1
|
Patil ND, Bains A, Sridhar K, Sharma M, Dhull SB, Goksen G, Chawla P, Inbaraj BS. Recent advances in the analytical methods for quantitative determination of antioxidants in food matrices. Food Chem 2025; 463:141348. [PMID: 39340911 DOI: 10.1016/j.foodchem.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Antioxidants are crucial in reducing oxidative stress and enhancing health, necessitating precise quantification in food matrices. Advanced techniques such as biosensors and nanosensors offer high sensitivity and specificity, enabling real-time monitoring and accurate antioxidant quantification in complex food systems. These technologies herald a new era in food analysis, improving food quality and safety through sophisticated detection methods. Their application facilitates comprehensive antioxidant profiling, driving innovation in food technology to meet the rising demand for nutritional optimization and food integrity. These are complemented by electrochemical techniques, spectroscopy, and chromatography. Electrochemical methods provide rapid response times, spectroscopy offers versatile chemical composition analysis, and chromatography excels in precise separation and quantification. Collectively, these methodologies establish a comprehensive framework for food analysis, essential for improving food quality, safety, and nutritional value. Future research should aim to refine these analytical methods, promising significant advancements in food and nutritional science.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | | |
Collapse
|
2
|
Yang F, Li S, Zhang X, Liu S. Photo-controlled cascade DNA hybridization for amplified electrochemical biosensor with tunable sensing performance. Anal Chim Acta 2025; 1335:343447. [PMID: 39643302 DOI: 10.1016/j.aca.2024.343447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Precise control of the biorecognition process in DNA biosensors, especially for those with signal amplification, remains a challenge. It is of great significance to introduce external stimuli into the DNA system for a controllable trigger of nucleic acid cascade amplification and further for excellent biosensors. RESULTS In this study, a photo-initiated hybridization chain reaction (HCR) was designed for controllable and sensitive electrochemical biosensor via the incorporation of azobenzene moiety into the assembly unit. Under the coexistence of UV light and target DNA, a number of HCR products with biotin tags were generated and fixed on the electrode surface. Subsequently, the bound streptavidin-labeled horseradish peroxidase (SA-HRP) effectively catalyzed H2O2-mediated oxidation of tetramethylbenzidine (TMB), producing significant electrochemical current signals. A tunable sensing performance with different dynamic response ranges and sensitivity was achieved by adjusting the number of the inserted azobenzene moieties and the control of UV light. A limit of detection as low as 2.5 fM (S/N = 3) could be obtained in the case of one azobenzene and under UV exposure. Moreover, the photo-controlled DNA biosensor exhibited good discrimination ability even against single-base mismatch and was able to be applied in serum samples. SIGNIFICANCE The proposed electrochemical DNA biosensor based on dual-triggered HCR amplification may represent a promising path to achieve sensitive and accurate bioanalysis. Also, the tunable dynamic range of the developed biosensor will provide the possibility of clinical applications.
Collapse
Affiliation(s)
- Fangfang Yang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Xiaolin Zhang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
3
|
Domingues T, Liao CD, Prado M, Cerqueira MF, Petrovykh DY, Alpuim P, Borme J, Guerreiro JR. Tailoring DNA Surface Interactions on Single-Layer Graphene: Comparative Analysis of Pyrene, Acridine, and Fluorenyl Methyl Linkers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39711174 DOI: 10.1021/acs.langmuir.4c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
This study investigates the effect of different linkers and solvents on the immobilization of DNA probes on graphene surfaces, which are crucial for developing high-performance biosensors. Quartz crystal microbalance with dissipation (QCM-D) measurements were used to characterize in situ and real-time the immobilization of ssDNA and hybridization efficiency on model graphene surfaces. The DNA probes immobilization kinetics and thermodynamics were systematically investigated for all the pairings between three bifunctional linkers─1-pyrenebutyric acid succinimidyl ester (PBSE), Fluorenylmethylsuccinimidyl carbonate (FSC), and Acridine Orange (AO) succinimidyl ester─and three organic solvents (DMF, DMSO, and 10% DMF/ethanol). The linker's spatial orientation and effective surface modification for DNA probe attachment were also evaluated based on footprints and DNA probe surface coverage. Graphene surfaces functionalized with PBSE in DMF achieved the highest DNA probe surface density (up to 1.31 × 1013 molecules cm-2) and fastest kinetic, p values above 4, and hybridization efficiencies of at least 70%, with 20 to 30% of ssDNA directly adsorbed nonspecifically on the functionalized graphene surface, which has significant implications for the design of sensitive biosensors. The efficiency of the ethanolamine-NHS blocking reaction was estimated to be 80%. The surface packing density of the linker was estimated at 25% of the entire surface coverage for PBSE, and about 22 and 13% for AO and FSC, respectively. Overall, the surface coverage achieved for probe DNA was in the same order of magnitude as that obtained on flat gold surfaces (≥1013 molecules cm-2), typically used in biosensors. These findings highlight the importance of the selected conditions for graphene surface modification to achieve high DNA probe surface density on graphene materials. These results underscore the critical role of interface engineering in achieving target functional outcomes in biosensing technology.
Collapse
Affiliation(s)
- Telma Domingues
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, 4710-057 Braga, Portugal
| | - Chun-Da Liao
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Marta Prado
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- LHICA Department of Analytical Chemistry, Nutrition and Bromatology, Campus Terra, University of Santiago de Compostela (USC), 27002 Lugo, Spain
| | - M Fátima Cerqueira
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, 4710-057 Braga, Portugal
| | - Dmitri Y Petrovykh
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Pedro Alpuim
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, 4710-057 Braga, Portugal
| | - Jérôme Borme
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Joana Rafaela Guerreiro
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, 4200-072 Porto, Portugal
- CEB─Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Selvaraj M, B S S, Aly Saad Aly M. Terahertz-based biosensors for biomedical applications: A review. Methods 2024; 234:54-66. [PMID: 39638162 DOI: 10.1016/j.ymeth.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Biosensors have many life sciences-related applications, particularly in the healthcare sector. They are employed in a wide range of fields, including drug development, food quality management, early diagnosis of diseases, and environmental monitoring. Terahertz-based biosensing has shown great promise as a label-free, non-invasive, and non-contact method of detecting biological substances. THz Spectroscopy has achieved a remarkable advancement in biomolecule recognition providing a rapid, highly sensitive, and non-destructive approach for various biomedical applications. The significance of THz-based biosensors and the broad spectrum of biomolecules that can be detected and analyzed with biosensors are reviewed in this work. Additionally, this work summarizes several techniques that were previously reported to improve the sensitivity and selectivity of these biosensors. Furthermore, an in-depth comparison between previously developed biosensors with an emphasis on their performance is presented and highlighted in the current review. Lastly, the challenges, the potential, and the future prospects of THz-based biosensing technology are critically addressed.
Collapse
Affiliation(s)
- Meraline Selvaraj
- Department of Electronics & Communication Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India
| | - Sreeja B S
- Department of Electronics & Communication Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India.
| | - Mohamed Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Shenzhen, Guangdong 518052, China; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
5
|
Xue G, Sui Z, Chen B, Xiao Z, Yao Y, Hua L, Xu J. Dimeric-molecular beacon based intramolecular strand displacement amplification enables robust analysis of miRNA. Talanta 2024; 280:126778. [PMID: 39191109 DOI: 10.1016/j.talanta.2024.126778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Given the critical role of miRNAs in regulating gene expression and their potential as biomarkers for various diseases, accurate and sensitive miRNA detection is essential for early diagnosis and monitoring of conditions such as cancer. In this study, we introduce a dimeric molecular beacon (Di-MB) based isothermal strand displacement amplification (ISDA) system (Di-MB-ISDA) for enhanced miRNA detection. The Di-MB system is composed of two monomeric MBs (Mono-MBs) connected by a double-stranded DNA linker with single-stranded sequences in the middle, facilitating binding with the flexible arms of the Mono-MBs. This design forms a compact, high-density structure, significantly improving biostability against nuclease degradation. In the absence of target miRNA, the Di-MB maintains its stable structure. When target miRNA is present, it binds to the stem-loop regions, causing the hairpin structure to unfold and expose the stem sequences. These sequences serve as templates for the built-in primers, triggering DNA replication through an intramolecular recognition mechanism. This spatial confinement effect accelerates the strand displacement reaction, allowing the target miRNA to initiate additional reaction cycles and amplify the detection signal. The Di-MB-ISDA system addresses key challenges such as poor biostability and limited sensitivity seen in traditional methods. By enhancing biostability and optimizing reaction conditions, this system demonstrates robust performance for miRNA detection with a detection limit of 100 pM. The findings highlight the potential of Di-MB-ISDA for sensitive and accurate miRNA analysis, paving the way for its application in biomedical study and disease diagnosis in complex biological samples.
Collapse
Affiliation(s)
- Guohui Xue
- Department of Clinical Laboratory, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang NO.1 People's Hospital, Jiujiang, 332000, China.
| | - Zhuqi Sui
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Baoqiang Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhubing Xiao
- School of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Yuanyuan Yao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Lin Hua
- Department of Clinical Laboratory, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang NO.1 People's Hospital, Jiujiang, 332000, China
| | - Jianguo Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
6
|
Zhang T, Sun X, Chen X, Chen W, Tang H, Li CY. Intelligent near-infrared light-activatable DNA machine with DNA wire nano-scaffold-integrated fast domino-like driving amplification for high-performance imaging in live biological samples. Biosens Bioelectron 2024; 259:116412. [PMID: 38795498 DOI: 10.1016/j.bios.2024.116412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
While there is significant potential for DNA machine-built enzyme-free fluorescence biosensors in the imaging analysis of live biological samples, they persist certain shortcomings. These encompass a deficiency of signal enrichment within a singular interface, uncontrolled premature activation during bio-delivery, and a slow reaction rate due to free nucleic acid collisions. In this contribution, we are committed to resolving the above challenges. Firstly, a single-interface-integrated domino-like driving amplification is constructed. In this conception, a specific target acts as the domino promotor (namely the energy source), initiating a cascading chain reaction that grafts onto a singular interface. Next, an 808 nm near-infrared (NIR) light-excited up-converting luminescence-induced light-activatable biosensing technique is introduced. By locking the target-specific identification segment with a photo-cleavage connector, the up-converted ultraviolet emission can activate target binding in a completely controlled manner. Moreover, a fast reaction rate is achieved by confining nucleic acid collisions within the surface of a DNA wire nano-scaffold, leading to a substantial enhancement in local contact concentration (30.8-fold increase, alongside a 15 times elevation in rate). When a non-coding microRNA (miRNA-221) is positioned as the model low-abundance target for proof-of-concept validation, our intelligent DNA machine demonstrates ultra-high sensitivity (with a limit of detection down to 62.65 fM) and good specificity for this hepatic malignant tumor-associated biomarker in solution detection. Going further, it is worth highlighting that the biosensing system can be employed to carry out high-performance imaging analysis in live bio-samples (ranging from the cellular level to the nude mouse body), thereby propelling the field of DNA machines in disease diagnosis.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Xiaoxue Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Weilin Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Hongwu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Cheng-Yu Li
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
7
|
Hemdan M, Ali MA, Doghish AS, Mageed SSA, Elazab IM, Khalil MM, Mabrouk M, Das DB, Amin AS. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. SENSORS (BASEL, SWITZERLAND) 2024; 24:5143. [PMID: 39204840 PMCID: PMC11360123 DOI: 10.3390/s24165143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review delves into the forefront of biosensor technologies and their critical roles in disease biomarker detection and therapeutic drug monitoring. It provides an in-depth analysis of various biosensor types and applications, including enzymatic sensors, immunosensors, and DNA sensors, elucidating their mechanisms and specific healthcare applications. The review highlights recent innovations such as integrating nanotechnology, developing wearable devices, and trends in miniaturisation, showcasing their transformative potential in healthcare. In addition, it addresses significant sensitivity, specificity, reproducibility, and data security challenges, proposing strategic solutions to overcome these obstacles. It is envisaged that it will inform strategic decision-making, drive technological innovation, and enhance global healthcare outcomes by synthesising multidisciplinary insights.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Ibrahim M. Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Magdy M. Khalil
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt;
- School of Applied Health Sciences, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Giza 12622, Egypt;
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Alaa S. Amin
- Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt;
| |
Collapse
|
8
|
Hatami-Fard G, Anastasova-Ivanova S. Advancements in Cerebrospinal Fluid Biosensors: Bridging the Gap from Early Diagnosis to the Detection of Rare Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:3294. [PMID: 38894085 PMCID: PMC11174891 DOI: 10.3390/s24113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
Collapse
Affiliation(s)
- Ghazal Hatami-Fard
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
9
|
Wang L, Bu S, Xu S, Huang T, Yang F, Tan Q, Deng M, Xie W, Cai B, Chen J. Double base mismatches mediated catalytic hairpin assembly for enzyme-free single-base mutation detection: integrating signal recognition and amplification in one. Mikrochim Acta 2024; 191:334. [PMID: 38758362 DOI: 10.1007/s00604-024-06366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
Single nucleotide polymorphism (SNP) biosensors are emerging rapidly for their promising applications in human disease prevention diagnosis, treatment, and prognosis. However, it remains a bottleneck in equipping simple and stable biosensors with the traits of high sensitivity, non-enzyme, and low cost. Double base mismatches mediated chain displacement reactions have attracted fascinating advantages of tailorable thermodynamics stability, non-enzyme, and excellent assembly compliance to involvement in SNP identification. As the base mismatch position and amount in DNA sequence can be artificially adjusted, it provides plenty of selectivity and specificity for exploring perfect biosensors. Herein, a biosensor with double base mismatches mediated catalytic hairpin assembly (CHA) is designed via one base mismatch in the toehold domain and the other base mismatch in the stem sequence of hairpin 1 (H1) by triggering CHA reaction to achieve selective amplification of the mutation target (MT) and fluorescence resonance energy transfer (FRET) effect that is composed of Cy3 and Cy5 terminally attached H1 and hairpin 2 (H2). Depending on the rationally designed base mismatch position and toehold length, the fabricated biosensors show superior SNP detection performance, exhibiting a good linearity with high sensitivity of 6.6 fM detection limit and a broad detection abundance of 1%. The proposed biosensor can be used to detect the KRAS mutation gene in real samples and obtain good recoveries between 106 and 116.99%. Remarkably, these extendible designs of base mismatches can be used for more types of SNP detection, providing flexible adjustment based on base mismatch position and toehold length variations, especially for their thermodynamic model for DNA-strand displacement reactions.
Collapse
Affiliation(s)
- Lanyue Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Sisi Bu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Shijie Xu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Tuo Huang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Fang Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Qianglong Tan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Minxin Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Bobo Cai
- Zhejiang Hospital, Hangzhou, 310013, China.
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| |
Collapse
|
10
|
Monavari SM, Memarian N. A DFTB study on the electronic response of encapsulated DNA nucleobases onto chiral CNTs as a sequencer. Sci Rep 2024; 14:10826. [PMID: 38734799 PMCID: PMC11636929 DOI: 10.1038/s41598-024-61677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Sequencing the DNA nucleobases is essential in the diagnosis and treatment of many diseases related to human genes. In this article, the encapsulation of DNA nucleobases with some of the important synthesized chiral (7, 6), (8, 6), and (10, 8) carbon nanotubes were investigated. The structures were modeled by applying density functional theory based on tight binding method (DFTB) by considering semi-empirical basis sets. Encapsulating DNA nucleobases on the inside of CNTs caused changes in the electronic properties of the selected chiral CNTs. The results confirmed that van der Waals (vdW) interactions, π-orbitals interactions, non-bonded electron pairs, and the presence of high electronegative atoms are the key factors for these changes. The result of electronic parameters showed that among the CNTs, CNT (8, 6) is a suitable choice in sequencing guanine (G) and cytosine (C) DNA nucleobases. However, they are not able to sequence adenine (A) and thymine (T). According to the band gap energy engineering approach and absorption energy, the presence of G and C DNA nucleobases decreased the band gap energy of CNTs. Hence selected CNTs suggested as biosensor substrates for sequencing G and C DNA nucleobases.
Collapse
Affiliation(s)
| | - Nafiseh Memarian
- Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran.
| |
Collapse
|
11
|
Xin MK, Sun X, Tang HW, Li CY. Near-Infrared Light-Powered and DNA Nanocage-Confined Catalytic Hairpin Assembly Nanobiosensor with a Nucleic Acid Restriction Behavior and Reinforced Enzymatic Resistance for Robust Imaging Assay in Live Biosystems. Anal Chem 2024; 96:7101-7110. [PMID: 38663376 DOI: 10.1021/acs.analchem.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While DNA amplifier-built nanobiosensors featuring a DNA polymerase-free catalytic hairpin assembly (CHA) reaction have shown promise in fluorescence imaging assays within live biosystems, challenges persist due to unsatisfactory precision stemming from premature activation, insufficient sensitivity arising from low reaction kinetics, and poor biostability caused by endonuclease degradation. In this research, we aim to tackle these issues. One aspect involves inserting an analyte-binding unit with a photoinduced cleavage bond to enable a light-powered notion. By utilizing 808 nm near-infrared (NIR) light-excited upconversion luminescence as the ultraviolet source, we achieve entirely a controllable sensing event during the biodelivery phase. Another aspect refers to confining the CHA reaction within the finite space of a DNA self-assembled nanocage. Besides the accelerated kinetics (up to 10-fold enhancement) resulting from the nucleic acid restriction behavior, the DNA nanocage further provides a 3D rigid skeleton to reinforce enzymatic resistance. After selecting a short noncoding microRNA (miRNA-21) as the modeled low-abundance sensing analyte, we have verified that the innovative NIR light-powered and DNA nanocage-confined CHA nanobiosensor possesses remarkably high sensitivity and specificity. More importantly, our sensing system demonstrates a robust imaging capability for this cancer-related universal biomarker in live cells and tumor-bearing mouse bodies, showcasing its potential applications in disease analysis.
Collapse
Affiliation(s)
- Meng-Kun Xin
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cheng-Yu Li
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
12
|
He JW, Sun X, Tang HW, Liu D, Li CY. Photoresponsive CHA-Integrated Self-Propelling 3D DNA Walking Amplifier within the Concentration Localization Effect of DNA Molecular Framework Enables Highly Efficient Fluorescence Bioimaging. Anal Chem 2024; 96:2142-2151. [PMID: 38258616 DOI: 10.1021/acs.analchem.3c04920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
While three-dimensional (3D) DNA walking amplifiers hold considerable promise in the construction of advanced DNA-based fluorescent biosensors for bioimaging, they encounter certain difficulties such as inadequate sensitivity, premature activation, the need for exogenous propelling forces, and low reaction rates. In this contribution, a variety of profitable solutions have been explored. First, a catalytic hairpin assembly (CHA)-achieved nonenzymatic isothermal nucleic acid amplification is integrated to enhance sensitivity. Subsequently, one DNA component is simply functionalized with a photocleavage-bond to conduct a photoresponsive manner, whereby the target recognition occurs only when the biosensor is exposed to an external ultraviolet light source, overcoming premature activation during biodelivery. Furthermore, a special self-propelling walking mechanism is implemented by reducing biothiols to MnO2 nanosheets, thereby propelling forces that are self-supplied to a Mn2+-reliant DNAzyme. By carrying the biosensing system with a DNA molecular framework to induce a unique concentration localization effect, the nucleic acid contact reaction rate is notably elevated by 6 times. Following these, an ultrasensitive in vitro detection performance with a limit of detection down to 2.89 fM is verified for a cancer-correlated microRNA biomarker (miRNA-21). Of particular importance, our multiple concepts combined 3D DNA walking amplifier that enables highly efficient fluorescence bioimaging in live cells and even bodies, exhibiting a favorable application prospect in disease analysis.
Collapse
Affiliation(s)
- Jing-Wei He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Da Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
13
|
Qiu Y, Liu B, Zhou W, Tao X, Liu Y, Mao L, Wang H, Yuan H, Yang Y, Li B, Wang W, Qiu Y. Repair-driven DNA tetrahedral nanomachine combined with DNAzyme for 8-oxo guanine DNA glycosylase activity assay, drug screening and intracellular imaging. Analyst 2024; 149:537-545. [PMID: 38088097 DOI: 10.1039/d3an01521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
8-oxo guanine DNA glycosylase (8-oxoG DNA glycosylase), a crucial DNA repair enzyme, is essential for maintaining genome integrity and preventing diseases caused by DNA oxidative damage. Imaging 8-oxoG DNA glycosylase in living cells requires a dependable technique. In this study, we designed a DNAzyme-modified DNA tetrahedral nanomachine (DTDN) powered by 8-oxoG restoration. Incorporating a molecular beacon probe (MB), the constructed platform was used for amplified in situ monitoring of 8-oxoG DNA glycosylase. Under normal conditions, duplexing with a complementary strand modified with two 8-oxoG sites inhibited the activity of DNAzyme. The restoration of DNAzyme activity by the repair of intracellular 8-oxoG DNA glycosylase on 8-oxoG bases can initiate a signal amplification reaction. This detection system can detect 8-oxoG DNA glycosylase activity linearly between 0 and 20 U mL-1, with a detection limit as low as 0.52 U mL-1. Using this method, we were able to screen 14 natural compounds and identify 6 of them as 8-oxoG DNA glycosylase inhibitors. In addition, a novel approach was utilized to assess the activity of 8-oxoG DNA glycosylase in living cells. In conclusion, this method provides a universal tool for monitoring the activity of 8-oxoG DNA glycosylase in vitro and in living cells, which holds great promise for elucidating the enzyme's functionality and facilitating drug screening endeavors.
Collapse
Affiliation(s)
- Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenchao Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Xueqing Tao
- College of Biology, Hunan University, Changsha 410082, China
| | - Yang Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Linxi Mao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
14
|
Zhang Y, Wang L, Ye J, Chen J, Xu S, Bu S, Deng M, Bian L, Zhao X, Zhang C, Weng L, Zhang D. Rationally Designed Dual Base Pair Mismatch Enables Toehold-Mediated Strand Displacement to Efficiently Recognize Single-Nucleotide Polymorphism without Enzymes. Anal Chem 2024; 96:554-563. [PMID: 38112727 DOI: 10.1021/acs.analchem.3c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The efficiency of the enzyme-free toehold-mediated strand displacement (TMSD) technique is often insufficient to detect single-nucleotide polymorphism (SNP) that possesses only single base pair mismatch discrimination. Here, we report a novel dual base pair mismatch strategy enabling TMSD biosensing for SNP detection under enzyme-free conditions when coupled with catalytic hairpin assembly (CHA) and fluorescence resonance energy transfer (FRET). The strategy is based on a competitive strand displacement reaction mechanism, affected by the thermodynamic stability originating from rationally designed dual base pair mismatch, for the specific recognition of mutant-type DNA. In particular, enzyme-free nucleic acid circuits, such as CHA, emerge as a powerful method for signal amplification. Eventually, the signal transduction of this proposed biosensor was determined by FRET between streptavidin-coated 605 nm emission quantum dots (605QDs, donor) and Cy5/biotin hybridization (acceptor, from CHA) when incubated with each other. The proposed biosensor displayed high sensitivity to the mutant target (MT) with a detection concentration down to 4.3 fM and led to high discrimination factors for all types of mismatches in multiple sequence contexts. As such, the application of this proposed biosensor to investigate mechanisms of the competitive strand displacement reaction further illustrates the versatility of our dual base pair mismatch strategy, which can be utilized for the creation of a new class of biosensors.
Collapse
Affiliation(s)
- Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
| | - Lanyue Wang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Shijie Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Sisi Bu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Minxin Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Lina Bian
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
| | - Xiaoyu Zhao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Chunlong Zhang
- Research Center for Intelligent Robotics, Zhejiang Laboratory, Hangzhou 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Zhejiang Laboratory, Hangzhou 311121, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311121, China
| |
Collapse
|
15
|
Patil AVP, Yang PF, Yang CY, Gaur MS, Wu CC. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors. Crit Rev Biomed Eng 2024; 52:17-40. [PMID: 38523439 DOI: 10.1615/critrevbiomedeng.2023049469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
An outbreak of foodborne pathogens would cause severe consequences. Detecting and diagnosing foodborne diseases is crucial for food safety, and it is increasingly important to develop fast, sensitive, and cost-effective methods for detecting foodborne pathogens. In contrast to traditional methods, such as medium-based culture, nucleic acid amplification test, and enzyme-linked immunosorbent assay, electrochemical biosensors possess the advantages of simplicity, rapidity, high sensitivity, miniaturization, and low cost, making them ideal for developing pathogen-sensing devices. The biorecognition layer, consisting of recognition elements, such as aptamers, antibodies and bacteriophages, and other biomolecules or polymers, is the most critical component to determine the selectivity, specificity, reproducibility, and lifetime of a biosensor when detecting pathogens in a biosample. Furthermore, nanomaterials have been frequently used to improve electrochemical biosensors for sensitively detecting foodborne pathogens due to their high conductivity, surface-to-volume ratio, and electrocatalytic activity. In this review, we survey the characteristics of biorecognition elements and nanomaterials in constructing electrochemical biosensors applicable for detecting foodborne pathogens during the past five years. As well as the challenges and opportunities of electrochemical biosensors in the application of foodborne pathogen detection are discussed.
Collapse
Affiliation(s)
- Avinash V Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Ping-Feng Yang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan R.O.C
| | - M S Gaur
- Department of Physics, Hindustan College of Science and Technology, Farah, Mathura, 281122 U.P., India
| | | |
Collapse
|
16
|
Chen J, Chen M, Tong H, Wu F, Liu Y, Liu C. Fluorescence biosensor for ultrasensitive detection of the available lead based on target biorecognition-induced DNA cyclic assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167253. [PMID: 37741398 DOI: 10.1016/j.scitotenv.2023.167253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
A fluorescence biosensor was developed for the ultrasensitive detection of the available lead in soil samples by coupling with DNAzyme and hairpin DNA cyclic assembly. The biorecognition between lead and 8-17 DNAzyme will cleave the substrate strands (DNA2) and release the trigger DNA (T), which can be used to initiate the DNA assembly reactions among the hairpins (H1, H2, and H3). The formed Y-shaped sensing scaffold (H1-H2-H3) contains active Mg2+-DNAyzmes at three directions. In the presence of Mg2+, the BHQ and FAM modified H4 will be cleaved by the Mg2+-DNAyzme to generate a high fluorescence signal for lead monitoring. The linear range of the fluorescence biosensor is from 1 pM to 100 nM and the detection limit is 0.2 pM. The biosensor also exhibited high selectivity and the nontarget competing heavy metals did not interfere with the detection results. Compare with the traditional method (DTPA+ICP-MS) for the available lead detection, the relative error (Re) is in the range from -8.3 % to 9.5 %. The results indicated that our constructed fluorescence biosensor is robust, accurate, and reliable, and can be applied directly to the detection of the available lead in soil samples without complex extraction steps.
Collapse
Affiliation(s)
- Junhua Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
17
|
Song X, Fredj Z, Zheng Y, Zhang H, Rong G, Bian S, Sawan M. Biosensors for waterborne virus detection: Challenges and strategies. J Pharm Anal 2023; 13:1252-1268. [PMID: 38174120 PMCID: PMC10759259 DOI: 10.1016/j.jpha.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 01/05/2024] Open
Abstract
Waterborne viruses that can be harmful to human health pose significant challenges globally, affecting health care systems and the economy. Identifying these waterborne pathogens is essential for preventing diseases and protecting public health. However, handling complex samples such as human and wastewater can be challenging due to their dynamic and complex composition and the ultralow concentration of target analytes. This review presents a comprehensive overview of the latest breakthroughs in waterborne virus biosensors. It begins by highlighting several promising strategies that enhance the sensing performance of optical and electrochemical biosensors in human samples. These strategies include optimizing bioreceptor selection, transduction elements, signal amplification, and integrated sensing systems. Furthermore, the insights gained from biosensing waterborne viruses in human samples are applied to improve biosensing in wastewater, with a particular focus on sampling and sample pretreatment due to the dispersion characteristics of waterborne viruses in wastewater. This review suggests that implementing a comprehensive system that integrates the entire waterborne virus detection process with high-accuracy analysis could enhance virus monitoring. These findings provide valuable insights for improving the effectiveness of waterborne virus detection, which could have significant implications for public health and environmental management.
Collapse
Affiliation(s)
- Xixi Song
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
18
|
Xu P, Cao T, Fan Q, Wang X, Ye F, Eiser E. Whole-genome detection using multivalent DNA-coated colloids. Proc Natl Acad Sci U S A 2023; 120:e2305995120. [PMID: 37669392 PMCID: PMC10500262 DOI: 10.1073/pnas.2305995120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
To minimize the incorrect use of antibiotics, there is a great need for rapid and inexpensive tests to identify the pathogens that cause an infection. The gold standard of pathogen identification is based on the recognition of DNA sequences that are unique for a given pathogen. Here, we propose and test a strategy to develop simple, fast, and highly sensitive biosensors that make use of multivalency. Our approach uses DNA-functionalized polystyrene colloids that distinguish pathogens on the basis of the frequency of selected short DNA sequences in their genome. Importantly, our method uses entire genomes and does not require nucleic acid amplification. Polystyrene colloids grafted with specially designed surface DNA probes can bind cooperatively to frequently repeated sequences along the entire genome of the target bacteria, resulting in the formation of large and easily detectable colloidal aggregates. Our detection strategy allows "mix and read" detection of the target analyte; it is robust and highly sensitive over a wide concentration range covering, in the case of our test target genome Escherichia coli bl21-de3, 10 orders of magnitude from [Formula: see text] to [Formula: see text] copies/mL. The sensitivity compares well with state-of-the-art sensing techniques and has excellent specificity against nontarget bacteria. When applied to real samples, the proposed technique shows an excellent recovery rate. Our detection strategy opens the way to developing a robust platform for pathogen detection in the fields of food safety, disease control, and environmental monitoring.
Collapse
Affiliation(s)
- Peicheng Xu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Ting Cao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Xiaochen Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Erika Eiser
- Porelab, Department of Physics, Norwegian University of Science and Technology, TrondheimNO-7491, Norway
- Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
19
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
20
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
21
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
22
|
Mehrannia L, Khalilzadeh B, Rahbarghazi R, Milani M, Saydan Kanberoglu G, Yousefi H, Erk N. Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection. BIOSENSORS 2023; 13:216. [PMID: 36831982 PMCID: PMC9954029 DOI: 10.3390/bios13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Listeria monocytogenes (L.M.) is a gram-positive bacillus with wide distribution in the environment. This bacterium contaminates water sources and food products and can be transmitted to the human population. The infection caused by L.M. is called listeriosis and is common in pregnant women, immune-deficient patients, and older adults. Based on the released statistics, listeriosis has a high rate of hospitalization and mortality; thus, rapid and timely detection of food contamination and listeriosis cases is necessary. During the last few decades, biosensors have been used for the detection and monitoring of varied bacteria species. These devices are detection platforms with great sensitivity and low detection limits. Among different types of biosensors, electrochemical biosensors have a high capability to circumvent several drawbacks associated with the application of conventional laboratory techniques. In this review article, different electrochemical biosensor types used for the detection of listeriosis were discussed in terms of actuators, bioreceptors, specific working electrodes, and signal amplification. We hope that this review will facilitate researchers to access a complete and comprehensive template for pathogen detection based on the different formats of electrochemical biosensors.
Collapse
Affiliation(s)
- Leila Mehrannia
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | | | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy 58167-53464, Iran
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| |
Collapse
|
23
|
Yang B, Gordiyenko K, Schäfer A, Dadfar SMM, Yang W, Riehemann K, Kumar R, Niemeyer CM, Hirtz M. Fluorescence Imaging Study of Film Coating Structure and Composition Effects on DNA Hybridization. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Bingquan Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Klavdiya Gordiyenko
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Andreas Schäfer
- nanoAnalytics GmbH Heisenbergstraße 11 48149 Münster Germany
| | - Seyed Mohammad Mahdi Dadfar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Wenwu Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Kristina Riehemann
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
24
|
Sypabekova M, Hagemann A, Rho D, Kim S. Review: 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications. BIOSENSORS 2022; 13:bios13010036. [PMID: 36671871 PMCID: PMC9856095 DOI: 10.3390/bios13010036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
Surface functionalization and bioreceptor immobilization are critical processes in developing a highly sensitive and selective biosensor. The silanization process with 3-aminopropyltriethoxysilane (APTES) on oxide surfaces is frequently used for surface functionalization because of beneficial characteristics such as its bifunctional nature and low cost. Optimizing the deposition process of the APTES layer to obtain a monolayer is crucial to having a stable surface and effectively immobilizing the bioreceptors, which leads to the improved repeatability and sensitivity of the biosensor. This review provides an overview of APTES deposition methods, categorized into the solution-phase and vapor-phase, and a comprehensive summary and guide for creating stable APTES monolayers on oxide surfaces for biosensing applications. A brief explanation of APTES is introduced, and the APTES deposition methods with their pre/post-treatments and characterization results are discussed. Lastly, APTES deposition methods on nanoparticles used for biosensors are briefly described.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Aidan Hagemann
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Donggee Rho
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Seunghyun Kim
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
25
|
Quintela IA, Vasse T, Lin CS, Wu VCH. Advances, applications, and limitations of portable and rapid detection technologies for routinely encountered foodborne pathogens. Front Microbiol 2022; 13:1054782. [PMID: 36545205 PMCID: PMC9760820 DOI: 10.3389/fmicb.2022.1054782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/08/2022] Open
Abstract
Traditional foodborne pathogen detection methods are highly dependent on pre-treatment of samples and selective microbiological plating to reliably screen target microorganisms. Inherent limitations of conventional methods include longer turnaround time and high costs, use of bulky equipment, and the need for trained staff in centralized laboratory settings. Researchers have developed stable, reliable, sensitive, and selective, rapid foodborne pathogens detection assays to work around these limitations. Recent advances in rapid diagnostic technologies have shifted to on-site testing, which offers flexibility and ease-of-use, a significant improvement from traditional methods' rigid and cumbersome steps. This comprehensive review aims to thoroughly discuss the recent advances, applications, and limitations of portable and rapid biosensors for routinely encountered foodborne pathogens. It discusses the major differences between biosensing systems based on the molecular interactions of target analytes and biorecognition agents. Though detection limits and costs still need further improvement, reviewed technologies have high potential to assist the food industry in the on-site detection of biological hazards such as foodborne pathogens and toxins to maintain safe and healthy foods. Finally, this review offers targeted recommendations for future development and commercialization of diagnostic technologies specifically for emerging and re-emerging foodborne pathogens.
Collapse
Affiliation(s)
- Irwin A. Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Tyler Vasse
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States,*Correspondence: Vivian C. H. Wu,
| |
Collapse
|
26
|
Kaci K, Del Caño R, Luna M, Milán-Rois P, Castellanos M, Abreu M, Cantón R, Galán JC, Somoza Á, Miranda R, González de Rivera G, García-Mendiola T, Lorenzo E. Paving the way to point of care (POC) devices for SARS-CoV-2 detection. Talanta 2022; 247:123542. [PMID: 35609482 PMCID: PMC9116970 DOI: 10.1016/j.talanta.2022.123542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 01/12/2023]
Abstract
In this work we present a powerful, affordable, and portable biosensor to develop Point of care (POC) SARS-CoV-2 virus detection. It is constructed from a fast, low cost, portable and electronically automatized potentiostat that controls the potential applied to a disposable screen-printed electrochemical platform and the current response. The potentiostat was designed to get the best signal-to-noise ratio, a very simple user interface offering the possibility to be used by any device (computer, mobile phone or tablet), to have a small and portable size, and a cheap manufacturing cost. Furthermore, the device includes as main components, a data acquisition board, a controller board and a hybridization chamber with a final size of 10 × 8 × 4 cm. The device has been tested by detecting specific SARS-CoV-2 virus sequences, reaching a detection limit of 22.1 fM. Results agree well with those obtained using a conventional potentiostat, which validate the device and pave the way to the development of POC biosensors. In this sense, the device has finally applied to directly detect the presence of the virus in nasopharyngeal samples of COVID-19 patients and results confirm its utility for the rapid detection infected samples avoiding any amplification process.
Collapse
Affiliation(s)
- Karim Kaci
- HCTLab - Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rafael Del Caño
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Departamento de Química Física y Termodinámica Aplicada e Instituto Universitario de Nanoquímica, Universidad de Córdoba, 14014, Córdoba, Spain
| | - Mónica Luna
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, 28760, Madrid, Spain
| | - Paula Milán-Rois
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | | | - Melanie Abreu
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain; Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Álvaro Somoza
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | | | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
27
|
Electroanalytical sensors for antiretroviral drugs determination in pharmaceutical and biological samples: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
KILIÇ NM, ODACI DEMİRKOL D. Virus detection using bio-based analysis systems: a review of biorecognition strategies. Turk J Chem 2022; 46:1802-1816. [PMID: 37621347 PMCID: PMC10446939 DOI: 10.55730/1300-0527.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/19/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious illnesses are on the rise in today's world, with serious consequences for animals, plants, and humans. Several infections, including the human immunodeficiency virus, affect a large number of individuals in various countries, particularly in the poorer portions of contemporary society, and continue to cause a variety of health problems. Viruses are tiny parasitic organisms. They are infectious agents that can only reproduce within a live cell of an organism. Viruses may infect any living organism. For clinical point-of-care applications, early detections for harmful agents such as bacteria, viruses are critical. The possibility of worldwide epidemics as a result of viral propagation emphasizes the importance of creating speedy, precise, and sensitive early detection systems. Furthermore, because certain viruses have a long latent phase and can evolve from one person to another, early detection during the incubation period is critical for improving recovery rates and avoiding pandemics. Nowadays, there has been various bio-based detection systems that have rapid reaction times, user-friendly, cost-effective, and repeatable. In this review, biological molecule-based detection technologies which focus on virus analysis are examined.
Collapse
Affiliation(s)
- Nur Melis KILIÇ
- Department of Biochemistry, Faculty of Science, Ege University, İzmir,
Turkey
| | | |
Collapse
|
29
|
Chi Z, Wu Y, Chen L, Yang H, Khan MR, Busquets R, Huang N, Lin X, Deng R, Yang W, Huang J. CRISPR-Cas14a-integrated strand displacement amplification for rapid and isothermal detection of cholangiocarcinoma associated circulating microRNAs. Anal Chim Acta 2022; 1205:339763. [DOI: 10.1016/j.aca.2022.339763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
|
30
|
Gavrilaș S, Ursachi CȘ, Perța-Crișan S, Munteanu FD. Recent Trends in Biosensors for Environmental Quality Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:1513. [PMID: 35214408 PMCID: PMC8879434 DOI: 10.3390/s22041513] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 05/07/2023]
Abstract
The monitoring of environmental pollution requires fast, reliable, cost-effective and small devices. This need explains the recent trends in the development of biosensing devices for pollutant detection. The present review aims to summarize the newest trends regarding the use of biosensors to detect environmental contaminants. Enzyme, whole cell, antibody, aptamer, and DNA-based biosensors and biomimetic sensors are discussed. We summarize their applicability to the detection of various pollutants and mention their constructive characteristics. Several detection principles are used in biosensor design: amperometry, conductometry, luminescence, etc. They differ in terms of rapidity, sensitivity, profitability, and design. Each one is characterized by specific selectivity and detection limits depending on the sensitive element. Mimetic biosensors are slowly gaining attention from researchers and users due to their advantages compared with classical ones. Further studies are necessary for the development of robust biosensing devices that can successfully be used for the detection of pollutants from complex matrices without prior sample preparation.
Collapse
Affiliation(s)
| | | | | | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, Tourism and Environmental Protection, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.G.); (C.Ș.U.); (S.P.-C.)
| |
Collapse
|
31
|
Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022; 201:592-606. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
As significant components of the organism, carbohydrates and glycoconjugates play indispensable roles in energy supply, cell signaling, immune modulation, and tumor cell invasion, and function as biomarkers since aberrance of them has been proved to be associated with the emergence and development of certain diseases. Functional nucleic acids (FNAs) have properties including easy-to-synthesize, good stability, good biocompatibility, low cost, and high programmability, they have attracted significant research attention and been incorporated into biosensors for detecting disease-related carbohydrates and glycoconjugates. This review summarizes the construction strategies and biosensing applications of FNAs-based biosensors in glycobiology in terms of target recognition and signal transduction. By illustrating the mechanisms and comparing the performances, the challenges and development opportunities in this area have been critically elaborated. We believe that this review will provide a better understanding of the role of FNAs in the analysis of disease-related carbohydrates and glycoconjugates, and inspire further discovery in fields that include glycobiology, chemical biology, clinical diagnosis, and drug development.
Collapse
Affiliation(s)
- Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
32
|
Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022; 189:443. [PMID: 36350388 PMCID: PMC9643942 DOI: 10.1007/s00604-022-05533-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
33
|
Wang J, Ma JY, Wang DX, Liu B, Jing X, Chen DY, Tang AN, Kong DM. Oxidative Cleavage-Based Three-Dimensional DNA Biosensor for Ratiometric Detection of Hypochlorous Acid and Myeloperoxidase. Anal Chem 2021; 93:16231-16239. [PMID: 34818886 DOI: 10.1021/acs.analchem.1c04113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methods to detect and quantify disease biomarkers with high specificity and sensitivity in biological fluids play a key role in enabling clinical diagnosis, including point-of-care testing. Myeloperoxidase (MPO) is an emerging biomarker for the detection of inflammation, neurodegenerative diseases, and cardiovascular disease, where excess MPO can lead to oxidative damage to biomolecules in homeostatic systems. While numerous methods have been developed for MPO analysis, most techniques are challenging in clinical applications due to the lack of amplification methods, high cost, or other practical drawbacks. Enzyme-linked immunosorbent assays are currently used for the quantification of MPO in clinical practice, which is often limited by the availability of antibodies with high affinity and specificity and the significant nonspecific binding of antibodies to the analytical surface. In contrast, nucleic acid-based biosensors are of interest because of their simplicity, fast response time, low cost, high sensitivity, and low background signal, but detection targets are limited to nucleic acids and non-nucleic acid biomarkers are rare. Recent studies reveal that the modification of a genome in the form of phosphorothioate is specifically sensitive to the oxidative effects of the MPO/H2O2/Cl- system. We developed an oxidative cleavage-based three-dimensional DNA biosensor for rapid, ratiometric detection of HOCl and MPO in a "one-pot" method, which is simple, stable, sensitive, specific, and time-saving and does not require a complex reaction process, such as PCR and enzyme involvement. The constructed biosensor has also been successfully used for MPO detection in complex samples. This strategy is therefore of great value in disease diagnosis and biomedical research.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Yi Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Jing
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dan-Ye Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|