1
|
Huang Z, Gustave W, Bai S, Li Y, Li B, Elçin E, Jiang B, Jia Z, Zhang X, Shaheen SM, He F. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. ENVIRONMENTAL RESEARCH 2024; 262:119801. [PMID: 39147190 DOI: 10.1016/j.envres.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized. This lack of commercialization is confusing, given the broad application prospects of WCBs. Over the years, numerous research papers have focused primarily on enhancing the sensitivity and selectivity of WCBs, with little attention paid to their wider commercial applications. So far, there is no a critical review has been published yet on this topic. Therefore, in this article we critically reviewed the research progress of WCBs over the past three decades, assessing the performance and limitations of current systems to understand the barriers to commercial deployment. By identifying these obstacles, this article provided researchers and industry stakeholders with deeper insights into the challenges hindering market entry and inspire further research toward overcoming these barriers, thereby facilitating the commercialization of WCBs as a promising technology for environmental monitoring.
Collapse
Affiliation(s)
- Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, 4912, Bahamas
| | - Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China; Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, 78666, USA
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, 09970, Turkey
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Madani S, Hatamie A. Portable Mini-Electrochemical Cell: Integrating Microsampling and Micro-Electroanalysis for Multipurpose On-Site Nitrite Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39565027 DOI: 10.1021/acs.langmuir.4c03398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In modern analytical chemistry, one of the primary goals is to develop miniaturized, easy-to-use sensing tools, particularly those with multitasking capabilities. In this work, we designed a mini-voltammetric cell that integrates a modified Au microelectrode (Au/Au NPs as the working electrode) and an Ag/AgCl reference electrode installed within a micropipette tip. This combined tool not only enables portable and on-site microvolume sampling─requiring only a microvolume (around 20-40 μL) or a single droplet─but also facilitates direct micro-electroanalysis in a short time. To evaluate its capabilities, the mini-voltammetric cell was optimized for trace analysis of nitrite ions and demonstrated linear responses in the ranges of 20-150 and 150-1200 μM, with an acceptable limit of detection (LOD) of 18.40 μM, meeting both WHO and EPA standards for nitrite levels. Furthermore, it exhibited high selectivity, stability (up to 36 continuous measurements with only a 3.24% signal drop), and acceptable repeatability (RSD of 2.98%, n = 15). The analytical performance of this miniaturized tool was further assessed through the sampling and detection of nitrite ions in various real samples with different matrixes: (1) urine samples, for the fast diagnosis of urinary tract infections (UTIs), where nitrite ions are detected as biomarkers of UTIs; (2) river water polluted with agricultural waste, where nitrite ions serve as pollutants from nitrogen fertilizers; and (3) on the hands and in forensic investigations, where nitrite ions are detected as indicators of gunshot residue, crucial in crime scene examinations. All real samples were analyzed using the standard addition method and recovery tests, yielding acceptable results. Additionally, the proposed mini-analytical tool was evaluated for its sustainability and applicability using two recognized metrics: The Green Analytical Procedure Index (GAPI) and the Blue Applicability Grade Index (BAGI). The results confirmed that this method can be classified as both a green analytical method and highly applicable. Finally, the practical results demonstrated that the proposed miniaturized electroanalytical tool exhibits reliable performance, high sensitivity and selectivity, and fast response in the on-site microanalysis of nitrite, without the need for any reagents or complex sampling steps, across different real samples (such as clinical, forensic, and environmental samples). We believe the proposed mini-voltammetric cell could be used as an alternative to current detection methods, and with suitable modifications, it could be adapted for the microanalysis of other applications and (bio)targets with small volumes in the near future.
Collapse
Affiliation(s)
- Shohreh Madani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, 45137-66731, Zanjan, Iran
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, 45137-66731, Zanjan, Iran
| |
Collapse
|
3
|
Yang DN, Geng S, Jing R, Zhang H. Recent Developments in Personal Glucose Meters as Point-of-Care Testing Devices (2020-2024). BIOSENSORS 2024; 14:419. [PMID: 39329794 PMCID: PMC11430212 DOI: 10.3390/bios14090419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Point-of-care testing (POCT) is a contemporary diagnostic approach characterized by its user-friendly nature, cost efficiency, environmental compatibility, and lack of reliance on professional experts. Therefore, it is widely used in clinical diagnosis and other analytical testing fields to meet the demand for rapid and convenient testing. The application of POCT technology not only improves testing efficiency, but also brings convenience and benefits to the healthcare industry. The personal glucose meter (PGM) is a highly successful commercial POCT tool that has been widely used not only for glucose analysis, but also for non-glucose target detection. In this review, the recent advances from 2020 to 2024 in non-glucose target analysis for PGMs as POCT devices are summarized. The signal transduction strategies for non-glucose target analysis based on PGMs, including enzymatic transduction, nanocarrier transduction (enzyme or glucose), and glucose consumption transduction are briefly introduced. Meanwhile, the applications of PGMs in non-glucose target analysis are outlined, encompassing biomedical, environmental, and food analysis, along with other diverse applications. Finally, the prospects of and obstacles to employing PGMs as POCT tools for non-glucose target analysis are discussed.
Collapse
Affiliation(s)
- Dan-Ni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Shan Geng
- The Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China
| | - Rong Jing
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| |
Collapse
|
4
|
Tanifuji Y, Tong G, Hiruta Y, Citterio D. Paper-based analytical device for point-of-care nucleic acid quantification combining CRISPR/Cas12a and a personal glucose meter. Analyst 2024. [PMID: 39171545 DOI: 10.1039/d4an00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Although CRISPR-based nucleic acid detection has great potential in point-of-care testing due to its simplicity, it has been rarely integrated into paper-based analytical devices (PADs), which are attractive platforms to simplify assays. This work introduces a CRISPR-assisted nucleic acid quantification approach integrated into a PAD with signal readout by a personal glucose meter (PGM). Retention of magnetic beads by filter paper and pre-deposition of all required reagents by freeze-drying stabilized with trehalose enabled the indirect quantification of human papilloma virus (HPV) DNA through a PGM readout without complicated user intervention and complex reagent handling. The calculated limit of detection was 57 pM, which is comparable with other amplification-free CRISPR-based assays detecting nucleic acids. The fully integrated device exhibited good storage stability for up to 4 weeks, suggesting its applicability toward practical point-of-care nucleic acid quantification.
Collapse
Affiliation(s)
- Yohei Tanifuji
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Guodong Tong
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
5
|
Uzokboev S, Akhmadbekov K, Nuritdinova R, Tawfik SM, Lee YI. Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1077-1104. [PMID: 39188756 PMCID: PMC11346306 DOI: 10.3762/bjnano.15.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity. Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties, biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are discussed, including drug delivery and environmental sensing applications for humidity, heavy metals, and hydrogen peroxide. Moreover, biomedical sensing applications of alginate-based nanoparticles regarding various analytes such as glucose, cancer cells, pharmaceutical drugs, and human motion will also be reviewed in this paper. Future research scopes highlight existing challenges and solutions.
Collapse
Affiliation(s)
- Shakhzodjon Uzokboev
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Khojimukhammad Akhmadbekov
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Ra’no Nuritdinova
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
6
|
Zhang S, Xiong J, Wang S, Li Z, Qin L, Sun B, Wang Z, Liu X, Zheng Y, Jiang H. Four birds with one stone: Aggregation-induced emission-type zeolitic imidazolate framework-8 based bionic nanoreactor for portable detection of olaquindox in environmental water and swine urine by smartphone. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134068. [PMID: 38521040 DOI: 10.1016/j.jhazmat.2024.134068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
The abuse of olaquindox (OLA) as both an antimicrobial agent and a growth promoter poses significant threats to the environment and human health. While nanoreactors have proven effective in hazard detection, their widespread adoption has been hindered by tedious chemical processes and limited functionality. In this study, we introduce a novel green self-assembly strategy utilizing invertase, horseradish peroxidase, antibodies, and gold nanoclusters to form an aggregation-induced emission-type zeolitic imidazolate framework-8 nanoreactor. The results demonstrate that the lateral flow immunoassay not only allows for qualitative naked eye detection but also enables optical analysis through the fluorescence generated by aggregated gold nanoclusters and enzyme-catalyzed enhancement of visible colorimetric signals. To accommodate more detection scenarios, the photothermal effects and redox reactions of the nanoreactor can fulfill the requirements of thermal sensing and electrochemical analysis for smartphone applications. Remarkably, the proposed approach achieves a detection limit 17 times lower than conventional methods. Besides, the maximum linear range spans from 0.25 to 5 μg/L with high specificity, and the recovery is 85.2-112.9% in environmental water and swine urine. The application of this high-performance nanoreactor opens up avenues for the construction of multifunctional biosensors with great potential in monitoring hazardous materials.
Collapse
Affiliation(s)
- Shuai Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jincheng Xiong
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zhaoyang Li
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zile Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xingxing Liu
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yongjun Zheng
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
7
|
Kim J, Yoo H, Woo S, Oh SS. Aptasensor-encapsulating semi-permeable proteinosomes for direct target detection in non-treated biofluids. Biosens Bioelectron 2024; 251:116062. [PMID: 38350238 DOI: 10.1016/j.bios.2024.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Detecting biomarkers in biofluids directly without sample treatments makes molecular diagnostics faster and more efficient. Aptasensors, the nucleic acid-based molecular biosensors, can detect a wide range of target molecules, but their susceptibility to degradation and aggregation by nucleases and charged proteins, respectively, limits their direct use in clinical samples. In this work, we demonstrate that when aptasensors are encapsulated in proteinosomes, the protein-based liposome mimics, clinically important small molecules can be sensitively and selectively detected in non-treated specimens, such as 100 % unpurified serum. As serum albumin is used to form the membrane, the nanomeshed proteinosomes become semi-permeable and antifouling, which enables exclusive admission of small molecules while blocking unwanted large proteins. Consequently, the enclosed aptasensors can maintain close-to-optimal performance for target binding, and nucleolytic degradation and electrostatic aggregation are effectively suppressed. Three different structure-switching aptamers specific for estradiol, dopamine, and cocaine, respectively, are demonstrated to fully conserve their high affinities and specificities inside the microcapsules. The shielding effect of proteinosomes is indeed exceptional; the enclosed DNA aptasensors remain completely intact over 18 h in serum and even in an extremely concentrated DNase solution (1 mg/ml, ∼300,000× the serum level). Moreover, the proteinosome-mediated compartmentalization enables independent operation of multiple aptasensors in the same mixture. Hence, simultaneous real-time sensing of two different targets is demonstrated with different operation modes, 'recording' target appearance and 'reporting' target concentration changes. This work is the first demonstration of small-molecule-specific aptasensors operating with optimal performance in serum environments and will find promising applications in molecular diagnostics.
Collapse
Affiliation(s)
- Jinmin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Hyebin Yoo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Sungwook Woo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon, 21983, South Korea.
| |
Collapse
|
8
|
Rossetti M, Srisomwat C, Urban M, Rosati G, Maroli G, Yaman Akbay HG, Chailapakul O, Merkoçi A. Unleashing inkjet-printed nanostructured electrodes and battery-free potentiostat for the DNA-based multiplexed detection of SARS-CoV-2 genes. Biosens Bioelectron 2024; 250:116079. [PMID: 38295580 DOI: 10.1016/j.bios.2024.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
Following the global COVID-19 pandemic triggered by SARS-CoV-2, the need for rapid, specific and cost-effective point-of-care diagnostic solutions remains paramount. Even though COVID-19 is no longer a public health emergency, the disease still poses a global threat leading to deaths, and it continues to change with the risk of new variants emerging causing a new surge in cases and deaths. Here, we address the urgent need for rapid, cost-effective and point-of-care diagnostic solutions for SARS-CoV-2. We propose a multiplexed DNA-based sensing platform that utilizes inkjet-printed nanostructured gold electrodes and an inkjet-printed battery-free near-field communication (NFC) potentiostat for the simultaneous quantitative detection of two SARS-CoV-2 genes, the ORF1ab and the N gene. The detection strategy based on the formation of an RNA-DNA sandwich structure leads to a highly specific electrochemical output. The inkjet-printed nanostructured gold electrodes providing a large surface area enable efficient binding and increase the sensitivity. The inkjet-printed battery-free NFC potentiostat enables rapid measurements and real-time data analysis via a smartphone application, making the platform accessible and portable. With the advantages of speed (5 min), simplicity, sensitivity (low pM range, ∼450% signal gain) and cost-effectiveness, the proposed platform is a promising alternative for point-of-care diagnostics and high-throughput analysis that complements the COVID-19 diagnostic toolkit.
Collapse
Affiliation(s)
- Marianna Rossetti
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain.
| | - Chawin Srisomwat
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Massimo Urban
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain.
| | - Gabriel Maroli
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain; Instituto de Investigaciones en Ingeniería Eléctrica Alfredo Desages (IIIE), Universidad Nacional del Sur, CONICET, Avenida Colón 80 Bahía Blanca, Buenos Aires, Argentina
| | - Hatice Gödze Yaman Akbay
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
9
|
Xu J, Zhang Y, Zhu X, Ling G, Zhang P. Two-mode sensing strategies based on tunable cobalt metal organic framework active sites to detect Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133424. [PMID: 38185088 DOI: 10.1016/j.jhazmat.2024.133424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Heavy metal pollution poses a major threat to human health, and developing a user-deliverable heavy metal detection strategy remains a major challenge. In this work, two-mode Hg2+ sensing platforms based on the tunable cobalt metal-organic framework (Co-MOF) active site strategy are constructed, including a colorimetric, and an electrochemical assay using a personal glucose meter (PGM) as the terminal device. Specifically, thymine (T), a single, adaptable nucleotide, is chosen to replace typical T-rich DNA aptamers. The catalytic sites of Co-MOF are tuned competitively by the specific binding of T-Hg2+-T, and different signal output platforms are developed based on the different enzyme-like activities of Co-MOF. DFT calculations are utilized to analyze the interaction mechanism between T and Co-MOF with defect structure. Notably, the two-mode sensing platforms exhibit outstanding detection performance, with LOD values as low as 0.5 nM (colorimetric) and 3.69 nM (PGM), respectively, superior to recently reported nanozyme-based Hg2+ sensors. In real samples of tap water and lake water, this approach demonstrates an effective recovery rate and outstanding selectivity. Surprisingly, the method is potentially versatile and, by exchanging out T-Hg2+-T, can also detect Ag+. This simple, portable, and user-friendly Hg2+ detection approach shows plenty of promise for application in the future.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
10
|
Moro G, Fratte CD, Normanno N, Polo F, Cinti S. Point-of-Care Testing for the Detection of MicroRNAs: Towards Liquid Biopsy on a Chip. Angew Chem Int Ed Engl 2023; 62:e202309135. [PMID: 37672490 DOI: 10.1002/anie.202309135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Point-of-care (PoC) testing is revolutionizing the healthcare sector improving patient care in daily hospital practice and allowing reaching even remote geographical areas. In the frame of cancer management, the design and validation of PoC enabling the non-invasive, rapid detection of cancer markers is urgently required to implement liquid biopsy in clinical practice. Therefore, focusing on stable blood-based markers with high-specificity, such as microRNAs, is of crucial importance. In this work, we highlight the potential impact of circulating microRNAs detection on cancer management and the crucial role of PoC testing devices, especially for low-income countries. A detailed discussion about the challenges that should be faced to promote the technological transfer and clinical use of these tools has been added, to provide the readers with a complete overview of potentialities and current limitations.
Collapse
Affiliation(s)
- Giulia Moro
- Department of Pharmacy, University of Naples Federico II, Via Montesano 9, 80131, Naples, Italy
| | - Chiara Dalle Fratte
- Department of Medical Biotechnology and Translational Medicine, Postgraduate School of Clinical Pharmacology and Toxicology, University of Milan "Statale", Via Vanvitelli 32, 20133, Milan, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori (IRCCS), Fondazione Pascale, Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
- European Centre for Living Technology (ECLT), Ca' Foscari University of Venice Ca' Bottacin, 30124, Venice, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via Montesano 9, 80131, Naples, Italy
| |
Collapse
|
11
|
Wang S, Huang H, Wang X, Zhou Z, Luo Y, Huang K, Cheng N. Recent Advances in Personal Glucose Meter-Based Biosensors for Food Safety Hazard Detection. Foods 2023; 12:3947. [PMID: 37959066 PMCID: PMC10649190 DOI: 10.3390/foods12213947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Food safety has emerged as a significant concern for global public health and sustainable development. The development of analytical tools capable of rapidly, conveniently, and sensitively detecting food safety hazards is imperative. Over the past few decades, personal glucose meters (PGMs), characterized by their rapid response, low cost, and high degree of commercialization, have served as portable signal output devices extensively utilized in the construction of biosensors. This paper provides a comprehensive overview of the mechanism underlying the construction of PGM-based biosensors, which consists of three fundamental components: recognition, signal transduction, and signal output. It also detailedly enumerates available recognition and signal transduction elements, and their modes of integration. Then, a multitude of instances is examined to present the latest advancements in the application of PGMs in food safety detection, including targets such as pathogenic bacteria, mycotoxins, agricultural and veterinary drug residues, heavy metal ions, and illegal additives. Finally, the challenges and prospects of PGM-based biosensors are highlighted, aiming to offer valuable references for the iterative refinement of detection techniques and provide a comprehensive framework and inspiration for further investigations.
Collapse
Affiliation(s)
- Su Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Huixian Huang
- College of Environmental and Food Engineering, Liuzhou Vocational and Technical College, Liuzhou 545000, China;
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Ziqi Zhou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| |
Collapse
|
12
|
Lacombe J, Summers AJ, Khanishayan A, Khorsandian Y, Hacey I, Blackson W, Zenhausern F. Paper-Based Vertical Flow Immunoassay for the Point-of-Care Multiplex Detection of Radiation Dosimetry Genes. Cytogenet Genome Res 2023; 163:178-186. [PMID: 37369178 PMCID: PMC10751381 DOI: 10.1159/000531702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
In a nuclear or radiological incident, first responders must quickly and accurately measure radiation exposure among civilians as medical countermeasures are radiation dose-dependent and time-sensitive. Although several approaches have been explored to measure absorbed radiation dose, there is an important need to develop point-of-care (POC) bioassay devices that can be used immediately to triage thousands of individuals potentially exposed to radiation. Here we present a proof-of-concept study showing the use of a paper-based vertical flow immunoassay (VFI) to detect radiation dosimetry genes. Using labeled primers during amplification and a multiplex membrane, our results showed that the nucleic acid VFI can simultaneously detect two biodosimetry genes, CDKN1A and DDB2, as well as one housekeeping gene MRPS5. The assay demonstrated good linearity and precision with an inter- and intra-assay coefficient of variance <20% and <10%, respectively. Moreover, the assay showed its ability to discriminate non-irradiated controls (0 Gy) from irradiated samples (1 + 2 Gy) with an overall sensitivity of 62.5% and specificity of 100% (AUC = 0.8672, 95% CI: 0.723-1.000; p = 0.004). Interestingly, the gene combination also showed a dose-dependent response for 0, 1, and 2 Gy, similar to data obtained by real-time PCR benchmark. These preliminary results suggest that a VFI platform can be used to detect simultaneously multiple genes that can be then quantified, thus offering a new approach for a POC biodosimetry assay that could be rapidly deployed on-site to test a large population and help triage and medical management after radiological event.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Alexander J. Summers
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Ashkan Khanishayan
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Yasaman Khorsandian
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Isabella Hacey
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Wyatt Blackson
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Zhang S, Zhao W, Zeng J, He Z, Wang X, Zhu Z, Hu R, Liu C, Wang Q. Wearable non-invasive glucose sensors based on metallic nanomaterials. Mater Today Bio 2023; 20:100638. [PMID: 37128286 PMCID: PMC10148187 DOI: 10.1016/j.mtbio.2023.100638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
The development of wearable non-invasive glucose sensors provides a convenient technical means to monitor the glucose concentration of diabetes patients without discomfortability and risk of infection. Apart from enzymes as typical catalytic materials, the active catalytic materials of the glucose sensor are mainly composed of polymers, metals, alloys, metal compounds, and various metals that can undergo catalytic oxidation with glucose. Among them, metallic nanomaterials are the optimal materials applied in the field of wearable non-invasive glucose sensing due to good biocompatibility, large specific surface area, high catalytic activity, and strong adsorption capacity. This review summarizes the metallic nanomaterials used in wearable non-invasive glucose sensors including zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) monometallic nanomaterials, bimetallic nanomaterials, metal oxide nanomaterials, etc. Besides, the applications of wearable non-invasive biosensors based on these metallic nanomaterials towards glucose detection are summarized in detail and the development trend of the wearable non-invasive glucose sensors based on metallic nanomaterials is also outlook.
Collapse
Affiliation(s)
- Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- NingboTech University, Ningbo, 315100, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Junyan Zeng
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiang Wang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Zehui Zhu
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
| | - Runqing Hu
- NingboTech University, Ningbo, 315100, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
- Corresponding author. Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China.
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China
- NingboTech University, Ningbo, 315100, China
- Corresponding author. Ningbo Innovation Center, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
14
|
Cheng J, Huang J, Xiang Q, Dong H. Hollow microneedle microfluidic paper-based chip for biomolecules rapid sampling and detection in interstitial fluid. Anal Chim Acta 2023; 1255:341101. [PMID: 37032050 DOI: 10.1016/j.aca.2023.341101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
The interstitial fluid (ISF) contains rich bioinformation for disease diagnosis and healthcare monitoring. However, the efficient sampling and detection of the biomolecules in ISF is still challenging. Herein, we develop a facile but versatile ISF analysis platform by combining controllable hollow microneedles (HMNs) and elaborate microfluidic paper-based analytical devices (μPADs). The HMNs and μPADs was fixed in a bottom PDMS layer. A top PDMS layer containing a cylindrical cavity to produce negative pressure for sampling was packaged on the bottom PDMS layer. The HMNs enable efficient and swift sampling of sufficient ISF to the μPADs through one-touch finger operation without extra manipulations. The μPADs realized to simultaneously detect glucose and lactic acid in the detection area to produce chromogenic agents and analyzed by the self-programed RGB application (APP) in smartphones. The HMN microfluidic paper-based chip provides a point-of-care platform for accurate detection of biomolecules in ISF, holding great promise in the development of wearable device.
Collapse
Affiliation(s)
- Jiale Cheng
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China
| | - Jinkun Huang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China
| | - Qin Xiang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China.
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China.
| |
Collapse
|
15
|
Zhang M, Guo X, Wang J. Advanced biosensors for mycotoxin detection incorporating miniaturized meters. Biosens Bioelectron 2023; 224:115077. [PMID: 36669289 DOI: 10.1016/j.bios.2023.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Advanced biosensors, considered as emerging technologies, are capable of accurate, quantitative and real-time analysis for point-of-care testing (POCT) applications. Moreover, the integrating of miniaturized meters into these advanced biosensors makes them ideally appropriate for portable, sensitive and selective detection of biomolecules. Miniaturized meters including PGMs (personal glucose meters), thermometer, pressuremeter, pH meter, etc. are the most accurate devices and wide availability in the market, exhibiting a promising potential towards detection of small molecule mycotoxins. In this article, we introduce and analyze the recent advancements for sensing of mycotoxins measured by handheld meters since the first report in 2012. Furthermore, limitations and challenges for versatile meters application against mycotoxins in food matrix are highlighted. By overcoming the bottleneck problems, we believe the miniaturized meters-based biosensor platform will provide great possibilities for mycotoxins analysis and launch them to the market.
Collapse
Affiliation(s)
- Mengke Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaodong Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, 100193, China.
| |
Collapse
|
16
|
Wang Q, He Y, He S, Yu S, Jiang Y, Wang F. An entropy-driven DNA nanomachine for microRNA detection using a personal glucose meter. Chem Commun (Camb) 2023; 59:1345-1348. [PMID: 36647734 DOI: 10.1039/d2cc06479k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we developed a reliable and portable biosensor (TDR-PGM nanomachine) for the sensitive detection of microRNA by integrating an efficient toehold-mediated strand displacement reaction module (TDR) and a personal glucose meter (PGM). The system provides a versatile methodology for microRNA detection in real samples and holds broad prospects in point-of-care diagnosis.
Collapse
Affiliation(s)
- Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Yuqiu He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Yuqian Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
17
|
Free TJ, Tucker RW, Simonson KM, Smith SA, Lindgren CM, Pitt WG, Bundy BC. Engineering At-Home Dilution and Filtration Methods to Enable Paper-Based Colorimetric Biosensing in Human Blood with Cell-Free Protein Synthesis. BIOSENSORS 2023; 13:104. [PMID: 36671942 PMCID: PMC9855769 DOI: 10.3390/bios13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Diagnostic blood tests can guide the administration of healthcare to save and improve lives. Most clinical biosensing blood tests require a trained technician and specialized equipment to process samples and interpret results, which greatly limits test accessibility. Colorimetric paper-based diagnostics have an equipment-free readout, but raw blood obscures a colorimetric response which has motivated diverse efforts to develop blood sample processing techniques. This work uses inexpensive readily-available materials to engineer user-friendly dilution and filtration methods for blood sample collection and processing to enable a proof-of-concept colorimetric biosensor that is responsive to glutamine in 50 µL blood drop samples in less than 30 min. Paper-based user-friendly blood sample collection and processing combined with CFPS biosensing technology represents important progress towards the development of at-home biosensors that could be broadly applicable to personalized healthcare.
Collapse
|
18
|
Huang Y, Xie Y, Huang L, Han Z. The Value of Anticoagulation Management Combining Telemedicine and Self-Testing in Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. Ther Clin Risk Manag 2023; 19:279-290. [PMID: 36941980 PMCID: PMC10024473 DOI: 10.2147/tcrm.s395578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
PURPOSE No consensus has been established on the safety and effectiveness of out-of-hospital management of Vitamin K antagonists (VKA) therapy combining portable coagulometers and telemedicine. The present meta-analysis investigated the safety and effectiveness of this hybrid anticoagulants management model. METHODS The PubMed, Embase, Cochrane, and Web of Science databases were searched for papers published before May 1, 2022. To reduce bias, only randomized controlled trials were included. RevMan 5.3 (Cochrane) software was used to evaluate and analyze clinical outcomes, including the effectiveness and safety of patient management approaches, determined by the time in the therapeutic range (TTR) and occurrence of thrombotic and bleeding events. RESULTS Eight studies, comprising 3853 patients, were selected. The meta-analysis showed that anticoagulant management combining portable coagulometers and telemedicine significantly improved frequency of testing (mean difference [MD]= 12.95 days; 95% CI, 8.77-17.12; I2= 92%; P< 0.01) and TTR (MD= 9.50%; 95% CI, 3.16-15.85; I2= 87%; P< 0.01). Thromboembolism events were reduced (RR= 0.72; 95% CI, 0.51-1.01; I2= 0%; P= 0.05), but the results were not statistically significant. And no significant differences in major bleeding events, rehospitalization rate, mortality, or overall treatment cost existed between the two groups. CONCLUSION Although the safety of remote cardiovascular disease management is not superior to that of conventional outpatient anticoagulant management, it provides a more stable monitoring of coagulation status.
Collapse
Affiliation(s)
- Yu Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Guangdong, 518036, People’s Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Yilian Xie
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Guangdong, 518036, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Guangdong, 518036, People’s Republic of China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Guangdong, 518036, People’s Republic of China
- Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
- Correspondence: Zhen Han, Email
| |
Collapse
|
19
|
Zhang R, Yan C, Zong Z, Qu W, Yao L, Xu J, Zhu Y, Yao B, Chen W. Taking glucose as intermediate bridge-signal-molecule for on-site and convenient detection of ochratoxin A in rice with portable glucose meter. Food Chem 2023; 400:134007. [DOI: 10.1016/j.foodchem.2022.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/06/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
|
20
|
M Silva S, Langley DP, Cossins LR, Samudra AN, Quigley AF, Kapsa RMI, Tothill RW, Greene GW, Moulton SE. Rapid Point-of-Care Electrochemical Sensor for the Detection of Cancer Tn Antigen Carbohydrate in Whole Unprocessed Blood. ACS Sens 2022; 7:3379-3388. [PMID: 36374944 DOI: 10.1021/acssensors.2c01460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Improving outcomes for cancer patients during treatment and monitoring for cancer recurrence requires personalized care which can only be achieved through regular surveillance for biomarkers. Unfortunately, routine detection for blood-based biomarkers is cost-prohibitive using currently specialized laboratories. Using a rapid self-assembly sensing interface amenable to methods of mass production, we demonstrate the ability to detect and quantify a small carbohydrate-based cancer biomarker, Tn antigen (αGalNAc-Ser/Thr) in a small volume of blood, using a test format strip reminiscent of a blood glucose test. The detection of Tn antigen at picomolar levels is achieved through a new transduction mechanism based on the impact of Tn antigen interactions on the molecular dynamic motion of a lectin cross-linked lubricin antifouling brush. In tests performed on retrospective blood plasma samples from patients presenting three different tumor types, differentiation between healthy and diseased patients was achieved, highlighting the clinical potential for cancer monitoring.
Collapse
Affiliation(s)
- Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn3122, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn3122, Victoria, Australia
| | | | | | | | - Anita F Quigley
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne3001, Victoria, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne3065, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia
| | - Robert M I Kapsa
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne3001, Victoria, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Melbourne3065, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia
| | - Richard W Tothill
- Peter MacCallum Cancer Centre, Department of Clinical Pathology, University of Melbourne, Melbourne3010, Victoria, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Waurn Ponds3216, Victoria, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn3122, Victoria, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne3065, Victoria, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn3122, Victoria, Australia
| |
Collapse
|
21
|
An Y, Jiang D, Zhang N, Jiang W. Cascade primer exchange reaction-based amplification strategy for sensitive and portable detection of amyloid β oligomer using personal glucose meters. Anal Chim Acta 2022; 1232:340440. [DOI: 10.1016/j.aca.2022.340440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
|
22
|
A Simple and Portable Personal Glucose Meter Method Combined with Molecular Docking for Screening of Lipase Inhibitors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4430050. [PMID: 36185086 PMCID: PMC9522516 DOI: 10.1155/2022/4430050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
With the increase of obesity incidence, the development of antiobesity drugs has aroused extensive interest. In this study, a simple and portable personal glucose meter (PGM) method based on the lipase-mediated reaction combined with molecular docking was developed for the screening of lipase inhibitors. Lipase can catalyse the hydrolysis of 4-acetamidophenyl acetate to form acetaminophen, which can directly trigger the reduction of K3[Fe(CN)6] to K4[Fe(CN)6] in the glucose test strips and generate an electrical signal that can be detected by the PGM. When lipase inhibitors exist, the yield of acetaminophen will be reduced and results in a corresponding decrease of the PGM signal. Therefore, the activity of lipase can be measured by the PGM. After optimization of the experimental conditions, the inhibitory activity of fourteen small-molecule compounds and fifteen natural product extracts on lipase were evaluated by the developed PGM method. The results indicate that tannic acid, (-)-epigallocatechin gallate, (-)-epigallocatechin, (-)-epicatechin gallate, and epicatechin have good inhibitory effect on lipase (% of inhibition higher than 40.0%). Besides, the natural product extracts of Galla Chinensis, lemon, and Rhei Radix et Rhizoma have a good inhibitory effect on lipase with % of inhibition of (97.5 ± 0.6)%, (88.1 ± 0.7)%, and (79.1 ± 1.6)%, respectively. Finally, the binding sites and modes of six small-molecule compounds on lipase were investigated by the molecular docking study. The results show that the developed PGM method is an effective approach for the discovery of potential lipase inhibitors.
Collapse
|
23
|
Zhou C, Huang D, Wang Z, Shen P, Wang P, Xu Z. CRISPR Cas12a‐based “sweet” biosensor coupled with personal glucose meter readout for the point‐of‐care testing of
Salmonella. J Food Sci 2022; 87:4137-4147. [DOI: 10.1111/1750-3841.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou China
| | - Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ziyi Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Peijie Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Pu Wang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|
24
|
Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul MT. Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:6232. [PMID: 36015999 PMCID: PMC9412717 DOI: 10.3390/s22166232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/31/2023]
Abstract
The general objective of Analytical Chemistry, nowadays, is to obtain best-quality information in the shortest time to contribute to the resolution of real problems. In this regard, electrochemical biosensors are interesting alternatives to conventional methods thanks to their great characteristics, both those intrinsically analytical (precision, sensitivity, selectivity, etc.) and those more related to productivity (simplicity, low costs, and fast response, among others). For many years, the scientific community has made continuous progress in improving glucose biosensors, being this analyte the most important in the biosensor market, due to the large amount of people who suffer from diabetes mellitus. The sensitivity of the electrochemical techniques combined with the selectivity of the enzymatic methodologies have positioned electrochemical enzymatic sensors as the first option. This review, focusing on the electrochemical determination of glucose using paper-based analytical devices, shows recent approaches in the use of paper as a substrate for low-cost biosensing. General considerations on the principles of enzymatic detection and the design of paper-based analytical devices are given. Finally, the use of paper in enzymatic electrochemical biosensors for glucose detection, including analytical characteristics of the methodologies reported in relevant articles over the last years, is also covered.
Collapse
Affiliation(s)
| | - Estefanía Costa-Rama
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | | |
Collapse
|
25
|
Wang Z, Chen R, Hou Y, Qin Y, Li S, Yang S, Gao Z. DNA hydrogels combined with microfluidic chips for melamine detection. Anal Chim Acta 2022; 1228:340312. [DOI: 10.1016/j.aca.2022.340312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/01/2022]
|
26
|
A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fast and accurate point-of-care testing (POCT) of infectious diseases is crucial for diminishing the pandemic miseries. To fight the pandemic coronavirus disease 2019 (COVID-19), numerous interesting electrochemical point-of-care (POC) tests have been evolved to rapidly identify the causal organism SARS-CoV-2 virus, its nucleic acid and antigens, and antibodies of the patients. Many of those electrochemical biosensors are impressive in terms of miniaturization, mass production, ease of use, and speed of test, and they could be recommended for future applications in pandemic-like circumstances. On the other hand, self-diagnosis, sensitivity, specificity, surface chemistry, electrochemical components, device configuration, portability, small analyzers, and other features of the tests can yet be improved. Therefore, this report reviews the developmental trend of electrochemical POC tests (i.e., test platforms and features) reported for the rapid diagnosis of COVID-19 and correlates any significant advancements with relevant references. POCTs incorporating microfluidic/plastic chips, paper devices, nanomaterial-aided platforms, smartphone integration, self-diagnosis, and epidemiological reporting attributes are also surfed to help with future pandemic preparedness. This review especially screens the low-cost and easily affordable setups so that management of pandemic disease becomes faster and easier. Overall, the review is a wide-ranging package for finding appropriate strategies of electrochemical POCT targeting pandemic infectious disease detection.
Collapse
|
27
|
Kinnamon DS, Heggestad JT, Liu J, Chilkoti A. Technologies for Frugal and Sensitive Point-of-Care Immunoassays. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:123-149. [PMID: 35216530 PMCID: PMC10024863 DOI: 10.1146/annurev-anchem-061020-123817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)-the gold-standard assay-requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.
Collapse
Affiliation(s)
- David S Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Jason Liu
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
| |
Collapse
|
28
|
Qi L, Du Y. Diagnosis of disease relevant nucleic acid biomarkers with off-the-shelf devices. J Mater Chem B 2022; 10:3959-3973. [PMID: 35575030 DOI: 10.1039/d2tb00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in the level of nucleic acids in blood may be correlated with some clinical disorders like cancer, stroke, trauma and autoimmune diseases, and thus, nucleic acids can serve as potential biomarkers for pathological processes. The requirement of technical equipment and operator expertise in effective information readout of modern molecular diagnostic technologies significantly restricted application outside clinical laboratories. The ability to detect nucleic acid biomarkers with off-the-shelf devices, which have the advantages of portability, simplicity, low cost and short response time, is critical to provide a prompt clinical result in circumstances where the laboratory instruments are not available. This review throws light on the current strategies and challenges for nucleic acid diagnosis with commercial portable devices, indicating the future prospect of portable diagnostic devices and making a great difference in improving the healthcare and disease surveillance in resource-limited areas.
Collapse
Affiliation(s)
- Lijuan Qi
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| | - Yan Du
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| |
Collapse
|
29
|
In-situ growth of multienzyme-inorganic hybrid nanoflowers on PVA-co-PE nanofibrous strip for colorimetric biosensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Gao L, Li Y, Huang ZZ, Tan H. Integrated enzyme with stimuli-responsive coordination polymer for personal glucose meter-based portable immunoassay. Anal Chim Acta 2022; 1207:339774. [DOI: 10.1016/j.aca.2022.339774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/01/2022]
|
31
|
Zhang W, Bu S, Zhang J, Ma L, Liu X, Wang X, Li Z, Hao Z, Li Z, Wan J. Point-of-care detection of pathogenic bacteria based on pregnancy test strips and metal–organic frameworks. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Zahoor I, Singh S, Behl T, Sharma N, Naved T, Subramaniyan V, Fuloria S, Fuloria NK, Bhatia S, Al-Harrasi A, Aleya L, Wani SN, Vargas-De-La-Cruz C, Bungau S. Emergence of microneedles as a potential therapeutics in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3302-3322. [PMID: 34755300 DOI: 10.1007/s11356-021-17346-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Diabetes mellitus is a severe condition in which the pancreas produces inadequate insulin or the insulin generated is ineffective for utilisation by the body; as a result, insulin therapy is required for control blood sugar levels in patients having type 1 diabetes and is widely recommended in advanced type 2 diabetes patients with uncontrolled diabetes despite dual oral therapy, while subcutaneous insulin administration using hypodermic injection or pump-mediated infusion is the traditional route of insulin delivery and causes discomfort, needle phobia, reduced adherence, and risk of infection. Therefore, transdermal insulin delivery has been extensively explored as an appealing alternative to subcutaneous approaches for diabetes management which not only is non-invasive and easy, but also avoids first-pass metabolism and prevents gastrointestinal degradation. Microneedles have been commonly investigated in human subjects for transdermal insulin administration because they are minimally invasive and painless. The different types of microneedles developed for the transdermal delivery of anti-diabetic drugs are discussed in this review, including solid, dissolving, hydrogel, coated, and hollow microneedles. Numerous microneedle products have entered the market in recent years. But, before the microneedles can be effectively launched into the market, a significant amount of investigation is required to address the numerous challenges. In conclusion, the use of microneedles in the transdermal system is an area worth investigating because of its significant benefits over the oral route in the delivery of anti-diabetic medications and biosensing of blood sugar levels to assure improved clinical outcomes in diabetes management.
Collapse
Affiliation(s)
- Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | | | | | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | | | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza E Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, Lima, Peru
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
33
|
An interrelated CataFlower enzyme system for sensitively monitoring sweat glucose. Talanta 2021; 235:122799. [PMID: 34517657 DOI: 10.1016/j.talanta.2021.122799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/13/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
An accurate measurement of sweat glucose is a promising alternative to invasive finger prick blood test, and may provide effective self-monitoring of blood glucose with good patient compliance. Herein, an interrelated catalytic enzyme system has been developed, termed as CataFlower, which is composed of nanoflower MoS2 (peroxidase) decorated with GOx (glucose oxidase) and MnO2 (oxygen generator), and exhibits synergistic oxidative capability for sensitively monitoring sweat glucose. CataFlower can not only generate oxygen in situ to maximize GOx activity, but promote peroxidase-triggered H2O2 oxidation of methylene blue, resulting in sensitive colorimetric detection of glucose. We identify that CataFlower can precisely detect glucose with a detection limit of 10 μM, allowing for measuring glucose levels in different biological samples, such as blood and urine. Particularly, CataFlower is capable of monitoring dynamic changes in sweat glucose with high sensitivity and accuracy during exercise. Therefore, CataFlower provides a stepping stone to eliminate invasive blood tests, significantly improving the diagnosis and management of diabetes mellitus.
Collapse
|
34
|
Ortiz-Martínez M, Flores-DelaToba R, González-González M, Rito-Palomares M. Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes Mellitus Type 2. BIOSENSORS 2021; 11:482. [PMID: 34940239 PMCID: PMC8699572 DOI: 10.3390/bios11120482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
A point-of-care (POC) can be defined as an in vitro diagnostic test that can provide results within minutes. It has gained enormous attention as a promising tool for biomarkers detection and diagnosis, as well as for screening of chronic noncommunicable diseases such as diabetes mellitus. Diabetes mellitus type 2 is one of the metabolic disorders that has grown exponentially in recent years, becoming one of the greatest challenges to health systems. Early detection and accurate diagnosis of this disorder are essential to provide adequate treatments. However, efforts to reduce incidence should remain not only in these stages but in developing continuous monitoring strategies. Diabetes-monitoring tools must be accessible and affordable; thus, POC platforms are attractive, especially paper-based ones. Paper-based POCs are simple and portable, can use different matrixes, do not require highly trained staff, and are less expensive than other platforms. These advantages enhance the viability of its application in low-income countries and hard-to-reach zones. This review aims to present a critical summary of the main components required to create a sensitive and affordable enzymatic paper-based POC, as well as an oriented analysis to highlight the main limitations and challenges of current POC devices for diabetes type 2 monitoring and future research opportunities in the field.
Collapse
Affiliation(s)
| | | | - Mirna González-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| |
Collapse
|
35
|
Zhang Y, Steppe PL, Kazman MW, Styczynski MP. Point-of-Care Analyte Quantification and Digital Readout via Lysate-Based Cell-Free Biosensors Interfaced with Personal Glucose Monitors. ACS Synth Biol 2021; 10:2862-2869. [PMID: 34672518 PMCID: PMC9807263 DOI: 10.1021/acssynbio.1c00282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Field-deployable diagnostics based on cell-free systems have advanced greatly, but on-site quantification of target analytes remains a challenge. Here we demonstrate that Escherichia coli lysate-based cell-free biosensors coupled to a personal glucose monitor (PGM) can enable on-site analyte quantification, with the potential for straightforward reconfigurability to diverse types of analytes. We show that analyte-responsive regulators of transcription and translation can modulate the production of the reporter enzyme β-galactosidase, which in turn converts lactose into glucose for PGM quantification. Because glycolysis is active in the lysate and would readily deplete converted glucose, we decoupled enzyme production and glucose conversion to increase the end point signal output. However, this lysate metabolism did allow for one-pot removal of glucose present in complex samples (like human serum) without confounding target quantification. Taken together, our results show that integrating lysate-based cell-free biosensors with PGMs enables accessible target detection and quantification at the point of need.
Collapse
|
36
|
Zhang J, Zhang L, Li Z, Zhang Q, Li Y, Ying Y, Fu Y. Nanoconfinement Effect for Signal Amplification in Electrochemical Analysis and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101665. [PMID: 34278716 DOI: 10.1002/smll.202101665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Owing to the urgent need for electrochemical analysis and sensing of trace target molecules in various fields such as medical diagnosis, agriculture and food safety, and environmental monitoring, signal amplification is key to promoting analysis and sensing performance. The nanoconfinement effect, derived from nanoconfined spaces and interfaces with sizes approaching those of target molecules, has witnessed rapid development for ultra-sensitive analyzing and sensing. In this review, the two main types of nanoconfinement systems - confined nanochannels and planes - are assessed and recent progress is highlighted. The merits of each nanoconfinement system, the nanoconfinement effect mechanisms, and applications for electrochemical analysis and sensing are summarized and discussed. This review aims to help deepen the understanding of nanoconfinement devices and their effects in order to develop new analysis and sensing applications for researchers in various fields.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
37
|
Han H, Park J, Ahn JK. Immunoglobulin E Detection Method Based on Cascade Enzymatic Reaction Utilizing Portable Personal Glucose Meter. SENSORS (BASEL, SWITZERLAND) 2021; 21:6396. [PMID: 34640714 PMCID: PMC8513091 DOI: 10.3390/s21196396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023]
Abstract
We herein describe a cascade enzymatic reaction (CER)-based IgE detection method utilizing a personal glucose meter (PGM), which relies on alkaline phosphatase (ALP) activity that regulates the amount of adenosine triphosphate (ATP). The amount of sandwich assay complex is determined according to the presence or absence of the target IgE. Additionally, the ALP in the sandwich assay catalyzes the dephosphorylation of ATP, a substrate of CER, which results in the changes in glucose level. By employing this principle, IgE was reliably detected at a concentration as low as ca. 29.6 ng/mL with high specificity toward various proteins. Importantly, the limit of detection (LOD) of this portable PGM-based approach was comparable to currently commercialized ELISA kit without expensive and bulky analysis equipment as well as complexed washing step. Finally, the diagnostic capability of this method was also successfully verified by reliably detecting IgE present in a real human serum sample with an excellent recovery ratio within 100 ± 6%.
Collapse
Affiliation(s)
- Hyogu Han
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.H.); (J.P.)
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Junhyun Park
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.H.); (J.P.)
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
| | - Jun Ki Ahn
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.H.); (J.P.)
| |
Collapse
|
38
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Tian T, Chen GY, Zhang H, Yang FQ. Personal Glucose Meter for α-Glucosidase Inhibitor Screening Based on the Hydrolysis of Maltose. Molecules 2021; 26:molecules26154638. [PMID: 34361791 PMCID: PMC8348101 DOI: 10.3390/molecules26154638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023] Open
Abstract
As a key enzyme regulating postprandial blood glucose, α-Glucosidase is considered to be an effective target for the treatment of diabetes mellitus. In this study, a simple, rapid, and effective method for enzyme inhibitors screening assay was established based on α-glucosidase catalyzes reactions in a personal glucose meter (PGM). α-glucosidase catalyzes the hydrolysis of maltose to produce glucose, which triggers the reduction of ferricyanide (K3[Fe(CN)6]) to ferrocyanide (K4[Fe(CN)6]) and generates the PGM detectable signals. When the α-glucosidase inhibitor (such as acarbose) is added, the yield of glucose and the readout of PGM decreased accordingly. This method can achieve the direct determination of α-glucosidase activity by the PGM as simple as the blood glucose tests. Under the optimal experimental conditions, the developed method was applied to evaluate the inhibitory activity of thirty-four small-molecule compounds and eighteen medicinal plants extracts on α-glucosidase. The results exhibit that lithospermic acid (52.5 ± 3.0%) and protocatechualdehyde (36.8 ± 2.8%) have higher inhibitory activity than that of positive control acarbose (31.5 ± 2.5%) at the same final concentration of 5.0 mM. Besides, the lemon extract has a good inhibitory effect on α-glucosidase with a percentage of inhibition of 43.3 ± 3.5%. Finally, the binding sites and modes of four active small-molecule compounds to α-glucosidase were investigated by molecular docking analysis. These results indicate that the PGM method is feasible to screening inhibitors from natural products with simple and rapid operations.
Collapse
Affiliation(s)
- Tao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.T.); (G.-Y.C.)
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.T.); (G.-Y.C.)
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.T.); (G.-Y.C.)
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
- Correspondence: (H.Z.); (F.-Q.Y.); Tel.: +86-138-9621-7134 (H.Z.); +86-136-1765-0637 (F.-Q.Y.)
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; (T.T.); (G.-Y.C.)
- Correspondence: (H.Z.); (F.-Q.Y.); Tel.: +86-138-9621-7134 (H.Z.); +86-136-1765-0637 (F.-Q.Y.)
| |
Collapse
|
40
|
Madden J, Barrett C, Laffir FR, Thompson M, Galvin P, O’ Riordan A. On-Chip Glucose Detection Based on Glucose Oxidase Immobilized on a Platinum-Modified, Gold Microband Electrode. BIOSENSORS-BASEL 2021; 11:bios11080249. [PMID: 34436051 PMCID: PMC8392376 DOI: 10.3390/bios11080249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
We report the microfabrication and characterization of gold microband electrodes on silicon using standard microfabrication methods, i.e., lithography and etching techniques. A two-step electrodeposition process was carried out using the on-chip platinum reference and gold counter electrodes, thus incorporating glucose oxidase onto a platinum-modified, gold microband electrode with an o-phenylenediamine and ß-cyclodextrin mixture. The as-fabricated electrodes were studied using optical microscopy, scanning electron microscopy, and atomic force microscopy. The two-step electrodeposition process was conducted in low sample volumes (50 µL) of both solutions required for biosensor construction. Cyclic voltammetry and electrochemical impedance spectroscopy were utilised for electrochemical characterization at each stage of the deposition process. The enzymatic-based microband biosensor demonstrated a linear response to glucose from 2.5-15 mM, using both linear sweep voltammetry and chronoamperometric measurements in buffer-based solutions. The biosensor performance was examined in 30 µL volumes of fetal bovine serum. Whilst a reduction in the sensor sensitivity was evident within 100% serum samples (compared to buffer media), the sensor demonstrated linear glucose detection with increasing glucose concentrations (5-17 mM).
Collapse
Affiliation(s)
- Julia Madden
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
- Correspondence: (J.M.); (A.O.R.)
| | - Colm Barrett
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
| | - Fathima R. Laffir
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Michael Thompson
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Paul Galvin
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
| | - Alan O’ Riordan
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland; (C.B.); (M.T.); (P.G.)
- Correspondence: (J.M.); (A.O.R.)
| |
Collapse
|
41
|
Sun BR, Zhou AG, Li X, Yu HZ. Development and Application of Mobile Apps for Molecular Sensing: A Review. ACS Sens 2021; 6:1731-1744. [PMID: 33955727 DOI: 10.1021/acssensors.1c00512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern smartphone-based sensing devices are generally standalone detection platforms that can transduce signals (via the built-in USB port, audio jack, or camera), perform analysis through mobile applications (apps), and display results on the screen/user interface. The advancement toward this ultimate form of on-site chemical analysis and point-of-care diagnosis is tied closely with the evolution of mobile technology. Previous reviews in the field mainly focused on the physical platforms while overlooking the role of mobile apps in such devices. There exist three general stages throughout the development: (1) early generation telemedicine, (2) mobile phone-assisted clinical diagnosis (without apps), and (3) mobile app-based sensing devices for various analytes. This review presents the key breakthroughs during each stage, recent development, remaining challenges, and future perspectives of the field. Representative examples, spanning from the pioneering point-of-care testing to the latest devices with integrated mobile apps, are classified by their sensing mechanisms. The review also discusses the scarcity of open-source apps dedicated to molecular sensing. With the introduction of more open-source and commercial apps, the mobile app-based detection system is anticipated to dominate point-of-care diagnosis and on-site molecular sensing in our opinion.
Collapse
Affiliation(s)
- Brigitta R. Sun
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Alvin G. Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
42
|
Calabretta M, Montali L, Lopreside A, Fragapane F, Iacoangeli F, Roda A, Bocci V, D’Elia M, Michelini E. Ultrasensitive On-Field Luminescence Detection Using a Low-Cost Silicon Photomultiplier Device. Anal Chem 2021; 93:7388-7393. [PMID: 33973781 PMCID: PMC8253476 DOI: 10.1021/acs.analchem.1c00899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
The availability of portable analytical devices for on-site monitoring and rapid detection of analytes of forensic, environmental, and clinical interest is vital. We report the development of a portable device for the detection of biochemiluminescence relying on silicon photomultiplier (SiPM) technology, called LuminoSiPM, which includes a 3D printed sample holder that can be adapted for both liquid samples and paper-based biosensing. We performed a comparison of analytical performance in terms of detectability with a benchtop luminometer, a portable cooled charge-coupled device (CCD sensor), and smartphone-integrated complementary metal oxide semiconductor (CMOS) sensors. As model systems, we used two luciferase/luciferin systems emitting at different wavelengths using purified protein solutions: the green-emitting P. pyralis mutant Ppy-GR-TS (λmax 550 nm) and the blue-emitting NanoLuc (λmax 460 nm). A limit of detection of 9 femtomoles was obtained for NanoLuc luciferase, about 2 and 3 orders of magnitude lower than that obtained with the portable CCD camera and with the smartphone, respectively. A proof-of-principle forensic application of LuminoSiPM is provided, exploiting an origami chemiluminescent paper-based sensor for acetylcholinesterase inhibitors, showing high potential for this portable low-cost device for on-site applications with adequate sensitivity for detecting low light intensities in critical fields.
Collapse
Affiliation(s)
- Maria
Maddalena Calabretta
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- Center
for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
| | - Laura Montali
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- Center
for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
| | - Antonia Lopreside
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- Center
for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
| | - Fabio Fragapane
- Gabinetto
Regionale di Polizia Scientifica per l’Emilia-Romagna, 40123, Bologna, Italy
| | | | - Aldo Roda
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- INBB, Istituto
Nazionale di Biostrutture e Biosistemi, 00136 Rome, Italy
| | - Valerio Bocci
- INFN,
Istituto Nazionale di Fisica Nucleare Sezione di Roma, 00185 Rome, Italy
| | - Marcello D’Elia
- Gabinetto
Regionale di Polizia Scientifica per l’Emilia-Romagna, 40123, Bologna, Italy
| | - Elisa Michelini
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy
- Center
for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
- INBB, Istituto
Nazionale di Biostrutture e Biosistemi, 00136 Rome, Italy
- Health
Sciences and Technologies-Interdepartmental Center for Industrial
Research (HST-ICIR), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
43
|
Sheng X, Liu D, Gamage SK, Luo Y, Viennois E, Merlin D, Iyer SS. Point-of-Care Monitoring of Colitis Using Intestinal Alkaline Phosphatase in Inflammatory Bowel Disease. ACS Sens 2021; 6:698-702. [PMID: 33635063 DOI: 10.1021/acssensors.0c02177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal Alkaline Phosphatase (IAP) was investigated as a potential biomarker to monitor colitis in a mouse model of Inflammatory Bowel Disease (IBD). We developed a Point-Of-Care (POC) assay to detect IAP with a glucose meter in 15 min. We synthesized a paracetamol-bearing compound specifically cleaved by IAP to release paracetamol, which can be detected with a personal glucometer. Interleukin 10 deficient (IL 10-/-) mouse model samples were used to compare the IAP level in mice with mild or severe colitis. The results showed that fecal IAP level was significantly lower in each mouse sample with severe colitis than with mild colitis. Mice treated with anti-Tumor Necrosis Factor-alpha (anti-TNF-α) to decrease inflammation exhibited a much higher level of IAP than those without treatment (IAP levels from anti-TNF-α treated vs nontreated = 2.80 U vs 0.11 U, P < 0.0001). Taken together, IAP can be considered as a potential biomarker to monitor colitis, and a rapid, user-friendly POC glucometer-based assay can be potentially used to monitor colitis levels and inflammation flareups in IBD.
Collapse
Affiliation(s)
- Xiaolin Sheng
- Department of Chemistry, Georgia State University 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Dandan Liu
- Department of Chemistry, Georgia State University 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Sujani K. Gamage
- Department of Chemistry, Georgia State University 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Ying Luo
- Department of Chemistry, Georgia State University 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Emilie Viennois
- Institute for Biomedical Sciences, Georgia State University, 790 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, 790 Petit Science Center, Atlanta, Georgia 30302, United States
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033, United States
| | - Suri S. Iyer
- Department of Chemistry, Georgia State University 788 Petit Science Center, Atlanta, Georgia 30302, United States
| |
Collapse
|
44
|
Pohanka M. Glycated Hemoglobin and Methods for Its Point of Care Testing. BIOSENSORS 2021; 11:70. [PMID: 33806493 PMCID: PMC8000313 DOI: 10.3390/bios11030070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
Glycated hemoglobin (HbA1c) is a product of the spontaneous reaction between hemoglobin and elevated glucose levels in the blood. It is included among the so-called advanced glycation end products, of which is the most important for the clinical diagnosis of diabetes mellitus, and it can serve as an alternative to glycemia measurement. Compared to the diagnosis of diabetes mellitus by glycemia, the HbA1c level is less influenced by a short-term problem with diabetes compensation. Mass spectroscopy and chromatographic techniques are among the standard methods of HbA1c level measurement. Compared to glycemia measurement, there is lack of simple methods for diabetes mellitus diagnosis by means of the HbA1c assay using a point-of-care test. This review article is focused on the surveying of facts about HbA1c and its importance in diabetes mellitus diagnosis, and surveying standard methods and new methods suitable for the HbA1c assay under point-of-care conditions. Various bioassays and biosensors are mentioned and their specifications are discussed.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
45
|
Zhong ZT, Wang HB, Zhang T, Li CQ, Liu B, Zhao YD. Quantitative analysis of various targets based on aptamer and functionalized Fe 3O 4@graphene oxide in dairy products using pregnancy test strip and smartphone. Food Chem 2021; 352:129330. [PMID: 33657486 DOI: 10.1016/j.foodchem.2021.129330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 11/19/2022]
Abstract
Pregnancy test strips are one of the most mature and widely used commercial lateral flow devices used to determine pregnancy. Being a simple and rapid detection method, human chorionic gonadotropin (hCG) was used with different aptamers (hCG-apt) as probes for the detection of metal ions, small organic molecules, and proteins. Quantitative detection of target analytes was achieved using a smartphone app and a portable device developed in our laboratory. The results showed detection ranges of 1 nM-1 μM, 0.1 nM-10 μM and 32 nM-500 nM for Pb2+, chloramphenicol, and β-lactoglobulin, respectively, and the corresponding visual detection limits in dairy products were 5 nM, 1 nM and 50 nM, respectively. Based on these results, rapid detection of multiple analytes can be realized through aptamer modification, thereby broadening the application range of commercial lateral flow devices for analysis of food chemistry.
Collapse
Affiliation(s)
- Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Hai-Bo Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Ting Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Chao-Qing Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
46
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
47
|
Ramirez-Murillo CJ, de Los Santos-Ramirez JM, Perez-Gonzalez VH. Toward low-voltage dielectrophoresis-based microfluidic systems: A review. Electrophoresis 2020; 42:565-587. [PMID: 33166414 DOI: 10.1002/elps.202000213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Dielectrophoretically driven microfluidic devices have demonstrated great applicability in biomedical engineering, diagnostic medicine, and biological research. One of the potential fields of application for this technology is in point-of-care (POC) devices, ideally allowing for portable, fully integrated, easy to use, low-cost diagnostic platforms. Two main approaches exist to induce dielectrophoresis (DEP) on suspended particles, that is, electrode-based DEP and insulator-based DEP, each featuring different advantages and disadvantages. However, a shared concern lies in the input voltage used to generate the electric field necessary for DEP to take place. Therefore, input voltage can determine portability of a microfluidic device. This review outlines the recent advances in reducing stimulation voltage requirements in DEP-driven microfluidics.
Collapse
|
48
|
A simple and portable method for β-Glucosidase activity assay and its inhibitor screening based on a personal glucose meter. Anal Chim Acta 2020; 1142:19-27. [PMID: 33280697 DOI: 10.1016/j.aca.2020.10.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/21/2022]
Abstract
In this study, a simple and portable enzyme activity assay and inhibitor screening method was developed based on β-Glucosidase-mediated cascade reaction in a personal glucose meter (PGM). The inhibition of castanospermine (β-Glucosidase inhibitor) on β-Glucosidase leads to reducing the yields of glucose and saligenin produced by the catalysis hydrolysis of D (-)-Salicin. The ferricyanide (K3 [Fe(CN)6]) can be reduced by the products of glucose and saligenin to form ferrocyanide ([K4[Fe(CN)6]) in the glucose strips, and thereby get the electron to generate PGM detectable signals. This strategy can realize the direct determination of glucose and saligenin using PGM as simple as measuring the glucose in blood. Under the optimum experimental conditions, quantitative detection of β-Glucosidase in crude almond sample was achieved within the ranges of 1.0-9.0 U/mL with the limit of detection of 0.45 U/mL. The recoveries of β-Glucosidase spiked with two different concentrations (3.0 and 6.0 U/mL) in the crude bitter almond extracts were determined as 96.2% and 84.3%, respectively. Furthermore, gallic acid, protocatechualdehyde, cryptochlorogenic acid, epigallocatechin, epicatechin and vanillic acid exhibited good inhibitory effect (all higher than 40%) on β-Glucosidase. In addition, tea polyphenol extracts of raw Pu-erh and Fuding white tea had good inhibition potency and the % of inhibition were (29.0 ± 3.5)% and (21.1 ± 2.2)% on β-Glucosidase, respectively. Finally, molecular docking study indicated that hydrogen bonding plays an important role in the interaction between the compounds and β-Glucosidase. The enzyme activity assay and inhibitor screening method developed in present study using PGM based on β-Glucosidase-mediated cascade reaction would be of value for expanding the application of PGM in non-glucose target analysis.
Collapse
|
49
|
A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems. SENSORS 2020; 20:s20216013. [PMID: 33113948 PMCID: PMC7660208 DOI: 10.3390/s20216013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/17/2023]
Abstract
The research field of glucose biosensing has shown remarkable growth and development since the first reported enzyme electrode in 1962. Extensive research on various immobilization methods and the improvement of electron transfer efficiency between the enzyme and the electrode have led to the development of various sensing platforms that have been constantly evolving with the invention of advanced nanostructures and their nano-composites. Examples of such nanomaterials or composites include gold nanoparticles, carbon nanotubes, carbon/graphene quantum dots and chitosan hydrogel composites, all of which have been exploited due to their contributions as components of a biosensor either for improving the immobilization process or for their electrocatalytic activity towards glucose. This review aims to summarize the evolution of the biosensing aspect of these glucose sensors in terms of the various generations and recent trends based on the use of applied nanostructures for glucose detection in the presence and absence of the enzyme. We describe the history of these biosensors based on commercialized systems, improvements in the understanding of the surface science for enhanced electron transfer, the various sensing platforms developed in the presence of the nanomaterials and their performances.
Collapse
|
50
|
Rafat N, Satoh P, Calabrese Barton S, Worden RM. Integrated Experimental and Theoretical Studies on an Electrochemical Immunosensor. BIOSENSORS 2020; 10:bios10100144. [PMID: 33080847 PMCID: PMC7603011 DOI: 10.3390/bios10100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 05/31/2023]
Abstract
Electrochemical immunosensors (EIs) integrate biorecognition molecules (e.g., antibodies) with redox enzymes (e.g., horseradish peroxidase) to combine the advantages of immunoassays (high sensitivity and selectivity) with those of electrochemical biosensors (quantitative electrical signal). However, the complex network of mass-transfer, catalysis, and electrochemical reaction steps that produce the electrical signal makes the design and optimization of EI systems challenging. This paper presents an integrated experimental and modeling framework to address this challenge. The framework includes (1) a mechanistic mathematical model that describes the rate of key mass-transfer and reaction steps; (2) a statistical-design-of-experiments study to optimize operating conditions and validate the mechanistic model; and (3) a novel dimensional analysis to assess the degree to which individual mass-transfer and reaction steps limit the EI's signal amplitude and sensitivity. The validated mechanistic model was able to predict the effect of four independent variables (working electrode overpotential, pH, and concentrations of catechol and hydrogen peroxide) on the EI's signal magnitude. The model was then used to calculate dimensionless groups, including Damkohler numbers, novel current-control coefficients, and sensitivity-control coefficients that indicated the extent to which the individual mass-transfer or reaction steps limited the EI's signal amplitude and sensitivity.
Collapse
Affiliation(s)
- Neda Rafat
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
- The Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| | - Paul Satoh
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
| | - Scott Calabrese Barton
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
| | - Robert Mark Worden
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA; (N.R.); (P.S.); (S.C.B.)
- The Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA
| |
Collapse
|