1
|
Albashir D, Lu H, Gouda M, Acharya DR, Danhassan UA, Bakur A, Shi Y, Chen Q. A novel polydiacetylene-functionalized fibrinogen paper-based biosensor for on-spot and rapid detection of Staphylococcus aureus. Food Chem 2024; 458:140291. [PMID: 38959795 DOI: 10.1016/j.foodchem.2024.140291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Staphylococcus aureus contamination continues to be a harmful foodborne pathogen threatening of human health, and there is a growing need for rapid detection technologies. This study proposed a novel paper biosensor based on a polydiacetylene (PDA) polymer functionalized fibrinogen (Fg) for the detection of S. aureus in food sources. The fluorophore was developed based on the high binding ability of fibrinogen-binding proteins on the surface of S. aureus. This binding caused twisting in the PDA backbone, leading to changes in chromatic and fluorescent. The detection limit of this method was 50.1 CFU/mL for S. aureus-contaminated foodstuffs and 65.0 CFU/mL for the pure S. aureus culture, and the novelty came from its rapidity and selectivity for S. aureus compared to other foodborne bacteria. In summary, the present work provides a rapid detection method for S. aureus detection, which will help in addressing food safety-related issues.
Collapse
Affiliation(s)
- Dafaallah Albashir
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition and Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Dev Raj Acharya
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | | | - Abdelmoneim Bakur
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Sciences and Technology, University of Kordofan, El Obeid, Sudan
| | - Ying Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zhang M, Zhang Q, Ye L. Colorimetric aptasensing of microcystin-LR using DNA-conjugated polydiacetylene. Anal Bioanal Chem 2024:10.1007/s00216-024-05617-x. [PMID: 39467911 DOI: 10.1007/s00216-024-05617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Polydiacetylene (PDA) holds promise as a versatile material for biosensing applications due to its unique optical properties and self-assembly capabilities. In this study, we developed a colorimetric detection biosensor system utilizing PDA and aptamer for the detection of microcystin-LR (MC-LR), a potent hepatotoxin found in cyanobacteria-contaminated environments. The biosensor was constructed by immobilizing MC-LR-specific aptamer on magnetic beads, where the aptamer was hybridized with a urease-labelled complementary DNA (cDNA-urease). Upon binding MC-LR, the aptamer undergoes a conformational change to release cDNA-urease. The released cDNA-urease is subsequently captured by PDA bearing a single-stranded DNA (ssDNA). The enzymatic reaction triggers a distinctive color transition of PDA from blue to red. The results demonstrate exceptional sensitivity, with a linear detection range of 5-100 ng/mL and a limit of detection as low as 1 ng/mL. The practicability of the colorimetric method was demonstrated by detecting different levels of MC-LR in spiked water samples. The recoveries ranged from 77.3 to 102% and the color change, visible to the naked eye, underscores the practical utility for on-site applications. Selectivity for MC-LR over other microcystin variants (MC-RR and MC-YR) was confirmed. The colorimetric detection platform capitalizes on the properties of PDA and nucleic acid, offering a robust method for detecting small molecules with potential applications in environmental monitoring and public health.
Collapse
Affiliation(s)
- Man Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Qicheng Zhang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
3
|
Baillargeon P, Boivin L, Vaillancourt D, Bélanger M, Rahem T, Fortin D, Harvey PD. Selective Chirality-Driven Photopolymerization of Diacetylene Crystals. CRYSTAL GROWTH & DESIGN 2024; 24:6829-6837. [PMID: 39185357 PMCID: PMC11342933 DOI: 10.1021/acs.cgd.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Crystal engineering of two diacetylene monomers was achieved by branching two chiral groups [R = PhC*MeNH(CO2)CH2] exhibiting an enantiopure configuration of S,S-(DA2) and an achiral R,S-meso-isomer (DA4). The X-ray structures of DA2 and DA4 reveal the presence of supramolecular arrangements driven by intermolecular H-bonding. A significant intermolecular closer proximity in DA4 than that in DA2 is depicted, ultimately resulting in a slow thermal (days) and swift (min) photochemical polymerization of DA4 to form PDA5, whereas DA2 is unreactive. DFT computations indicate that in both cases the lowest energy-excited state is the charge-transfer state [CT; PhC*MeNH(CO2) → π*(-C≡C-C≡C-)]. Therefore, this outcome illustrates a drastic selectivity via a settle change in a carbon configuration. Analysis demonstrates that PDA5 is nonemissive and that its coloration arises from a π → π* excitation of the polymer backbone (DFT computations).
Collapse
Affiliation(s)
- Pierre Baillargeon
- Département
de Chimie, CÉGEP de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Léo Boivin
- Département
de Chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Dorah Vaillancourt
- Département
de Chimie, CÉGEP de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Marilie Bélanger
- Département
de Chimie, CÉGEP de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Tarik Rahem
- Département
de Chimie, CÉGEP de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Daniel Fortin
- Département
de Chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre D. Harvey
- Département
de Chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
4
|
Thakuri A, Banerjee M, Chatterjee A. Polydiacetylene Liposome-Based Dual-Output Optical Sensor for ppb Level Detection of Dopamine in Solution and Solid Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17613-17621. [PMID: 39120008 DOI: 10.1021/acs.langmuir.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Dopamine (DA), a neurotransmitter, plays a crucial role in regulating motor functions and emotions and can serve as a marker for several diseases. In this study, we report a highly sensitive polydiacetylenes (PDA)-based dual-output sensor for dopamine detection in both solution and solid phases that was developed by modifying PDA liposomes with boronic acid groups at the termini. This sensor exploits the high affinity between the catechol residue of dopamine and the -B(OH)2 group of the PDA-based probe (PDA-PhBA) to form boronate ester bonds, causing a stress-induced blue-to-red color change along with a steady increase in fluorescence response at λmax 622 nm. The PDA-PhBA-based sensor displays high sensitivity toward dopamine with low limit of detection of 6.2 ppb in colorimetric analysis and 0.6 ppb in fluorimetric measurements, demonstrating its dual optical output ability. The sensor works well for adrenaline, another catecholamine, with similar efficacy. Its practical applicability was validated by the successful recovery of trace level dopamine in blood serum and real water samples. Additionally, immobilizing PDA-PhBA liposomes in sodium alginate produced PDA beads for the solid-phase detection of dopamine with an limit of detection (LOD) of 59 nM (9.0 ppb) in colorimetric detection using a smartphone for capturing images and ImageJ software for analysis.
Collapse
Affiliation(s)
- Ankit Thakuri
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa 403726, India
| | - Amrita Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa 403726, India
| |
Collapse
|
5
|
Shin MJ. A Color-Detectable Vitamin C Controlled-Release System Fabricated Using Electrospinning. Polymers (Basel) 2024; 16:1347. [PMID: 38794540 PMCID: PMC11125048 DOI: 10.3390/polym16101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
This study develops a vitamin C controlled-release system, trackable via color changes as a function of vitamin C release. The system is composed of coaxial microfibers prepared via coaxial electrospinning, with a core of poly(ethylene oxide) (PEO) incorporating vitamin C, and a shell composed of polycaprolactone (PCL) containing polydiacetylene (PDA) as the color-changing material. The shell thickness is controlled by adjusting the amount of PCL ejected during electrospinning, allowing regulation of the release rate of vitamin C. When vitamin C added to PEO penetrates the PCL layer, the color of PDA changes from blue to red, indicating a color change. The results of this study can be applied to devices that require immediate detection of vitamin C release levels.
Collapse
Affiliation(s)
- Min Jae Shin
- Department of Chemical and Biological Engineering, Andong National University, Andong 36729, Gyeongbuk, Republic of Korea
| |
Collapse
|
6
|
Kim R, Mun B, Lim S, Park C, Kim J, Lim J, Jeong H, Son HY, Rho HW, Lim EK, Haam S. Colorimetric Detection of HER2-Overexpressing-Cancer-Derived Exosomes in Mouse Urine Using Magnetic-Polydiacetylene Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307262. [PMID: 37963850 DOI: 10.1002/smll.202307262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Breast cancer (BC) is a major global health problem, with ≈20-25% of patients overexpressing human epidermal growth factor receptor 2 (HER2), an aggressive marker, yet access to early detection and treatment varies across countries. A low-cost, equipment-free, and easy-to-use polydiacetylene (PDA)-based colorimetric sensor is developed for HER2-overexpressing cancer detection, designed for use in low- and middle-income countries (LMICs). PDA nanoparticles are first prepared through thin-film hydration. Subsequently, hydrophilic magnetic nanoparticles and HER2 antibodies are sequentially conjugated to them. The synthesized HER2-MPDA can be concentrated and separated by a magnetic field while inheriting the optical characteristics of PDA. The specific binding of HER2 antibody in HER2-MPDA to HER2 receptor in HER2-overexpressing exosomes causes a blue-to-red color change by altering the molecular structure of the PDA backbone. This colorimetric sensor can simultaneously separate and detect HER2-overexpressing exosomes. HER2-MPDA can detect HER2-overexpressing exosomes in the culture medium of HER2-overexpressing BC cells and in mouse urine samples from a HER2-overexpressing BC mouse model. It can selectively isolate and detect only HER2-overexpressing exosomes through magnetic separation, and its detection limit is found to be 8.5 × 108 particles mL-1 . This colorimetric sensor can be used for point-of-care diagnosis of HER2-overexpressing BC in LMICs.
Collapse
Affiliation(s)
- Ryunhyung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seongjae Lim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jaewook Lim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyein Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Young Son
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Wook Rho
- Department of Radiology, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Trovato V, Sfameni S, Rando G, Rosace G, Libertino S, Ferri A, Plutino MR. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022; 27:5709. [PMID: 36080476 PMCID: PMC9457686 DOI: 10.3390/molecules27175709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years thanks to the Internet of Things (IoT), the demand for the development of miniaturized and wearable sensors has skyrocketed. Among them, novel sensors for wearable medical devices are mostly needed. The aim of this review is to summarize the advancements in this field from current points of view, focusing on sensors embedded into textile fabrics. Indeed, they are portable, lightweight, and the best candidates for monitoring biometric parameters. The possibility of integrating chemical sensors into textiles has opened new markets in smart clothing. Many examples of these systems are represented by color-changing materials due to their capability of altering optical properties, including absorption, reflectance, and scattering, in response to different external stimuli (temperature, humidity, pH, or chemicals). With the goal of smart health monitoring, nanosized sol-gel precursors, bringing coupling agents into their chemical structure, were used to modify halochromic dyestuffs, both minimizing leaching from the treated surfaces and increasing photostability for the development of stimuli-responsive sensors. The literature about the sensing properties of functionalized halochromic azo dyestuffs applied to textile fabrics is reviewed to understand their potential for achieving remote monitoring of health parameters. Finally, challenges and future perspectives are discussed to envisage the developed strategies for the next generation of functionalized halochromic dyestuffs with biocompatible and real-time stimuli-responsive capabilities.
Collapse
Affiliation(s)
- Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Sebania Libertino
- Institute of Microelectronics and MicrosystemsCNR–IMM, Ottava Strada 5, 95121 Catania, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| |
Collapse
|
8
|
Ge M, He Z, Song Z. Polydiacetylene/organic magadiite nanocomposite film with stable reversible structure and reversible thermochromism. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Zhai X, Cao Y, Sun W, Cao S, Wang Y, He L, Yao N, Zhao D. Core-shell composite N-doped-Co-MOF@polydopamine decorated with Ag nanoparticles for nonenzymatic glucose sensors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Andina RI, Kingchok S, Laohhasurayotin K, Traiphol N, Traiphol R. Multi-reversible thermochromic polydiacetylene-CuZnFe2O4 magnetic nanocomposites with tunable colorimetric response to acid-base. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Baillargeon P, Robidas R, Toulgoat O, Michaud Z, Legault CY, Rahem T. Crystal Structures of Lignocellulosic Furfuryl Biobased Polydiacetylenes with Hydrogen-Bond Networks: Influencing the Direction of Solid-State Polymerization through Modification of the Spacer Length. CRYSTAL GROWTH & DESIGN 2022; 22:2812-2823. [PMID: 35529068 PMCID: PMC9073937 DOI: 10.1021/acs.cgd.2c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Indexed: 05/02/2023]
Abstract
We present the topochemical polymerization of two lignocellulosic biobased diacetylenes (DAs) that only differ by an alkyl spacer length of 1 methylene (n = 1) or 3 methylene units (n = 3) between the diyne and carbamate functionalities. Their crystalline molecular organizations have the distinctive feature of being suitable for polymerization in two potential directions, either parallel or skewed to the hydrogen-bonded (HB) network. However, single-crystal structures of the final polydiacetylenes (PDAs) demonstrate that the resulting orientation of the conjugated backbones is different for these two derivatives, which lead to HB supramolecular polymer networks (2D nanosheets) for n = 1 and to independent linear PDA chains with intramolecular HBs for n = 3. Thus, spacer length modification can be considered a new strategy to influence the molecular orientation of conjugated polymer chains, which is crucial for developing the next generation of materials with optimal mechanical and optoelectronic properties. Calculations were performed on model oligodiacetylenes to evaluate the cooperativity effect of HBs in the different crystalline supramolecular packing motifs and the energy profile related to the torsion of the conjugated backbone of a PDA chain (i.e., its ability to adopt planar or helical conformations).
Collapse
Affiliation(s)
- Pierre Baillargeon
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Raphaël Robidas
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Olivier Toulgoat
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Zacharie Michaud
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| | - Claude Y. Legault
- Département
de chimie, Université de Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Tarik Rahem
- Département
de chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada
| |
Collapse
|
12
|
Xu Y, Ding Z, Zhu H, Zhao X, Gao J. Fabrication of a novel polydiacetylene-based gel system through self-assembly and the stimuli-induced colorimetric responsiveness. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Bae K, Lee DG, Khazi MI, Kim J. Stimuli-Responsive Polydiacetylene Based on the Self-Assembly of a Mercury-Bridged Macrocyclic Diacetylene Dimer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Solution plasma process for synthesizing polydiacetylene materials: Toward industrial utilization of colorimetric sensors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Self-enhanced luminol-based electrochemiluminescent hydrogels: An ultrasensitive biosensing platform for fusion gene analysis coupled with target-initiated DNAzyme motor. Biosens Bioelectron 2022; 197:113784. [PMID: 34801798 DOI: 10.1016/j.bios.2021.113784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
BCR/ABL fusion gene has been discovered as an important and reliable biomarker for early diagnosis of chronic myeloid leukemia (CML). Herein, a novel and switching electrochemiluminescence (ECL) biosensor was developed for ultrasensitive determination of the fusion gene based on the self-enhanced polyethyleneimine-luminol (PEI-Lum) hydrogels coupled with target-initiated DNAzyme motor. The facilely prepared PEI-Lum hydrogels could not only immobilize enormous luminol but shorten the distance of binary system, thus facilitating the mass and electron transfer efficiency of the sensing interface, so that the enhanced ECL signal was achieved. Moreover, the engineering DNA motor was powered by Mg2+-dependent DNAzyme for isothermal DNA signal amplification. As a result, the fabricated ECL biosensor enabled highly sensitive detection of BCR/ABL fusion gene with a broad linear range from 10.0 fM to 10.0 nM and a low detection limit of 3.75 fM (S/N = 3). Significantly, the developed biosensing method provides a potential tool for nucleic acid analysis in clinical diagnosis and a new avenue to design high-efficient ECL nanomaterials.
Collapse
|
16
|
Wang DE, You S, Huo W, Han X, Xu H. Colorimetric detection of alkaline phosphatase activity based on pyridoxal phosphate-induced chromatic switch of polydiacetylene nano-liposomes. Mikrochim Acta 2022; 189:70. [PMID: 35067757 DOI: 10.1007/s00604-022-05175-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
A colorimetric assay based on polydiacetylenes (PDA) nano-liposomes is reported for facile and sensitive detection of alkaline phosphatase (ALP) activity. The critical basis of this method is that the interaction of pyridoxal phosphate (PLP) with nitrogenous group functionalized PDA nano-liposomes induces distinct blue-to-red color changes of PDA nano-liposomes. In the presence of ALP, as a nature substrate, PLP is enzymatically hydrolyzed to form pyridoxal, which cannot interact with PDA nano-liposomes. As a result, the concentration of PLP is reduced and the color change of PDA nano-liposomes is retarded, which is associated with ALP level. Under optimal conditions, the proposed method showed good linear relationship with ALP activity in the range 10-200 U/L with a limit of detection of 2.8 U/L. The detection process could be vividly observed with the naked eye. Additional attempts by using the method for the evaluation of inhibitor efficiency were also achieved with satisfying results. The method was further challenged with real human serum samples, showing consistent results when compared with a commercial standard assay kit. Such simple and easy-to-use approach may provide a new alternative for clinical and biological detection of ALP.
Collapse
Affiliation(s)
- Dong-En Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shangqi You
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wenjing Huo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiang Han
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|