1
|
Sarac B, Yücer S, Ciftci F. MXenes in microbiology and virology: from pathogen detection to antimicrobial applications. NANOSCALE 2025; 17:9619-9651. [PMID: 40135595 DOI: 10.1039/d5nr00477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
MXenes, a rapidly emerging class of two-dimensional materials, have demonstrated exceptional versatility and functionality across various domains, including microbiology and virology. Recent advancements in MXene synthesis techniques, encompassing both top-down and bottom-up approaches, have expanded their potential applications in pathogen detection, antimicrobial treatments, and biomedical platforms. This review highlights the unique physicochemical properties of MXenes, including their large surface area, tunable surface chemistry, and high biocompatibility, which contribute to their antimicrobial efficacy against bacteria, fungi, and viruses, such as SARS-CoV-2. The antibacterial mechanisms of MXenes, including membrane disruption, reactive oxygen species (ROS) generation, and photothermal inactivation, are discussed alongside hybridization strategies that enhance their bioactivity. Additionally, the challenges and future prospects of MXenes in developing advanced antimicrobial coatings, diagnostic tools, and therapeutic systems are outlined. By addressing current limitations and exploring innovative solutions, this study underscores the transformative potential of MXenes in microbiology, virology, and biomedical applications.
Collapse
Affiliation(s)
- Begüm Sarac
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Seydanur Yücer
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Fatih Ciftci
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey
| |
Collapse
|
2
|
Yang C, He C, Zhuo H, Wang J, Yong T, Gan L, Yang X, Nie L, Xi S, Liu Z, Liao G, Shi T. Cost-effective microfluidic flow cytometry for precise and gentle cell sorting. LAB ON A CHIP 2025; 25:698-713. [PMID: 39895391 DOI: 10.1039/d4lc00900b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Microfluidic flow cytometry (MFCM) is considered to be an effective substitute for traditional flow cytometry, because of its advantages in terms of higher integration, smaller device size, lower cost, and higher cell sorting activity. However, MFCM still faces challenges in balancing parameters such as sorting throughput, viability, sorting efficiency, and cost. Here, we demonstrate a cost-effective and high-performance microfluidic cytometry cell sorting system, along with a customized microfluidic chip that integrates hydrodynamic focusing, droplet encapsulation, and sorting for precise cell manipulation. An innovative photon incremental counting-based fluorescence detection method is proposed, which requires only one-fiftieth of the data compared to traditional methods. This significantly simplifies the structure of the system and substantially reduces costs. The system exhibits detection recoveries exceeding 95% across sample solution flow rates ranging from 10 to 80 μL min-1. Moreover, it accurately achieves individual droplet deflections at a droplet generation frequency of 1600 Hz. Ultimately, our cell sorting system offers an impressive sorting efficiency of 90.7% and a high cell viability of 94.3% when operating at a droplet generation frequency of 1316 Hz, highlighting its accuracy and gentleness throughout the entire process. Our work will enhance advances in the life sciences, thereby creating a boom in great applications in single-cell cloning, single-cell analysis, drug screening, etc.
Collapse
Affiliation(s)
- Canfeng Yang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chunhua He
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Huasheng Zhuo
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jianxin Wang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Nie
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shuang Xi
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhiyong Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guanglan Liao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Li C, Huang Y, Li S, Li Y, Tan H. Portable foodborne pathogen detection via ratiometric fluorescence nanoprobe for adenosine triphosphate quantification based on DNA-functionalized metal-organic framework. Int J Biol Macromol 2025; 286:138410. [PMID: 39645114 DOI: 10.1016/j.ijbiomac.2024.138410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The increasing incidence of foodborne illnesses highlights the need for rapid, sensitive, and portable methods to detect pathogenic bacteria in food. In this work, we develop a portable method that utilizes a ratiometric fluorescence nanoprobe for adenosine triphosphate (ATP) quantification. The nanoprobe is constructed by encapsulating Ru(bpy)32+ within a zirconium-based metal-organic framework, followed by functionalization of double-stranded DNA (dsDNA). This design permits SYBR Green I (SGI) to intercalate into dsDNA, conferring the nanoprobe with dual-emission property. The presence of ATP disrupts dsDNA structure, quenching SGI fluorescence while maintaining Ru(bpy)32+ fluorescence, providing a stable reference signal. This differential response enables the nanoprobe to achieve ratiometric ATP detection with high precision and sensitivity, with a detection limit of 0.63 μM. Since ATP is a reliable biomarker for viable bacterial cells, a portable hydrogel kit was further developed by integrating the ratiometric fluorescence nanoprobe into an agarose hydrogel matrix. The validation of the kit was conducted using a smartphone application for color recognition, enabling the rapid and on-site detection of pathogens in milk samples. The kit exhibits exceptional sensitivity with a detection limit of 10 CFU/mL, making it a promising tool for real-time bacteria detection in food safety monitoring.
Collapse
Affiliation(s)
- Changling Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, PR China
| | - Yingjie Huang
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, PR China.
| | - Yong Li
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418008, PR China; Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, PR China.
| |
Collapse
|
4
|
Gu A, Dong Y, Li L, Yu D, Zhang J, Chen Y. CRISPR/Cas12a and Hybridization Chain Reaction-Coregulated Magnetic Relaxation Switching Biosensor for Sensitive Detection of Viable Salmonella in Animal-Derived Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20130-20139. [PMID: 39192723 DOI: 10.1021/acs.jafc.4c05540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We combined a CRISPR/Cas12a system with a hybridization chain reaction (HCR) to develop an ultrasensitive magnetic relaxation switching (MRS) biosensor for detecting viable Salmonella typhimurium (S. typhimurium). Magnetic nanoparticles of two sizes (30 and 1000 nm: MNP30 and MNP1000, respectively) were coupled through HCR. The S. typhimurium gene-activated CRISPR/Cas12a system released MNP30 from the MNP1000-HCR-MNP30 complex through a trans-cleavage reaction. After magnetic separation, released MNP30 was collected from the supernatant and served as a transverse relaxation time (T2) signal probe. Quantitative detection of S. typhimurium is achieved by establishing a linear relationship between the change in T2 and the target gene. The biosensor's limit of detection was 77 CFU/mL (LOD = 3S/M, S = 22.30, M = 0.87), and the linear range was 102-108 CFU/mL. The accuracy for detecting S. typhimurium in real samples is comparable to that of qPCR. Thus, this is a promising method for the rapid and effective detection of foodborne pathogens.
Collapse
Affiliation(s)
- Aoting Gu
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Letian Li
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Deyang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jiangjiang Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| |
Collapse
|
5
|
Li M, Li X, Ji D, Ren Y, Qian S, Sun W, Hu W. Label-free OIRD detection of protein microarrays on high dielectric constant substrate with enhanced intrinsic sensitivity. Talanta 2024; 276:126201. [PMID: 38718653 DOI: 10.1016/j.talanta.2024.126201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
Oblique-incidence reflectivity difference (OIRD) is a dielectric constant-sensitive technique and exhibits intriguing applications in label-free and high-throughput detection of protein microarrays. With the outstanding advantage of being compatible with arbitrary substrates, however, the effect of the substrate, particularly its dielectric constant on the OIRD sensitivity has not been fully disclosed. In this paper, for the first time we investigated the dependence of OIRD sensitivity on the dielectric constant of the substrate under top-incident OIRD configuration by combining theoretical modeling and experimental evaluation. Optical modeling suggested that the higher dielectric constant substrate exhibits a higher intrinsic sensitivity. Experimentally, three substrates including glass, fluorine-doped tin oxide (FTO) and silicon (Si) with different dielectric constants were selected as microarray substrates and their detection performances were evaluated. In good agreement with the modeling, high dielectric constant Si-based microarray exhibited the highest sensitivity among three chips, reaching a detection limit of as low as 5 ng mL-1 with streptavidin as the model target. Quantification of captured targets on three chips with on-chip enzyme-linked immunosorbent assay (ELISA) further confirmed that the enhanced performance originates from the high dielectric constant enhanced intrinsic OIRD sensitivity. This work thus provides a new way to OIRD-based label-free microarrays with improved sensitivity.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xiaoyi Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Dandan Ji
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yuda Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Shiwu Qian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
| | - Weihua Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Rodoplu Solovchuk D. Advances in AI-assisted biochip technology for biomedicine. Biomed Pharmacother 2024; 177:116997. [PMID: 38943990 DOI: 10.1016/j.biopha.2024.116997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024] Open
Abstract
The integration of biochips with AI opened up new possibilities and is expected to revolutionize smart healthcare tools within the next five years. The combination of miniaturized, multi-functional, rapid, high-throughput sample processing and sensing capabilities of biochips, with the computational data processing and predictive power of AI, allows medical professionals to collect and analyze vast amounts of data quickly and efficiently, leading to more accurate and timely diagnoses and prognostic evaluations. Biochips, as smart healthcare devices, offer continuous monitoring of patient symptoms. Integrated virtual assistants have the potential to send predictive feedback to users and healthcare practitioners, paving the way for personalized and predictive medicine. This review explores the current state-of-the-art biochip technologies including gene-chips, organ-on-a-chips, and neural implants, and the diagnostic and therapeutic utility of AI-assisted biochips in medical practices such as cancer, diabetes, infectious diseases, and neurological disorders. Choosing the appropriate AI model for a specific biomedical application, and possible solutions to the current challenges are explored. Surveying advances in machine learning models for biochip functionality, this paper offers a review of biochips for the future of biomedicine, an essential guide for keeping up with trends in healthcare, while inspiring cross-disciplinary collaboration among biomedical engineering, medicine, and machine learning fields.
Collapse
Affiliation(s)
- Didem Rodoplu Solovchuk
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| |
Collapse
|
7
|
Hu K, Yin W, Bai Y, Zhang J, Yin J, Zhu Q, Mu Y. CRISPR-Based Biosensors for Medical Diagnosis: Readout from Detector-Dependence Detection Toward Naked Eye Detection. BIOSENSORS 2024; 14:367. [PMID: 39194596 DOI: 10.3390/bios14080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The detection of biomarkers (such as DNA, RNA, and protein) plays a vital role in medical diagnosis. The CRISPR-based biosensors utilize the CRISPR/Cas system for biometric recognition of targets and use biosensor strategy to read out biological signals without the employment of professional operations. Consequently, the CRISPR-based biosensors demonstrate great potential for the detection of biomarkers with high sensitivity and specificity. However, the signal readout still relies on specialized detectors, limiting its application in on-site detection for medical diagnosis. In this review, we summarize the principles and advances of the CRISPR-based biosensors with a focus on medical diagnosis. Then, we review the advantages and progress of CRISPR-based naked eye biosensors, which can realize diagnosis without additional detectors for signal readout. Finally, we discuss the challenges and further prospects for the development of CRISPR-based biosensors.
Collapse
Affiliation(s)
- Kai Hu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Weihong Yin
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Yunhan Bai
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Jiarui Zhang
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Juxin Yin
- Academy of Edge Intelligence, Hangzhou City University, Hangzhou 310015, China
| | - Qiangyuan Zhu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Ying Mu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Zhao H, Zhang Y, Hua D. A Review of Research Progress in Microfluidic Bioseparation and Bioassay. MICROMACHINES 2024; 15:893. [PMID: 39064404 PMCID: PMC11278910 DOI: 10.3390/mi15070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
With the rapid development of biotechnology, the importance of microfluidic bioseparation and bioassay in biomedicine, clinical diagnosis, and other fields has become increasingly prominent. Microfluidic technology, with its significant advantages of high throughput, automated operation, and low sample consumption, has brought new breakthroughs in the field of biological separation and bioassay. In this paper, the latest research progress in microfluidic technology in the field of bioseparation and bioassay is reviewed. Then, we focus on the methods of bioseparation including active separation, passive separation, and hybrid separation. At the same time, the latest research results of our group in particle separation are introduced. Finally, some application examples or methods for bioassay after particle separation are listed, and the current challenges and future prospects of bioseparation and bioassay are discussed.
Collapse
Affiliation(s)
| | | | - Dengxin Hua
- Center for Lidar Remote Sensing Research, School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China.; (H.Z.); (Y.Z.)
| |
Collapse
|
9
|
Zhan K, Chen L, Li S, Yu Q, Zhao Z, Li J, Xing Y, Ren H, Wang N, Zhang G. A novel metal-organic framework based electrochemical immunosensor for the rapid detection of Salmonella typhimurium detection in milk. Food Chem 2024; 444:138672. [PMID: 38330614 DOI: 10.1016/j.foodchem.2024.138672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Salmonella is one of the most prevalent pathogens causing foodborne diseases. In this study, a novel electrochemical immunosensor was designed for the rapid and accurate detection of Salmonella typhimurium (S. typhimurium) in milk. Platinum nanoparticles and Co/Zn-metal-organic framework @carboxylic multiwalled carbon nanotubes in the immunosensor acted synergistically to enhance the sensing sensitivity and stability. The materials and sensors were characterised using X-ray diffractometry, scanning electron microscopy, Fourier-transform infrared spectroscopy, differential pulse voltammetry, cyclic voltammetry, and other techniques. The optimised immunosensor showed a linear response for S. typhimurium concentrations in the range from 1.3 × 102 to 1.3 × 108 CFU mL-1, with a detection limit of 9.4 × 101 CFU mL-1. The assay also demonstrates good specificity, reproducibility, stability, and practical application potential, and the method can be extended to other foodborne pathogens.
Collapse
Affiliation(s)
- Ke Zhan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, Henan, China
| | - Linlin Chen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, Henan, China
| | - Shanshan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, Henan, China
| | - Qiuying Yu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, Henan, China
| | - Zheng Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, Henan, China
| | - Junwei Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, Henan, China
| | - Yunrui Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China
| | - Hongtao Ren
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, Henan, China.
| | - Na Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, Henan, China.
| | - Gaiping Zhang
- College of Veterinary Medicine International Joint Research Center for Animal Immunology, Zhengzhou 450046, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China; School of Advanced Agriculture Sciences, Peking University, 100871 Beijing, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Academy of Agricultural Sciences, 450002 Henan, China
| |
Collapse
|
10
|
Chiu I, Ye H, Aayush K, Yang T. Intelligent food packaging for smart sensing of food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:215-259. [PMID: 39103214 DOI: 10.1016/bs.afnr.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In this contemporary era, with over 8 billion people worldwide, ensuring food safety has become more critical than ever. To address this concern, the introduction of intelligent packaging marks a significant breakthrough. Essentially, this innovation tackles the challenge of rapid deterioration in perishable foods, which is vital to the well-being of communities and food safety. Unlike traditional methods that primarily emphasize shelf-life extension, intelligent packaging goes further by incorporating advanced sensing technologies to detect signs of spoilage and contamination in real-time, such as changes in temperature, oxygen levels, carbon dioxide levels, humidity, and the presence of harmful microorganisms. The innovation can rely on various packaging materials like plastics, metals, papers, or biodegradable polymers, combined with sophisticated sensing techniques such as colorimetric sensors, time-temperature indicators, radio-frequency identification tags, electronic noses, or biosensors. Together, these elements form a dynamic and tailored packaging system. This system not only protects food from spoilage but also offers stakeholders immediate and adequate information about food quality. Moreover, the real-world application on seafood, meat, dairy, fruits, and vegetables demonstrates the feasibility of using intelligent packaging to significantly enhance the safety and shelf life of a wide variety of perishable goods. By adopting intelligent packaging for smart sensing solutions, both the food industry and consumers can significantly reduce health risks linked with contamination and reduce unnecessary food waste. This underscores the crucial role of intelligent packaging in modern food safety and distribution systems, showcasing an effective fusion of technology, safety, and sustainability efforts aimed at nourishing a rapidly growing global population.
Collapse
Affiliation(s)
- Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Shen M, Sogore T, Ding T, Feng J. Modernization of digital food safety control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:93-137. [PMID: 39103219 DOI: 10.1016/bs.afnr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Foodborne illness remains a pressing global issue due to the complexities of modern food supply chains and the vast array of potential contaminants that can arise at every stage of food processing from farm to fork. Traditional food safety control systems are increasingly challenged to identify these intricate hazards. The U.S. Food and Drug Administration's (FDA) New Era of Smarter Food Safety represents a revolutionary shift in food safety methodology by leveraging cutting-edge digital technologies. Digital food safety control systems employ modern solutions to monitor food quality by efficiently detecting in real time a wide range of contaminants across diverse food matrices within a short timeframe. These systems also utilize digital tools for data analysis, providing highly predictive assessments of food safety risks. In addition, digital food safety systems can deliver a secure and reliable food supply chain with comprehensive traceability, safeguarding public health through innovative technological approaches. By utilizing new digital food safety methods, food safety authorities and businesses can establish an efficient regulatory framework that genuinely ensures food safety. These cutting-edge approaches, when applied throughout the food chain, enable the delivery of safe, contaminant-free food products to consumers.
Collapse
Affiliation(s)
- Mofei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Zhongyuan Institute, Zhengzhou, Henan, P.R. China
| | - Tahirou Sogore
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, P.R. China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, P.R. China.
| |
Collapse
|
12
|
Liang YX, Wang YK, Meng WJ, Wang Q, Li JX, Huang WH, Xie M. Microfluidic Electrochemical Integrated Sensor for Efficient and Sensitive Detection of Candida albicans. Anal Chem 2024; 96:10013-10020. [PMID: 38836548 DOI: 10.1021/acs.analchem.4c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Traditional methods for the detection of pathogenic bacteria are time-consuming, less efficient, and sensitive, which affects infection control and bungles illness. Therefore, developing a method to remedy these problems is very important in the clinic to diagnose the pathogenic diseases and guide the rational use of antibiotics. Here, microfluidic electrochemical integrated sensor (MEIS) has been investigated, functionally for rapid, efficient separation and sensitive detection of pathogenic bacteria. Three-dimensional macroporous PDMS and Au nanotube-based electrode are successfully assembled into the modeling microchip, playing the functions of "3D chaotic flow separator" and "electrochemical detector," respectively. The 3D chaotic flow separator enhances the turbulence of the fluid, achieving an excellent bacteria capture efficiency. Meanwhile, the electrochemical detector provides a quantitative signal through enzyme-linked immunoelectrochemistry with improved sensitivity. The microfluidic electrochemical integrated sensor could successfully isolate Candida albicans (C. albicans) in the range of 30-3,000,000 CFU in the saliva matrix with over 95% capture efficiency and sensitively detect C. albicans in 1 h in oral saliva samples. The integrated device demonstrates great potential in the diagnosis of oral candidiasis and is also applicable in the detection of other pathogenic bacteria.
Collapse
Affiliation(s)
- Ying-Xue Liang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi-Ke Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Jie Meng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jia-Xin Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Min Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Lin X, Chen T, Hu J, Mao X, Liu M, Zeng R, Zhong Q, Chen W. Construction of a novel fluorescent probe for sensitive determination of glyphosate in food and imaging living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3364-3371. [PMID: 38742948 DOI: 10.1039/d4ay00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Glyphosate is a widely used broad-spectrum herbicide in agriculture and horticulture to control a variety of weeds and undesirable plants. However, the excessive use of glyphosate has raised a number of environmental and human health concerns. It is urgent to develop tools to detect glyphosate. Herein, a novel dual-signal probe CCU-Cu2+ was designed and synthesized on the basis of CCU. CCU exhibited excellent selectivity and great sensitivity for Cu2+ which were based on both fluorescence "turn-off" reaction and comparative color visualisation methods. Due to the strong chelating ability of glyphosate on Cu2+, the CCU-Cu2+ complex was applied to glyphosate detection in practical samples. The experimental results in vitro showed that the CCU-Cu2+ complex was highly selective and rapid, with a low detection limit (1.6 μM), and could be recognised by the naked eye in the detection of glyphosate. Based on the excellent properties of the CCU-Cu2+ complex, we also constructed a smartphone-assisted detection sensing system for glyphosate detection, which has the advantages of precision, sensitivity, and high interference immunity. Moreover, the CCU-Cu2+ complex was also successfully employed for exogenous glyphosate imaging in living cells. These characteristics demonstrated that CCU-Cu2+ holds significant potential for detection and imaging of glyphosate in bio-systems.
Collapse
Affiliation(s)
- Xiaoping Lin
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Taiyi Chen
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Jiayun Hu
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Xiaoqiong Mao
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Mengqing Liu
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Rongying Zeng
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Qingmei Zhong
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Wen Chen
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| |
Collapse
|
14
|
Jiang W, Tang Q, Zhu Y, Gu X, Wu L, Qin Y. Research progress of microfluidics-based food safety detection. Food Chem 2024; 441:138319. [PMID: 38218144 DOI: 10.1016/j.foodchem.2023.138319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
High demands for food safety detection and analysis have been advocated with people's increasing living standards. Even though numerous analytical testing techniques have been proposed, their widespread adoption is still constrained by the high limit of detection, narrow detection ranges, and high implementation costs. Due to their advantages, such as reduced sample and reagent consumption, high sensitivity, automation, low cost, and portability, using microfluidic devices for food safety monitoring has generated significant interest. This review provides a comprehensive overview of the latest microfluidic detection platforms (published in recent 4 years) and their applications in food safety, aiming to provide references for developing efficient research strategies for food contaminant detection and facilitating the transition of these platforms from laboratory research to practical field use.
Collapse
Affiliation(s)
- Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China; School of Life Science, Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
15
|
Wang Y, Jiang S, Fu Q, Wang X, Zhang Z, Lyu X, Yao X, Qu Z, Zhao Y, Huang JA, Li Y. Unmasking Bacterial Identities: Exploiting Silver Nanoparticle 'Masks' for Enhanced Raman Scattering in the Rapid Discrimination of Diverse Bacterial Species and Antibiotic-Resistant Strains. Anal Chem 2024; 96:8566-8575. [PMID: 38748451 DOI: 10.1021/acs.analchem.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Unraveling bacterial identity through Raman scattering techniques has been persistently challenging due to homogeneously amplified Raman signals across a wide variety of bacterial molecules, predominantly protein- or nucleic acid-mediated. In this study, we present an approach involving the use of silver nanoparticles to completely and uniformly "mask" adsorption on the surface of bacterial molecules through sodium borohydride and sodium chloride. This approach enables the acquisition of enhanced surface-enhanced Raman scattering (SERS) signals from all components on the bacterial surface, facilitating rapid, specific, and label-free bacterial identification. For the first time, we have characterized the identity of a bacterium, including its DNA, metabolites, and cell walls, enabling the accurate differentiation of various bacterial strains, even within the same species. In addition, we embarked on an exploration of the origin and variability patterns of the main characteristic peaks of Gram-positive and Gram-negative bacteria. Significantly, the SERS peak ratio was found to determine the inflection point of accelerated bacterial death upon treatment with antimicrobials. We further applied this platform to identify 15 unique clinical antibiotic-resistant bacterial strains, including five Escherichia coli strains in human urine, a first for Raman technology. This work has profound implications for prompt and accurate identification of bacteria, particularly antibiotic-resistant strains, thereby significantly enhancing clinical diagnostics and antimicrobial treatment strategies.
Collapse
Affiliation(s)
- Yunpeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Shen Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin City, Heilongjiang Province 150081, China
| | - Xiaotong Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Zhe Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Xiaoming Lyu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Xinyu Yao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Zhangyi Qu
- School of Public Health, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
| | - Yingqi Zhao
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland
| | - Jian-An Huang
- Faculty of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD); Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin City, Heilongjiang Province 150081, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Oulu 90014, Finland
| |
Collapse
|
16
|
Wang Y, Wu J, Chen M, Zhang J, Sun X, Zhou H, Gao Z. Application of near-infrared-activated and ATP-responsive trifunctional upconversion nano-jelly for in vivo tumor imaging and synergistic therapy. Biosens Bioelectron 2024; 250:116094. [PMID: 38308943 DOI: 10.1016/j.bios.2024.116094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Upconversion nanoparticles (UCNPs)-mediated in-situ imaging and synergistic therapy may be an effective approach against tumors. However, it remains a challenge to improve therapeutic index and reduce toxicity. Here, we investigated the construction process of a three-layer (core-shell-shell) upconversion nano-jelly hydrogels (UCNJs) coated with stimulus-responsive deoxyribonucleic acid chains, aiming to achieve selective recognition of tumor cells and controlled release of drugs. The UCNJs have a NaYF4: Yb, Er core with an outer silica shell with embedded methylene blue (MB). Then the outer layer was coated with mesoporous silica and loaded with doxorubicin (DOX). Finally, polyacrylamide chains containing anti-adenosine triphosphate (ATP) aptamer sequences were assembled layer-by-layer on the surface of particles to form DNA hydrogels to lock DOX. Under near-infrared irradiation, green light (540 nm) emitted by UCNJs can be used for imaging, while red light (660 nm) is absorbed by MB. The latter generates singlet oxygen, resulting in photodynamic therapy (PDT) effect to inhibit tumor growth. UCNJs also can recognize ATP in tumor cells, leading to hydrogel degradation and DOX release. The hydrogel coating can increase drug-carrying capacity of mesoporous materials and improve biocompatibility. Therefore, the UCNJs has great potential advantages for application in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jingyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Xuan Sun
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| |
Collapse
|
17
|
Huang Z, Wen J, Ma G, Liu Y, Tan H. Time-resolved fluorescence immunoassay based on glucose oxidase-encapsulated metal-organic framework for amplified detection of foodborne pathogen. Anal Chim Acta 2024; 1287:342111. [PMID: 38182387 DOI: 10.1016/j.aca.2023.342111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Fluorescence immunoassays are commonly employed for the detection of pathogenic bacteria as a means of ensuring food safety and preserving public health. However, the challenges such as poor photostability and background interference have limited their sensitivity and accuracy. The emergence of metal-organic frameworks (MOFs) as a label probe offers a promising solution for advancing fluorescence immunoassays owing to their tunable nature. Nonetheless, the low fluorescence efficiency of MOFs and the potential risk of dye leakage pose obstacles to achieving high detection sensitivity. Therefore, there exists a pressing need to fully utilize the potential of MOF composites in fluorescence immunoassays. RESULTS We explored the potential of glucose oxidase-encapsulated zeolitic imidazole framework-90 (GOx@ZIF-90) as a label probe to construct a time-resolved fluorescence immunoassay with amplified detection signal. This immunoassay involved functionalizing Fe3O4 nanoparticle with porcine antibody to specifically capture and separate the target bacteria, Staphylococcus aureus (S. aureus). The captured S. aureus was then bound by GOx@ZIF-90 modified with vancomycin, resulting in a fluorescence response in the europium tetracycline (EuTc). The encapsulation of GOx in ZIF-90 provided a confinement effect that significantly enhanced the catalytic activity and stability of GOx. This led to a highly efficient conversion of glucose to H2O2, amplifying the fluorescence signal of EuTc. The immunoassay demonstrated a high sensitivity in detecting S. aureus, with a detection limit of 2 CFU/mL. We also obtained satisfactory results in milk samples. Attractively, the time-resolved detection mode of EuTc allowed the immunoassay to eliminate background fluorescence and enhance accuracy. SIGNIFICANCE This study not only presented a new method for detecting foodborne pathogens but also highlighted the potential of enzyme-encapsulated MOF composites as label probes in immunoassays, providing valuable insights for the design and fabrication of MOF composites for various applications.
Collapse
Affiliation(s)
- Zhiyang Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Jin Wen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Guangran Ma
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Yongjun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Hongliang Tan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| |
Collapse
|
18
|
Chen Y, Wang Y, Zhang Y, Wang X, Zhang C, Cheng N. Intelligent Biosensors Promise Smarter Solutions in Food Safety 4.0. Foods 2024; 13:235. [PMID: 38254535 PMCID: PMC10815208 DOI: 10.3390/foods13020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Food safety is closely related to human health. However, the regulation and testing processes for food safety are intricate and resource-intensive. Therefore, it is necessary to address food safety risks using a combination of deep learning, the Internet of Things, smartphones, quick response codes, smart packaging, and other smart technologies. Intelligent designs that combine digital systems and advanced functionalities with biosensors hold great promise for revolutionizing current food safety practices. This review introduces the concept of Food Safety 4.0, and discusses the impact of intelligent biosensors, which offer attractive smarter solutions, including real-time monitoring, predictive analytics, enhanced traceability, and consumer empowerment, helping improve risk management and ensure the highest standards of food safety.
Collapse
Affiliation(s)
- Yuehua Chen
- School of Electrical and Information, Northeast Agricultural University, Harbin 150030, China;
| | - Yicheng Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Yiran Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (C.Z.)
| | - Xin Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (C.Z.)
| | - Chen Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (C.Z.)
| | - Nan Cheng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (C.Z.)
| |
Collapse
|
19
|
Sami MA, Tahir MN, Hassan U. AQAFI: a bioanalytical method for automated KPIs quantification of fluorescent images of human leukocytes and micro-nano particles. Analyst 2023; 148:6036-6049. [PMID: 37889507 DOI: 10.1039/d3an01166f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Micro-nanoparticle and leukocyte imaging find significant applications in the areas of infectious disease diagnostics, cellular therapeutics, and biomanufacturing. Portable fluorescence microscopes have been developed for these measurements, however, quantitative assessment of the quality of images (micro-nanoparticles, and leukocytes) captured using these devices remains a challenge. Here, we present a novel method for automated quality assessment of fluorescent images (AQAFI) captured using smartphone fluorescence microscopes (SFM). AQAFI utilizes novel feature extraction methods to identify and measure multiple features of interest in leukocyte and micro-nanoparticle images. For validation of AQAFI, fluorescent particles of different diameters (8.3, 2, 1, 0.8 μm) were imaged using custom-designed SFM at a range of excitation voltages (3.8-4.5 V). Particle intensity, particle vicinity intensity, and image background noise were chosen as analytical parameters of interest and measured by the AQAFI algorithm. A control method was developed by manual calculation of these parameters using ImageJ which was subsequently used to validate the performance of the AQAFI method. For micro-nanoparticle images, correlation coefficients with R2 > 0.95 were obtained for each parameter of interest while comparing AQAFI vs. control (ImageJ). Subsequently, key performance indicators (KPIs) i.e., signal difference to noise ratio (SDNR) and contrast to noise ratio (CNR) were defined and calculated for these micro-nano particle images using both AQAFI and control methods. Finally, we tested the performance of the AQAFI method on the fluorescent images of human peripheral blood leukocytes captured using our custom SFM. Correlation coefficients of R2 = 0.99 were obtained for each parameter of interest (leukocyte intensity, vicinity intensity, background noise) calculated using AQAFI and control (ImageJ). A high correlation was also found between the CNR and SDNR values calculated using both methods. The developed AQAFI method thus presents an automated and precise way to quantify and assess the quality of fluorescent images (micro-nano particles and leukocytes) captured using portable SFMs. Similarly, this study finds broader applicability and can also be employed with benchtop microscopes for the quantitative assessment of their imaging performance.
Collapse
Affiliation(s)
- Muhammad A Sami
- Department of Electrical and Computer Engineering at Rutgers, The State University of New Jersey, New Brunswick, USA.
| | - Muhammad Nabeel Tahir
- Department of Electrical and Computer Engineering at Rutgers, The State University of New Jersey, New Brunswick, USA.
| | - Umer Hassan
- Department of Electrical and Computer Engineering at Rutgers, The State University of New Jersey, New Brunswick, USA.
- Global Health Institute at Rutgers, The State University of New Jersey, New Brunswick, USA
| |
Collapse
|
20
|
Cruz RMS, Albertos I, Romero J, Agriopoulou S, Varzakas T. Innovations in Food Packaging for a Sustainable and Circular Economy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:135-177. [PMID: 38460998 DOI: 10.1016/bs.afnr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, Faro, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Irene Albertos
- Nursing Department, Nursing Faculty, University of Valladolid, Valladolid, Spain
| | - Janira Romero
- Faculty of Sciences and Art, Universidad Católica de Ávila (UCAV), Calle Canteros s/n, Ávila, Spain
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
21
|
Ye Y, Yan W, Wang T, Zhang C, Wang K, Lu Y, Zheng H, Tao Y, Cao X, He S, Li Y. Dual-channel biosensor for simultaneous detection of S. typhimurium and L. monocytogenes using nanotags of gold nanoparticles loaded metal-organic frameworks. Anal Chim Acta 2023; 1279:341816. [PMID: 37827621 DOI: 10.1016/j.aca.2023.341816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
Simultaneous detection of multiple foodborne pathogens is of great importance for ensuring food safety. Herein, we present a sensitive dual-channel electrochemical biosensor based on copper metal organic frameworks (CuMOF) and lead metal organic framework (PbMOF) for simultaneous detection of Salmonella typhimurium (S. typhimurium) and Listeria monocytogenes (L. monocytogenes). The MOF-based nanotags were prepared by functionalizing gold nanoparticles loaded CuMOF (Au@CuMOF) and PbMOF (Au@PbMOF) with signal DNA sequences 1 (sDNA1) and sDNA2, respectively. By selecting invA of S. typhimurium and inlA gene of L. monocytogenes as targe sequences, a sandwich-typed dual-channel biosensor was developed on glassy carbon electrodes (GCE) through hybridization reactions. The sensitive detection of S. typhimurium and L. monocytogenes was achieved by the direct differential pulse voltametric (DPV) signals of Cu2+ and Pb2+. Under optimal conditions, channel 1 of the biosensor showed linear range for invA gene of S. typhimurium in 1 × 10-14-1 × 10-8 M with low detection limit (LOD) of 3.42 × 10-16 M (S/N = 3), and channel 2 of the biosensor showed linear range for inlA gene of L. monocytogenes in 1 × 10-13-1 × 10-8 M with LOD of 6.11 × 10-15 M (S/N = 3). The dual-channel biosensor showed good selectivity which were used to detect S. typhimurium with linear range of 5-1.0 × 104 CFU mL-1 (LOD of 2.33 CFU mL-1), and L. monocytogenes with linear range of 10 - 1.0 × 104 CFU mL-1 (LOD of 6.61 CFU mL-1).
Collapse
Affiliation(s)
- Yongkang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Wuwen Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tingting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chenlu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kaicheng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuexi Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haisong Zheng
- Technology Center of Hefei Customs District, Hefei, 230022, China
| | - Yunlai Tao
- Anhui Institute of Food and Drug Inspection, Hefei 230051, China
| | - Xiaodong Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yunfei Li
- Technology Center of Hefei Customs District, Hefei, 230022, China.
| |
Collapse
|
22
|
Dou S, Liu M, Zhang F, Li B, Zhang Y, Li F, Guo Y, Sun X. Silver/copper bimetallic nanoclusters integrating with cryonase-assisted target recycling amplification detection of Salmonella typhimurium. Mikrochim Acta 2023; 190:403. [PMID: 37728643 DOI: 10.1007/s00604-023-05973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
An unsophisticated fluorescence-enabled strategy is brought forward to process the highly sensitive fluorescence detection of Salmonella typhimurium (S. typhimurium) which based on polyethyleneimine (PEI)-templated silver/copper nanoclusters (Ag/CuNCs) (λ excitation = 334 nm and λ emission = 466 nm) with cryonase-assisted target recycling amplification. The Ag/CuNCs nanoclusters are synthesized as fluorescent materials due to their strong and stable fluorescence characteristics and are modified with S. typhimurium aptamers to form aptamer-Ag/CuNCs probes. The probes can be adsorbed on the surface of quenching agents-polydopamine nanospheres (PDANSs), thereby inducing fluorescence quenching of the probes. Once the aptamers are bound to the target, the aptamers/targets complexes are separated from the PDANSs surface, and the Ag/CuNCs recover the fluorescence signal. The released complexes will immediately be transformed into a substrate digested by cryonase (an enzyme that can digest all types of nucleic acids), and the released targets are bound to another aptamers to initiate the next round of cleavage. This reaction will be repeated continuously until all relevant aptamers are consumed and all Ag/CuNCs are released, resulting in a significant amplification of the fluorescence signal and improved sensitivity. Using Ag/CuNCs as fluorescent probes combined with cryonase-assisted amplification strategy, the fluorescence aptasensor is constructed with detection limits as low as 3.8 CFU mL-1, which is tenfold better than without the cryonase assistance. The method developed has been applied to milk, orange juice, chicken, and egg white samples with excellent selectivity and accuracy providing an approach for the early and rapid detection of S. typhimurium in food.
Collapse
Affiliation(s)
- Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Fengjuan Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Baoxin Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Yuhao Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Falan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong, China.
| |
Collapse
|
23
|
Idil N, Aslıyüce S, Perçin I, Mattiasson B. Recent Advances in Optical Sensing for the Detection of Microbial Contaminants. MICROMACHINES 2023; 14:1668. [PMID: 37763831 PMCID: PMC10536746 DOI: 10.3390/mi14091668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023]
Abstract
Microbial contaminants are responsible for several infectious diseases, and they have been introduced as important potential food- and water-borne risk factors. They become a global burden due to their health and safety threats. In addition, their tendency to undergo mutations that result in antimicrobial resistance makes them difficult to treat. In this respect, rapid and reliable detection of microbial contaminants carries great significance, and this research area is explored as a rich subject within a dynamic state. Optical sensing serving as analytical devices enables simple usage, low-cost, rapid, and sensitive detection with the advantage of their miniaturization. From the point of view of microbial contaminants, on-site detection plays a crucial role, and portable, easy-applicable, and effective point-of-care (POC) devices offer high specificity and sensitivity. They serve as advanced on-site detection tools and are pioneers in next-generation sensing platforms. In this review, recent trends and advances in optical sensing to detect microbial contaminants were mainly discussed. The most innovative and popular optical sensing approaches were highlighted, and different optical sensing methodologies were explained by emphasizing their advantages and limitations. Consequently, the challenges and future perspectives were considered.
Collapse
Affiliation(s)
- Neslihan Idil
- Department of Biology, Biotechnology Division, Hacettepe University, Ankara 06800, Turkey;
| | - Sevgi Aslıyüce
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara 06800, Turkey;
| | - Işık Perçin
- Department of Biology, Molecular Biology Division, Hacettepe University, Ankara 06800, Turkey;
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, 22100 Lund, Sweden
- Indienz AB, Annebergs Gård, 26873 Billeberga, Sweden
| |
Collapse
|
24
|
Li Y, Ma X, Zhu W, Huang Q, Liu Y, Pan J, Ying Y, Xu X, Fu Y. Enzymatic Catalysis in Size and Volume Dual-Confined Space of Integrated Nanochannel-Electrodes Chip for Enhanced Impedance Detection of Salmonella. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300900. [PMID: 37096928 DOI: 10.1002/smll.202300900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Nanochannel-based confinement effect is a fascinating signal transduction strategy for high-performance sensing, but only size confinement is focused on while other confinement effects are unexplored. Here, a highly integrated nanochannel-electrodes chip (INEC) is created and a size/volume-dual-confinement enzyme catalysis model for rapid and sensitive bacteria detection is developed. The INEC, by directly sandwiching a nanochannel chip (60 µm in thickness) in nanoporous gold layers, creates a micro-droplet-based confinement electrochemical cell (CEC). The size confinement of nanochannel promotes the urease catalysis efficiency to generate more ions, while the volume confinement of CEC significantly enriches ions by restricting diffusion. As a result, the INEC-based dual-confinement effects benefit a synergetic enhancement of the catalytic signal. A 11-times ion-strength-based impedance response is obtained within just 1 min when compared to the relevant open system. Combining this novel nanoconfinement effects with nanofiltration of INEC, a separation/signal amplification-integrated sensing strategy is further developed for Salmonella typhimurium detection. The biosensor realizes facile, rapid (<20 min), and specific signal readout with a detection limit of 9 CFU mL-1 in culturing solution, superior to most reports. This work may create a new paradigm for studying nanoconfined processes and contribute a new signal transduction technique for trace analysis application.
Collapse
Affiliation(s)
- Yue Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xinyue Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenyue Zhu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Huang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yameng Liu
- Department of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, P. R. China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
25
|
Khalaf EM, Sanaan Jabbar H, Mireya Romero-Parra R, Raheem Lateef Al-Awsi G, Setia Budi H, Altamimi AS, Abdulfadhil Gatea M, Falih KT, Singh K, Alkhuzai KA. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: Developments and applications. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Ming J, Zeng X, Zhou R. Portable biosensor-based oral pathogenic bacteria detection for community and family applications. Anal Bioanal Chem 2023:10.1007/s00216-023-04809-1. [PMID: 37389598 DOI: 10.1007/s00216-023-04809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Detection of oral pathogens is essential in the management of oral diseases, as their occurrence and progression are closely linked to an imbalance in these microorganisms. Detection techniques such as microbial cultures, enzyme-linked immunosorbent assays and polymerase chain reactions are highly dependent on complex testing procedures and specialized laboratory equipment, making prevention and early diagnosis of oral diseases difficult. To comprehensively implement oral disease prevention and early diagnosis in social groups, there is an urgent need for portable testing methods for oral pathogenic bacteria that can be applied in community and home settings. In this review, several common portable biosensors for pathogenic bacteria are first described. Based on the goal of achieving primary prevention and diagnosis of oral diseases, we elaborate and summarize portable biosensors for common oral pathogenic bacteria in terms of how to achieve portability of the technique. This review aims to reflect the current status of portable biosensors for common oral pathogens and to lay the foundation for the further realization of portable detection of oral pathogens.
Collapse
Affiliation(s)
- Jieyu Ming
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
27
|
Wang C, Zhang Y, Liu S, Yin Y, Fan GC, Shen Y, Han H, Wang W. Allosteric probe-triggered isothermal amplification to activate CRISPR/Cas12a for sensitive electrochemiluminescence detection of Salmonella. Food Chem 2023; 425:136382. [PMID: 37276664 DOI: 10.1016/j.foodchem.2023.136382] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
We report an electrochemiluminescence (ECL) sensor for Salmonella detection based on allosteric probe as a bio-recognition element and CRISPR/Cas12a as a signal amplification strategy. In the presence of Salmonella, the structure switching occurs on allosteric probes, resulting in their hybridization with primers to trigger isothermal amplification. Salmonella is then released to initiate the next reaction cycle accompanying by generating a large amount of dsDNA, which are subsequently recognized by CRISPR-gRNA for activating the trans-cleavage activity of Cas12a. Furthermore, the activated Cas12a can indiscriminately cut the ssDNA which is bound to the electrode, enabling the release of the ECL emitter porphyrinic Zr metal - organic framework (MOF, PCN-224) and exhibiting a decreased ECL signal accordingly. The linear range is 50 CFU·mL-1-5 × 106 CFU·mL-1 and the detection limit is calculated to be 37 CFU·mL-1. This method sensitively detects Salmonella in different types of real samples, indicating it is a promising strategy for Salmonella detection.
Collapse
Affiliation(s)
- Chunyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yutian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yashi Yin
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Mitrogiannopoulou AM, Tselepi V, Ellinas K. Polymeric and Paper-Based Lab-on-a-Chip Devices in Food Safety: A Review. MICROMACHINES 2023; 14:986. [PMID: 37241610 PMCID: PMC10223399 DOI: 10.3390/mi14050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Food quality and safety are important to protect consumers from foodborne illnesses. Currently, laboratory scale analysis, which takes several days to complete, is the main way to ensure the absence of pathogenic microorganisms in a wide range of food products. However, new methods such as PCR, ELISA, or even accelerated plate culture tests have been proposed for the rapid detection of pathogens. Lab-on-chip (LOC) devices and microfluidics are miniaturized devices that can enable faster, easier, and at the point of interest analysis. Nowadays, methods such as PCR are often coupled with microfluidics, providing new LOC devices that can replace or complement the standard methods by offering highly sensitive, fast, and on-site analysis. This review's objective is to present an overview of recent advances in LOCs used for the identification of the most prevalent foodborne and waterborne pathogens that put consumer health at risk. In particular, the paper is organized as follows: first, we discuss the main fabrication methods of microfluidics as well as the most popular materials used, and then we present recent literature examples for LOCs used for the detection of pathogenic bacteria found in water and other food samples. In the final section, we summarize our findings and also provide our point of view on the challenges and opportunities in the field.
Collapse
Affiliation(s)
| | | | - Kosmas Ellinas
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou & Makrygianni St, GR 81400 Myrina, Greece
| |
Collapse
|
29
|
Qiu S, Liu B, Leng Y, Fox E, Zhou X, Yan B, Sang X, Long K, Fu Y, He X, Yuan J, Farrell G, Wu Q. A label-free fiber ring laser biosensor for ultrahigh sensitivity detection of Salmonella Typhimurium. Biosens Bioelectron 2023; 234:115337. [PMID: 37126876 DOI: 10.1016/j.bios.2023.115337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The rapid detection of low concentrations of Salmonella Typhimurium (S. Typhimurium) is an essential preventive measure for food safety and prevention of foodborne illness. The study presented in this paper addresses this critical issue by proposing a single mode-tapered seven core-single mode (STSS) fiber ring laser (FRL) biosensor for S. Typhimurium detection. The experimental results show that the specific detection time of S. Typhimurium is less than 20 min and the wavelength shift can achieve -0.906 nm for an S. Typhimurium solution (10 cells/mL). Furthermore, at a lower concentration of 1 cell/mL applied to the biosensor, a result of -0.183 nm is observed in 9% of samples (1/11), which indicates that the proposed FRL biosensor has the ability to detect 1 cell/mL of S. Typhimurium. In addition, the detection results in chicken and pickled pork samples present an average deviation of -27% and -23%, respectively, from the measured results in phosphate buffered saline. Taken together, these results show the proposed FRL biosensor may have potential applications in the fields of food safety monitoring, medical diagnostics, etc.
Collapse
Affiliation(s)
- Shi Qiu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Bin Liu
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yuankui Leng
- State Key Lab Food Sci & Technol, Nanchang University, Nanchang, China
| | - Edward Fox
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Xian Zhou
- Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing, 100083, China
| | - Binbin Yan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xinzhu Sang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Keping Long
- Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing, 100083, China
| | - Yanjun Fu
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xingdao He
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China
| | - Jinhui Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China; Research Center for Convergence Networks and Ubiquitous Services, University of Science & Technology Beijing, Beijing, 100083, China.
| | - Gerald Farrell
- Photonics Research Centre, School of Electrical and Electronic Engineering, City Campus, Technological University Dublin, Dublin 7, Ireland
| | - Qiang Wu
- Key Laboratory of Optoelectronic Information Science and Technology of Jiangxi Province, Nanchang Hangkong University, Nanchang, 330063, China; Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom.
| |
Collapse
|
30
|
Wang A, Feng X, He G, Xiao Y, Zhong T, Yu X. Recent advances in digital microfluidic chips for food safety analysis: Preparation, mechanism and application. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
31
|
Kakkar S, Gupta P, Kumar N, Kant K. Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. BIOSENSORS 2023; 13:249. [PMID: 36832016 PMCID: PMC9953818 DOI: 10.3390/bios13020249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens.
Collapse
Affiliation(s)
- Saloni Kakkar
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh 160036, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, India
| | - Krishna Kant
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
32
|
Geballa-Koukoula A, Ross G, Bosman A, Zhao Y, Zhou H, Nielen M, Rafferty K, Elliott C, Salentijn G. Best practices and current implementation of emerging smartphone-based (bio)sensors - Part 2: Development, validation, and social impact. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116986] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
33
|
Biochemical analysis based on optical detection integrated microfluidic chip. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Shi Z, Li X, Shuai Y, Lu Y, Liu Q. The development of wearable technologies and their potential for measuring nutrient intake: Towards precision nutrition. NUTR BULL 2022; 47:388-406. [PMID: 36134894 DOI: 10.1111/nbu.12581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023]
Abstract
Appropriate food intake and nutritional status are crucial for the maintenance of health and disease prevention. Conventional dietary assessment is mainly based on comparisons of nutrient intakes with reference intakes, failing to meet the needs of personalised nutritional guidance based on individual nutritional status. Given their capability of providing insights into health information non-invasively in real time, wearable technologies offer great opportunities for nutrition monitoring. Nutrient metabolic profiles can be monitored immediately and continuously which could potentially offer the possibility for the tracking and guiding of nutrient intake. Here, we review and highlight the recent advances in wearable sensors from the perspective of sensing technologies for nutrient detection in biofluids. The integration of biosensors with wearable devices serves as an ideal platform for the analysis of biofluids including sweat, saliva and tears. The wearable sensing systems applied to the analysis of typical nutrients and important metabolites are demonstrated in terms of carbohydrates, proteins, lipids, vitamins, minerals and others. Taking advantage of their high flexibility and lightweight, wearable sensors have been widely developed for the in situ quantitative detection of metabolic biomarkers. The technical principles, detection methods and applications are summarised. The challenges and future perspectives for wearable nutrition monitoring devices are discussed including the need to better determine relationships among nutrient metabolic profile, nutrient intake and food intake. With the development of materials, sensing techniques and manufacturing processes, wearable technologies are paving the way towards personalised precision nutrition, although there is still a long way to go before they can be utilised for practical clinical applications. Joint research efforts between nutrition scientists, doctors, engineers and sensor researchers are essential to further accelerate the realisation of reliable and practical wearable nutrition monitoring platforms.
Collapse
Affiliation(s)
- Zhenghan Shi
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China
| | - Xin Li
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China
| | - Yifan Shuai
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China
| | - Yanli Lu
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China
| | - Qingjun Liu
- Department of Biomedical Engineering, Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Gao D, Ma Z, Jiang Y. Recent advances in microfluidic devices for foodborne pathogens detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Xing G, Ai J, Wang N, Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Development of a Chemiluminescent Method in a Microfluidic Device for Ultrasensitive Determination of Okadaic Acid with Highly Efficient Aptamer-Based Isolation. SEPARATIONS 2022. [DOI: 10.3390/separations9110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Rapid detection of okadaic acid (OA) in shellfish is crucial for practical application in food safety analysis. In order to establish a rapid, delicate detection scheme, an OA aptamer was utilized to quickly capture OA from the sample solution with polystyrene microspheres as solid phase carriers, and an inner-microchannel dam structure was designed to intercept the aptamer-functionalized microspheres to achieve the separation of OA for detection. Horseradish peroxidase (HRP) is utilized to catalyze the luminescence reaction of luminol-H2O2 solution. Through the direct competition for the aptamer between OA and OA-HRP, the rapid detection of OA can be achieved. The dynamic range of this detection method is 41.3–4.02 ng/mL, and the limit of detection (LOD) and lowest limit of quantitation (LOQ) are 12.4 pg/mL and 41.3 pg/mL, respectively. This miniaturized device enables rapid, ultrasensitive detection of OA, and demonstrates the merits of its field portability and low reagent consumption. The device can be deployed for on-site detection and analysis of marine biotoxins thereof.
Collapse
|
38
|
Mou L, Mandal K, Mecwan MM, Hernandez AL, Maity S, Sharma S, Herculano RD, Kawakita S, Jucaud V, Dokmeci MR, Khademhosseini A. Integrated biosensors for monitoring microphysiological systems. LAB ON A CHIP 2022; 22:3801-3816. [PMID: 36074812 PMCID: PMC9635816 DOI: 10.1039/d2lc00262k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microphysiological systems (MPSs), also known as organ-on-a-chip models, aim to recapitulate the functional components of human tissues or organs in vitro. Over the last decade, with the advances in biomaterials, 3D bioprinting, and microfluidics, numerous MPSs have emerged with applications to study diseased and healthy tissue models. Various organs have been modeled using MPS technology, such as the heart, liver, lung, and blood-brain barrier. An important aspect of in vitro modeling is the accurate phenotypical and functional characterization of the modeled organ. However, most conventional characterization methods are invasive and destructive and do not allow continuous monitoring of the cells in culture. On the other hand, microfluidic biosensors enable in-line, real-time sensing of target molecules with an excellent limit of detection and in a non-invasive manner, thereby effectively overcoming the limitation of the traditional techniques. Consequently, microfluidic biosensors have been increasingly integrated into MPSs and used for in-line target detection. This review discusses the state-of-the-art microfluidic biosensors by providing specific examples, detailing their main advantages in monitoring MPSs, and highlighting current developments in this field. Finally, we describe the remaining challenges and potential future developments to advance the current state-of-the-art in integrated microfluidic biosensors.
Collapse
Affiliation(s)
- Lei Mou
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong, P. R. China
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Marvin Magan Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ana Lopez Hernandez
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14801-902, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| |
Collapse
|
39
|
Aptamer-AuNP-conjugated carboxymethyl chitosan-functionalized graphene oxide for colorimetric identification of Salmonella typhimurium. Mikrochim Acta 2022; 189:408. [PMID: 36205828 DOI: 10.1007/s00604-022-05494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/11/2022] [Indexed: 10/10/2022]
Abstract
A novel aptamer-AuNP-conjugated carboxymethyl chitosan-functionalized graphene oxide (CMC/GO@Apt-Au NP) probe was for the first time developed for the determination of Salmonella typhimurium (S. typhimurium). Owing to the conformational change of the aptamers in the presence of S. typhimurium, the Au NPs, which were pre-adsorbed on the aptamers through van der Waals forces, were released into the solution phase and induced the color change of the solution. As a result, S. typhimurium ranging from 102 to 107 CFU/mL was successfully identified using the designed assay with a limit of detection (LOD) of 10 CFU/mL. This low detection level allowed the sensitive recognition of S. typhimurium in milk samples within 40 min without sample pretreatment, a conclusion that agreed well with the traditional plate counting method. The developed method not only provides a rapid way for the determination of S. typhimurium with simplicity and sensitivity but also shows potential universality in the quantification of other pathogenic microorganisms.
Collapse
|
40
|
Ren Y, Cao L, Zhang X, Jiao R, Ou D, Wang Y, Zhang D, Shen Y, Ling N, Ye Y. A novel fluorescence resonance energy transfer (FRET)-based paper sensor with smartphone for quantitative detection of Vibrio parahaemolyticus. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Ngashangva L, Hemdan BA, El-Liethy MA, Bachu V, Minteer SD, Goswami P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. MICROMACHINES 2022; 13:1083. [PMID: 35888900 PMCID: PMC9321031 DOI: 10.3390/mi13071083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The development of robust bioanalytical devices and biosensors for infectious pathogens is progressing well with the advent of new materials, concepts, and technology. The progress is also stepping towards developing high throughput screening technologies that can quickly identify, differentiate, and determine the concentration of harmful pathogens, facilitating the decision-making process for their elimination and therapeutic interventions in large-scale operations. Recently, much effort has been focused on upgrading these analytical devices to an intelligent technological platform by integrating them with modern communication systems, such as the internet of things (IoT) and machine learning (ML), to expand their application horizon. This review outlines the recent development and applications of bioanalytical devices and biosensors to detect pathogenic microbes in environmental samples. First, the nature of the recent outbreaks of pathogenic microbes such as foodborne, waterborne, and airborne pathogens and microbial toxins are discussed to understand the severity of the problems. Next, the discussion focuses on the detection systems chronologically, starting with the conventional methods, advanced techniques, and emerging technologies, such as biosensors and other portable devices and detection platforms for pathogens. Finally, the progress on multiplex assays, wearable devices, and integration of smartphone technologies to facilitate pathogen detection systems for wider applications are highlighted.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvanthapuram, Kerala 695014, India;
| | - Bahaa A. Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, UT 84112, USA
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| |
Collapse
|
42
|
Cossettini A, Vidic J, Maifreni M, Marino M, Pinamonti D, Manzano M. Rapid detection of Listeria monocytogenes, Salmonella, Campylobacter spp., and Escherichia coli in food using biosensors. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Yang T, Luo Z, Bewal T, Li L, Xu Y, Mahdi Jafari S, Lin X. When smartphone enters food safety: A review in on-site analysis for foodborne pathogens using smartphone-assisted biosensors. Food Chem 2022; 394:133534. [PMID: 35752124 DOI: 10.1016/j.foodchem.2022.133534] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
Pathogens are one of the supreme threats for the public health around the world in food supply chain. The on-site monitoring is an emerging trend for screening pathogens during the food processing and preserving. Traditional analytical tools have been unable to satisfy the current demands. Smartphones have enormous potentials for achieving on-site detection of foodborne pathogens, with intrinsic advantages such as small size, high accessibility, fast processing speed, and powerful imaging capacity. This review aims to synthesize the current advances in smartphone-assisted biosensors (SABs) for sensing foodborne pathogens, and briefly put forward the problem that consist in the research. We present the role of nanotechnology and recognition modes targeting foodborne pathogens in SABs, and discuss the signal conversion platforms coupling with smartphone. The challenges and perspectives in SABs are also proposed. The smartphone analytics area is moving forward, and it much be subject to careful quality standards and validation.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Tarun Bewal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China; State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
44
|
Wei S, Wang X, Wang F, Hao X, Li H, Su Z, Guo Y, Shi X, Liu X, Li J, Zhao C. Colorimetric detection of Salmonella typhimurium based on hexadecyl trimethyl ammonium bromide-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles. Anal Bioanal Chem 2022; 414:6069-6076. [PMID: 35689117 DOI: 10.1007/s00216-022-04166-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/07/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022]
Abstract
We developed an effective and specific colorimetric strategy to detect Salmonella typhimurium (S. typhimurium) based on hexadecyl trimethyl ammonium bromide (CTAB)-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles (β-CD-AuNPs). In this study, ssDNA aptamer of S. typhimurium could combine with CTAB to form the supramolecular ssDNA-CTAB composite, so the ssDNA aptamer was applied to control the concentration of CTAB. In the presence of S. typhimurium, ssDNA aptamers selectively bound to S. typhimurium but not to CTAB, leading to the host-guest chemistry reaction of CTAB and β-CD resulting in β-CD-AuNP supramolecular assembly aggregation with an obvious color change. The ratio of absorption at 650 and 520 nm (A650nm/A520nm) has a linear correlation to the log scale of the concentration of the bacteria (1 × 102-1 × 107 CFU/mL) with a low limit of detection (LOD) of 13 CFU/mL. In addition, this optical sensor has good selectivity and practicability. In milk samples, the recovery was 93.55-111.32%, which suggested its potential application in real samples.
Collapse
Affiliation(s)
- Shengnan Wei
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Xuechen Wang
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Feng Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xinqing Hao
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Hang Li
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhenyue Su
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuanyuan Guo
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Xuening Shi
- School of Public Health, Jilin University, Changchun, 130021, China
| | - Xingxing Liu
- The Department of Cadre Ward, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
45
|
A CRISPR-Cas12a-powered magnetic relaxation switching biosensor for the sensitive detection of Salmonella. Biosens Bioelectron 2022; 213:114437. [PMID: 35696867 DOI: 10.1016/j.bios.2022.114437] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022]
Abstract
Magnetic relaxation switching (MRS) biosensors are attractive in the field of food safety owing to their simplicity and high signal-to-noise ratio. But they are less in sensitivity and stability caused by the insufficient crosslinking or non-specific binding of magnetic nanoparticles (MNPs) with targets. To address this problem, the CRISPR-Cas12a system was introduced into an MRS biosensor for the first time, to precisely control the binding of two types of MNPs with sizes of 130 nm (MNP130) and 30 nm (MNP30), for the sensitive detection of Salmonella. Delicately, the biosensor was designed based on the different magnetic properties of the two sizes of MNPs. The target Salmonella activated the collateral cleavage activity of the CRISPR-Cas12a system, which inhibited the binding of the two sizes of MNPs, resulting in an increase of unbound MNP30. After separating MNP130-MNP30 complexes and MNP130 from MNP30, the free MNP30 left in solution acted as transverse relaxation time (T2) signal reporters for Salmonella detection. Under optimized conditions, the CRISPR-MRS biosensor presented a limit of detection of 1.3 × 102 CFU mL-1 for Salmonella, which is lower than most MRS biosensor analogues. It also showed satisfactory specificity and performed well in spiked chicken meat samples. This biosensing strategy not only extends the reach of the CRISPR-Cas12a system in biosensors but also offers an alternative for pathogen detection with satisfactory sensitivity.
Collapse
|
46
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Ding L, Xu S, Huang Y, Yao Y, Wang Y, Chen L, Zeng Y, Li L, Lin Z, Guo L. Surface-Enhanced Electrochemiluminescence Imaging for Multiplexed Immunoassays of Cancer Markers in Exhaled Breath Condensates. Anal Chem 2022; 94:7492-7499. [PMID: 35586900 DOI: 10.1021/acs.analchem.1c05179] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recently we have demonstrated that the surface plasmon of noble metal nanoparticles can effectively enhance the ECL intensity of Ru(bpy)32+, and we named this detection principle as surface-enhanced electrochemiluminescence (SEECL-I). However, SEECL based on photomultiplier tube (PMT) detection can only detect one target at a time, which is not suitable for multiple targets detection. In this work, we combined our previous developed SEECL with a bioimaging device to develop a novel multiplexed immunassay for simultaneous and fast analysis of cancer markers. A core-shell nanocomposite consisted of gold-silicon dioxide nanoparticles doped with Ru(bpy)32+(Au@SiO2-Ru) with strong ECL emission was employed as ECL label due to the localized surface plasmon resonance (LSPR) of AuNPs, which can significantly enhance the ECL emission of Ru(bpy)32+. The ECL signals from the 4 × 4 electrode arrays were collected using the constant potential method (current-time curve method) imaging with a sCOMS camera. As a proof-of-concept application, we demonstrated the use of the proposed SEECL-I for simultaneous detection of carcinoembryonic antigen (CEA), neuron specific enolase (NSE), and squamous cell carcinoma antigen (SCC) in exhaled breath condensates (EBCs) with low detection limit (LOD) of 0.17, 0.33, and 0.33 pg/mL (S/N = 3), respectively. The results demonstrated that the proposed SEECL-I strategy can provide a high sensitivity, fast analysis, and high-throughput platform for clinical diagnosis of cancer markers in EBCs.
Collapse
Affiliation(s)
- Li Ding
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Shaohua Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.,Integrated Chinese and Western Medicine Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yueyue Huang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Yuanyuan Yao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Yueliang Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Lifen Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
48
|
Zhu Z, Pei Q, Li J, Zhang Q, Xu W, Wang Y, Liu S, Huang J. Two-stage nicking enzyme signal amplification (NESA)-based biosensing platform for the ultrasensitive electrochemical detection of pathogenic bacteria. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1490-1497. [PMID: 35348134 DOI: 10.1039/d1ay02103f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The sensitive and selective detection of pathogenic bacteria represents an essential approach in food safety analysis and clinical diagnostics. We report the development of a simple, rapid, and low-cost electrochemical biosensing strategy for the detection of pathogenic bacteria with ultrasensitivity and high specificity. The biosensor relies on the target and aptamer binding-triggered two-stage nicking enzyme signal amplification (NESA) and three-way junction probe-mediated electrochemical signal transduction. In the presence of the target S. typhimurium, the specific binding of S. typhimurium and aptamer results in the release of a primer, which hybridizes with HAP1 and initiates an extension reaction with the aid of polymerase and dNTPs. A specific recognition site for Nt.BsmaI is generated in the DNA duplex; thus, the produced DNA is nicked and the secondary primer is released (named recycle I). Subsequently, the reaction solution supplemented with a helper DNA is dropped on the electrode surface, and a three-way junction probe containing a specific recognition site for Nt.BsmaI is thus formed. The MB-labeled probe is nicked with the help of Nt.BsmaI and the dissociated primer-helper DNA duplex combines with another HAP2 (named recycle II). Thus, a remarkably decreased electrochemical signal is generated because the electroactive MB is far away from the electrode surface. As far as we know, this work is the first time that NESA and three-way junction probe-mediated electrochemical signal transduction has been used for pathogenic bacteria detection. Under optimal conditions, the results reveal that the calibration plot obtained for S. typhimurium is approximately linear from 9.6 to 9.6 × 105 cfu mL-1 with the limit of detection of 8 cfu mL-1. Additionally, the proposed strategy has been successfully applied to the quantitative assay of S. typhimurium in the real samples. Therefore, the NESA-based biosensing strategy might create a useful and practical platform for pathogenic bacteria identification, and the related food safety analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Zhixue Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| | - Qianqian Pei
- Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jingjing Li
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| | - Qingxin Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, P. R. China
| | - Wanqing Xu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, P. R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
49
|
Pampoukis G, Lytou AE, Argyri AA, Panagou EZ, Nychas GJE. Recent Advances and Applications of Rapid Microbial Assessment from a Food Safety Perspective. SENSORS (BASEL, SWITZERLAND) 2022; 22:2800. [PMID: 35408414 PMCID: PMC9003504 DOI: 10.3390/s22072800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Unsafe food is estimated to cause 600 million cases of foodborne disease, annually. Thus, the development of methods that could assist in the prevention of foodborne diseases is of high interest. This review summarizes the recent progress toward rapid microbial assessment through (i) spectroscopic techniques, (ii) spectral imaging techniques, (iii) biosensors and (iv) sensors designed to mimic human senses. These methods often produce complex and high-dimensional data that cannot be analyzed with conventional statistical methods. Multivariate statistics and machine learning approaches seemed to be valuable for these methods so as to "translate" measurements to microbial estimations. However, a great proportion of the models reported in the literature misuse these approaches, which may lead to models with low predictive power under generic conditions. Overall, all the methods showed great potential for rapid microbial assessment. Biosensors are closer to wide-scale implementation followed by spectroscopic techniques and then by spectral imaging techniques and sensors designed to mimic human senses.
Collapse
Affiliation(s)
- George Pampoukis
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.P.); (A.E.L.); (E.Z.P.)
- Food Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Anastasia E. Lytou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.P.); (A.E.L.); (E.Z.P.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrisi, Greece;
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.P.); (A.E.L.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.P.); (A.E.L.); (E.Z.P.)
| |
Collapse
|
50
|
Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems platform for chemical and bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116637] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|