1
|
Wu H, Yang X. Biofunctional photoelectrochemical/electrochemical immunosensor based on BiVO 4/BiOI-MWCNTs and Au@PdPt for alpha-fetoprotein detection. Bioelectrochemistry 2024; 160:108773. [PMID: 38972159 DOI: 10.1016/j.bioelechem.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
A biofunctional immunosensor combining photoelectrochemical (PEC) and electrochemical (EC) was proposed for the quantitative detection of the liver cancer marker alpha-fetoprotein (AFP) in human blood. BiVO4/BiOI-MWCNTs photoactive materials were first prepared on conductive glass FTO, and the photoelectrode was functionalized by chitosan and glutaraldehyde. Then, the AFP capture antibody (Ab1) was successfully modified on the photoelectrode, and the label-free rapid detection of AFP antigen was achieved by PEC. In addition, Au@PdPt nanospheres were also used as a marker for binding to AFP detection antibody (Ab2). Due to the excellent catalytic properties of Au@PdPt in EC reaction, a signal increase in the EC response can be achieved when Ab2 binds to the AFP antigen, which ensures high sensitivity for the detection of AFP. The detection limits of PEC and EC are 0.050 pg/mL and 0.014 pg/mL, respectively. The sensor also possesses good specificity, stability and reproducibility, shows excellent performance in the detection of clinical samples and has good clinical applicability.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Physics and Energy, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaozhan Yang
- Department of Physics and Energy, Chongqing University of Technology, Chongqing 400054, China; Chongqing Key Laboratory of Quantum Information Chips and Devices, Chongqing 400060, China.
| |
Collapse
|
2
|
Xia X, Duolihong B, Ma X, Liu R, Yue S. AuPt/NF prepared with the lattice induction of substrate was applied to construct the electrochemical immunosensor for PCT detection. Bioelectrochemistry 2024; 160:108758. [PMID: 38878459 DOI: 10.1016/j.bioelechem.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 09/15/2024]
Abstract
For the electrodeposition, the conductivity and lattice structure of substrate is important to the morphology and lattice of the deposited material. In this study, gold-platinum (AuPt) nanopartical was deposited on nickel foam (NF) based on the lattice induced orientation of the Ni substrate, and the obtained AuPt/NF was applied to construct electrochemical impedimetric immunosensor for procalcitonin (PCT) detection. As a new immunosensor matrix, NF with higher electrical conductance, flexibility and specific surface area, which can improve the plasticity, sensitivity and universality of the immunoelectrode. Due to the lattice matching between Au and Ni, ultrathin AuPt nanolayer with good biocompatibility and large surface area can be modified on the NF surface, which can bind more biomolecules and amplifies the change of impedance signal. Based on the synergistic effect between AuPt and NF, PCT detection based on this electrochemical impedimetric immunosensor with a wide linear range (0.2 pg mL-1 to 20 ng mL-1) and low detection limit (0.11 pg mL-1). In addition, this impedimetric immunosensor exhibits high recovery in the PCT detection of serum samples. This work provides a new thought and method for the construction of electrochemical immunosensor.
Collapse
Affiliation(s)
- Xiaohong Xia
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Bawurejiang Duolihong
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Xiangdong Ma
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Rui Liu
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Shan Yue
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
3
|
Hajesfandyari Z, Naderi L, Shahrokhian S, Amini MK. Glycerate-assisted CoMn-sulfide with microsphere architecture confined by nanoparticles as an efficient enzyme-free sensor for amperometric measurement of glucose in serum, saliva and beverage samples. Food Chem 2024; 467:142175. [PMID: 39689544 DOI: 10.1016/j.foodchem.2024.142175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
The preparation of binary metal chalcogenides with ideal architectures can effectively enhance the electrocatalytic properties of these materials, as promising glucose sensors. Herein, CoMn-S spheres were synthesized using CoMn-glycerate as the precursor, followed by a sulfidation reaction. First, glycerate spheres were prepared by solvothermal treatment of Co and Mn ions in isopropanol solvent mixed with glycerol. Then, CoMn-glycerate was solvothermally sulfidized using an ion-exchange process to prepare glycerate-assisted CoMn-S spheres with many nanoparticles on their surface which provide abundant electrocatalyst sites. The sensing outcomes revealed that glycerate-assisted CoMn-S spheres have impressive electroanalytical performance with high sensitivities of 5148 and 1928 μA mM-1 cm-2 in broad measuring ranges of 0.001-0.63 mM and 0.63-2.53 mM, quick response to glucose oxidation (2 s), and a low detection limit of (0.88 μM). Furthermore, the sensor has been successfully employed to measure glucose in human serum, saliva, and beverage samples such as fruit juice, milk, and soft drinks with satisfactory recoveries. The high electrocatalytic activity of the CoMn-S sphere sensor results from the synergy between the components and nanoparticle-assembled microspheres, which creates a high surface area, shortens the charge transfer routes, and improves the electro-conductivity. The performance characteristics of the glycerate-assisted CoMn-S spheres were compared with CoMn-hydroxide needles and CoMn-S sheets. The glycerate-derived design provides an efficient and effective strategy to construct the enzyme-free platforms with high assay capability.
Collapse
Affiliation(s)
- Zahra Hajesfandyari
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Leila Naderi
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
| | | |
Collapse
|
4
|
Zeng J, Wu W, Chen X, Wang S, Wu H, El-Kady AA, Poapolathep A, Cifuentes A, Ibañez E, Li P, Zhang Z. A smartphone-assisted photoelectrochemical POCT method via Z-scheme CuCo 2S 4/Fe 3O 4 for simultaneously detecting co-contamination with microplastics in food and the environment. Food Chem 2024; 452:139430. [PMID: 38713984 DOI: 10.1016/j.foodchem.2024.139430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/09/2024]
Abstract
As emerging contaminants, microplastics threaten food and environmental safety. Dibutyl phthalate (DBP, released from microplastics) and benzo[a]pyrene (BaP, adsorbed on microplastics) coexisted in food and the environment, harming human health, requesting a sensitive and simultaneous testing method to monitor. To address current sensitivity, simultaneousness, and on-site portability challenges during dual targets in complex matrixes, CuCo2S4/Fe3O4 nanoflower was designed to develop a smartphone-assisted photoelectrochemical point-of-care test (PEC POCT). The carrier transfer mechanism in CuCo2S4/Fe3O4 was proven via density functional theory calculation. Under optimal conditions, the PEC POCT showed low detection limits of 0.126, and 0.132 pg/mL, wide linearity of 0.001-500, and 0.0005-50 ng/mL for DBP and BaP, respectively. The smartphone-assisted PEC POCT demonstrated satisfied recoveries (80.00%-119.63%) in real samples. Coherent results were recorded by comparing the PEC POCT to GC-MS (DBP) and HPLC (BaP). This novel method provides a practical platform for simultaneous POCT for food safety and environment monitoring.
Collapse
Affiliation(s)
- Jing Zeng
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China; School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Wenqin Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Xiao Chen
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shenling Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Huimin Wu
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Ahmed A El-Kady
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | | | - Elena Ibañez
- National Research Council Spain, CSIC, CIAL, Lab Food, Madrid, Spain
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China
| | - Zhaowei Zhang
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, National Reference Lab for Biotoxin Test, Wuhan 430062, PR China.
| |
Collapse
|
5
|
Wen X, Zhang L, Wang Y, Dong X, Sun Y, Xu B, Li C. A dual-mode label-free electrochemical immunosensor for ultrasensitive detection of procalcitonin by on-site vulcanization of dual-MOF heterostructure. Talanta 2024; 275:126186. [PMID: 38703482 DOI: 10.1016/j.talanta.2024.126186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Detection of procalcitonin (PCT) is crucial for the early identification of sepsis. PCT is primarily utilized in the multiple diagnosis of bacterial and viral illnesses along with to guide the application of antibiotics. Considering their advantages of high specificity and straightforward usage, electrochemical immunosensors offer significant application prospects in the detection of disease indicators. A dual-mode electrochemical immunosensor was constructed in this study to reliably identify PCT. In light of the synergistic effect of the dual-MOF derived heterostructure, the immunosensor demonstrating excellent square wave voltammetry (SWV) signals as well as significant catalytic activity for the H2O2 redox process. In addition to maintaining a low detection limit (SWV: 0.31 fg/mL and i-t: 0.098 fg/mL), the immunosensor offers an extensive linear response range (0.000001-100 ng/mL). The excellent performance is on account of the introduction of the local on-site sulfurized dual-MOF heterostructure with abundant metal chalcogenides/MOF interfaces, which boosts the specific surface area, offers an abundance of active sites, enhances conductivity, and raises catalytic activity. Furthermore, the immunosensor exhibits outstanding specificity, stability and reproducibility for the determination of PCT in serum, which is of great crucial for the clinical screening and diagnosis of sepsis.
Collapse
Affiliation(s)
- Xin Wen
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China
| | - Li Zhang
- SINOCHEM Environmental Science and Technology Engineering Co., Ltd., Liaoning, Shenyang, 110000, China
| | - Yangyang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China
| | - Xiaojing Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China
| | - Bo Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China.
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan, 250022, China.
| |
Collapse
|
6
|
Khan SS, Kokilavani S, Alahmadi TA, Ansari MJ. Enhanced visible light driven photodegradation of rifampicin and Cr(VI) reduction activity of ultra-thin ZnO nanosheets/CuCo 2S 4QDs: A mechanistic insights, degradation pathway and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123760. [PMID: 38492754 DOI: 10.1016/j.envpol.2024.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
In this study, we focused on fabrication of porous ultra-thin ZnO nanosheet (PUNs)/CuCo2S4 quantum dots (CCS QDs) for visible light-driven photodegradation of rifampicin (RIF) and Cr(VI) reduction. The morphology, structural, optical and textural properties of fabricated photocatalyst were critically analyzed with different analytical and spectroscopic techniques. An exceptionally high RIF degradation (99.97%) and maximum hexavalent Cr(VI) reduction (96.17%) under visible light was achieved at 10 wt% CCS QDs loaded ZnO, which is 213% and 517% greater than bare ZnO PUNs. This enhancement attributed to the improved visible light absorption, interfacial synergistic effect, and high surface-rich active sites. Extremely high generation of ●OH attributed to the spin-orbit coupling in ZnO PUNs@CCS QDs and the existence of oxygen vacancies. Besides, the ZnOPUNs@CCS QDs, forming Z-scheme heterojunctions, enhanced the separation of photogenerated charge carriers. We investigated the influencing factors such as pH, inorganic ions, catalyst dosage and drug dosage on the degradation process. More impressively, a stable performance of ZnO PUNs@CCS QDs obtained even after six consecutive degradation (85.9%) and Cr(VI) reduction (67.7%) cycles. Furthermore, the toxicity of intermediates produced during the photodegradation process were assessed using ECOSAR program. This work provides a new strategy for ZnO-based photocatalysis as a promising candidate for the treatment of various contaminants present in water bodies.
Collapse
Affiliation(s)
- S Sudheer Khan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - S Kokilavani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
7
|
Gordón Pidal JM, Arruza L, Moreno-Guzmán M, López MÁ, Escarpa A. Micromotor-based dual aptassay for early cost-effective diagnosis of neonatal sepsis. Mikrochim Acta 2024; 191:106. [PMID: 38240873 PMCID: PMC10798920 DOI: 10.1007/s00604-023-06134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Given the long-life expectancy of the newborn, research aimed at improving sepsis diagnosis and management in this population has been recognized as cost-effective, which at early stages continues to be a tremendous challenge. Despite there is not an ideal-specific biomarker, the simultaneous detection of biomarkers with different behavior during an infection such as procalcitonin (PCT) as high specificity biomarker with one of the earliest biomarkers in sepsis as interleukin-6 (IL-6) increases diagnostic performance. This is not only due to their high positive predictive value but also, since it can also help the clinician to rule out infection and thus avoid the use of antibiotics, due to their high negative predictive value. To this end, we explore a cutting-edge micromotor (MM)-based OFF-ON dual aptassay for simultaneous determination of both biomarkers in 15 min using just 2 μL of sample from low-birth-weight neonates with gestational age less than 32 weeks and birthweight below 1000 g with clinical suspicion of late-onset sepsis. The approach reached the high sensitivities demanded in the clinical scenario (LODPCT = 0.003 ng/mL, LODIL6 = 0.15 pg/mL) with excellent correlation performance (r > 0.9990, p < 0.05) of the MM-based approach with the Hospital method for both biomarkers during the analysis of diagnosed samples and reliability (Er < 6% for PCT, and Er < 4% for IL-6). The proposed approach also encompasses distinctive technical attributes in a clinical scenario since its minimal sample volume requirements and expeditious results compatible with few easy-to-obtain drops of heel stick blood samples from newborns admitted to the neonatal intensive care unit. This would enable the monitoring of both sepsis biomarkers within the initial hours after the manifestation of symptoms in high-risk neonates as a valuable tool in facilitating prompt and well-informed decisions about the initiation of antibiotic therapy.These results revealed the asset behind micromotor technology for multiplexing analysis in diagnosing neonatal sepsis, opening new avenues in low sample volume-based diagnostics.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain
| | - Luis Arruza
- Department of Neonatology, Instituto del Niño y del Adolescente, Hospital Clínico San Carlos-IdISSC, 28040, Madrid, Spain
| | - María Moreno-Guzmán
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, S/N, 28040, Madrid, Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain.
- Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain.
- Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| |
Collapse
|
8
|
Liu J, Zhang Z, Dong J, Chen A, Qiu J, Li C. Electrochemical immunosensor based on hollow Pt@Cu 2O as a signal label for dual-mode detection of procalcitonin. Talanta 2024; 266:125018. [PMID: 37572476 DOI: 10.1016/j.talanta.2023.125018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
As a reliable biomarker to evaluate the severity of sepsis, sensitive and accurate detection of procalcitonin (PCT) is essential. In this study, a dual-mode electrochemical immunosensor based on Au/ZIF-8 as substrate and Pt@Cu2O as signal label was constructed for the detection of PCT. By loading Au nanoparticles onto rhombic dodecahedral ZIF-8, the substrate (Au/ZIF-8) has large specific surface area and can immobilize antibody (Ab1) by Au-N bonds. Meanwhile, hollow Pt@Cu2O nanocomposite with excellent peroxidase-like activity and electrocatalytic activity were synthesized as signal label. In the process of electrochemical testing, Pt@Cu2O catalyzed the reduction of hydrogen peroxide (H2O2) and further promotes the oxidation of hydroquinone (HQ) to achieve the synergistic amplification of electrochemical signals. The proposed immunosensor detected PCT by amperometric i-t and differential pulse voltammetry (DPV) tests with a good linear response and low limit of detection (i-t: 0.70 fg/mL and DPV: 0.40 fg/mL) in the range of 10 fg/mL∼100 ng/mL. The immunosensor exhibited excellent sensitivity and accuracy, indicating the potential application of this method for PCT detection.
Collapse
Affiliation(s)
- Jie Liu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zixuan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Dong
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Anyi Chen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingfu Qiu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Chaorui Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Cao D, Wu W, Huang X, Liu L, Wei Q, Cao W. Dual-signal ratiometric electrochemical immunosensor constructed with snowflake-like FeSe 2-AuNPs and PAA-ZIF@TB for sensitive detection of CYFRA21-1. Talanta 2023; 260:124632. [PMID: 37149935 DOI: 10.1016/j.talanta.2023.124632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
In this study, a ratiometric electrochemical immunosensor has been developed to detect the cytokeratin 19 fragment 21-1 (CYFRA21-1) biomarker in a highly sensitive manner through a dual-signal output model. As one of signal indicators, snowflake-like FeSe2 loaded with AuNPs (FeSe2-AuNPs) as sensing substrate with good conductivity and large active sites provides a differential pulse voltammetry (DPV) signal at +0.4 V. Another signal indicator, toluidine blue (TB) with the water-solubility property is an excellent redox probe that can generate DPV signal at -0.3 V. To solve the water-solubility problem, the TB is absorbed with polyacrylic acid (PAA) functionalized ZIF-67 (PAA-ZIF-67), which retains the properties of ZIF-67 that are large specific surface area and strong adsorption properties. The ratio of signals, stemmed from PAA-ZIF@TB and FeSe2-AuNPs (IPAA-ZIF@TB/IFeSe2-AuNPs), increases with the CYFRA21-1 concentration. Under optimal experimental conditions, CYFRA21-1 was detected in a wide dynamic range from 0.1 pg/mL to 100 ng/mL, with a lower limit of detection of 0.02 pg/mL. Looking ahead, this ratio based strategy provides prospective clinical applications for detecting other biomarkers.
Collapse
Affiliation(s)
- Dongmei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wenrui Wu
- Qilu Pharmaceutical Co., LTD, Jinan 250105, PR China
| | - Xinyi Huang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
10
|
Chen H, Zhang J, Huang R, Wang D, Deng D, Zhang Q, Luo L. The Applications of Electrochemical Immunosensors in the Detection of Disease Biomarkers: A Review. Molecules 2023; 28:molecules28083605. [PMID: 37110837 PMCID: PMC10144570 DOI: 10.3390/molecules28083605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Disease-related biomarkers may serve as indicators of human disease. The clinical diagnosis of diseases may largely benefit from timely and accurate detection of biomarkers, which has been the subject of extensive investigations. Due to the specificity of antibody and antigen recognition, electrochemical immunosensors can accurately detect multiple disease biomarkers, including proteins, antigens, and enzymes. This review deals with the fundamentals and types of electrochemical immunosensors. The electrochemical immunosensors are developed using three different catalysts: redox couples, typical biological enzymes, and nanomimetic enzymes. This review also focuses on the applications of those immunosensors in the detection of cancer, Alzheimer's disease, novel coronavirus pneumonia and other diseases. Finally, the future trends in electrochemical immunosensors are addressed in terms of achieving lower detection limits, improving electrode modification capabilities and developing composite functional materials.
Collapse
Affiliation(s)
- Huinan Chen
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jialu Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Rong Huang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dejia Wang
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
11
|
Zhao G, Wang Y, Wang H, Bai G, Zhang N, Wang Y, Wei Q. Ultrasensitive Photoelectrochemical Immunoassay Strategy Based on Bi 2S 3/Ag 2S for the Detection of the Inflammation Marker Procalcitonin. BIOSENSORS 2023; 13:366. [PMID: 36979578 PMCID: PMC10046654 DOI: 10.3390/bios13030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
As an inflammatory marker, procalcitonin (PCT) is more representative than other traditional inflammatory markers. In this work, a highly efficient photoelectrochemical (PEC) immunosensor was constructed based on the photoactive material Bi2S3/Ag2S to realize the sensitive detection of PCT. Bi2S3 was prepared by a hydrothermal method, and Ag2S quantum dots were deposited on the ITO/Bi2S3 surface via in situ reduction. Bi2S3 is a kind of admirable photoelectric semiconductor nanomaterial on account of its moderate bandgap width and low binding rate of photogenerated electron holes, which can effectively convert light energy into electrical energy. Therefore, based on the energy level matching principle of Bi2S3 and Ag2S, a labeled Bi2S3/Ag2S PEC immunosensor was constructed, and the sensitive detection of PCT was successfully established. The linear detection range of the PEC immunosensor was 0.50 pg∙mL-1 to 50 ng∙mL-1, and the minimum detection limit was 0.18 pg∙mL-1. Compared with the traditional PEC strategy, the proposed PEC immunosensor is simple, convenient, and has good anti-interference, sensitivity, and specificity, which could provide a meaningful theoretical basis and reference value for the clinical detection of PCT.
Collapse
Affiliation(s)
- Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yingying Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huixin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guozhen Bai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
12
|
Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2023; 415:1003-1031. [PMID: 35970970 PMCID: PMC9378265 DOI: 10.1007/s00216-022-04237-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, therapeutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the inauguration of a new paradigm of personalized medicine.
Collapse
Affiliation(s)
- Viviana Vásquez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
13
|
Deng R, Chao X, Li H, Li X, Yang Z, Yu HZ. Smartphone-based microplate reader for high-throughput quantitation of disease markers in serum. Analyst 2023; 148:735-741. [PMID: 36533656 DOI: 10.1039/d2an01571d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a smartphone-based portable reader with integrated optics for standard microtiter plates (96 wells) has been designed and demonstrated for high-throughput quantitation of validated biomarkers in serum. The customized optical attachment was simply constructed with a convex lens and a light source, by which the transmitted light through a 96-well microtiter plate was converged for imaging with a smartphone, so that accurate and wide-range reading of the plate can be achieved. More importantly, relying on the digitized colorimetric analysis of the obtained images, concentrations of various biomarkers can be determined directly using the customized mobile app. A set of validated biomarkers for inflammation and infection, C-reactive protein (CRP), serum amyloid A (SAA), and procalcitonin (PCT) have been quantitated with this new system; both the response ranges and limits of detection meet the requirement of clinical tests. The consistency with the results obtained using a commercial microplate reader proves its reliability and precision, augments its potential as a point-of-care diagnostic device for on-site testing or resource-limited settings.
Collapse
Affiliation(s)
- Rong Deng
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China.
| | - Xiaoxin Chao
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China.
| | - Haiqin Li
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China.
| | - Xiaochun Li
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China.
| | - Zehua Yang
- Medicine Laboratory, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030024, China.
| | - Hua-Zhong Yu
- College of Biomedical Engineering, Institute of Biomedical Precision Testing and Instrumentation, Taiyuan University of Technology, Yuci, Shanxi 030600, China. .,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
14
|
Li D, Li J, Zhao C, Liao X, Liu L, Xie L, Shang W. Diagnostic value of procalcitonin, hypersensitive C-reactive protein and neutrophil-to-lymphocyte ratio for bloodstream infections in pediatric tumor patients. Clin Chem Lab Med 2023; 61:366-376. [PMID: 36367370 DOI: 10.1515/cclm-2022-0801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Bloodstream infection (BSI) is one of the major causes of death in pediatric tumor patients. Blood samples are relatively easy to obtain and thus provide a ready source of infection-related biological markers for the prompt evaluation of infection risk. METHODS A total of 259 pediatric tumor patients were included from May 2019 to March 2022. Patients were divided into BSI group (n=70) and control group (n=189). Clinical and biological data were collected using electronic medical records. Differences in biological markers between BSI group and control group and differences before and during infection in BSI group were analyzed. RESULTS The infected group showed higher levels of procalcitonin (PCT) and hypersensitive C-reactive-protein (hsCRP), and lower prealbumin (PA) than the uninfected group. Area under the receiver-operating curve (ROC) curves (AUC) of PCT, hsCRP and NLR (absolute neutrophil count to the absolute lymphocyte count) were 0.756, 0.617 and 0.612. The AUC of other biomarkers was ≤0.6. In addition, PCT, hsCRP, NLR and fibrinogen (Fg) were significantly increased during infection, while PA and lymphocyte (LYM) were significantly decreased. Antibiotic resistant of Gram-positive bacteria to CHL, SXT, OXA and PEN was lower than that of Coagulase-negative Staphylococcus. Resistant of Gram-positive bacteria to CHL was lower, while to SXT was higher than that of Gram-negative bacteria. CONCLUSIONS This study explored the utility of biomarkers to assist in diagnosis and found that the PCT had the greatest predictive value for infection in pediatric tumor patients with BSI. Additionally, the PCT, hsCRP, NLR, PA, LYM and Fg were changed by BSI.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Jie Li
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Chuanxi Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Xianglu Liao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Lisheng Liu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Wenjing Shang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
15
|
Cao D, Xu X, Huang X, Liu L, Wei Q, Cao W. CoNi-RGO and NiCo 2S 4-ZIF/g-C 3N 4 signal amplified electrochemical immunosensors for sensitive detection of CYFRA 21-1. Anal Biochem 2022; 659:114950. [PMID: 36243134 DOI: 10.1016/j.ab.2022.114950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Herein, a signal amplified electrochemical immunosensor for the sensitive detection of cytokeratin 19 fragments (CYFRA 21-1) in human serum was discussed. The CoNi-RGO was used as a substrate for the sensor with excellent specific surface area and strong electrical conductivity, which enables more efficient attachment of antibodies. The introduction of the bimetallic sulfide NiCo2S4 composite ZIF material provides strong catalytic performance for the immunosensor. It is worth noting that, in addition to these satisfactory advantages, these two materials also show amazing signal amplification capacity. When the immunosensor works, the increase in electrical impedance decreases the electron transfer rate, making the electrochemical signal change obvious. The signal enhancement of immunosensors was emphasized by the marker during construction, and the experimental results were satisfactory. The proposed signal enhanced immunosensor had a linear relationship in the range of 0.001-10 ng/mL for CYFRA 21-1, and the minimum detection limit was 0.33 pg/mL for △I = 95.22 + 23.27 lg c. This demonstrates that the electrochemical immunosensor we constructed is successful and has a great developing potential.
Collapse
Affiliation(s)
- Dongmei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiaoting Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xinyi Huang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
16
|
Li H, Wen X, Ding Y, Wang G, Zhu H, Liu J, Zhao H, Hong X. Photoluminescent and multi-phonon resonance Raman scattering dual-mode immunoassays based on CdS nanoparticles for HIgG detection. Mikrochim Acta 2022; 189:477. [DOI: 10.1007/s00604-022-05530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
|
17
|
Huang X, Miao J, Xu X, Cao D, Liu L, Wei Q, Cao W. Dual-mode electrochemical immunoassay for Non-small cell lung cancer detection based on CoSe2-GO-Au and poly(MB)-Au. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Development of a sensitive phage-mimotope and horseradish peroxidase based electrochemical immunosensor for detection of O,O-dimethyl organophosphorus pesticides. Biosens Bioelectron 2022; 218:114748. [DOI: 10.1016/j.bios.2022.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
|
19
|
Jiang M, Wang M, Lai W, Zhang M, Ma C, Li P, Li J, Li H, Hong C. Preparation of a pH-responsive controlled-release electrochemical immunosensor based on polydopamine encapsulation for ultrasensitive detection of alpha-fetoprotein. Mikrochim Acta 2022; 189:334. [PMID: 35970980 DOI: 10.1007/s00604-022-05433-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
To accomplish ultra-sensitive detection of alpha-fetoprotein(AFP), a novel electrochemical immunosensor using polydopamine-coated Fe3O4 nanoparticles (PDA@Fe3O4 NPs) as a smart label and polyaniline (PANI) and Au NPs as substrate materials has been created. The sensor has the following advantages over typical immunoassay technology: (1) The pH reaction causes PDA@Fe3O4 NPs to release Prussian blue (PB) prosoma while also destroying the secondary antibody label and immunological platform and lowering electrode impedance; (2) PB has a highly efficient catalytic effect on H2O2, allowing for the obvious amplification of electrical impulses; (3) PANI was electrodeposited on the electrode surface to avoid PB loss and signal leakage, which effectively absorbed and fixed PB while considerably increasing electron transmission efficiency. The sensor's detection limit was 0.254 pg·mL-1 (S/N = 3), with a detection range of 1 pg·mL-1 to 100 ng·mL-1. The sensor has a high level of selectivity, repeatability, and stability, and it is predicted to be utilized to detect AFP in real-world samples.
Collapse
Affiliation(s)
- Mingzhe Jiang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Min Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Wenjing Lai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Mengmeng Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Chaoyun Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Pengli Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Jiajia Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Hongling Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
20
|
Zhao G, Yan Q, Wang B, Wang Visualzation N, Duolihong B, Xia X. CoFe-(oxy)hydroxide as a novel electrocatalytic tag in immunosensing for ultra-sensitive detection of procalcitonin based on the oxygen evolution reaction. Bioelectrochemistry 2022; 147:108217. [DOI: 10.1016/j.bioelechem.2022.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
|
21
|
Tang C, Wang P, Zhou K, Ren J, Wang S, Tang F, Li Y, Liu Q, Xue L. Electrochemical immunosensor based on hollow porous Pt skin AgPt alloy/NGR as a dual signal amplification strategy for sensitive detection of Neuron-specific enolase. Biosens Bioelectron 2022; 197:113779. [PMID: 34781176 DOI: 10.1016/j.bios.2021.113779] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
Neuron-specific enolase (NSE) is a specific marker for small cell carcinoma (SCLC). Sandwich-type electrochemical immunosensors are powerful for biomarker analysis, and the electrocatalytic activity of the signal amplification platform and the performance of the substrate are critical to their sensitivity. In this work, N atom-doped graphene functionalized with hollow porous Pt-skin Ag-Pt alloy (HP-Ag/Pt/NGR) was designed as a dual signal amplifier. The hollow porous Pt skin structure improves the atomic utilization and the larger internal cavity spacing significantly increases the number of electroactive centers, thus exhibiting more extraordinary electrocatalytic activity and durability for H2O2 reduction. Using NGR with good catalytic activity as the support material of HP-Ag/Pt, the double amplification of the current signal is realized. For the substrate, polypyrrole-poly(3,4-ethylenedioxythiophene) (PPy-PEDOT) nanotubes were synthesized by a novel chemical polymerization route, which effectively increased the interfacial electron transfer rate. By coupling Au nanoparticles (Au NPs) with PPy-PEDOT, the immune activity of biomolecules is maintained and the conductivity is further enhanced. Under optimal conditions, the linear range was 50 fg mL-1 - 100 ng mL-1, and the limit of detection (LOD) was 18.5 fg mL-1. The results confirm that the developed immunosensor has great promise for the early clinical diagnosis of SCLC.
Collapse
Affiliation(s)
- Chunyuan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Kaiwei Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Jie Ren
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Feng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Li Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| |
Collapse
|
22
|
Alba-Patiño A, Vaquer A, Barón E, Russell SM, Borges M, de la Rica R. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Mikrochim Acta 2022; 189:74. [PMID: 35080669 PMCID: PMC8790942 DOI: 10.1007/s00604-022-05171-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/26/2021] [Indexed: 12/29/2022]
Abstract
Severe infections can cause a dysregulated response leading to organ dysfunction known as sepsis. Sepsis can be lethal if not identified and treated right away. This requires measuring biomarkers and pathogens rapidly at the different points where sepsis care is provided. Current commercial approaches for sepsis diagnosis are not fast, sensitive, and/or specific enough for meeting this medical challenge. In this article, we review recent advances in the development of diagnostic tools for sepsis management based on micro- and nanostructured materials. We start with a brief introduction to the most popular biomarkers for sepsis diagnosis (lactate, procalcitonin, cytokines, C-reactive protein, and other emerging protein and non-protein biomarkers including miRNAs and cell-based assays) and methods for detecting bacteremia. We then highlight the role of nano- and microstructured materials in developing biosensors for detecting them taking into consideration the particular needs of every point of sepsis care (e.g., ultrafast detection of multiple protein biomarkers for diagnosing in triage, emergency room, ward, and intensive care unit; quantitative detection to de-escalate treatment; ultrasensitive and culture-independent detection of blood pathogens for personalized antimicrobial therapies; robust, portable, and web-connected biomarker tests outside the hospital). We conclude with an overview of the most utilized nano- and microstructured materials used thus far for solving issues related to sepsis diagnosis and point to new challenges for future development.
Collapse
Affiliation(s)
- Alejandra Alba-Patiño
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Enrique Barón
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| | - Steven M Russell
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Marcio Borges
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Palma, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
23
|
Carbon-Based Nanocomposite Smart Sensors for the Rapid Detection of Mycotoxins. NANOMATERIALS 2021; 11:nano11112851. [PMID: 34835617 PMCID: PMC8621137 DOI: 10.3390/nano11112851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
Carbon-based nanomaterials have become the subject of intensive interest because their intriguing physical and chemical properties are different from those of their bulk counterparts, leading to novel applications in smart sensors. Mycotoxins are secondary metabolites with different structures and toxic effects produced by fungi. Mycotoxins have low molecular weights and highly diverse molecular structures, which can induce a spectrum of biological effects in humans and animals even at low concentrations. A tremendous amount of biosensor platforms based on various carbon nanocomposites have been developed for the determination of mycotoxins. Therefore, the contents of this review are based on a balanced combination of our own studies and selected research studies performed by academic groups worldwide. We first address the vital preparation methods of biorecognition unit (antibodies, aptamers, molecularly imprinted polymers)-functionalized carbon-based nanomaterials for sensing mycotoxins. Then, we summarize various types of smart sensors for the detection of mycotoxins. We expect future research on smart sensors to show a significant impact on the detection of mycotoxins in food products.
Collapse
|
24
|
Recent Progress in Electrochemical Immunosensors. BIOSENSORS-BASEL 2021; 11:bios11100360. [PMID: 34677316 PMCID: PMC8533705 DOI: 10.3390/bios11100360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Biosensors used for medical diagnosis work by analyzing physiological fluids. Antibodies have been frequently used as molecular recognition molecules for the specific binding of target analytes from complex biological solutions. Electrochemistry has been introduced for the measurement of quantitative signals from transducer-bound analytes for many reasons, including good sensitivity. Recently, numerous electrochemical immunosensors have been developed and various strategies have been proposed to detect biomarkers. In this paper, the recent progress in electrochemical immunosensors is reviewed. In particular, we focused on the immobilization methods using antibodies for voltammetric, amperometric, impedimetric, and electrochemiluminescent immunosensors.
Collapse
|
25
|
Zhang M, Mei L, Zhang L, Wang X, Liao X, Qiao X, Hong C. Ti 3C 2 MXene anchors CuAu-LDH multifunctional two-dimensional nanomaterials for dual-mode detection of CEA in electrochemical immunosensors. Bioelectrochemistry 2021; 142:107943. [PMID: 34508921 DOI: 10.1016/j.bioelechem.2021.107943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/05/2023]
Abstract
Electrochemical immunoassays are commonly used to detect biomarkers and Ti3C2 MXene anchored CuAu-LDH two-dimensional hydroxide heterojunctions for dual-mode electrochemical immunosensors were fabricated in this work. Layered double hydroxides have a large surface area, high chemical stability, tunable metal composition and interchangeable anions, however, the insulating nature of LDH further limits its catalytic performance. For this reason, Ti3C2 Mxenes were introduced to improve this problem. 2D layers of Ti3C2 Mxenes with large specific surface area and excellent conductivity have been well proven and widely used. And the surface of Ti3C2 Mxenes (due to the presence of abundant surface functional groups), will facilitate the anchoring of metal ions and the nucleation of LDH. In addition, its excellent electrical conductivity will facilitate the electron transfer between Cu2+ and Cu+. The immunosensor not only showed a heavy square wave voltammetry (SWV) signal. It also exhibited high electrocatalytic activity for H2O2 redox reactions and improves the sensitivity of the Ampere Current (i-t) detection. The CEA immunosensor developed in this study showed a wide linear response (0.0001-80 ng/mL) and the lowest detection limits (SWV: 33.6 fg/mL and i-t: 45.4 fg/mL S/N = 3). The results confirmed the excellent analytical capability of the immunosensor.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Li Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xiao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xiaochen Liao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xiuwen Qiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
26
|
Cheng D, Li P, Zhu X, Liu M, Zhang Y, Liu Y. Enzyme‐free Electrochemical Detection of Hydrogen Peroxide Based on the
Three‐Dimensional
Flower‐like Cu‐based Metal Organic Frameworks and
MXene
Nanosheets
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dan Cheng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Yang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Qu L, Ren X, Fan D, Kuang X, Sun X, Wang B, Wei Q, Ju H. Split-Type Electrochemical Immunoassay System Triggering Ascorbic Acid-Mediated Signal Magnification Based on a Controlled-Release Strategy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29179-29186. [PMID: 34101420 DOI: 10.1021/acsami.1c07780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This research put forward a novel split-type electrochemical (EC) immunosensor which integrated the controlled-release strategy with EC detection for application in the field of biosensing. Concretely, ascorbic acid (AA) was packaged in a cadmium sulfide (CdS)-capped spherical mesoporous bioactive glass (SBG) nanocarrier (SBGCdS) on account of encapsulation technology. To reduce the complexity of the bioanalysis, the detection antibody-labeled SBGCdS-AA bioconjugate was applied in a 96-well microplate for the immunoreaction process, which is independent of the EC determination procedure. Thus, the immune interference and steric hindrance caused by the accumulation of nanomaterials on the electrode could be minimized. Subsequently, AA was released efficiently via the destruction effect of dithiothreitol on the disulfide bond. In addition, for the as-prepared FcAI/l-Cys/gold nanoparticles (GNPs)/porous BiVO4 (p-BVO)/ITO EC sensing platform in the detection solution, the synergetic catalysis of Fc and GNPs/p-BVO toward the oxidation of the released AA could be realized, which triggered AA-mediated significant signal magnification throughout this study. In particular, p-BVO with an ordered nanoarray structure could accelerate the electron transfer to assist in sensitivity improvement of this system. This novel biosensor was capable of assaying the neuron-specific enolase (NSE) biomarker sensitively, from which a linear range of 0.001-100 ng/mL was derived along with a low detection limit of 1.08 pg/mL. An innovative way could be paved in the bioanalysis of NSE and other biomarkers.
Collapse
Affiliation(s)
- Liu Qu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Bin Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 Shandong, China
| |
Collapse
|
28
|
Yue S, Sun K, Li S, Liu Y, Zhu Q, Chen Y, Yuan D, Wen T, Ge M, Yu Q. The establishment of an immunosensor for the detection of SPOP. Sci Rep 2021; 11:12571. [PMID: 34131189 PMCID: PMC8206368 DOI: 10.1038/s41598-021-91944-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
In this paper, we first synthesis three-dimensional jasmine-like Cu@L-aspartic acid(L-ASP) inorganic–organic hybrid nanoflowers to load palladium-platinum nanoparticles (Pd–Pt NPs) as the signal enhancer in order to quantify intracellular speckle-type POZ domain protein. Scanning electron microscope, fourier transform infrared, energy dispersive spectrometer, X-ray photoelectron spectroscopy analysis was used to characterize the newly synthesized materials. The newly formed Cu@L-Asp/Pd-PtNPs can catalyze the decomposition of hydrogen peroxide and exhibit excellent catalytic performance. When different concentration of speckle-type POZ domain protein is captured by speckle-type POZ domain protein antibody linked to the surface of Cu@L-Asp/Pd–Pt NPs, the current signal decreases with the increase concentration of speckle-type POZ domain protein. After optimization, the speckle-type POZ domain protein immunosensor exhibited a good linear response over a concentration range from 0.1–1 ng mL−1 with a low detection limit of 19 fg mL−1. The proposed sensor demonstrates good stability within 28 days, acceptable reproducibility (RSD = 0.52%) and selectivity to the speckle-type POZ domain protein in the presence of possible interfering substances and has potential application for detecting other intracellular macromolecular substances.
Collapse
Affiliation(s)
- Song Yue
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Kexin Sun
- Department of Ophthalmology, Chongqing Key Laboratory of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing, 400016, People's Republic of China
| | - Siyuan Li
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Yi Liu
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Qihao Zhu
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Yiyu Chen
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Dong Yuan
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Tao Wen
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China
| | - Mingjian Ge
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Qiubo Yu
- Institute of Life Science, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
29
|
Zhao L, Song X, Ren X, Wang H, Fan D, Wu D, Wei Q. Ultrasensitive near-infrared electrochemiluminescence biosensor derived from Eu-MOF with antenna effect and high efficiency catalysis of specific CoS 2 hollow triple shelled nanoboxes for procalcitonin. Biosens Bioelectron 2021; 191:113409. [PMID: 34146971 DOI: 10.1016/j.bios.2021.113409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
In this paper, we report a novel multiple amplification strategy for ultrasensitive near-infrared electrochemiluminescence (ECL) immunoassay in K2S2O8 solution. The realization of this strategy is based on the antenna effect of Eu-MOF (EuBTC) and a high efficiency catalysis of CoS2 hollow triple shelled nanoboxes (TSNBs). The H3BTC ligand in the antenna effect first undergoes π-π* absorption and a singlet-singlet electronic transition. Its energy passes through the intersystem to the triplet state, next transfers from the lowest excited triplet state to the vibrational energy level of the rare earth ion, finally realizing sensitizing center ion luminescence. Moreover, ionic reaction and structural advantages endow CoS2 TSNBs a dual signal enhancement effect. This sandwich-type ECL biosensor has a near-infrared luminescence in 800-900 nm, thus avoiding damage to the sample in the meantime. In practical diagnosis, the normal critical value of procalcitonin (PCT) (<0.5 ng/mL) is much higher than the detection limit (3.65 fg/mL) and is in the detection range (10 fg/mL-100 ng/mL), which means that the ECL biosensor has a high sensitivity in the detection of PCT and meet the requirement for diagnosis of disease completely. Therefore, the strategy provides a feasible method for efficient and stable analysis of systemic inflammatory response such as fearful bacterial infection, hepatitis B, and peritonitis.
Collapse
Affiliation(s)
- Lu Zhao
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Xianzhen Song
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Xiang Ren
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Huan Wang
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dan Wu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Qin Wei
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| |
Collapse
|
30
|
Xu X, Li X, Miao J, Liu L, Huang X, Wei Q, Cao W. A dual-mode label-free electrochemical immunosensor for ultrasensitive detection of procalcitonin based on g-C 3N 4-NiCo 2S 4-CNTs-Ag NPs. Analyst 2021; 146:3169-3176. [PMID: 33999069 DOI: 10.1039/d1an00372k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein, a label-free electrochemical immunosensor based on differential pulse voltammetry (DPV) and amperometric i-t curve (i-t) dual-mode analysis is proposed for early quantitative detection of procalcitonin (PCT). Due to the advantages of high chemical stability and biocompatibility, graphite carbon nitride (g-C3N4) was adopted as a high-capacity sensing interface to carry signal indicators. As an effective indicator of chronoamperometry, nickel cobalt sulfide (NiCo2S4) was uniformly dispersed on the surface of g-C3N4 through in-situ hydrothermal synthesis, which not only promotes the activation of bimetallic activity, but also effectively prevents the aggregation of NiCo2S4. At the same time, in order to establish a dual-mode analysis platform to improve accuracy and sensitivity, highly conductive carbon nanotubes (CNTs) were hybridized with composite materials to load Ag nanoparticles (Ag NPs), which have excellent oxidizing properties and are used as indicators of DPV. On account of this advanced sensing strategy, a wide linear response (DPV: 0.05 ng mL-1-50 ng mL-1 and i-t: 1.00 pg mL-1-10.00 ng mL-1) and a low detection limit (DPV: 16.70 pg mL-1 and i-t: 0.33 pg mL-1) are demonstrated. The immunosensor synthesized by this method has good stability and sensitivity, which could be applied in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoting Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Feng YG, Wang XY, Wang ZW, Wang AJ, Mei LP, Luo X, Feng JJ. A label-free electrochemical immunosensor based on encapsulated signal molecules in mesoporous silica-coated gold nanorods for ultrasensitive assay of procalcitonin. Bioelectrochemistry 2021; 140:107753. [PMID: 33631415 DOI: 10.1016/j.bioelechem.2021.107753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
For immobilization and signal amplification of the probes, it is feasible and promising by using porous nanomaterials as nanocarriers. Herein, a novel label-free electrochemical immmunosensor was efficiently designed for ultrasensitive detection of procalcitonin (PCT). The immunosensor was prepared by using porous silica-coated gold nanorods (Au NRs@m-SiO2) to load electroactive dye thionine (Thi) on the electrode surface. Apart from the improved electrical conductivity, the porous feature highly increased the loading amount of Thi to boost the detection signals, while the good biocompatibility and protective microenvironment are beneficial to the largely improved stability for the target. For quantification of PCT, the developed immunosensor exhibited a good linear relationship in the antigen concentration range of 0.001-100 ng mL-1 with an ultra-low limit of detection (LOD, 0.39 pg mL-1, S/N = 3). Moreover, the built platform was successfully applied to such assay in human serum samples. The research provides some valuable guidelines for clinical screening and diagnosis of other biomarkers.
Collapse
Affiliation(s)
- Yi-Ge Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Yu Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhi-Wu Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
33
|
Qu L, Yang L, Li Y, Ren X, Wang H, Fan D, Wang X, Wei Q, Ju H. Dual-Signaling Electrochemical Ratiometric Method for Competitive Immunoassay of CYFRA21-1 Based on Urchin-like Fe 3O 4@PDA-Ag and Ni 3Si 2O 5(OH) 4-Au Absorbed Methylene Blue Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5795-5802. [PMID: 33480669 DOI: 10.1021/acsami.0c20049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel ratiometric electrochemical (EC) sensing platform was established for sensitive immunoassay of target cytokeratin 19 fragment 21-1 (CYFRA21-1) biomarker by combining competitive immunoreaction and multisignal output. This immunosensor utilized Ag nanoparticles (NPs)-functionalized urchin-like Fe3O4@polydopamine (u-Fe3O4@PDA-Ag) as a matrix to immobilize CYFRA21-1 antigens and methylene blue (MB)-absorbed Ni3Si2O5(OH)4-Au nanotubes (NTs) to label the anti-CYFRA21-1 (Ab). During the competitive immunoreaction, square wave voltammetric (SWV) current changes of Ag NPs from u-Fe3O4@PDA-Ag indicator and MB from Ni3Si2O5(OH)4-Au/MB indicator are relevant to the dosage of CYFRA21-1-acquired Ni3Si2O5(OH)4-Au/MB/Ab. More importantly, numerous CYFRA21-1 loaded stably on u-Fe3O4@PDA-Ag exhibited strong competitive capacity toward the target-CYFRA21-1 to combine Ni3Si2O5(OH)4-Au/MB/Ab, causing sensitive changes in the ratio of two measured SWV currents. Prominently, "ΔI = ΔIMB + |ΔIAg NPs|" (ΔIMB and |ΔIAg NPs| represents the change values of the oxidation peak currents of MB and Ag NPs, respectively) could be regarded as significantly amplifying the signal response and ultimately improving the sensitivity of CYFRA21-1 detection, from which we derived a wide dynamic range from 500 fg/mL to 50 ng/mL and a low detection limit of 0.39 pg/mL (S/N = 3). This work may exert a profound impact on monitoring other biomarkers in early diagnosis of diseases.
Collapse
Affiliation(s)
- Liu Qu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xueying Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| |
Collapse
|
34
|
Wu L, Wang Y, Zhou S, Zhu Y, Chen X. Enzyme-induced Cu 2+/Cu + conversion as the electrochemical signal for sensitive detection of ethyl carbamate. Anal Chim Acta 2021; 1151:338256. [PMID: 33608078 DOI: 10.1016/j.aca.2021.338256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Traditional enzyme-linked immunosorbent assay (t-ELISA) method suffers from its relatively low sensitivity or accuracy in the detection of trace level of analyte in complicated samples. In this work, to extend the application of ELISA in practical samples, a newly electrochemical immunoassay (ECIA) was developed based on an enzyme-induced Cu2+/Cu+ conversion for the determination of ethyl carbamate (EC). Wherein, three rounds of signal transformation-the catalysis of ALP enzyme, the conversion of Cu2+/Cu+ and signal output of square wave voltammetry (SWV), can be realized to obtain higher sensitivity as compared to t-ELISA. The ECIA method combines the advantages of electrochemistry and ELISA, behaving superior detection performance, such as good selectivity, high sensitivity, and low background signal. For the wine samples, the method showed a linear detection range from 2.5 nM to 2.5 × 104 nM with a limit of detection of 2.28 nM (S/N = 3), which reveals that the ECIA sensor is a promising platform for the detection of trace level of EC in practical samples.
Collapse
Affiliation(s)
- Long Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China; College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, PR China.
| | - Yasheng Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Shuhong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yongheng Zhu
- College of Food Science and Technology, And Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaoqiang Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| |
Collapse
|