biosensor with silane surface chemistry. The sensor features a sensitivity of 4034 dB/RIU with a limit of detection (LoD) in buffer and in a 1/10 diluted serum of 151.5 ag/mL and 3.7 pg/mL, respectively. At relatively high protein concentrations (64 ng/mL) binding to sHER (7.36 dB) as compared to control proteins (below 0.7 dB) attested the high specificity of sHER2 detection.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Nazarbayev
University School of Medicine, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
- Nazarbayev
University School of Engineering and Digital Sciences, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
- Baylor
Research and Innovative Collaborative, Baylor
University, 100 Research
Pkwy, Waco, Texas 76704, United States
| | - Aida Amantayeva
- Nazarbayev
University School of Engineering and Digital Sciences, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
| | - Luca Vangelista
- Nazarbayev
University School of Medicine, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
| | - Álvaro González-Vila
- Electromagnetism
and Telecommunication Department, University
of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism
and Telecommunication Department, University
of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Daniele Tosi
- Nazarbayev
University School of Engineering and Digital Sciences, 53 Kabanbay Batyr Avenue, 010000 Nur-Sultan, Kazakhstan
- National
Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 010000 Nur-Sultan, Kazakhstan
| |
Collapse
|
9
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
10
|
Hamidi-Asl E, Heidari-Khoshkelat L, Bakhsh Raoof J, Richard TP, Farhad S, Ghani M. A review on the recent achievements on coronaviruses recognition using electrochemical detection methods. Microchem J 2022; 178:107322. [PMID: 35233118 PMCID: PMC8875855 DOI: 10.1016/j.microc.2022.107322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Various coronaviruses, which cause a wide range of human and animal diseases, have emerged in the past 50 years. This may be due to their abilities to recombine, mutate, and infect multiple species and cell types. A novel coronavirus, which is a family of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), has been termed COVID-19 by the World Health Organization (WHO). COVID-19 is the strain that has not been previously identified in humans. The early identification and diagnosis of the virus is crucial for effective pandemic prevention. In this study, we review shortly various diagnostic methods for virus assay and focus on recent advances in electrochemical biosensors for COVID-19 detection.
Collapse
Affiliation(s)
- Ezat Hamidi-Asl
- Advanced Energy & Manufacturing Lab, Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Leyla Heidari-Khoshkelat
- Eletroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Eletroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Tara P Richard
- Department of Biological Science, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Siamak Farhad
- Advanced Energy & Manufacturing Lab, Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
11
|
Sametova A, Kurmashev S, Ashikbayeva Z, Amantayeva A, Blanc W, Atabaev TS, Tosi D. Fiber-Optic Distributed Sensing Network for Thermal Mapping of Gold Nanoparticles-Mediated Radiofrequency Ablation. BIOSENSORS 2022; 12:352. [PMID: 35624653 PMCID: PMC9138323 DOI: 10.3390/bios12050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
In this work, we report the design of an optical fiber distributed sensing network for the 2-dimensional (2D) in situ thermal mapping of advanced methods for radiofrequency thermal ablation. The sensing system is based on six high-scattering MgO-doped optical fibers, interleaved by a scattering-level spatial multiplexing approach that allows simultaneous detection of each fiber location, in a 40 × 20 mm grid (7.8 mm2 pixel size). Radiofrequency ablation (RFA) was performed on bovine phantom, using a pristine approach and methods mediated by agarose and gold nanoparticles in order to enhance the ablation properties. The 2D sensors allow the detection of spatiotemporal patterns, evaluating the heating properties and investigating the repeatability. We observe that agarose-based ablation yields the widest ablated area in the best-case scenario, while gold nanoparticles-mediated ablation provides the best trade-off between the ablated area (53.0-65.1 mm2, 61.5 mm2 mean value) and repeatability.
Collapse
Affiliation(s)
- Akbota Sametova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
| | - Sabit Kurmashev
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
| | - Aida Amantayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
| | - Wilfried Blanc
- Université Côte d’Azur, INPHYNI, CNRS UMR7010, Avenue Joseph Vallot, 06108 Nice, France;
| | - Timur Sh. Atabaev
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan;
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.S.); (S.K.); (Z.A.); (A.A.)
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
12
|
A Biosensor Based on Bound States in the Continuum and Fano Resonances in a Solid–Liquid–Solid Triple Layer. CRYSTALS 2022. [DOI: 10.3390/cryst12050707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We propose a simple solid–liquid–solid triple layer biosensor platform based on bound states in the continuum (BICs) and Fano resonances to detect the acoustic properties of liquids and apply the method to a mixture of water and albumin with various concentrations. The solid–liquid–solid triple layer is composed of an epoxy as a solid layer and an albumin–water mixture as a liquid layer, and the entire system is immersed in water. In this work, we show that the structure exhibits a high sensitivity (S), quality factor (Q), and figure of merit (FOM) with a better detection limit (DL) in the vicinity of the BICs where the transmission spectra exhibit Fano resonances. The Fano resonances shift towards high frequencies as the concentration increases. The detection limit can reach very small values for a small albumin concentration (4.7%). In addition, for a given concentration and layer thickness of the sensing material, we show the effect of the incidence angle on the efficiency of the sensor in terms of the sensitivity and quality factor. The proposed structure can be designed from low-cost material and can be used as a sensor to detect different types of liquids and gases as well.
Collapse
|
13
|
Cladding Mode Fitting-Assisted Automatic Refractive Index Demodulation Optical Fiber Sensor Probe Based on Tilted Fiber Bragg Grating and SPR. SENSORS 2022; 22:s22083032. [PMID: 35459016 PMCID: PMC9032900 DOI: 10.3390/s22083032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
In the paper based on surface plasmon resonance (SPR) in a tilted fiber Bragg grating (TFBG), a novel algorithm is proposed, which facilitates demodulation of surrounding refractive index (SRI) via cladding mode interrogation and accelerates calibration and measurement of SRI. Refractive indices with a tiny index step of 2.2 × 10−5 are prepared by the dilution of glucose aqueous solution for the test and the calibration of this fiber sensor probe. To accelerate the calibration process, automatic selection of the most sensitive cladding mode is demonstrated. First, peaks of transmitted spectrum are identified and numbered. Then, sensitivities of several potentially sensitive cladding modes in amplitude adjacent to the left of the SPR area are calculated and compared. After that, we focus on the amplitudes of the cladding modes as a function of a SRI, and the highest sensitivity of −6887 dB/RIU (refractive index unit) is obtained with a scanning time of 15.77 s in the range from 1520 nm to 1620 nm. To accelerate the scanning speed of the optical spectrum analyzer (OSA), the wavelength resolution is reduced from 0.028 nm to 0.07 nm, 0.14 nm, and 0.28 nm, and consequently the scanning time is shortened to 6.31 s, 3.15 s, and 1.58 s, respectively. However, compared to 0.028 nm, the SRI sensitivity for 0.07 nm, 0.14 nm, and 0.28 nm is reduced to −5685 dB/RIU (17.5% less), −5415 dB/RIU (21.4% less), and −4359 dB/RIU (36.7% less), respectively. Thanks to the calculation of parabolic equation and weighted Gauss fitting based on the original data, the sensitivity is improved to −6332 dB/RIU and −6721 dB/RIU, respectively, for 0.07 nm, and the sensitivity is increased to −5850 dB/RIU and −6228 dB/RIU, respectively, for 0.14 nm.
Collapse
|
14
|
Niu P, Jiang J, Liu K, Wang S, Jing J, Xu T, Wang T, Liu Y, Liu T. Fiber-integrated WGM optofluidic chip enhanced by microwave photonic analyzer for cardiac biomarker detection with ultra-high resolution. Biosens Bioelectron 2022; 208:114238. [PMID: 35390720 DOI: 10.1016/j.bios.2022.114238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Cardiac troponin I (cTnI) plays an important role in emergency diagnosis of cardiovascular diseases, which exists predominately in the form of cardiac troponin I-C (cTnI-C) complex. We proposed a fiber-integrated optofluidic chip immunosensor with time-delay-dispersion based microwave photonic analyzer (MPA) for cTnI-C detection. The whispering gallery mode (WGM) fiber probe was fabricated by embedding a polydopamine functionalized hollow glass microsphere (HGMS) into the etched capillary-fiber structure, and the WGMs could be excited through the efficient coupling between the thin-wall capillary and the HGMS. The reflective WGM optofluidic chip functioned as a wavelength tuner to construct fiber ring laser cavity, whose laser output wavelength was cTnI-C concentration-dependent. The tiny wavelength variation of sensing laser was converted into a radio-frequency (RF) response, which was retrieved by measuring the change of RF-domain free spectrum range (FSR) in time-delay-dispersion based MPA, and the quantitative detection of cTnI-C complex can be achieved with high resolution. Experimental results show that this immunosensor had a limit of detection (LOD) of 0.59 ng/mL, and a detection resolution of 1.2 fg/mL. The relative resolving power was 102-104-fold higher than that of others optical fiber cTnI biosensors. The proposed fiber-integrated optofluidic chip provides an innovative lab-on-chip diagnostic tool for myocardial damage.
Collapse
Affiliation(s)
- Panpan Niu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Junfeng Jiang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China.
| | - Kun Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Shuang Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Jianying Jing
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Tianhua Xu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Tong Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Yize Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Tiegen Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
Chupradit S, Jasim SA, Bokov D, Mahmoud MZ, Roomi AB, Hachem K, Rudiansyah M, Suksatan W, Bidares R. Recent advances in biosensor devices for HER-2 cancer biomarker detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1301-1310. [PMID: 35318477 DOI: 10.1039/d2ay00111j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The human epidermal growth factor receptor 2 (HER-2) protein is a member of the epidermal growth factor receptor (EGFR or ErbB) family and is a transmembrane tyrosine kinase receptor. HER-2 is highly regulated in ovarian, lung, gastric, oral, and breast cancers. The low specificity, complexity, expensiveness and the lack of sensitivity are essential restrictions in traditional diagnosis methods such as FISH, immunohistochemistry and PCR and these disadvantages led to the need for more studies on alternative methods. Biosensor technology has greatly affected the quality of human life owing to its features including, sensitivity, specificity, and rapid diagnosis and monitoring of different patient diseases. In this review article, we examine various biosensors, considering that they have been categorized based on the transducers used including piezoelectric biosensors, optical sensors such as fluorescence and surface plasmon resonance, and electrochemical types for the diagnosis of HER-2 and the effectiveness of some drugs against that. Attention to developing some types of biosensor devices such as colorimetric biosensors for HER-2 detection can be an important point in future studies.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Mustafa Z Mahmoud
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Ali B Roomi
- PhD Biochemistry, Ministry of Education, Directorate of Education Thi-Qar, Thi-Qar, 64001, Iraq
- Biochemistry and Biological Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, 64001, Iraq
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences, University of Saida - Dr Moulay Tahar, 20000 Saida, Algeria
| | - Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Ramtin Bidares
- Department of Anatomy, Histology Forensic Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Sim D, Brothers MC, Slocik JM, Islam AE, Maruyama B, Grigsby CC, Naik RR, Kim SS. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104426. [PMID: 35023321 PMCID: PMC8895156 DOI: 10.1002/advs.202104426] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Human health and performance monitoring (HHPM) is imperative to provide information necessary for protecting, sustaining, evaluating, and improving personnel in various occupational sectors, such as industry, academy, sports, recreation, and military. While various commercially wearable sensors are on the market with their capability of "quantitative assessments" on human health, physical, and psychological states, their sensing is mostly based on physical traits, and thus lacks precision in HHPM. Minimally or noninvasive biomarkers detectable from the human body, such as body fluid (e.g., sweat, tear, urine, and interstitial fluid), exhaled breath, and skin surface, can provide abundant additional information to the HHPM. Detecting these biomarkers with novel or existing sensor technologies is emerging as critical human monitoring research. This review provides a broad perspective on the state of the art biosensor technologies for HHPM, including the list of biomarkers and their physiochemical/physical characteristics, fundamental sensing principles, and high-performance sensing transducers. Further, this paper expands to the additional scope on the key technical challenges in applying the current HHPM system to the real field.
Collapse
Affiliation(s)
- Daniel Sim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Research Associateship Program (RAP)the National Academies of Sciences, Engineering and MedicineWashingtonDC20001USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Michael C. Brothers
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Joseph M. Slocik
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Ahmad E. Islam
- Air Force Research LaboratorySensors DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Benji Maruyama
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Claude C. Grigsby
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Rajesh R. Naik
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Steve S. Kim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| |
Collapse
|
17
|
Ni H, Zhang L, Ping A, Krasavin AV, Ali H, Ni B, Chang J. Dual-mode independent detection of pressure and refractive index by miniature grating-coupled surface plasmon sensor. OPTICS EXPRESS 2022; 30:5758-5768. [PMID: 35209531 DOI: 10.1364/oe.446766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Multiple parameters need to be monitored to analyze the kinetics of biological progresses. Surface plasmon polariton resonance sensors offer a non-invasive approach to continuously detect the local change of refractive index of molecules with high sensitivity. However, the fabrication of miniaturized, compact, and low-cost sensors is still challenging. In this paper, we propose and demonstrate a grating-coupled SPR sensor platform featuring dual mode operation for simultaneous sensing of pressure and refractive index, which can be fabricated using a highly-efficient low-cost method, allowing large-scale production. Both sensing functionalities are realized by optical means via monitoring the spectral positions of a surface plasmon polariton mode (for refractive index sensing) and Fabry-Perot or metal-insulator-metal modes (for pressure sensing), which are supported by the structure. Simultaneous measurement of refractive index with the sensitivity of 494 nm/RIU and pressure was demonstrated experimentally. The proposed platform is promising for biomonitoring that requires both high refractive index sensitivity and local pressure detection.
Collapse
|
18
|
Gade A, Sharma A, Srivastava N, Flora SJS. Surface plasmon resonance: A promising approach for label-free early cancer diagnosis. Clin Chim Acta 2022; 527:79-88. [PMID: 35120900 DOI: 10.1016/j.cca.2022.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022]
Abstract
Cancer is the second leading cause of death worldwide after cardiovascular disease. The major cause of high mortality is delayed detection. Therefore, detection at an early stage followed by early treatment can mitigate morbidity as well as mortality. The utilization of biomarker-based detection tools helps in early-stage recognition. Fortunately, biomarkers indicating disease status can be released in to the circulation. These include traditional marker proteins as well as exosomes, micro-RNA (miRNA) and circulating tumor DNA (ct-DNA). Biosensors are biological and chemical reaction devices that generate signals based on analyte concentration. Due to analyte binding, these devices demonstrate high sensitivity and specificity. This review examines the use of surface plasmon resonance (SPR)-based sensors in the diagnosis of various cancer including those of the breast, prostate, lung, ovary, cervix and pancreas. SPR is a label-free, real-time and non-invasive optical biosensing technology representing a novel diagnostic tool in cancer detection.
Collapse
Affiliation(s)
- Anushree Gade
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - S J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India.
| |
Collapse
|
19
|
Sypabekova M, Tosi D, Vangelista L. Perspectives on Assembling Coronavirus Spikes on Fiber Optics to Reveal Broadly Recognizing Antibodies and Generate a Universal Coronavirus Detector. Front Bioeng Biotechnol 2021; 9:637715. [PMID: 34900951 PMCID: PMC8661133 DOI: 10.3389/fbioe.2021.637715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In time of COVID-19 biological detection technologies are of crucial relevance. We propose here the use of state of the art optical fiber biosensors to address two aspects of the fight against SARS-CoV-2 and other pandemic human coronaviruses (HCoVs). Fiber optic biosensors functionalized with HCoV spikes could be used to discover broadly neutralizing antibodies (bnAbs) effective against known HCoVs (SARS-CoV, MERS-CoV and SARS-CoV-2) and likely future ones. In turn, identified bnAbs, once immobilized onto fiber optic biosensors, should be capable to detect HCoVs as diagnostic and environmental sensing devices. The therapeutic and preventative value of bnAbs is immense as they can be used for passive immunization and for the educated development of a universal vaccine (active immunization). Hence, HCoV bnAbs represent an extremely important resource for future preparedness against coronavirus-borne pandemics. Furthermore, the assembly of bnAb-based biosensors constitutes an innovative approach to counteract public health threats, as it bears diagnostic competence additional to environmental detection of a range of pandemic strains. This concept can be extended to different pandemic viruses, as well as bio-warfare threats that entail existing, emerging and extinct viruses (e.g., the smallpox-causing Variola virus). We report here the forefront fiber optic biosensor technology that could be implemented to achieve these aims.
Collapse
Affiliation(s)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan.,Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan, Kazakhstan
| | - Luca Vangelista
- School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
20
|
Bekmurzayeva A, Ashikbayeva Z, Myrkhiyeva Z, Nugmanova A, Shaimerdenova M, Ayupova T, Tosi D. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein. Sci Rep 2021; 11:19583. [PMID: 34599251 PMCID: PMC8486867 DOI: 10.1038/s41598-021-99099-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Increased level of CD44 protein in serum is observed in several cancers and is associated with tumor burden and metastasis. Current clinically used detection methods of this protein are time-consuming and use labeled reagents for analysis. Therefore exploring new label-free and fast methods for its quantification including its detection in situ is of importance. This study reports the first optical fiber biosensor for CD44 protein detection, based on a spherical fiber optic tip device. The sensor is easily fabricated from an inexpensive material (single-mode fiber widely used in telecommunication) in a fast and robust manner through a CO2 laser splicer. The fabricated sensor responded to refractive index change with a sensitivity of 95.76 dB/RIU. The spherical tip was further functionalized with anti-CD44 antibodies to develop a biosensor and each step of functionalization was verified by an atomic force microscope. The biosensor detected a target of interest with an achieved limit of detection of 17 pM with only minor signal change to two control proteins. Most importantly, concentrations tested in this work are very broad and are within the clinically relevant concentration range. Moreover, the configuration of the proposed biosensor allows its potential incorporation into an in situ system for quantitative detection of this biomarker in a clinical setting.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhuldyz Myrkhiyeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aigerim Nugmanova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
21
|
Liu F, Zhang X, Li K, Guo T, Ianoul A, Albert J. Discrimination of Bulk and Surface Refractive Index Change in Plasmonic Sensors with Narrow Bandwidth Resonance Combs. ACS Sens 2021; 6:3013-3023. [PMID: 34190543 DOI: 10.1021/acssensors.1c00906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A method to enable surface plasmon resonance (SPR) sensors to discriminate between bulk and surface-localized refractive index changes is demonstrated with modified gold-coated tilted fiber Bragg grating SPR sensors (TFBG-SPR). Without this capability, all high-resolution SPR sensors should be using reference channels and strict temperature control to prevent the contamination of the desired detection of surface-localized chemical or binding events by drift of the refractive index of the medium, in which the experiment is carried out. The very fine comb of high-quality-factor resonances of a TFBG-SPR device coupled to the large differential sensitivity of some of the resonances to various perturbations is used to measure unambiguously the refractive index changes within a surface layer thinner than 25 nm from those of the bulk surrounding. The enabling modification of the conventional TFBG-SPR is a reduction of the gold coating from its optimum value near 50-30 nm: at this lower thickness, a surface plasmon wave can still be excited by a limited number of cladding mode resonances, but at the same time, the metal is thin enough to allow modes away from the SPR to tunnel across the metal and probe the bulk RI value. Measurements and simulations of the deposition of a self-assembled monolayer of 1-dodecanethiol in ethanol show that the bulk refractive index changes as small as 0.0004 can be distinguished from the formation of a 1 nm thick coating on the surface of the fiber.
Collapse
Affiliation(s)
- Fu Liu
- Department of Electronics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Xuejun Zhang
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Kaiwei Li
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Tuan Guo
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Anatoli Ianoul
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jacques Albert
- Department of Electronics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
22
|
Loyez M, Wells M, Hambÿe S, Hubinon F, Blankert B, Wattiez R, Caucheteur C. PfHRP2 detection using plasmonic optrodes: performance analysis. Malar J 2021; 20:332. [PMID: 34320995 PMCID: PMC8320217 DOI: 10.1186/s12936-021-03863-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Early malaria diagnosis and its profiling require the development of new sensing platforms enabling rapid and early analysis of parasites in blood or saliva, aside the widespread rapid diagnostic tests (RDTs). Methods This study shows the performance of a cost-effective optical fiber-based solution to target the presence of Plasmodium falciparum histidine-rich protein 2 (PfHRP2). Unclad multimode optical fiber probes are coated with a thin gold film to excite Surface Plasmon Resonance (SPR) yielding high sensitivity to bio-interactions between targets and bioreceptors grafted on the metal surface. Results Their performances are presented in laboratory conditions using PBS spiked with growing concentrations of purified target proteins and within in vitro cultures. Two probe configurations are studied through label-free detection and amplification using secondary antibodies to show the possibility to lower the intrisic limit of detection. Conclusions As malaria hits millions of people worldwide, the improvement and multiplexing of this optical fiber technique can be of great interest, especially for a future purpose of using multiple receptors on the fiber surface or several coated-nanoparticles as amplifiers. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03863-3.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000, Mons, Belgium. .,Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Mathilde Wells
- Laboratory of Pharmaceutical Analysis, University of Mons, Avenue Maistriau 15, 7000, Mons, Belgium
| | - Stéphanie Hambÿe
- Laboratory of Pharmaceutical Analysis, University of Mons, Avenue Maistriau 15, 7000, Mons, Belgium
| | - François Hubinon
- Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, University of Mons, Avenue Maistriau 15, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000, Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| |
Collapse
|
23
|
Ortega-Gomez A, Loyez M, Lobry M, Chah K, Zubia J, Villatoro J, Caucheteur C. Plasmonic sensors based on tilted Bragg gratings in multicore optical fibers. OPTICS EXPRESS 2021; 29:18469-18480. [PMID: 34154102 DOI: 10.1364/oe.430181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Bare and gold-coated tilted fiber Bragg gratings (TFBGs) can nowadays be considered as a mature technology for volume and surface refractometric sensing, respectively. As for other technologies, a continuous effort is made towards the production of even more sensitive sensors, thereby enabling a high-resolution screening of the surroundings and the possible detection of rare events. To this aim, we study in this work the development of TFBG refractometers in 4-core fibers. In particular, we show that the refractometric sensitivity of the cut-off mode can reach 100 nm/RIU for a bare grating. Using another demodulation method, a tenfold sensitivity increase is obtained when tracking the extremum of the SPR (surface plasmon resonance) envelope for a gold-coated TFBG configuration. Immobilization of DNA probes was performed as a proof-of-concept to assess the high surface sensitivity of the device.
Collapse
|
24
|
Shallow-Tapered Chirped Fiber Bragg Grating Sensors for Dual Refractive Index and Temperature Sensing. SENSORS 2021; 21:s21113635. [PMID: 34073669 PMCID: PMC8197150 DOI: 10.3390/s21113635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
In this work, we present a gold-coated shallow-tapered chirped fiber Bragg grating (stCFBG) for dual refractive index (RI) and temperature sensing. The stCFBG has been fabricated on a 15-mm long chirped FBG, by tapering a 7.29-mm region with a waist of 39 μm. The spectral analysis shows two distinct regions: a pre-taper region, in which the stCFBG is RI-independent and can be used to detect thermal changes, and a post-taper region, in which the reflectivity increases significantly when the RI increments. We estimate the RI and thermal sensitivities as 382.83 dB/RIU and 9.893 pm/°C, respectively. The cross-talk values are low (−1.54 × 10−3 dB/°C and 568.1 pm/RIU), which allows an almost ideal separation between RI and thermal characteristics. The stCFBG is a compact probe, suitable for long-term and temperature-compensated biosensing and detection of chemical analytes.
Collapse
|
25
|
Wackers G, Cornelis P, Putzeys T, Peeters M, Tack J, Troost F, Doll T, Verhaert N, Wagner P. Electropolymerized Receptor Coatings for the Quantitative Detection of Histamine with a Catheter-Based, Diagnostic Sensor. ACS Sens 2021; 6:100-110. [PMID: 33337133 DOI: 10.1021/acssensors.0c01844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this article, we report on the development of a catheter-based, biomimetic sensor as a step toward a minimally invasive diagnostic instrument in the context of functional bowel disorders. Histamine is a key mediator in allergic and inflammatory processes in the small intestines; however, it is a challenge to determine histamine levels at the duodenal mucosa, and classical bioreceptors are unsuitable for use in the digestive medium of bowel fluid. Therefore, we have developed molecularly imprinted polypyrrole coatings for impedimetric sensing electrodes, which enable the quantification of histamine in nondiluted, human bowel fluid in a broad concentration range from 25 nM to 1 μM. The electrodes show negligible cross-sensitivity to histidine as a competitor molecule and, for comparison, we also evaluated the response of nonimprinted and taurine-imprinted polypyrrole to histamine. Furthermore, using equivalent-circuit modeling, we found that the molecular recognition of histamine by polypyrrole primarily increases the resistive component of the electrode-liquid interface while capacitive effects are negligible. The sensor, integrated into a catheter, measures differentially to correct for nonspecific adsorption effects in the complex matrix of bowel fluids, and a single triggering frequency is sufficient to determine histamine concentrations. Together, these features are beneficial for real-time diagnostic tests.
Collapse
Affiliation(s)
- Gideon Wackers
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
| | - Peter Cornelis
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
| | - Tristan Putzeys
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
- Research Group Experimental Oto-rhino-laryngology, KU Leuven, O&N II, Herestraat 49, Leuven B-3001, Belgium
| | - Marloes Peeters
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Jan Tack
- Translational Research in Gastrointestinal Disorders TARGID, KU Leuven, O&N I, Herestraat 49, Leuven B-3000, Belgium
| | - Freddy Troost
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitsingel 40, ER Maastricht NL-6229, The Netherlands
| | - Theodor Doll
- Institute of AudioNeuroTechnology VIANNA, Hannover Medical School, Stadtfelddamm 34, Hannover D-30625, Germany
| | - Nicolas Verhaert
- Research Group Experimental Oto-rhino-laryngology, KU Leuven, O&N II, Herestraat 49, Leuven B-3001, Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, Leuven B-3001, Belgium
| |
Collapse
|
26
|
Liu K, Zhang J, Jiang J, Xu T, Wang S, Chang P, Zhang Z, Ma J, Liu T. Multi-layer optical fiber surface plasmon resonance biosensor based on a sandwich structure of polydopamine-MoSe 2@Au nanoparticles-polydopamine. BIOMEDICAL OPTICS EXPRESS 2020; 11:6840-6851. [PMID: 33408965 PMCID: PMC7747900 DOI: 10.1364/boe.409535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 05/04/2023]
Abstract
An all-optical fiber multi-layer surface plasmon resonance (SPR) biosensor based on a sandwich structure of polydopamine-MoSe2@Au nanoparticles-polydopamine (PDA-MoSe2@AuNPs-PDA) was designed for the detection of specific immunoreactions. By optimizing the multi-layer structure and the ratio of MoSe2: AuNPs, a sensitivity of 5117.59 nm/RIU has been obtained, which is more than double that of the only Au-filmed optical fiber SPR sensor. A large surface area was produced by integrating the MoSe2 primitive unit cell and the AuNPs into a hybrid plasmonic nanostructure of MoSe2@AuNPs, leading to optical fiber SPR signal amplification. The nanostructure of MoSe2@AuNPs was surrounded by the PDA layer to guarantee the efficient immobilization of the protein molecules on the optical fiber by strong covalent bond. This biosensor achieved a detection limit of 54.05 ng/mL for detecting the goat-anti-rabbit IgG, which demonstrated enhancements of 12.1%, 23.3% and 184.6% in comparison with three reported SPR biosensors decorated with PDA-AuNPs-PDA, PDA and Cysteamine-MoSe2@AuNPs-Cysteamine nanostructure, respectively. This biosensor achieved favorable selectivity and outstanding sensitivity compared with the reported SPR immuno-sensors, which will provide a miniaturized, rapid-response and label-free optical fiber bio-sensing platform for clinical diagnosis in the future.
Collapse
Affiliation(s)
- Kun Liu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Jiahang Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Junfeng Jiang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Shuang Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Pengxiang Chang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Zhao Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Jinying Ma
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| |
Collapse
|
27
|
Falkowski P, Lukaszewski Z, Gorodkiewicz E. Potential of surface plasmon resonance biosensors in cancer detection. J Pharm Biomed Anal 2020; 194:113802. [PMID: 33303267 DOI: 10.1016/j.jpba.2020.113802] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
A review is made of 71 papers on surface plasmon resonance biosensors, published between 2005 and 2020, mostly in the last decade. The reviewed papers are divided into two groups, depending on the validation of the developed biosensor. Validated biosensors are briefly characterized, while those that are not validated are listed in a table. Focus is placed on applications of SPR biosensors in testing the effectiveness of cancer markers and in the discovery of new cancer markers. Seven new markers are proposed, two of them having high sensitivity and diagnostic selectivity as determined by ROC curves. Papers concerning the determination of micro RNA and large particles such as vesicles, exosomes and cancer cells are also reviewed.
Collapse
Affiliation(s)
- Pawel Falkowski
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Zenon Lukaszewski
- Poznan University of Technology, Faculty of Chemical Technology, Poland
| | - Ewa Gorodkiewicz
- Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
28
|
Sypabekova M, Aitkulov A, Blanc W, Tosi D. Reflector-less nanoparticles doped optical fiber biosensor for the detection of proteins: Case thrombin. Biosens Bioelectron 2020; 165:112365. [PMID: 32729497 DOI: 10.1016/j.bios.2020.112365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
A miniature biosensing platform based on MgO-based nanoparticle doped optical fiber was developed for the biomolecule detection. The technology used a single mode fiber with MgO-based nanoparticles doped core. The detection was based on collecting the Rayleigh backscattering signatures with increased gain upon the etching of the fiber 1-2 mm away from the tip. The shift from the backscattered signal with the maximum value of the cross-correlation was used to report the results. The sensor exhibited a sensitivity range from 0.75 nm/refractive index unit up to 19.63 nm/refractive index unit for a refractive index range from 1.3329 up to 1.37649. The deposition of the thin gold layer increased the overall sensitivity of the biosensor by 3.7 times for the etched part of the fiber with diameter 8-9 μm. The proposed biosensor was tested for the detection of thrombin molecule concentrations ranging from 0.625 μg/ml to 20 μg/ml. Thiol modified DNA specific aptamers were used to functionalize the gold coated surface of the fiber for the detection. The sensor showed detectable sensitivity and specificity as compared to the other control proteins. The proposed biosensing platform could be multiplexed and can be used in vivo for the detection in clinical settings due to its miniature size, biocompatibility of silica glass and reflector less set up.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 010000, Nur-Sultan, Kazakhstan; Nazarbayev University, School of Medicine, 010000, Nur-Sultan, Kazakhstan.
| | - Arman Aitkulov
- Nazarbayev University, School of Engineering and Digital Sciences, 010000, Nur-Sultan, Kazakhstan
| | - Wilfried Blanc
- Université Côte d'Azur, INPHYNI-CNRS UMR 7010, Parc Valrose, 06108, Nice, France
| | - Daniele Tosi
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 010000, Nur-Sultan, Kazakhstan; Nazarbayev University, School of Engineering and Digital Sciences, 010000, Nur-Sultan, Kazakhstan
| |
Collapse
|
29
|
Loyez M, Lobry M, Hassan EM, DeRosa MC, Caucheteur C, Wattiez R. HER2 breast cancer biomarker detection using a sandwich optical fiber assay. Talanta 2020; 221:121452. [PMID: 33076075 DOI: 10.1016/j.talanta.2020.121452] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
Optical fiber-based surface plasmon resonance (OF-SPR) sensors have demonstrated high versatility and performances over the last years, which propelled the technique to the heart of numerous and original biosensing concepts. In this work, we contribute to this effort and present our recent findings about the detection of breast cancer HER2 biomarkers through OF-SPR optrodes. 1 cm-long sections of 400 μm core-diameter optical fibers were covered with a sputtered gold film, yielding enhanced sensitivity to surface refractive index changes. Studying the impacts of the gold film thickness on the plasmonic spectral response, we improved the quality and reproducibility of the sensors. These achievements were correlated in two ways, using both the central wavelengths of the plasmon resonance and its influence on the bulk refractive index sensitivity. Our dataset was fed by additional biosensing experiments with a direct and indirect approach, relying on aptamers and antibodies specifically implemented in a sandwich layout. HER2 biomarkers were specifically detected at 0.6 μg/mL (5.16 nM) in label-free while the amplification with HER2-antibodies provided a nearly hundredfold signal magnification, reaching 9.3 ng/mL (77.4 pM). We believe that these results harbinger the way for their further use in biomedical samples.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Place Du Parc 20, 7000, Mons, Belgium.
| | - Maxime Lobry
- Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Eman M Hassan
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada; Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Maria C DeRosa
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Place Du Parc 20, 7000, Mons, Belgium
| |
Collapse
|
30
|
Abstract
The detection of biomarkers is critical for enabling early disease diagnosis, monitoring the progression, and tracking the effectiveness of therapeutic intervention. Plasmonic sensors exhibit a broad range of analytical capabilities, from the rapid generation of colorimetric readouts to single-molecule sensitivity in ultralow sample volumes, which have led to their increased exploration in bioanalysis and point-of-care applications. This perspective presents selected accounts of recent developments on the different types of plasmonic sensing platforms, the pervasive challenges, and outlook on the pathway to translation. We highlight the sensing of upcoming biomarkers, including microRNA, circulating tumor cells, exosomes, and cell-free DNA, and discuss the opportunity of utilizing plasmonic nanomaterials and tools for biomarker detection beyond biofluids, such as in tissues, organs, and disease sites. The integration of plasmonic biosensors with established and upcoming technologies of instrumentation, sample pretreatment, and data analysis will help realize their translation to clinical settings for improving healthcare and enhancing the quality of life.
Collapse
Affiliation(s)
- Nicole Cathcart
- Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, Canada M3J 1P3
| | - Jennifer I L Chen
- Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
31
|
Pirzada M, Altintas Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. MICROMACHINES 2020; 11:E356. [PMID: 32235546 PMCID: PMC7231100 DOI: 10.3390/mi11040356] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022]
Abstract
In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
32
|
Wackers G, Putzeys T, Peeters M, Van de Cauter L, Cornelis P, Wübbenhorst M, Tack J, Troost F, Verhaert N, Doll T, Wagner P. Towards a catheter-based impedimetric sensor for the assessment of intestinal histamine levels in IBS patients. Biosens Bioelectron 2020; 158:112152. [PMID: 32275205 DOI: 10.1016/j.bios.2020.112152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022]
Abstract
In this work, we report on the development of a catheter-based sensor designed for measuring the concentration of histamine in the human duodenum. Certain gut disorders, such as the irritable bowel syndrome (IBS), are associated with elevated levels of intestinal histamine due to chronic immune activation. As it is still impossible to determine histamine concentrations in vivo, a nasointestinal catheter with histamine-sensing capabilities has the potential to become a valuable diagnostic instrument. Regarding the sensing principle, we selected impedance spectroscopy using voltages that are compatible with intra-body applications with molecularly imprinted polymers (MIPs) as recognition elements. MIPs are synthetic receptors that offer the advantages of robustness, high specificity and selectivity for histamine as a target. In this specific case, the MIPs were synthesized from acryclic acid monomers, which guarantees a uniform binding capacity within the pH range of intestinal fluid. We have validated the catheter sensor on human intestinal liquids spiked with histamine in a testing setup that mimics the environment inside the duodenum. The dose-response curves show an analytical range between 5 and 200 nM of histamine, corresponding to physiologically normal conditions while higher concentrations correlate with disease. The key output signal of the sensor is the resistive component of the MIP-functionalized titanium electrodes as derived from the equivalent-circuit modelling of full-range impedance spectra. Future applications could be catheters tailored to cardiovascular, urological, gastrointestinal, and neurovascular applications. This, in combination with the versatility of the MIPs, will make this sensor platform a versatile diagnostic tool.
Collapse
Affiliation(s)
- Gideon Wackers
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium.
| | - Tristan Putzeys
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium; KU Leuven, Research Group Experimental Oto-rhino-laryngology, O&N II, Herestraat 49, B-3001, Leuven, Belgium
| | - Marloes Peeters
- Newcastle University, School of Engineering, Newcastle NE1 7RU, United Kingdom
| | - Lori Van de Cauter
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium
| | - Peter Cornelis
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium
| | - Michael Wübbenhorst
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium
| | - Jan Tack
- KU Leuven, Translational Research in Gastrointestinal Disorders, O&N I, Herestraat 49, B-3001, Leuven, Belgium
| | - Freddy Troost
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, NUTRIM School of Nutrition and Translational Research in Metabolism, Universiteitssingel 40, NL-6229 ER, Maastricht, the Netherlands
| | - Nicolas Verhaert
- KU Leuven, Research Group Experimental Oto-rhino-laryngology, O&N II, Herestraat 49, B-3001, Leuven, Belgium
| | - Theodor Doll
- Hannover Medical School, Institute of AudioNeuroTechnology VIANNA, Stadtfelddamm 34, D-30625, Hannover, Germany
| | - Patrick Wagner
- KU Leuven, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001, Leuven, Belgium
| |
Collapse
|
33
|
Lobry M, Loyez M, Hassan EM, Chah K, DeRosa MC, Goormaghtigh E, Wattiez R, Caucheteur C. Multimodal plasmonic optical fiber grating aptasensor. OPTICS EXPRESS 2020; 28:7539-7551. [PMID: 32225979 DOI: 10.1364/oe.385747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/16/2020] [Indexed: 05/22/2023]
Abstract
Tilted fiber Bragg gratings (TFBGs) are now a well-established technology in the scientific literature, bringing numerous advantages, especially for biodetection. Significant sensitivity improvements are achieved by exciting plasmon waves on their metal-coated surface. Nowadays, a large part of advances in this topic relies on new strategies aimed at providing sensitivity enhancements. In this work, TFBGs are produced in both single-mode and multimode telecommunication-grade optical fibers, and their relative performances are evaluated for refractometry and biosensing purposes. TFBGs are biofunctionalized with aptamers oriented against HER2 (Human Epidermal Growth Factor Receptor-2), a relevant protein biomarker for breast cancer diagnosis. In vitro assays confirm that the sensing performances of TFBGs in multimode fiber are higher or identical to those of their counterparts in single-mode fiber, respectively, when bulk refractometry or surface biosensing is considered. These observations are confirmed by numerical simulations. TFBGs in multimode fiber bring valuable practical assets, featuring a reduced spectral bandwidth for improved multiplexing possibilities enabling the detection of several biomarkers.
Collapse
|
34
|
Loyez M, Hassan EM, Lobry M, Liu F, Caucheteur C, Wattiez R, DeRosa MC, Willmore WG, Albert J. Rapid Detection of Circulating Breast Cancer Cells Using a Multiresonant Optical Fiber Aptasensor with Plasmonic Amplification. ACS Sens 2020; 5:454-463. [PMID: 31967461 DOI: 10.1021/acssensors.9b02155] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The detection of circulating tumor cells (CTCs), which are responsible for metastasis in several forms of cancer, represents an important goal in oncological diagnosis and treatment. These cells remain extremely challenging to detect, despite numerous previous studies, due to their low concentration (1-10 cells/mL of blood). In this work, an all-fiber plasmonic aptasensor featuring multiple narrowband resonances in the near-infrared wavelength range was developed to detect metastatic breast cancer cells. To this aim, specific aptamers against mammaglobin-A were selected and immobilized as receptors on the sensor surface. In vitro assays confirm that the label-free and real-time detection of cancer cells [limit of detection (LOD) of 49 cells/mL] occurs within 5 min, while the additional use of functionalized gold nanoparticles allows a 2-fold amplification of the biosensor response. Differential measurements on selected optical resonances were used to process the sensor response, and results were confirmed by microscopy. The detection of only 10 cancer cells/mL was achieved with relevant specificity against control cells and with quick response time.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000 Mons, Belgium
| | - Eman M. Hassan
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Maxime Lobry
- Electromagnetism and Telecommunications Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Fu Liu
- Department of Electronics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunications Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000 Mons, Belgium
| | - Maria C. DeRosa
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - William G. Willmore
- Institute of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Jacques Albert
- Department of Electronics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
35
|
Sypabekova M, Korganbayev S, González-Vila Á, Caucheteur C, Shaimerdenova M, Ayupova T, Bekmurzayeva A, Vangelista L, Tosi D. Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection. Biosens Bioelectron 2019; 146:111765. [PMID: 31606689 DOI: 10.1016/j.bios.2019.111765] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
An aptasensor based on etched tilted fiber Bragg grating (eTFBG) is developed on a single-mode optical fiber targeting biomolecule detection. TFBGs were chemically etched using hydrofluoric acid (HF) to partially remove the fiber cladding. The sensor response was coarsely interrogated, resulting on a sensitivity increase from 1.25 nm/RIU (refractive index unit) at the beginning of the process, up to 23.38 nm/RIU at the end of the etching, for a RI range from 1.3418 to 1.4419 RIU. The proposed aptasensor showed improved RI sensitivity as compared to the unetched TFBG, without requiring metal depositions on the fiber surface or polarization control during the measurements. The proposed sensor was tested for the detection of thrombin-aptamer interactions based on silane-coupling surface chemistry, with thrombin concentrations ranging from 2.5 to 40 nM. Functionalized eTFBGs provided a competitive platform for biochemical interaction measurements, showing sensitivity values ranging from 2.3 to 3.3 p.m./nM for the particular case of thrombin detection.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan.
| | - Sanzhar Korganbayev
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Álvaro González-Vila
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000, Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000, Mons, Belgium
| | - Madina Shaimerdenova
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Takhmina Ayupova
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Aliya Bekmurzayeva
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Luca Vangelista
- School of Medicine, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Daniele Tosi
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| |
Collapse
|
36
|
Optical Fiber Gratings Immunoassays. SENSORS 2019; 19:s19112595. [PMID: 31181610 PMCID: PMC6603621 DOI: 10.3390/s19112595] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022]
Abstract
Optical fibers are of growing interest for biosensing, especially for point-of-care and biomedical assays. Their intrinsic properties bestow them sought-after assets for the detection of low concentrations of analytes. Tilted fiber Bragg gratings (TFBGs) photo-inscribed in the core of telecommunication-grade optical fibers are known to be highly-sensitive refractometers. In this work, we present different strategies to use them for label-free immunoassays. Bare, gold-sputtered, gold-electroless-plated (ELP) and hybrid configurations are biofunctionalized with antibodies, aiming at the detection of cancer biomarkers. We discuss the relative performances of the tested configurations and show that each leads to singular key features, which therefore drives their selection as a function of the target application. The most sensitive configuration presents a limit of detection of 10−12 g/mL in laboratory settings and was successfully used ex vivo in freshly resected lung tissues.
Collapse
|
37
|
Saylan Y, Erdem Ö, Ünal S, Denizli A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. BIOSENSORS 2019; 9:E65. [PMID: 31117262 PMCID: PMC6627152 DOI: 10.3390/bios9020065] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/14/2022]
Abstract
Infectious diseases still pose an omnipresent threat to global and public health, especially in many countries and rural areas of cities. Underlying reasons of such serious maladies can be summarized as the paucity of appropriate analysis methods and subsequent treatment strategies due to the limited access of centralized and equipped health care facilities for diagnosis. Biosensors hold great impact to turn our current analytical methods into diagnostic strategies by restructuring their sensing module for the detection of biomolecules, especially nano-sized objects such as protein biomarkers and viruses. Unquestionably, current sensing platforms require continuous updates to address growing challenges in the diagnosis of viruses as viruses change quickly and spread largely from person-to-person, indicating the urgency of early diagnosis. Some of the challenges can be classified in biological barriers (specificity, low number of targets, and biological matrices) and technological limitations (detection limit, linear dynamic range, stability, and reliability), as well as economical aspects that limit their implementation into resource-scarce settings. In this review, the principle and types of biosensors and their applications in the diagnosis of distinct infectious diseases were comprehensively explained. The deployment of current biosensors into resource-scarce settings is further discussed for virus detection by elaborating the pros and cons of existing methods as a conclusion and future perspective.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Özgecan Erdem
- Department of Biology, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|