1
|
Li H, Wang X, Wu H, Wang W, Zheng A, Zhu J, Liang L, Sun H, Lu L, Lv J, Yu Q, Wang H, Yu B. Simultaneous noninvasive ultrasensitive detection of prostate specific antigen and lncRNA PCA3 using multiplexed dual optical microfibers with strong plasmonic nanointerfaces. Biosens Bioelectron 2024; 264:116672. [PMID: 39151263 DOI: 10.1016/j.bios.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Low accuracy of diagnosing prostate cancer (PCa) was easily caused by only assaying single prostate specific antigen (PSA) biomarker. Although conventional reported methods for simultaneous detection of two specific PCa biomarkers could improve the diagnostic efficiency and accuracy, low detection sensitivity restrained their use in extreme early-stage PCa clinical assay applications. In order to overcome above drawbacks, this paper herein proposed a multiplexed dual optical microfibers separately functionalized with gold nanorods (GNRs) and Au nanobipyramids (Au NBPs) nanointerfaces with strong localized surface plasmon resonance (LSPR) effects. The sensors could simultaneously detect PSA protein biomarker and long noncoding RNA prostate cancer antigen 3 (lncRNA PCA3) with ultrahigh sensitivity and remarkable specificity. Consequently, the proposed dual optical microfibers multiplexed biosensors could detect the PSA protein and lncRNA PCA3 with ultra-low limit-of-detections (LODs) of 3.97 × 10-15 mol/L and 1.56 × 10-14 mol/L in pure phosphorus buffer solution (PBS), respectively, in which the obtained LODs were three orders of magnitude lower than existed state-of-the-art PCa assay technologies. Additionally, the sensors could discriminate target components from complicated physiological environment, that showing noticeable biosensing specificity of the sensors. With good performances of the sensors, they could successfully assay PSA and lncRNA PCA3 in undiluted human serum and urine simultaneously, respectively. Consequently, our proposed multiplexed sensors could real-time high-sensitivity simultaneously detect complicated human samples, that providing a novel valuable approach for the high-accurate diagnosis of early-stage PCa individuals.
Collapse
Affiliation(s)
- Hongtao Li
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
| | - Xu Wang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hao Wu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Weisheng Wang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Aiyun Zheng
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Jun Zhu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Lili Liang
- Hebei Key Laboratory of Optical Fiber Biosensing and Communication Devices, Institute of Information Technology, Handan University, Handan, 056005, China
| | - Huojiao Sun
- School of Electrical and Optoelectronic Engineering, West Anhui University, Luan, 237012, China
| | - Liang Lu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Jialiang Lv
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Qi Yu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hongzhi Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China; Institute of Urology, Anhui Medical University, Hefei, 230031, China.
| | - Benli Yu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
2
|
Wang L, Zhuang Y, Pan R, Wang T, Zhang J, Wang D, Liu C, Shen W, Tang S. Simultaneous targeting and monitoring of free antigen and in-situ membrane antigen in prostate cancer cells via an aggregation-induced emission-based bifunctional probe. Biosens Bioelectron 2024; 263:116581. [PMID: 39079208 DOI: 10.1016/j.bios.2024.116581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
The precise clinical diagnosis of prostate cancer still presents inherent challenges, and usually a monitoring of multiple biomarkers is required. In this study, a new aggregation-induced emission (AIE)-based bifunctional strategy was developed for the simultaneous detection of prostate cancer-specific in situ membrane antigens (PSMA) and free antigens (PSA). First, a bifunctional fluorescent probe with double sensing sites (a PSA-specific sensing site and a PSMA-targeted ligand) was constructed. In the presence of PSA, it specifically binds to the PSA-specific sensing site of the probe, resulting in the restoration of the fluorescence signal, enabling linear sensing of PSA. For the detection of PSMA, the PSMA-targeted ligand modified on the probe can specifically recognize PSMA, inducing the aggregation of the AIE material and resulting in an enhanced fluorescence signal. Moreover, a liposome-based artificial cell was developed to simulate the real prostate cancer cell, and it was used to investigate the feasibility of monitoring the two types of antigens. Utilizing this bifunctional fluorescent strategy, a dual-analysis of free serum antigen biomarker of PSA and in-situ membrane antigen of PSMA was achieved. The assay exhibited a wide linearity range for PSA detection from 0.0001 to 0.1 μg/mL, with a low limit of detection (LOD) of 6.18 pg/mL. For PSMA, the obtained LOD is 8.79 pg/mL, with a linearity range from 0.0001 to 0.1 μg/mL. This strategy allows us to simultaneously assess the levels of two types of biomarkers in living human prostatic cancer cells, providing a highly accurate and selective tool for early screening and monitoring of prostatic cancer.
Collapse
Affiliation(s)
- Lina Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Yao Zhuang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Ruirong Pan
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, PR China
| | - Tingwei Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, PR China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dongyang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Vatankhahan H, Esteki F, Jabalameli MA, Kiani P, Ehtiati S, Movahedpour A, Vakili O, Khatami SH. Electrochemical biosensors for early diagnosis of glioblastoma. Clin Chim Acta 2024; 557:117878. [PMID: 38493942 DOI: 10.1016/j.cca.2024.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.
Collapse
Affiliation(s)
- Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Esteki
- Department of Medical Laboratory Sciences, School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Jabalameli
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Xia N, Liu G, Chen Y, Wu T, Liu L, Yang S, Li Y. Magnetically-assisted electrochemical immunoplatform for simultaneous detection of active and total prostate-specific antigen based on proteolytic reaction and sandwich affinity analysis. Talanta 2024; 270:125534. [PMID: 38091743 DOI: 10.1016/j.talanta.2023.125534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Simultaneous detection of active and inactive proteases is clinically meaningful for improving diagnostic specificity. In this work, we reported an electrochemical method for simultaneous immunoassays of active and total proteases. Magnetic beads (MBs) were used as the solid supports for immobilization of capture antibodies and enrichment of targets. For the detection of active protease, the proteolytic-reaction-based analysis was carried out by the generation of Cu2+-binding peptide, in which a label-free peptide was used as the proteolytic substrate. The redox potential of the resulting peptide-Cu2+ complex was intrinsically distinguished from that of free Cu2+, thus allowing the "signal-on" detection of active protease. For the immunoassay of total protease in a sandwich-like format, electroactive metal-organic frameworks (Cu-MOFs) were used as the signal tags. The captured Cu-MOFs could directly produce a well-defined electrochemical signal from the reduction of Cu2+ ions. The analytical performances of the immunoplatform were evaluated by determining the model analytes of free and total prostate-specific antigen (fPSA and tPSA) in buffer and serum. The detection limits were found to be 0.3 pM for fPSA and 2 pM for tPSA. This work proposed a new strategy for simultaneous detection of active and total proteases, which should be evaluable for clinical diagnosis and treatment of protease-relative diseases.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Gang Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yonghong Chen
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Tong Wu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Suling Yang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
5
|
Zhou Y, Wang H, Xi F, Lu C. Sensitive Electrochemical Detection of Carcinoembryonic Antigen Based on Biofunctionalized Nanochannel Modified Carbonaceous Electrode. Molecules 2024; 29:858. [PMID: 38398610 PMCID: PMC10892148 DOI: 10.3390/molecules29040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The convenient construction of carbon-based electrochemical immunosensors with high performance is highly desirable for the efficient detection of tumor biomarkers. In this work, an electrochemical immunosensor was fabricated by integrating a biofunctionalized mesoporous silica nanochannel film with a carbon-based electrode, which can enable the sensitive determination of carcinoembryonic antigen (CEA) in serum. The commonly used carbonaceous electrode, glassy carbon electrode (GCE), was employed as the supporting electrode and was pre-treated through electrochemical polarization to achieve the stable binding of a vertically ordered mesoporous silica film with amino groups (NH2-VMSF) without the use of any adhesive layer. To fabricate the immunorecognition interface, antibodies were covalently immobilized after the amino groups on the outer surface of NH2-VMSF was derivatized to aldehyde groups. The presence of amino sites within the high-density nanochannels of NH2-VMSF can facilitate the migration of negatively charged redox probes (Fe(CN)63-/4-) to the supporting electrode through electrostatic adsorption, leading to the generation of electrochemical signals. In the presence of CEA, the formation of immunocomplexes on the recognitive interface can reduce the electrochemical signal of Fe(CN)63-/4- on the supporting electrode. Based on this principle, the sensitive electrochemical detection of CEA was achieved. CEA can be determined to range from 0.01 ng mL-1 to 100 ng mL-1 with a limit of detection of 6.3 pg mL-1. The fabricated immunosensor exhibited high selectivity, and the detection of CEA in fetal bovine serum was achieved.
Collapse
Affiliation(s)
- Yucheng Zhou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China;
- Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, China
| | - Hongxin Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Chao Lu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China;
- Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
6
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India; Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Indrani Nandi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
7
|
Deng M, Yang H, Zhang H, Li C, Chen J, Tang W, Wang X, Chen Z, Li J. Portable and Rapid Dual-Biomarker Detection Using Solution-Gated Graphene Field Transistors in the Accurate Diagnosis of Prostate Cancer. Adv Healthc Mater 2024; 13:e2302117. [PMID: 37922499 DOI: 10.1002/adhm.202302117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Indexed: 11/05/2023]
Abstract
Prostate-specific antigen (PSA) is the common serum-relevant biomarker for early prostate cancer (PCa) detection in clinical diagnosis. However, it is difficult to accurately diagnose PCa in the early stage due to the low specificity of PSA. Herein, a new solution-gated graphene field transistor (SGGT) biosensor with dual-gate for dual-biomarker detection is designed. The sensing mechanism is that the designed aptamers immobilized on the surface of the gate electrodes can capture PSA and sarcosine (SAR) biomolecules and induce the capacitance changes of the electric double layers of SGGT. The limit of detections of PSA and SAR biomarkers can reach 0.01 fg mL-1 , which is three-to-four orders of magnitude lower than previously reported assays. The detection time of PSA and SAR is ≈4.5 and ≈13 min, which is significantly faster than the detection time (1-2 h) of conventional methods. The clinical serum samples testing demonstrates that the biosensor can distinguish the PCa patients from the control group and the diagnosis accuracy can reach 100%. The SGGT biosensor can be integrated into the portable platform and the diagnostic results can directly display on the smartphone/Pad. Therefore, the integrated portable platform of the biosensor can distinguish cancer types through the dual-biomarker detection.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
- College of Computer and Information Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Huan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Huibin Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chaoqian Li
- College of Computer and Information Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Jingqiu Chen
- School of Computer Science and Information Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Wei Tang
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
8
|
Flauzino JMR, Nalepa MA, Chronopoulos DD, Šedajová V, Panáček D, Jakubec P, Kührová P, Pykal M, Banáš P, Panáček A, Bakandritsos A, Otyepka M. Click and Detect: Versatile Ampicillin Aptasensor Enabled by Click Chemistry on a Graphene-Alkyne Derivative. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207216. [PMID: 36703534 DOI: 10.1002/smll.202207216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Tackling the current problem of antimicrobial resistance (AMR) requires fast, inexpensive, and effective methods for controlling and detecting antibiotics in diverse samples at the point of interest. Cost-effective, disposable, point-of-care electrochemical biosensors are a particularly attractive option. However, there is a need for conductive and versatile carbon-based materials and inks that enable effective bioconjugation under mild conditions for the development of robust, sensitive, and selective devices. This work describes a simple and fast methodology to construct an aptasensor based on a novel graphene derivative equipped with alkyne groups prepared via fluorographene chemistry. Using click chemistry, an aptamer is immobilized and used as a successful platform for the selective determination of ampicillin in real samples in the presence of interfering molecules. The electrochemical aptasensor displayed a detection limit of 1.36 nM, high selectivity among other antibiotics, the storage stability of 4 weeks, and is effective in real samples. Additionally, structural and docking simulations of the aptamer shed light on the ampicillin binding mechanism. The versatility of this platform opens up wide possibilities for constructing a new class of aptasensor based on disposable screen-printed carbon electrodes usable in point-of-care devices.
Collapse
Affiliation(s)
- José M R Flauzino
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Martin-Alex Nalepa
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Demetrios D Chronopoulos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Veronika Šedajová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Petr Jakubec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Martin Pykal
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Aleš Panáček
- Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, 771 46, Czech Republic
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
9
|
Aslan Y, Atabay M, Chowdhury HK, Göktürk I, Saylan Y, Inci F. Aptamer-Based Point-of-Care Devices: Emerging Technologies and Integration of Computational Methods. BIOSENSORS 2023; 13:bios13050569. [PMID: 37232930 DOI: 10.3390/bios13050569] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Recent innovations in point-of-care (POC) diagnostic technologies have paved a critical road for the improved application of biomedicine through the deployment of accurate and affordable programs into resource-scarce settings. The utilization of antibodies as a bio-recognition element in POC devices is currently limited due to obstacles associated with cost and production, impeding its widespread adoption. One promising alternative, on the other hand, is aptamer integration, i.e., short sequences of single-stranded DNA and RNA structures. The advantageous properties of these molecules are as follows: small molecular size, amenability to chemical modification, low- or nonimmunogenic characteristics, and their reproducibility within a short generation time. The utilization of these aforementioned features is critical in developing sensitive and portable POC systems. Furthermore, the deficiencies related to past experimental efforts to improve biosensor schematics, including the design of biorecognition elements, can be tackled with the integration of computational tools. These complementary tools enable the prediction of the reliability and functionality of the molecular structure of aptamers. In this review, we have overviewed the usage of aptamers in the development of novel and portable POC devices, in addition to highlighting the insights that simulations and other computational methods can provide into the use of aptamer modeling for POC integration.
Collapse
Affiliation(s)
- Yusuf Aslan
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Hussain Kawsar Chowdhury
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ilgım Göktürk
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
10
|
He W, Liu L, Cao Z, Lin Y, Tian Y, Zhang Q, Zhou C, Ye X, Cui T. Shrink polymer based electrochemical sensor for point-of-care detection of prostate-specific antigen. Biosens Bioelectron 2023; 228:115193. [PMID: 36906988 DOI: 10.1016/j.bios.2023.115193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
There is a growing but unmet need for point-of-care detection of prostate-specific antigen (PSA) in body fluid which may facilitate early diagnosis and therapy of prostate cancer in a cost-effective and user-friendly way. Low sensitivity and narrow detection range limits applications of point-of-care testing in practice. Here, an immunosensor is first presented based on shrink polymer and integrated into a miniaturized electrochemical platform for detecting PSA in clinical samples. The sensing electrode was prepared by sputtering a gold film on shrink polymer, followed by heating to shrink the electrode to a small size with wrinkles from nano-scale to micro-scale. These wrinkles can be directly regulated by the thickness of the gold film with high specific areas for enhancement of antigen-antibody binding (3.9 times). A distinct difference between electrochemical active surface area (EASA) and response to PSA of shrink electrodes was observed and discussed. The electrode was treated with air plasma and modified with self-assembled graphene to further enhance the sensor's sensitivity (10.4 times). The shrink sensor with gold 200 nm thick integrated into the portable system was validated by a label-free immunoassay for detection of PSA in 20 μL serum within 35 mins. It exhibited a limit of detection of 0.38 fg/mL, the lowest among label-free PSA sensors, and a wide linear response from 10 fg/mL to 1000 ng/mL. Moreover, the sensor demonstrated reliable assay results in clinical serums, comparable to the commercial chemiluminescence instrument, confirming its feasibility for clinical diagnosis.
Collapse
Affiliation(s)
- Wenzheng He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Liying Liu
- Department of Urology, Jilin Cancer Hospital, Jilin Province, Changchun, 130012, China
| | - Zeyuan Cao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China
| | - Yang Lin
- Department of Urology, Jilin Cancer Hospital, Jilin Province, Changchun, 130012, China
| | - Yuxin Tian
- Department of Urology, Jilin Cancer Hospital, Jilin Province, Changchun, 130012, China
| | - Qifu Zhang
- Department of Urology, Jilin Cancer Hospital, Jilin Province, Changchun, 130012, China
| | - Changdong Zhou
- Department of Urology, Jilin Cancer Hospital, Jilin Province, Changchun, 130012, China.
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, China.
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Afaque Ansari M, Juen Liew W, Padmakumari Kurup C, Uddin Ahmed M. Label-free electrochemical aptasensor for ultrasensitive thrombin detection using graphene nanoplatelets and carbon nano onion-based nanocomposite. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Pandey R, Lu Y, McConnell EM, Osman E, Scott A, Gu J, Hoare T, Soleymani L, Li Y. Electrochemical DNAzyme-based biosensors for disease diagnosis. Biosens Bioelectron 2023; 224:114983. [PMID: 36640547 DOI: 10.1016/j.bios.2022.114983] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/01/2023]
Abstract
DNAzyme-based electrochemical biosensors provide exceptional analytical sensitivity and high target recognition specificity for disease diagnosis. This review provides a critical perspective on the fundamental and applied impact of incorporating DNAzymes in the field of electrochemical biosensing. Specifically, we highlight recent advances in creating DNAzyme-based electrochemical biosensors for diagnosing infectious diseases, cancer and regulatory diseases. We also develop an understanding of challenges around translating the research in the field of DNAzyme-based electrochemical biosensors from labs to clinics, followed by a discussion on different strategies that can be applied to enhance the performance of the currently existing technologies to create truly point-of-care electrochemical DNAzyme biosensors.
Collapse
Affiliation(s)
- Richa Pandey
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Yang Lu
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Enas Osman
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Alexander Scott
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Todd Hoare
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Michael G. DeGroot Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Yingfu Li
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Michael G. DeGroot Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
13
|
Deng M, Ren Z, Zhang H, Li Z, Xue C, Wang J, Zhang D, Yang H, Wang X, Li J. Unamplified and Real-Time Label-Free miRNA-21 Detection Using Solution-Gated Graphene Transistors in Prostate Cancer Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205886. [PMID: 36480308 PMCID: PMC9896035 DOI: 10.1002/advs.202205886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The incidence of prostate cancer (PCa) in men globally increases as the standard of living improves. Blood serum biomarker prostate-specific antigen (PSA) detection is the gold standard assay that do not meet the requirements of early detection. Herein, a solution-gated graphene transistor (SGGT) biosensor for the ultrasensitive and rapid quantification detection of the early prostate cancer-relevant biomarker, miRNA-21 is reported. The designed single-stranded DNA (ssDNA) probes immobilized on the Au gate can hybridize effectively with the miRNA-21 molecules targets and induce the Dirac voltage shifts of SGGT transfer curves. The limit of detection (LOD) of the sensor can reach 10-20 M without amplification and any chemical or biological labeling. The detection linear range is from 10-20 to 10-12 M. The sensor can realize real-time detection of the miRNA-21 molecules in less than 5 min and can well distinguish one-mismatched miRNA-21 molecule. The blood serum samples from the patients without RNA extraction and amplification are measured. The results demonstrated that the biosensor can well distinguish the cancer patients from the control group and has higher sensitivity (100%) than PSA detection (58.3%). Contrastingly, it can be found that the PSA level is not directly related to PCa.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Zhanpeng Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Huibin Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Ziqin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Chenglong Xue
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Dan Zhang
- School of Computer Science and Information EngineeringHubei UniversityWuhan430062P. R. China
| | - Huan Yang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsKey Laboratory for the Green Preparation and Application of Functional MaterialsMinistry of EducationHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062P. R. China
| |
Collapse
|
14
|
Highly Sensitive Sensing Detection of Prostate-specific Antigen Based on Point-of-care Electrochemical Immunosensor. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Liao C, Wu Z, Lin C, Chen X, Zou Y, Zhao W, Li X, Huang G, Xu B, Briganti GE, Qi Y, Wang X, Zeng T, Wuethrich A, Zou H. Nurturing the marriages of urinary liquid biopsies and nano-diagnostics for precision urinalysis of prostate cancer. SMART MEDICINE 2023; 2:e20220020. [PMID: 39188554 PMCID: PMC11236013 DOI: 10.1002/smmd.20220020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/28/2024]
Abstract
Prostate cancer remains the second-most common cancer diagnosed in men, despite the increasingly widespread use of serum prostate-specific antigen (PSA) screening. The controversial clinical implications and cost benefits of PSA screening have been highlighted due to its poor specificity, resulting in a high rate of overdiagnosis and underdiagnosis. Thus, the development of novel biomarkers for prostate cancer detection remains an intriguing challenge. Urine is emerging as a source for prostate cancer biomarker discovery. Currently, new urine biomarkers already outperform serum PSA in clinical diagnosis. Meanwhile, the advances in nanotechnology have provided a suite of diagnostic tools to study prostate cancer in more detail, sparking a new era of biomarker discoveries. In this review, we envision that future prostate cancer diagnosis will probably integrate multiplex nano-diagnostic approaches to detect novel urinary biomarkers. However, challenges remain in differentiating indolent from aggressive cancers to better inform treatment decisions, and clinical translation still needs to be overcome.
Collapse
Affiliation(s)
- Caizhi Liao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Zhihao Wu
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Chan Lin
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xiaofeng Chen
- School of Environmental and Geographical SciencesShanghai Normal UniversityShanghaiChina
- School of ChemistryNorthwestern UniversityChicagoIllinoisUSA
| | - Yaqun Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Wan Zhao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xin Li
- Department of UrologySir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | | | - Baisheng Xu
- Department of UrologyThe First People's Hospital of XiushuiJiujiangChina
| | | | - Yan Qi
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Tao Zeng
- Department of Urologythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbaneQueenslandAustralia
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
16
|
Wang Y, Xiao M, Zhang Y, Hong Z, Zhang R, Xu Q, Lin L, Wei Y. Investigation of awareness rate of prostate-specific antigen (PSA) among the general public in China and analysis of influencing factors. Front Public Health 2023; 11:1080800. [PMID: 37213638 PMCID: PMC10192882 DOI: 10.3389/fpubh.2023.1080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
Objective This study aimed to evaluate the awareness rate of prostate-specific antigen (PSA) among the general public in China and provide data about prostate cancer (PCa) for related scientific research. Methods A cross-sectional survey of PSA awareness was conducted in multiple regional populations using an online questionnaire. The questionnaire included basic information, knowledge about PCa, the awareness rate and application of PSA, and future expectations toward applying PSA screening in clinical practice. The study applied the methods of Pearson chi-square analysis and Logistic regression analysis. Results A total of 493 valid questionnaires were included. Two hundred and nineteen respondents (44.4%) were males, and 274 (55.6%) were females. Of all respondents, 212 (43.0%) were under 20 years old, 147 (29.8%) were 20-30 years old, 74 (15.0%) were 30-40 years old, and 60 (12.2%) were over 40 years old. There are 310 people (62.9%) with medical educational background and 183 (37.1%) without. One hundred eighty-seven (37.9%) of the respondents were aware of PSA, and 306 (62.1%) were unaware of PSA. Statistically significant differences were obtained between the two groups regarding different ages, educational backgrounds, occupations, departments, and habits of knowing medical knowledge (all p < 0.05). In addition, the differences between the group of aware of PSA (AP) and the group unaware of PSA (UAP) in terms of whether they had been exposed to PSA screening and whether they had exposure to PCa patients or related knowledge were also observed (all p < 0.05). Age ≥30 years, medical educational background, understanding of medical knowledge, exposure to PCa patients or related knowledge, exposure to PSA screening, and status as a graduate student and above were independent factors for the occurrence of PSA awareness events (all p < 0.05). In addition, age ≥ 30 years, medical educational background, and awareness of PSA were independent factors for future expectations toward PSA (all p < 0.05). Conclusions We first analyzed the public awareness of PSA. Cognition degrees of PSA and PCa awareness vary among different populations in China. Therefore, we should designate corresponding widespread scientific educational programs for different populations to increase the awareness rate of PSA.
Collapse
Affiliation(s)
- Yuqin Wang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Mukun Xiao
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Yueying Zhang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zhiwei Hong
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Ruochen Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Qingjiang Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Le Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Yongbao Wei
| |
Collapse
|
17
|
Saha S, Sachdev M, Mitra SK. Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers. BIOMICROFLUIDICS 2023; 17:011502. [PMID: 36844882 PMCID: PMC9949901 DOI: 10.1063/5.0135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Collapse
Affiliation(s)
| | - Manoj Sachdev
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K. Mitra
- Micro and Nanoscale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Alnaimi A, Al-Hamry A, Makableh Y, Adiraju A, Kanoun O. Gold Nanoparticles-MWCNT Based Aptasensor for Early Diagnosis of Prostate Cancer. BIOSENSORS 2022; 12:1130. [PMID: 36551097 PMCID: PMC9776393 DOI: 10.3390/bios12121130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Prostate cancer is one of the most frequently diagnosed male malignancies and can be detected by prostate-specific antigen (PSA) as a biomarker. To detect PSA, several studies have proposed using antibodies, which are not economical and require a long reaction time. In this study, we propose to use self-assembled thiolated single-strand DNA on electrodes functionalized by multi-walled carbon nanotubes (MWCNT) modified with gold nanoparticles (AuNPs) to realize a low-cost label-free electrochemical biosensor. In this regard, the PSA aptamer was immobilized via electrostatic adsorption on the surface of a screen-printed MWCNT/AuNPs electrode. The immobilization process was enhanced due to the presence of Au nanoparticles on the surface of the electrode. Surface characterization of the electrode at different stages of modification was performed by electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) and contact angle for surface tension properties. The results showed an increase in surface roughness due to the absorbance of the aptamer on the electrode surfaces. The developed sensor has an extended linear range of 1-100 ng/mL, and a very low limit of detection down to 1 pg/mL. In addition, the reaction has a binding time of only five minutes on the developed electrodes. Investigations of the biosensor selectivity against several substances revealed an efficient selectivity for PSA detection. With this approach, low-cost biosensors with high sensitivity can be realized which have a wide linearity range and a low limit of detection, which are necessary for the early detection of prostate cancer.
Collapse
Affiliation(s)
- Aseel Alnaimi
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Ammar Al-Hamry
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Yahia Makableh
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Anurag Adiraju
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| | - Olfa Kanoun
- Professorship Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany
| |
Collapse
|
19
|
Yan L, Xu S, Xi F. Disposal Immunosensor for Sensitive Electrochemical Detection of Prostate-Specific Antigen Based on Amino-Rich Nanochannels Array-Modified Patterned Indium Tin Oxide Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3810. [PMID: 36364585 PMCID: PMC9658386 DOI: 10.3390/nano12213810] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/01/2023]
Abstract
Sensitive detection of prostate-specific antigens (PSA) in serum is essential for the prevention and early treatment of prostate cancer. Simple and disposable electrochemical immunosensors are highly desirable for screening and mobile detection of PSAs in high-risk populations. Here, an electrochemical immunosensor was constructed based on amino-rich nanochannels array-modified patterned, inexpensive, and disposable indium tin oxide (ITO) electrodes, which can be employed for the sensitive detection of PSA. Using an amino-group-containing precursor, a vertically ordered mesoporous silica nanochannel film (VMSF) containing amino groups (NH2-VMSF) was rapidly grown on ITO. When NH2-VMSF contained template surfactant micelle (SM), the outer surface of NH2-VMSF was directionally modified by aldehyde groups, which enabled further covalent immobilization of the recognitive antibody to prepare the immuno-recognitive interface. Owing to the charge-based selective permeability, NH2-VMSF can electrostatically adsorb negatively charged redox probes in solution (Fe(CN)63-/4-). The electrochemical detection of PSA is realized based on the mechanism that the antigen-antibody complex can reduce the diffusion of redox probes in solution to the underlying electrode, leading to the decrease in electrochemical signal. The constructed immunosensor can achieve sensitive detection of PSA in the range from 10 pg/mL to 1 μg/mL with a limit of detection (LOD) of 8.1 pg/mL. Sensitive detection of PSA in human serum was also achieved. The proposed disposable immunosensor based on cheap electrode and nanochannel array is expected to provide a new idea for developing a universal immunosensing platform for sensitive detection of tumor markers.
Collapse
Affiliation(s)
- Liang Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
20
|
El-Sheikh SM, Sheta SM, Salem SR, Abd-Elzaher MM, Basaleh AS, Labib AA. Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal-Organic Framework-Based Optical Biosensor. BIOSENSORS 2022; 12:931. [PMID: 36354440 PMCID: PMC9688191 DOI: 10.3390/bios12110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The prostate-specific antigen (PSA) is an important cancer biomarker that is commonly utilized in the diagnosis of prostate cancer. The development of a PSA determination technique that is rapid, simple, and inexpensive, in addition to highly accurate, sensitive, and selective, remains a formidable obstacle. METHODS In this study, we developed a practical biosensor based on Zn(II) metal-organic framework nanoparticles (Zn-MOFs-NPs). Many spectroscopic and microanalytical tools are used to determine the structure, morphology, and physicochemical properties of the prepared MOF. RESULTS According to the results, Zn-MOFs-NPs are sensitive to PSA, selective to an extremely greater extent, and stable in terms of chemical composition. Furthermore, the Zn-MOFs-NPs did not exhibit any interferences from other common analytes that might cause interference. The detection limit for PSA was calculated and was 0.145 fg/mL throughout a wide linear concentration range (0.1 fg/mL-20 pg/mL). CONCLUSIONS Zn-MOFs-NPs were successfully used as a growing biosensor for the monitoring and measurement of PSA in biological real samples.
Collapse
Affiliation(s)
- Said M. El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute, Cairo 11421, Egypt
| | - Sheta M. Sheta
- Department of Inorganic Chemistry, National Research Centre, Cairo 12622, Egypt
| | - Salem R. Salem
- Department of Biochemistry, Egypt Centre for Research and Regenerative Medicine, Cairo 11887, Egypt
| | | | - Amal S. Basaleh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ammar A. Labib
- Department of Inorganic Chemistry, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
21
|
Ebrahimi R, Barzegari A, Teimuri-Mofrad R, Kordasht HK, Hasanzadeh M, Khoubnasabjafari M, Jouyban-Gharamaleki V, Rad AA, Shadjou N, Rashidi MR, Afshar Mogaddam MR, Jouyban A. Selection of Specific Aptamer against Rivaroxaban and Utilization for Label-Free Electrochemical Aptasensing Using Gold Nanoparticles: First Announcement and Application for Clinical Sample Analysis. BIOSENSORS 2022; 12:773. [PMID: 36290911 PMCID: PMC9599351 DOI: 10.3390/bios12100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
For the first time, a novel aptamer was designed and utilized for the selective detection of rivaroxaban (RIV) using the integration of bioinformatics with biosensing technology. The selected aptamer with the sequence 5'-TAG GGA AGA GAA GGA CAT ATG ATG ACT CAC AAC TGG ACG AAC GTA CTT ATC CCC CCC AAT CAC TAG TGA ATT-3' displayed a high binding affinity to RIV and had an efficient ability to discriminate RIV from similar molecular structures. A novel label-free electrochemical aptasensor was designed and fabricated through the conjugation of a thiolated aptamer with Au nanoparticles (Au-NPs). Then, the aptasensor was successfully applied for the quantitative determination of RIV in human plasma and exhaled breath condensate (EBC) samples with limits of detection (LODs) of 14.08 and 6.03 nM, respectively. These valuable results provide ample evidence of the green electrogeneration of AuNPs on the surface of electrodes and their interaction with loaded aptamers (based on Au-S binding) towards the sensitive and selective monitoring of RIV in human plasma and EBC samples. This bio-assay is an alternative approach for the clinical analysis of RIV and has improved specificity and affinity. As far as we know, this is the first time that an electrochemical aptasensor has been verified for the recognition of RIV and that allows for the easy, fast, and precise screening of RIV in biological samples.
Collapse
Affiliation(s)
- Rokhsareh Ebrahimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Reza Teimuri-Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Abbas Afrasiabi Rad
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nanotechnology Research Center, Urmia University, Urmia 5756151818, Iran
| | - Mohammad-Reza Rashidi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | | | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Faculty of Pharmacy, Near East University, P.O. Box 99138 Nicosia, North Cyprus, Mersin 99138, Turkey
| |
Collapse
|
22
|
Yan L, Zhang C, Xi F. Disposable Amperometric Label-Free Immunosensor on Chitosan-Graphene-Modified Patterned ITO Electrodes for Prostate Specific Antigen. Molecules 2022; 27:molecules27185895. [PMID: 36144631 PMCID: PMC9505937 DOI: 10.3390/molecules27185895] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
A facile and highly sensitive determination of prostate-specific antigen (PSA) is of great significance for the early diagnosis, monitoring and prognosis of prostate cancer. In this work, a disposable and label-free electrochemical immunosensing platform was demonstrated based on chitosan–graphene-modified indium tin oxide (ITO) electrode, which enables sensitive amperometric determination of PSA. Chitosan (CS) modified reduced graphene oxide (rGO) nanocomposite (CS–rGO) was easily synthesized by the chemical reduction of graphene oxide (GO) using CS as a dispersant and biofunctionalizing agent. When CS–rGO was modified on the patterned ITO, CS offered high biocompatibility and reactive groups for the immobilization of recognition antibodies and rGO acted as a transduction element and enhancer to improve the electronic conductivity and stability of the CS–rGO composite film. The affinity-based biosensing interface was constructed by covalent immobilization of a specific polyclonal anti-PSA antibody (Ab) on the amino-enriched electrode surface via a facile glutaraldehyde (GA) cross-linking method, which was followed by the use of bovine serum albumin to block the non-specific sites. The immunosensor allowed the detection of PSA in a wide range from 1 to 5 ng mL−1 with a low limit of detection of 0.8 pg mL−1. This sensor also exhibited high selectivity, reproducibility, and good storage stability. The application of the prepared immunosensor was successfully validated by measuring PSA in spiked human serum samples.
Collapse
Affiliation(s)
- Liang Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| | - Chaoyan Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
23
|
Liang J, Teng P, Hu L, He G, Song Q, Zhang Y, Peng B, Li G, Xiao W, Cao D, Tang Y. Platinum nanoparticles (PtNPs)-based CRISPR/Cas12a platform for detection of nucleic acid and protein in clinical samples. Anal Chim Acta 2022; 1225:340203. [PMID: 36038232 PMCID: PMC9365833 DOI: 10.1016/j.aca.2022.340203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/01/2022]
Abstract
Early rapid screening diagnostic assay is essential for the identification, prevention, and evaluation of many contagious or refractory diseases. The optical density transducer created by platinum nanoparticles (PtNPs) (OD-CRISPR) is reported in the present research as a cheap and easy-to-execute CRISPR/Cas12a-based diagnostic platform. The OD-CRISPR uses PtNPs, with ultra-high peroxidase-mimicking activity, to increase the detection sensitivity, thereby enabling the reduction of detection time and cost. The OD-CRISPR can be utilized to identify nucleic acid or protein biomarkers within an incubation time of 30-40min in clinical specimens. In the case of taking severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N gene as an instance, when compared to a quantitative reverse transcription-polymerase chain reaction (RT-qPCR), the OD-CRISPR test attains a sensitivity of 79.17% and a specificity of 100%. In terms of detecting prostate-specific antigen (PSA), aptamer-based OD-CRISPR assay achieves the least discoverable concentration of 0.01 ng mL-1. In general, the OD-CRISPR can detect nucleic acid and protein biomarkers, and is a potential strategy for early rapid screening diagnostic tools.
Collapse
Affiliation(s)
- Jiajie Liang
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China; Guangdong Biowings Tech Limited, Foshan, 528000, China
| | - Peijun Teng
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Liangshan Hu
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Guanbo He
- Guangdong Biowings Tech Limited, Foshan, 528000, China
| | - Qifang Song
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Zhang
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bin Peng
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Gan Li
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Yong Tang
- Guangdong Province Engineering Research Center of Antibody Drug and Immunoassay, Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Trends in advanced materials for the fabrication of insulin electrochemical immunosensors. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Zhao C, Guo W, Umar A, Algadi H, Pei M, Ibrahim AA, Yang X, Ren Z, Mi X, Wang L. High-sensitive ferrocene labeled aptasensor for the detection of Mucin 1 by tuning the sequence constitution of complementary probe. Mikrochim Acta 2022; 189:332. [PMID: 35971003 DOI: 10.1007/s00604-022-05424-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
A strand displacement-based "signal-off" electrochemical aptasensor is reported for the detection of Mucin 1 (MUC 1) based on a high original signal. Different from the conventional "signal-off" electrochemical biosensors where electrochemical substances are dispersed in electrolyte solution, here the current signal was generated by the complementary probe (CP) associated with ferrocene (Fc) labeled aptamer (Apt.-Fc). Because Apt.-Fc and MUC 1 have a higher affinity, Apt.-Fc dissociates from CP in the presence of MUC 1, resulting in a reduction of detection current signal generated by oxidation of labeled Fc. In this system, high detection signal is necessary to improve the sensor's performance. For this aim, a strategy is proposed for changing the modalities of electron transport and the quantity of Apt.-Fc introduced by simply tuning the sequence constitution of CP. As expected, a high detection current signal was obtained after selecting CP(Apt.-Fc)-TTT as the optimal CP. The aptasensor was then employed to detect MUC 1, and satisfactory detection results with a low detection limit (LOD) of 0.087 pM (S/N = 3), good specificity, good stability, and feasibility of detection of MUC 1 in artificial serum (recovery of 92-101%, RSD of 1.36-5.23%) were obtained.
Collapse
Affiliation(s)
- Chengxian Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Wenjuan Guo
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran, 11001, Kingdom of Saudi Arabia. .,Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia. .,Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Hassan Algadi
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia.,Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts, Najran University, Najran, 11001, Kingdom of Saudi Arabia.,Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Xueying Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Zhe Ren
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, 250022, China
| | - Xiangyun Mi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Luyan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
26
|
Tran Ngoc Huy D, Iswanto AH, Catalan Opulencia MJ, Al-Saikhan F, Timoshin A, Abed AM, Ahmad I, Blinova SA, Hammid AT, Mustafa YF, Van Tuan P. Optical and Electrochemical Aptasensors Developed for the Detection of Alpha-Fetoprotein. Crit Rev Anal Chem 2022; 54:857-871. [PMID: 35969067 DOI: 10.1080/10408347.2022.2099221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early diagnosis of hepatocellular carcinoma (HCC), a leading cause of cancer mortality, is decisive for successful treatment of this type of cancer and increasing the patients' survival rate. Alpha-fetoprotein (AFP) is a glycoprotein that has been currently employed as a potential serological biomarker for determination of HCC and several other cancers. Achieving highly sensitive and specific detection of this biomarker is an effective strategy to inhibit developing issues caused by the cancer. Though, traditional procedures cannot meet the requirements due to the technical drawbacks. Recently, growing number of aptamer-based biosensors (aptasensors) attracted important attention as superior diagnostic tools because of their unique properties such as high stability, target versatility and remarkable affinity and selectivity. Nanomaterials, which broadly employed in the structure of these aptasensors, can considerably enhance the detection limit and sensitivity of analytes determination. Therefore, this review selectively investigated the recent progresses in several different optical and electrochemical aptasensors and nano-aptasensors designed for AFP assay.
Collapse
Affiliation(s)
- Dinh Tran Ngoc Huy
- MBA, Banking University HCMC, Ho Chi Minh City, Vietnam
- International University of Japan, Niigata, Japan
| | - A Heri Iswanto
- Public Health Department, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | | | - Fahad Al-Saikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Anton Timoshin
- Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Azher M Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College, Babylon, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sofiya A Blinova
- Department of Histology, Embryology, and Cytology, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | | |
Collapse
|
27
|
Majdinasab M, Marty JL. Recent Advances in Electrochemical Aptasensors for Detection of Biomarkers. Pharmaceuticals (Basel) 2022; 15:995. [PMID: 36015143 PMCID: PMC9412480 DOI: 10.3390/ph15080995] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
The early diagnosis of diseases is of great importance for the effective treatment of patients. Biomarkers are one of the most promising medical approaches in the diagnosis of diseases and their progress and facilitate reaching this goal. Among the many methods developed in the detection of biomarkers, aptamer-based biosensors (aptasensors) have shown great promise. Aptamers are promising diagnostic molecules with high sensitivity and selectivity, low-cost synthesis, easy modification, low toxicity, and high stability. Electrochemical aptasensors with high sensitivity and accuracy have attracted considerable attention in the field of biomarker detection. In this review, we will summarize recent advances in biomarker detection using electrochemical aptasensors. The principles of detection, sensitivity, selectivity, and other important factors in aptasensor performance are investigated. Finally, advantages and challenges of the developed aptasensors are discussed.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Jean Louis Marty
- Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
28
|
Khoshbin Z, Davoodian N, Taghdisi SM, Abnous K. Metal organic frameworks as advanced functional materials for aptasensor design. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121251. [PMID: 35429856 DOI: 10.1016/j.saa.2022.121251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Advancement in coordination chemistry has achieved an impressive development of metal organic frameworks (MOFs) as the supramolecular hybrid materials, comprising harmonized metal nodes with organic ligands. Scope and approach: MOFs offer the unique properties of easy synthesis, nanoscale structure, adjustable size and morphology, high porosity, large surface area, supreme chemical tunability and stability, and biocompatibility. The features provide an exceptional opportunity for the widely usage of MOFs in the different scientific fields, e.g. biomedicine, electrocatalysis, food safety, energy storage, environmental surveillance, and biosensing platforms. The synergistic incorporation of the aptamer advantages and the superiorities of MOFs attains the novel MOF-based aptasensors. The excellent selectivity and sensitivity of the MOF-based aptasensors nominate them as efficient lab-on-chip tools for cost-effective, label-free, portable, and real-time monitoring of diverse targets. KEY FINDINGS AND CONCLUSIONS Here, we review the achievements in the sensor design by cooperation of MOF motifs and aptamers with the conspicuous potential of determining the targets. Finally, some results are expressed that provide a valuable viewpoint for developing the novel MOF-based test strips in the future.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Davoodian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Li L, Zhang W, Wei Y, Yu L, Feng D. A Sensitive Fluorescent Immunoassay for Prostate Specific Antigen Detection Based on Signal Amplify Strategy of Horseradish Peroxidase and Silicon Dioxide Nanospheres. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:6209731. [PMID: 35912019 PMCID: PMC9328979 DOI: 10.1155/2022/6209731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
A simple, sensitive, and fluorescent immunoassay for the detection of prostate-specific antigen (PSA) based on horseradish peroxidase and silicon dioxide nanospheres as a signal amplification strategy has been described. In the design, the primary antibody (Ab1) of PSA was first immobilized on the 96-well plates via physical adsorption between polystyrene and hydrophobic groups of the antibody molecule. The silicon dioxide nanospheres (SiO2 NSs), with large surface area and good biocompatibility, were loaded with horseradish peroxidase (HRP) and horseradish peroxidase-labeled secondary antibodies (HRP-Ab2) as signal amplification systems. In the presence of PSA, a sandwich-type immunocomplex composed of Ab1-Ag-HRP-Ab2 had been formed. Fluorescence technology was employed to obtain the response signal of the immunoassay in the L-tyrosine and H2O2 systems. Experiment results showed that a strong and stable fluorescent signal at 416 nm (excitation wavelength: 325 nm) was observed, and the changes in fluorescent intensity were related to the levels of PSA. Under the optimal conditions, the relative fluorescence intensity was linear with the logarithm of PSA concentration from 0.03 to 100 ng·mL-1, with a detection limit of 0.01 ng·mL-1 (at a signal/noise ratio of 3). In contrast to other fluorescent immunoassays, the sandwich-type immunoreaction based on the high binding ELISA plates has the advantages of being simple, stable, and easy to operate, high selectivity, small sample quantity, etc., which can be widely used in the selective detection of a variety of targets, from DNA to proteins and small molecules. Such fluorescent immunoassays should be feasible for the fields of molecular diagnosis and other life science fields in the future.
Collapse
Affiliation(s)
- Lihua Li
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Wenzhi Zhang
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yan Wei
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| | - Lizhen Yu
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Dexiang Feng
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
- Institute of Synthesis and Application of Medical Materials, Department of Chemistry, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
30
|
Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin. Talanta 2022; 243:123292. [DOI: 10.1016/j.talanta.2022.123292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022]
|
31
|
Zheng Y, Wang J, Chen G, Wang M, Chen T, Ke Q, Huang Y, Cai F, Huang R, Fan C. DNA walker-amplified signal-on electrochemical aptasensors for prostate-specific antigen coupling with two hairpin DNA probe-based hybridization reaction. Analyst 2022; 147:1923-1930. [PMID: 35384954 DOI: 10.1039/d2an00327a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical aptasensing systems have been developed for screening low-abundance disease-related proteins, but most of them involve multiple washings and multi-step separation during measurements, and thus are disadvantageous for routine use. In this work, an innovative and simple electrochemical aptasensing platform was designed for the voltammetric detection of prostate-specific antigen (PSA) in biological fluids without any washing and separation steps. This system mainly included a PSA-specific aptamer, a DNA walker and two hairpin DNA probes (i.e., thiolated hairpin DNA1 and ferrocene-labeled hairpin DNA2). Introduction of target PSA caused the release of the DNA walker from a partially complementary aptamer/DNA walker hybridization strand. The dissociated DNA walker opened the immobilized hairpin DNA1 on the electrode, accompanying subsequent displacement reaction with hairpin DNA2, thus resulting in the DNA walker step-by-step reaction with numerous hairpin DNA1 probes on the sensing interface. In this case, numerous ferrocene molecules were close to the electrode to amplify the voltammetric signal within the applied potentials. All reactions and electrochemical measurements including the target/aptamer reaction and hybridization chain reaction were implemented in the same detection cell. Under optimal conditions, the fabricated electrochemical aptasensor gave good voltammetric responses relative to the PSA concentrations within the range of 0.001-10 ng mL-1 at an ultralow detection limit of 0.67 pg mL-1. A good reproducibility with batch-to-batch errors was acquired for target PSA down to 11.5%. Non-target analytes did not interfere with the voltammetric signals of the electrochemical aptasensors. Meanwhile, 15 human serum specimens were measured with electrochemical aptasensors, and displayed well-matched results in comparison with the referenced human PSA enzyme-linked immunosorbant assay (ELISA) method. Significantly, this method provides a new horizon for the quantitative monitoring of low-concentration biomarkers or nucleic acids.
Collapse
Affiliation(s)
- Yuyu Zheng
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Jinpeng Wang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Genwang Chen
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Meie Wang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Tebin Chen
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Qiaohong Ke
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Yajun Huang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Fan Cai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, P. R. China
| | - Rongfu Huang
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| | - Chunmei Fan
- Clinical Lab and Medical Diagnostics Laboratory, The Second Affiliated Hospital of Fujian Medical University, Donghai Hospital District, Quanzhou 362000, P. R. China.
| |
Collapse
|
32
|
Detection of prostate specific antigen in whole blood by microfluidic chip integrated with dielectrophoretic separation and electrochemical sensing. Biosens Bioelectron 2022; 204:114057. [DOI: 10.1016/j.bios.2022.114057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
|
33
|
Liu X, Wang T, Wu Y, Tan Y, Jiang T, Li K, Lou B, Chen L, Liu Y, Liu Z. Aptamer based probes for living cell intracellular molecules detection. Biosens Bioelectron 2022; 208:114231. [PMID: 35390719 DOI: 10.1016/j.bios.2022.114231] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022]
Abstract
Biosensors have been employed for monitoring and imaging biological events and molecules. Sensitive detection of different biomolecules in vivo can reflect the changes of physiological conditions in real-time, which is of great significance for the diagnosis and treatment of diseases. The detection of intracellular molecules concentration change can indicate the occurrence and development of disease. But the analysis process of the existing detection methods, such as Western blot detection of intracellular protein, polymerase chain reaction (PCR) technique quantitative analysis of intracellular RNA and DNA, usually need to extract the cell lysis which is complex and time-consuming. Fluorescence bioimaging enables in situ monitoring of intracellular molecules in living cells. By combining the specificity of aptamer for intracellular molecules binding, and biocompatibility of fluorescent materials and nanomaterials, biosensors with different nanostructures have been developed to enter into living cells for analysis. This review summarizes the fluorescence detection methods based on aptamer for intracellular molecules detection. The principles, limit of detection, advantages, and disadvantages of different platforms for intracellular molecular fluorescent response are summarized and reviewed. Finally, the current challenges and future developments were discussed and proposed.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
34
|
Rahmati Z, Roushani M, Hosseini H, Choobin H. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH) 2 nanorods arrays as a high-performance surface substrate. Bioelectrochemistry 2022; 146:108106. [PMID: 35339949 PMCID: PMC8940256 DOI: 10.1016/j.bioelechem.2022.108106] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The development of advanced electrode materials and the combination of aptamer with them have improved dramatically the performance of aptasensors. Herein, a new architecture based on copper hydroxide nanorods (Cu(OH)2 NRs) are directly grown on the surface of screen printed carbon electrode (SPCE) using a two-step in situ, very simple and fast strategy and was used as a high-performance substrate for immobilization of aptamer strings, as well as an electrochemical probe to development a label-free electrochemical aptasensor for SARS-CoV-2 spike glycoprotein measurement. The Cu(OH)2 NRs was characterized using X-ray Diffraction (XRD) and electron microscopy (FESEM). In the presence of SARS-CoV-2 spike glycoprotein, a decrease in Cu(OH)2 NRs-associated peak current was observed that can be owing to the target-aptamer complexes formation and thus blocking the electron transfer of Cu(OH)2 NRs on the surface of electrode. This strategy exhibited wide dynamic range in of 0.1 fg mL−1 to 1.2 µg mL−1 and with a high sensitivity of 1974.43 μA mM−1 cm−2 and low detection limit of 0.03 ± 0.01 fg mL−1 of SARS-CoV-2 spike glycoprotein deprived of any cross-reactivity in the presence of possible interference species. In addition, the good reproducibility, repeatability, high stability and excellent feasibility in real samples of saliva and viral transport medium (VTM) were found from the provided aptasensor. Also, the aptasensor efficiency was evaluated by real samples of sick and healthy individuals and compared with the standard polymerase chain reaction (PCR) method and acceptable results were observed.
Collapse
Affiliation(s)
- Zeinab Rahmati
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P.O. BOX. 69315-516, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P.O. BOX. 69315-516, Iran.
| | - Hadi Hosseini
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, P.O. BOX. 69315-516, Iran
| | - Hamzeh Choobin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
35
|
Yao B, Yao J, Fan Z, Zhao J, Zhang K, Huang W. Recent Advances of Versatile MXenes for Electrochemical Enzyme‐Based Biosensors, Immunosensors, and Nucleic Acid‐Based Biosensors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Yao
- Nanjing Tech University Institute of Advanced Materials CHINA
| | - Jiantao Yao
- Nanjing Tech University Institute of Advanced Materials CHINA
| | - Zhenqiang Fan
- Jiangsu Institute of Nuclear Medicine NHC Key Laboratory of, Jiangsu Key Laboratory of Molecular Nuclear Medicine CHINA
| | - Jianfeng Zhao
- Nanjing Tech University Institute of Advanced Materials Xinmofan Road 5 210000 Nanjing CHINA
| | - Kai Zhang
- Jiangsu Institute of Nuclear Medicine NHC Key Laboratory of, Jiangsu Key Laboratory of Molecular Nuclear Medicine CHINA
| | - Wei Huang
- Nanjing Tech University Institute of Advanced Materials CHINA
| |
Collapse
|
36
|
Liu J, Tang D. Dopamine‐loaded liposomes‐amplified electrochemical immunoassay based on MXene (Ti3C2)‐AuNPs. ELECTROANAL 2022. [DOI: 10.1002/elan.202100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Liu
- Hubei University Of Science and Technology CHINA
| | | |
Collapse
|
37
|
Moradi R, Khalili NP, Septiani NLW, Liu CH, Doustkhah E, Yamauchi Y, Rotkin SV. Nanoarchitectonics for Abused-Drug Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104847. [PMID: 34882957 DOI: 10.1002/smll.202104847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Rapid, accessible, and highly accurate biosensors for the detection of addictive and abused drugs are needed to reduce the adverse personal and societal impacts of addiction. Modern sensors that utilize next-generation technologies, e.g., nanobiotechnology and nanoarchitectonics, have triggered revolutionary progress in the field as they allow accurate detection and tracking of trace levels of major classes of drugs. This paper reviews advances in the field of biosensors for the detection of commonly abused drugs, both prescribed such as codeine and morphine, and illegal narcotics like cocaine.
Collapse
Affiliation(s)
- Rasoul Moradi
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Department of Chemical Engineering, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Nazila Pour Khalili
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Center for Cell Pathology Research, Department of Biological Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Esmail Doustkhah
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Slava V Rotkin
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| |
Collapse
|
38
|
Azzouz A, Hejji L, Kim KH, Kukkar D, Souhail B, Bhardwaj N, Brown RJC, Zhang W. Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosens Bioelectron 2022; 197:113767. [PMID: 34768064 DOI: 10.1016/j.bios.2021.113767] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 01/25/2023]
Abstract
Surface plasmon resonance approach is a highly useful option to offer optical and label-free detection of target bioanalytes with numerous advantages (e.g., low-cost fabrication, appreciable sensitivity, label-free detection, and outstanding accuracy). As such, it allows early diagnosis of cancer biomarkers to monitor tumor progression and to prevent the recurrence of oncogenic tumors. This work highlights the recent progress in SPR biosensing technology for the diagnosis of various cancer types (e.g., lung, breast, prostate, and ovarian). Further, the performance of various SPR biosensors is also evaluated in terms of the basic quality assurance criteria (e.g., limit of detection (LOD), selectivity, sensor response time, and reusability). Finally, the limitations and future challenges associated with SPR biosensors are also discussed with respect to cancer biomarker detection.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| | - Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tétouan, Morocco
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Wei Zhang
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
39
|
Zamanian J, Khoshbin Z, Abnous K, Taghdisi SM, Hosseinzadeh H, Danesh NM. Current progress in aptamer-based sensing tools for ultra-low level monitoring of Alzheimer's disease biomarkers. Biosens Bioelectron 2022; 197:113789. [PMID: 34798498 DOI: 10.1016/j.bios.2021.113789] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) as common late-life dementia is pathologically associated with the irreversible and progressive disorder, misfolding, deposition, and accumulation of the brain proteins. Especially, the formation of fibrous amyloid plaques by aggregation of amyloid-β peptides is the pathological cause of this neurologic disorder disease. Besides, tau protein isoforms destabilize the microtubule filaments through post-translational modifications and induce nerve cells' death. Amyloid-β peptides and tau proteins are considered as the critical symptom and reliable molecular biomarkers for the early diagnosis of AD. AD is characterized by impaired thinking proficiencies, cognitive decline, memory loss, and behavioral disability. Since there is no efficacious therapy for AD at present, the development of precise sensing tools for the early diagnosis of this disease is essential and crucial. Aptamer-based biosensors (aptasensors) have acquired utmost importance in the field of AD healthcare, due to excellent sensitivity and specificity, ease-of-use, cost-effectiveness, portability, and rapid assay time. Here, we highlight the recent developments and novel perspectives in the field of aptasensor design to quantitatively monitor the AD biomarkers. Finally, some results are represented to achieve a promising viewpoint for introducing the novel aptasensor test kits in the future.
Collapse
Affiliation(s)
- Javad Zamanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic, Iran
| | - Noor Mohammd Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Passive Defense, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
40
|
Yan R, Lu N, Han S, Lu Z, Xiao Y, Zhao Z, Zhang M. Simultaneous detection of dual biomarkers using hierarchical MoS 2 nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer. Biosens Bioelectron 2022; 197:113797. [PMID: 34818600 DOI: 10.1016/j.bios.2021.113797] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/02/2022]
Abstract
Accurate and reliable quantification of tumor biomarkers in clinical samples is of vital importance for early stage diagnosis and treatment of cancer. However, a poor specificity of prostate specific antigen (PSA) testing alone fostering overdetection and overtreatment, remains a great controversy in prostate cancer (PCa) screening. Here we report an electrochemical aptasensor using hierarchical MoS2 nanostructuring and SiO2 nano-signal amplification for simultaneous detection of dual PCa biomarkers, PSA and sarcosine, to enhance the diagnostic performance of PCa. In this strategy, hierarchical flower-like MoS2 nanostructures as functional interface accelerated intermolecular accessibility and improved DNA hybridization efficiency. Moreover, the spherical SiO2 nanoprobe that conjugated with both electroactive tags and DNA probes, allowed effective electrochemical signal amplification. By deliberately designing different hybridization modes, we individually implemented the optimization of PSA and sarcosine sensing system. Based on this, simultaneous determination of PSA and sarcosine was achieved, with limit of detection (LOD) down to 2.5 fg/mL and 14.4 fg/mL, respectively, as well as excellent selectivity. More importantly, using this approach, we could directly differentiate cancer patients with healthy ones for clinical serum samples. The ultrasensitive biosensor provides single-step analysis with simple operation and a small sample volume (∼12 μL), shedding new light on accurate diagnosis and early-detection of cancer in clinical applications.
Collapse
Affiliation(s)
- Ruohong Yan
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Suping Han
- Department of Pharmacy, Shandong Medical College, Jinan, 250002, China
| | - Zhanglu Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yang Xiao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Zhihang Zhao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
41
|
Zahra QUA, Fang X, Luo Z, Ullah S, Fatima S, Batool S, Qiu B, Shahzad F. Graphene Based Nanohybrid Aptasensors in Environmental Monitoring: Concepts, Design and Future Outlook. Crit Rev Anal Chem 2022; 53:1433-1454. [PMID: 35085047 DOI: 10.1080/10408347.2022.2025758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In view of ever-increasing environmental pollution, there is an immediate requirement to promote cheap, multiplexed, sensitive and fast biosensing systems to monitor these pollutants or contaminants. Aptamers have shown numerous advantages in being used as molecular recognition elements in various biosensing devices. Graphene and graphene-based materials/nanohybrids combined with several detection methods exhibit great potential owing to their exceptional optical, electronic and physicochemical properties which can be employed extensively to monitor environmental contaminants. For environmental monitoring applications, aptamers have been successfully combined with graphene-based nanohybrids to produce a wide range of innovative methodologies. Aptamers are immobilized at the surface of graphene based nanohybrids via covalent and non-covalent strategies. This review highlights the design, working principle, recent developmental advances and applications of graphene based nanohybrid aptasensors (GNH-Apts) (since January 2014 to September 2021) with a special emphasis on two major signal-transduction methods, i.e., optical and electrochemical for the monitoring of pesticides, heavy metals, bacteria, antibiotics, and organic compounds from different environmental samples (e.g., water, soil and related). Lastly, the challenges confronted by scientists and the possible future outlook have also been addressed. It is expected that high-performance graphene-based nanohybrid aptasensors would find broad applications in the field of environmental monitoring.
Collapse
Affiliation(s)
- Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaona Fang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Shazia Fatima
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Sadaf Batool
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Bensheng Qiu
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
42
|
Akgönüllü S, Koyun S, Yavuz H, Erdem A, Denizli A. Preparation of Surface Plasmon Resonance Aptasensor for Human Activated Protein C Sensing. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2393:37-56. [PMID: 34837173 DOI: 10.1007/978-1-0716-1803-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid aptamers are an emerging class of artificial ligands and have recently gained attention in several areas. Here we report the design of a surface plasmon resonance (SPR) aptasensor for highly sensitive and selective sensing of human activated protein C (APC). First, DNA aptamer (DNA-Apt) specific for APC is complexed with N-methacryloyl-L-cysteine (MAC) monomer. Then, 2-hydroxyethyl methacrylate (HEMA) and cyanamide are mixed with the DNA-Apt/MAC complex. The SPR aptasensor is characterized by atomic force microscopy, ellipsometry, and contact angle measurements. Selectivity of SPR aptasensor is carried out in the presence of myoglobin (Myb), hemoglobin (Hb), and bovine serum albumin (BSA). Limit of detection (LOD) and limit of quantification (LOQ) values are 1.5 ng mL-1 and 5.2 ng mL-1, respectively. DNA-Apt SPR aptasensor performance for APC detection is also examined in artificial plasma.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Seda Koyun
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Arzum Erdem
- Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
43
|
Khoshroo A, Mavaei M, Rostami M, Valinezhad-Saghezi B, Fattahi A. Recent advances in electrochemical strategies for bacteria detection. BIOIMPACTS : BI 2022; 12:567-588. [PMID: 36644549 PMCID: PMC9809139 DOI: 10.34172/bi.2022.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Introduction: Bacterial infections have always been a major threat to public health and humans' life, and fast detection of bacteria in various samples is significant to provide early and effective treatments. Cell-culture protocols, as well-established methods, involve labor-intensive and complicated preparation steps. For overcoming this drawback, electrochemical methods may provide promising alternative tools for fast and reliable detection of bacterial infections. Methods: Therefore, this review study was done to present an overview of different electrochemical strategy based on recognition elements for detection of bacteria in the studies published during 2015-2020. For this purpose, many references in the field were reviewed, and the review covered several issues, including (a) enzymes, (b) receptors, (c) antimicrobial peptides, (d) lectins, (e) redox-active metabolites, (f) aptamer, (g) bacteriophage, (h) antibody, and (i) molecularly imprinted polymers. Results: Different analytical methods have developed are used to bacteria detection. However, most of these methods are highly time, and cost consuming, requiring trained personnel to perform the analysis. Among of these methods, electrochemical based methods are well accepted powerful tools for the detection of various analytes due to the inherent properties. Electrochemical sensors with different recognition elements can be used to design diagnostic system for bacterial infections. Recent studies have shown that electrochemical assay can provide promising reliable method for detection of bacteria. Conclusion: In general, the field of bacterial detection by electrochemical sensors is continuously growing. It is believed that this field will focus on portable devices for detection of bacteria based on electrochemical methods. Development of these devices requires close collaboration of various disciplines, such as biology, electrochemistry, and biomaterial engineering.
Collapse
Affiliation(s)
- Alireza Khoshroo
- Nutrition Health Research center, Hamadan University of Medical Sciences, Hamadan, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| | - Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoume Rostami
- Student Research Committe, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Medical Biology Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| |
Collapse
|
44
|
Haroon M, Tahir M, Nawaz H, Majeed MI, Al-Saadi AA. Surface-enhanced Raman scattering (SERS) spectroscopy for prostate cancer diagnosis: A review. Photodiagnosis Photodyn Ther 2021; 37:102690. [PMID: 34921990 DOI: 10.1016/j.pdpdt.2021.102690] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
The present review focuses on the diagnosis of prostate cancer using surface enhanced Raman scattering (SERS) spectroscopy. On the basis of literature search, SERS-based analysis for prostate cancer detection of different sample types is reported in the present study. Prostate cancer is responsible for nearly one-tenth of all cell cancer deaths among men. Significant efforts have been dedicated to establish precise and sensitive monitoring techniques to detect prostate cancer biomarkers in different types of body samples. Among the various spectro-analytical techniques investigated to achieve this objective, SERS spectroscopy has been proven as a promising approach that provides noticeable enhancements of the Raman sensitivity when the target biomolecules interact with a nanostructured surface. The purpose of this review is to give a brief overview of the SERS-basedapproach and other spectro-analytical strategies being used for the detection and quantification of prostate cancer biomarkers. The revolutionary development of SERS methods for the diagnosis of prostate cancer has been discussed in more details based on the reported literature. It has been noticed that the SERS-based immunoassay presents reliable results for the prostate cancer quantification. The EC-SERS, which integrates electrochemistry with the SERS model, could also offer a potential ultrasensitive strategy, although its application in prostate cancer analysis has been still limited.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Abdulaziz A Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center (IRC) in Refinery and Advanced Chemicals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
45
|
Mahmoudpour M, Dolatabadi JEN, Hasanzadeh M, Soleymani J. Carbon-based aerogels for biomedical sensing: Advances toward designing the ideal sensor. Adv Colloid Interface Sci 2021; 298:102550. [PMID: 34695619 DOI: 10.1016/j.cis.2021.102550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/21/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Carbon based aerogels are special solid-state materials comprised of interconnected networks of 3D nanostructures with high amount of air-filled nanoporous. They expand the structural properties along with physicochemical characteristics of nanoscale construction blocks to macroscale, and incorporate distinctive attributes of aerogels, like large surface area, high porosity, and low density, with particular features of the different constituents. These features impart aerogels with rapid response signal, high selectivity, and ultra-sensitivity for sensing diverse targets in biomedical media. This has prompted researchers to develop a variety of aerogel-based sensors with encouraging achievements. Hence, this work outlines sensing applications of aerogel-based sensors with a comprehensive overview on the carbon aerogel hybrid materials and their analytical performances. Authors tried to list advantages and limitations of the developed approach and introduced more potent research for possible devices designing. We also point out some challenges and future perspectives related to the improvement of high-efficiency aerogel-based sensors.
Collapse
Affiliation(s)
- Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
|
47
|
Xiang X, Wang Y, Zhang Y, Yuan R, Wei S. A photoelectrochemical biosensor based on methylene blue sensitized Bi 5O 7I for sensitive detection of PSA. Chem Commun (Camb) 2021; 57:12480-12483. [PMID: 34747951 DOI: 10.1039/d1cc05164d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, bismuth oxyiodide (Bi5O7I) was used as a signal probe to construct an effective sensitization structure with methylene blue (MB), combined with protein conversion strategy, and a photoelectrochemical (PEC) biosensor was constructed for sensitive detection of prostate-specific antigen (PSA). The designed biosensor had a high sensitivity and a low detection limit (LOD) of 0.047 fg mL-1, which opened up a simple way for the detection of PSA and showed a good application prospect in clinical and medical fields.
Collapse
Affiliation(s)
- Xuelian Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yanlin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yanhui Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Shaping Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
48
|
Sathish S, Shen AQ. Toward the Development of Rapid, Specific, and Sensitive Microfluidic Sensors: A Comprehensive Device Blueprint. JACS AU 2021; 1:1815-1833. [PMID: 34841402 PMCID: PMC8611667 DOI: 10.1021/jacsau.1c00318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in nano/microfluidics have led to the miniaturization of surface-based chemical and biochemical sensors, with applications ranging from environmental monitoring to disease diagnostics. These systems rely on the detection of analytes flowing in a liquid sample, by exploiting their innate nature to react with specific receptors immobilized on the microchannel walls. The efficiency of these systems is defined by the cumulative effect of analyte detection speed, sensitivity, and specificity. In this perspective, we provide a fresh outlook on the use of important parameters obtained from well-characterized analytical models, by connecting the mass transport and reaction limits with the experimentally attainable limits of analyte detection efficiency. Specifically, we breakdown when and how the operational (e.g., flow rates, channel geometries, mode of detection, etc.) and molecular (e.g., receptor affinity and functionality) variables can be tailored to enhance the analyte detection time, analytical specificity, and sensitivity of the system (i.e., limit of detection). Finally, we present a simple yet cohesive blueprint for the development of high-efficiency surface-based microfluidic sensors for rapid, sensitive, and specific detection of chemical and biochemical analytes, pertinent to a variety of applications.
Collapse
Affiliation(s)
- Shivani Sathish
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
49
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
50
|
Zhang C, Jiang C, Lan L, Ping J, Ye Z, Ying Y. Nanomaterial-based biosensors for agro-product safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|