1
|
Guo X, Zhu X, Long Q, Wu X, Li Z, Li J, Zhang T, Qian X, Li X, Chen Y, Zhu S, Hong W, Hong Q, Zhao Y. Multifunctional pressure and humidity sensor modulated by electrostatic interactions and hydrogen bonds for wearable health monitoring. J Colloid Interface Sci 2025; 678:1061-1072. [PMID: 39276515 DOI: 10.1016/j.jcis.2024.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Breathing and urination, are vital physiological activities of the human body, continuous real-time monitoring of these physiological behaviors could offer timely feedback on an individual's health status. However, current monitoring techniques predominantly rely on cumbersome and intricate medical apparatuses, posing challenges in adapting to the diverse requirements of multi-scenario detection. Consequently, there is a growing interest in developing wearable devices capable of monitoring breathing and urination. In this work, we developed a multifunctional sensor integrating humidity and pressure sensing modes using a simple dip-coating process. By introducing sodium carboxymethyl cellulose and conductive polyaniline hybrid intercalation between MXene layers, a stable conductive network is established through hydrogen bonds and electrostatic interactions among materials. The overall electromechanical properties of the composites will be well improved. And, the effects of different conductive filler ratios and the number of dipping times on the construction of conductive networks are investigated. The multifunctional sensor exhibited improved sensing characteristics, including detecting pressures up to 532 kPa and a sensitivity of 19.58 kPa-1. Furthermore, it also demonstrates good humidity-sensing capabilities. Tests on volunteers demonstrated the potential in the detection of breathing and urination. In addition, the sensors are capable of transmitting Morse code. This interesting application will offer the possibility of normal communication for people with speech impairments. Given its utility and sustainability, the sensor has potential for applications in wearable health monitoring, intelligent life and telemedicine.
Collapse
Affiliation(s)
- Xiaohui Guo
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China.
| | - Xiaowen Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Qiang Long
- Huadong Photo-Electron IC Institute, Bengbu Anhui 233030, China
| | - Xinyu Wu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Zhaobin Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Jiahao Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Tianxu Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Xingyu Qian
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Xianghui Li
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Yinuo Chen
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Shengxin Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Weiqiang Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China.
| | - Qi Hong
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China
| | - Yunong Zhao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Integrated Circuits, Anhui University, Hefei 230601, China.
| |
Collapse
|
2
|
Guo L, Wang J, Han H, Wang P, Lu Y, Yuan Q, Du C, Yin S, Zhou Y, Zhang C. MXene/WO 3 Sensor Array with Improved SNN Algorithm for Accurate Identification of Toxic Gases. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62421-62428. [PMID: 39497603 DOI: 10.1021/acsami.4c14793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Gas sensing is pivotal in critical areas such as industrial production and food safety. This study explores the gas classification capabilities of MXene-based gas sensors. Pure V2CTx MXene and an MXene/WO3 nanocomposite were synthesized, and MXene-based gas sensors were integrated into a 2 × 2 rudimentary electronic nose array. The tests on gas sensitivity revealed that the inclusion of WO3 nanoparticles (NPs) boosted the sensor's response to 10 ppm of NO2 from 2.82 to 3.45 at room temperature. Moreover, the sensor showcased a rapid response/recovery duration of 74.5/149.0 s, excellent environmental stability, and long-term reliable sensing performance. Furthermore, we have improved the method of accurately identifying four toxic gases detected by an MXene-based sensor array using a spiking neural network (SNN) based on the memristive system. Also, the performance of this identification method revealed that the method achieved 95.83% accuracy in the identification of the four gases. Notably, the improved SNN demonstrated approximately 5% higher accuracy than the other gas recognition algorithm. These results highlight the potential of SNN as a powerful tool to accurately and reliably identify toxic gases based on the gas sensor array.
Collapse
Affiliation(s)
- Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Junke Wang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Haoran Han
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Peng Wang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yunxiang Lu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Qilong Yuan
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, PR China
| | - Shuo Yin
- Department of Mechanical and Manufacturing Engineering, The University of Dublin, Parsons Building, Dublin 2, Ireland
| | - Ye Zhou
- Institute of Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, PR China
| |
Collapse
|
3
|
Song Z, Wang L, Chen L, Chen Y. 2D MXene Biomaterials for Catalytic Medical Applications. ChemMedChem 2024; 19:e202400329. [PMID: 38981670 DOI: 10.1002/cmdc.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024]
Abstract
In recent years, two-dimensional transition metal carbides, nitrides, and carbonitrides, termed as MXenes, have been widely applied in energy storage, photocatalysis and biomedicine owing to their unique physicochemical properties of large specific surface area, high electrical conductivity, excellent optical performance, good stability, etc. Moreover, due to their strong light absorption capacity in the first and second near-infrared bio-window, and their ability of being simply functionalized with multiple organic/inorganic materials, MXene biomaterials have shown great potential in the field of catalytic therapy. This review will summarize the common catalytic mechanism of MXene biomaterials and their latest applications in catalytic medicine such as tumor therapy, antibacterial and anti-inflammatory, and present the current challenges and opportunities in clinical translation for future development to promote the advancement of MXene biomaterials in the field of catalytic medicine.
Collapse
Affiliation(s)
- Ziying Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
4
|
Gong H, Ni L, Chao H, Liu Z, Zhu H, Hu T, Guo Y, Cheng Z, Mu Y, Zhang D. Ammonia Sensing Performance at Room Temperature of Ca-Doped CNFs/Al 2O 3 Gas Sensor. ACS OMEGA 2024; 9:42932-42943. [PMID: 39464447 PMCID: PMC11500367 DOI: 10.1021/acsomega.4c05814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
When NH3 in the environment exceeds a certain concentration, it may have adverse effects on human health. Ammonia gas sensors currently on the market usually work under high temperatures and are not only expensive but also have poor performance in terms of selectivity. Therefore, the preparation of an ammonia gas sensor that works at room temperature, is low cost, and has high sensitivity and selectivity is particularly important. This paper introduces a room temperature ammonia gas sensor based on a Ca-doped CNFs/Al2O3 nanocomposite material, prepared using electrospinning, pre-oxidation, and carbonization processes. The surface morphology, microstructure, and chemical composition of the materials have been characterized by scanning electron microscopy, Raman, and X-ray photoelectron spectroscopy. The Ca-doped CNFs/Al2O3 gas sensor has excellent selectivity for ammonia at room temperature and low sensitivity to other volatile gases such as ethanol, dimethylformamide, HCl, and methanol. At 100 ppm of NH3, the response value of the Ca-doped CNFs/Al2O3 gas sensor can reach 22.73, demonstrating excellent repeatability and long-term stability. Its performance is not affected by environmental temperature and humidity, providing great convenience for practical applications. In addition, we also discuss the sensing mechanism of the Ca-doped CNFs/Al2O3 gas sensor. This paper not only provides effective materials and methods for the development of high-performance room temperature ammonia gas sensors but is also expected to play a role in the field of environmental monitoring.
Collapse
Affiliation(s)
- He Gong
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
- College
of Electronic Science and Engineering, Jilin
University, Changchun 130012, China
- Jilin
Province Intelligent Environmental Engineering Research Center, Changchun 130118, China
| | - Lingyun Ni
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
| | - Hongli Chao
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
| | - Zeye Liu
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
| | - Hang Zhu
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
| | - Tianli Hu
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
- Jilin
Province Intelligent Environmental Engineering Research Center, Changchun 130118, China
| | - Ying Guo
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
- Jilin
Province Intelligent Environmental Engineering Research Center, Changchun 130118, China
| | - Zhiqiang Cheng
- College
of Resources and Environment, Jilin Agricultural
University, Changchun 130118, China
| | - Ye Mu
- College
of Information Technology, Jilin Agricultural
University, Changchun 130118, China
- Jilin
Province Intelligent Environmental Engineering Research Center, Changchun 130118, China
| | - Daming Zhang
- College
of Electronic Science and Engineering, Jilin
University, Changchun 130012, China
| |
Collapse
|
5
|
Kumar KR, Shaik AH. Novel 2D Layered MXene Nanofluids for Enhancing the Convective Heat Transfer Performance of Double-Pipe Heat Exchangers. ACS OMEGA 2024; 9:41758-41775. [PMID: 39398115 PMCID: PMC11465281 DOI: 10.1021/acsomega.4c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024]
Abstract
This paper proposes a new class of novel 2D layered structured materials, such as MXene (MX), for the synthesis of innovative nanofluids as coolants to evaluate the convective heat transfer performance of a double-pipe heat exchanger (DPHE). Convective heat transfer experiments were successfully conducted in lab-scale fabricated DPHE using low-concentration MXene nanofluids by varying the volume concentration of MXene nanoparticles (0.01-0.05 vol %) in different base fluids. The influence of the MXene nanofluids on various convective heat transfer parameters, such as LMTD, Nusselt number, heat transfer coefficient, and heat transfer rate without using any inserts in the DPHE was experimentally investigated. The results of the experiments revealed that the heat transfer coefficient and Nusselt number increase with increasing Reynolds number (Re) and concentration of MXene nanoparticles in the base fluids. Maximum enhancement in heat transfer coefficient (126%) was achieved for methanol-based MXene nanofluids at 0.05 vol %. Moreover, the Nusselt number exhibits a maximum enhancement of ∼50% for methanol- and water-based MXene nanofluids. In contrast, the thermal performance factor was also estimated, and it was observed that water- and methanol- based MXene nanofluids showed higher values than castor oil- and silicone oil-based MXene nanofluids. Finally, the LMTD and heat transfer coefficients were successfully validated using Aspen HYSYS 12.1 software.
Collapse
Affiliation(s)
- Kodi Rajesh Kumar
- Colloids and Polymers Research
Group School of Chemical Engineering, Vellore
Institute of Technology, Vellore 632014, India
| | - Aabid Hussain Shaik
- Colloids and Polymers Research
Group School of Chemical Engineering, Vellore
Institute of Technology, Vellore 632014, India
| |
Collapse
|
6
|
Huang A, Dong X, Shen G, He L, Cai C, Liu Q, Niu Q, Xu C. Target Recognition-Triggered Interfacial Electron Transfer Model: Toward Signal-On Photoelectrochemical Aptasensing for Efficient Detection of Staphylococcus aureus Using Ti 3C 2T x-Au NBPs/ZnO NR Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20526-20536. [PMID: 39302020 DOI: 10.1021/acs.langmuir.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Staphylococcus aureus (S. aureus) is one of the most common foodborne pathogens worldwide, which poses a great threat to public health. It is of utmost importance to develop rapid, simple, and sensitive methods for the determination of S. aureus. A signal-on photoelectrochemical (PEC) aptasensor is constructed herein based on titanium carbide (Ti3C2Tx)-Au nanobipyramids (NBPs)/ZnO nanoarrays (NRs). The reliability and capability of the PEC aptasensor make it suitable for the sensitive and selective determination of S. aureus. First, the electrostatically self-assembled Ti3C2Tx-Au NBP nanomaterial was coated on the ZnO NR surface by a spin-coating method. On the one hand, Ti3C2Tx-Au NBPs can broaden the spectral absorption of ZnO NRs, resulting in Ti3C2Tx-Au NBPs/ZnO NR composites that exhibit a wide range of absorption from the ultraviolet to the infrared region. On the other hand, Ti3C2Tx can reduce the agglomeration of nanoparticles, while Au NBPs can effectively fix the aptamer through the Au-S bond. Specifically, the experimental results show that when S. aureus is present, the Au NBPs-aptamer-S. aureus complex is shed from the electrode surface, altering the interfacial electron transfer model and reducing the steric hindrance. Consequently, an amplified photocurrent signal for the quantitative determination of S. aureus is obtained. Under optimal experimental conditions, a linear correlation is observed between the current response of the aptasensor and the logarithm of the S. aureus concentration (ranging from 1.0 to 1.0 × 106 CFU/mL), with an impressive detection limit as low as 0.5 CFU/mL. Furthermore, the aptasensor has been successfully employed for the detection of S. aureus in milk, with the recovery of 93.0%-99.0%. Hence, this research offers a novel approach for the detection of foodborne pathogens and other noxious substances.
Collapse
Affiliation(s)
- Ao Huang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiuxiu Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guanghui Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Lilong He
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chaoyang Cai
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunxiang Xu
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
7
|
Kumar V, Chopada R, Singh A, Kumar N, Misra M, Kim KH. The potential of MXene-based materials in fluorescence-based sensing/biosensing of ionic and organic contaminants in environment and food samples: Recent advancements and challenges. Adv Colloid Interface Sci 2024; 332:103264. [PMID: 39116585 DOI: 10.1016/j.cis.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
MXenes belong to one of the recently developed advanced materials with tremendous potential for diverse sensing applications. To date, various types of MXene-based materials have been developed to generate direct/indirect ultrasensitive sensing signals against various forms of analytes via fluorescence quenching or enhancement. In this work, the fluorescence sensing/biosensing capabilities of the MXene-based materials have been explored and evaluated against a list of ionic/emerging pollutants in environment and food matrices. The suitability of an MXene-based sensing approach is also validated through the assessment of the performance based on the basic quality assurance parameters, e.g., limit of detection (LOD), sensing range, and response time. Accordingly, the best performing MXene-based materials are selected and recommended for the given target(s) to help facilitate their scalable applications under real-world conditions.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
| | - Rinkal Chopada
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Ashwani Singh
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Nitin Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India; Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, India
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
8
|
Yu M, Li J, Yin D, Zhou Z, Wei C, Wang Y, Hao J. Enhanced oxygen anions generation on Bi 2S 3/Sb 2S 3 heterostructure by visible light for trace H 2S detection at room temperature. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134932. [PMID: 38936189 DOI: 10.1016/j.jhazmat.2024.134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Bismuth sulfide (Bi2S3) possesses unique properties that make it a promising material for effective hydrogen sulfide (H2S) detection at room temperature. However, when exposed to light, the oxygen anions (O2-(ads)) adsorbed on the surface of Bi2S3 can react with photoinduced holes, ultimately reducing the ability to respond to H2S. In this study, Bi2S3/Sb2S3 heterostructures were synthesized, producing photoinduced oxygen anions (O2-(hv)) under visible light conditions, resulting in enhanced H2S sensing capability. The Bi2S3/Sb2S3 heterostructure sensor exhibits a two-fold increase in sensing response to 500 ppb H2S under in door light conditions relative to its performance in darkness. Additionally, the sensing response of the Bi2S3/Sb2S3 sensor (Ra/Rg= 23.3) was approximately five times higher than pure Bi2S3. The improved sensing performance of the Bi2S3/Sb2S3 heterostructures is attributable to the synergistic influence of the heterostructure configuration and light modulation, which enhances the H2S sensing performance by facilitating rapid charge transfer and increasing active sites (O2-(hv)) when exposed to visible light.
Collapse
Affiliation(s)
- Meiling Yu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiayu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dongmin Yin
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenze Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chenda Wei
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
9
|
Pang Z, Chen Z, Li J, Liu D, Zhang G, Liu C, Du C, Zhou W. Advances in Inorganic Foam Materials Fabricated Via Blowing Strategy: A Comprehensive Review. ACS NANO 2024; 18:21747-21778. [PMID: 39105765 DOI: 10.1021/acsnano.4c05321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Two-dimensional (2D) materials with excellent properties and widespread applications have been explosively investigated. However, their conventional synthetic methods exhibit concerns of limited scalability, complex purification process, and incompetence of prohibiting their restacking. The blowing strategy, characterized by gas-template, low-cost, and high-efficiency, presents a valuable avenue for the synthesis of 2D-based foam materials and thereby addresses these constraints. Whereas, its comprehensive introduction has been rarely outlined so far. This review commences with a synopsis of the blowing strategy, elucidating its development history, the statics and kinetics of the blowing process, and the choice of precursor and foaming agents. Thereafter, we dwell at length on across-the-board foams enabled by the blowing route, like BxCyNz foams, carbon foams, and diverse composite foams consisting of carbon and metal compounds. Following that, a wide-ranging evaluation of the functionality of the foam products in fields such as energy storage, electrocatalysis, adsorption, etc. is discussed, revealing their distinctive strength originated from the foam structure. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future research priorities in this rapidly developing method.
Collapse
Affiliation(s)
- Zimo Pang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhichao Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Jianyu Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Guangyue Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Canshang Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Chengkai Du
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Weiwei Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| |
Collapse
|
10
|
Khoshfetrat SM, Mamivand S, Darband GB. Hollow-like three-dimensional structure of methyl orange-delaminated Ti 3C 2 MXene nanocomposite for high-performance electrochemical sensing of tryptophan. Mikrochim Acta 2024; 191:546. [PMID: 39158725 DOI: 10.1007/s00604-024-06622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Tryptophan(Trp) is being explored as a potential biomarker for various diseases associated with decreased tryptophan levels; however, metabolomic methods are expensive and time-consuming and require extensive sample analysis, making them urgently needed for trace detection. To exploit the properties of Ti3C2 MXenes a rational porous methyl orange (MO)-delaminated Ti3C2 MXene was prepared via a facile mixing process for the electrocatalytic oxidation of Trp. The hollow-like 3D structure with a more open structure and the synergistic effect of MO and conductive Ti3C2 MXene enhanced its electrochemical catalytic capability toward Trp biosensing. More importantly, MO can stabilize Ti3C2 MXene nanosheets through noncovalent π-π interactions and hydrogen bonding. Compared with covalent attachment, these non-covalent interactions preserve the electronic conductivity of the Ti3C2 MXene nanosheets. Finally, the addition of MO-derived nitrogen (N) and sulfur (S) atoms to Ti3C2 MXene enhanced the electronegativity and improved its affinity for specific molecules, resulting in high-performance electrocatalytic activity. The proposed biosensor exhibited a wide linear response in concentration ranges of 0.01-0.3 µM and 0.5-120 µM, with a low detection limit of 15 nM for tryptophan detection, and high anti-interference ability in complex media of human urine and egg white matrices. The exceptional abilities of the MO/Ti3C2 nanocatalyst make it a promising electrode material for the detection of important biomolecules.
Collapse
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Borujerd, Iran.
| | - Saba Mamivand
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Borujerd, Iran
| | - Ghasem Barati Darband
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, 91775-1111, Iran
| |
Collapse
|
11
|
Li Y, Hang Y, Gopali R, Xu X, Chen G, Guan X, Bao N, Liu Y. Point-of-care testing device platform for the determination of creatinine on an enzyme@CS/PB/MXene@AuNP-based screen-printed carbon electrode. Mikrochim Acta 2024; 191:534. [PMID: 39136796 DOI: 10.1007/s00604-024-06606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Screen-printed carbon electrodes (SPCE) functionalized with MXene-based three-dimensional nanomaterials are reported for rapid determination of creatinine. Ti3C2TX MXene with in situ reduced AuNPs (MXene@AuNP) were used as a coreactant accelerator for efficient immobilization of enzymes. Creatinine could be oxidized by chitosan-embedded creatinine amidohydrolase, creatine amidinohydrolase, or sarcosine oxidase to generate H2O2, which could be electrochemically detected enhanced by Prussian blue (PB). The enzyme@CS/PB/MXene@AuNP/SPCE detected creatinine within the range 0.03-4.0 mM, with a limit of detection of 0.01 mM, with an average recovery of 96.8-103.7%. This indicates that the proposed biosensor is capable of detecting creatinine in a short amount of time (4 min) within a ± 5% percentage error, in contrast with the standard clinical colorimetric method. With this approach, reproducible and stable electrochemical responses could be achieved for determination of creatinine in serum, urine, or saliva. These results demonstrated its potential for deployment in resource-limited settings for early diagnosis and tracking the progression of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Rusha Gopali
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Xinxin Xu
- Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Guanhua Chen
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Xiaorong Guan
- Jiangsu Aowei Engineering Technology Co., LTD, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China
| | - Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu Province, People's Republic of China.
| |
Collapse
|
12
|
Zahra T, Javeria U, Jamal H, Baig MM, Akhtar F, Kamran U. A review of biocompatible polymer-functionalized two-dimensional materials: Emerging contenders for biosensors and bioelectronics applications. Anal Chim Acta 2024; 1316:342880. [PMID: 38969417 DOI: 10.1016/j.aca.2024.342880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Bioelectronics, a field pivotal in monitoring and stimulating biological processes, demands innovative nanomaterials as detection platforms. Two-dimensional (2D) materials, with their thin structures and exceptional physicochemical properties, have emerged as critical substances in this research. However, these materials face challenges in biomedical applications due to issues related to their biological compatibility, adaptability, functionality, and nano-bio surface characteristics. This review examines surface modifications using covalent and non-covalent-based polymer-functionalization strategies to overcome these limitations by enhancing the biological compatibility, adaptability, and functionality of 2D nanomaterials. These surface modifications aim to create stable and long-lasting therapeutic effects, significantly paving the way for the practical application of polymer-functionalized 2D materials in biosensors and bioelectronics. The review paper critically summarizes the surface functionalization of 2D nanomaterials with biocompatible polymers, including g-C3N4, graphene family, MXene, BP, MOF, and TMDCs, highlighting their current state, physicochemical structures, synthesis methods, material characteristics, and applications in biosensors and bioelectronics. The paper concludes with a discussion of prospects, challenges, and numerous opportunities in the evolving field of bioelectronics.
Collapse
Affiliation(s)
- Tahreem Zahra
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Umme Javeria
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Hasan Jamal
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Mirza Mahmood Baig
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan; Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Urooj Kamran
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden; Institute of Advanced Machinery Design Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Sheikh TA, Ismail M, Rabbee MF, Khan H, Rafique A, Rasheed Z, Siddique A, Rafiq MZ, Khattak ZAK, Jillani SMS, Shahzad U, Akhtar MN, Saeed M, Alzahrani KA, Uddin J, Rahman MM, Verpoort F. 2D MXene-Based Nanoscale Materials for Electrochemical Sensing Toward the Detection of Hazardous Pollutants: A Perspective. Crit Rev Anal Chem 2024:1-46. [PMID: 39046991 DOI: 10.1080/10408347.2024.2379851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
MXenes (Mn+1XnTx), a subgroup of 2-dimensional (2D) materials, specifically comprise transition metal carbides, nitrides, and carbonitrides. They exhibit exceptional electrocatalytic and photocatalytic properties, making them well-suited for the detection and removal of pollutants from aqueous environments. Because of their high surface area and remarkable properties, they are being utilized in various applications, including catalysis, sensing, and adsorption, to combat pollution and mitigate its adverse effects. Different characterization techniques like XRD, SEM, TEM, UV-Visible spectroscopy, and Raman spectroscopy have been used for the structural elucidation of 2D MXene. Current responses against applied potential were measured during the electrochemical sensing of the hazardous pollutants in an aqueous system using a variety of electroanalytical techniques, including differential pulse voltammetry, amperometry, square wave anodic stripping voltammetry, etc. In this review, a comprehensive discussion on structural patterns, synthesis, properties of MXene and their application for electrochemical detection of lethal pollutants like hydroquionone, phenol, catechol, mercury and lead, etc. are presented. This review will be helpful to critically understand the methods of synthesis and application of MXenes for the removal of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Ali Sheikh
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ismail
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hira Khan
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ayesha Rafique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zeerak Rasheed
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Amna Siddique
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Zeeshan Rafiq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Shehzada Muhammad Sajid Jillani
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- National Research Tomsk Polytechnic University, Tomsk, Russian
| |
Collapse
|
14
|
Han K, Ji Y, Hu Q, Wu Q, Li D, Zhou A. Phase transition and electrochemical properties of S-functionalized MXene anodes for Li-ion batteries: a first-principles investigation. Phys Chem Chem Phys 2024; 26:18030-18040. [PMID: 38894700 DOI: 10.1039/d4cp01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The advancement of anode materials for achieving high energy storage is a crucial topic for high-performance Li-ion batteries (LIBs). Here, first-principles calculations were used to conduct a thorough and systematic investigation into lithium storage properties of MXenes with new S functional groups as LIB anode materials. Density of states, diffusion energy barriers, open circuit voltages and storage capacities were calculated to comprehensively evaluate the lithium storage properties of S-functionalized MXenes. Based on the computational results, Ti2CS2 and V2CS2 were selected as excellent candidates from ten M2CS2 MXenes. The diffusion energy barriers of M2CS2 within the range of 0.26-0.32 eV are lower than those of M2CO2 and M2CF2, indicating that M2CS2 anodes exhibit faster charge/discharge rates. By examining the stable crystal structures and comparing atomic positions before and after Li adsorptions, structural phase transitions during Li-ion adsorptions could happen for nearly all M2CS2 MXenes. The phase transitions predicted were directly observed using ab initio molecular dynamic simulations. The cycle stability, storage capacity and other lithium storage properties were enhanced by the reversible structural phase transition.
Collapse
Affiliation(s)
- Kun Han
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Yuhuan Ji
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Qianku Hu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Qinghua Wu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Dandan Li
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Aiguo Zhou
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| |
Collapse
|
15
|
Wang Y, Wang Y, Jian M, Jiang Q, Li X. MXene Key Composites: A New Arena for Gas Sensors. NANO-MICRO LETTERS 2024; 16:209. [PMID: 38842597 PMCID: PMC11156835 DOI: 10.1007/s40820-024-01430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
With the development of science and technology, the scale of industrial production continues to grow, and the types and quantities of gas raw materials used in industrial production and produced during the production process are also constantly increasing. These gases include flammable and explosive gases, and even contain toxic gases. Therefore, it is very important and necessary for gas sensors to detect and monitor these gases quickly and accurately. In recent years, a new two-dimensional material called MXene has attracted widespread attention in various applications. Their abundant surface functional groups and sites, excellent current conductivity, tunable surface chemistry, and outstanding stability make them promising for gas sensor applications. Since the birth of MXene materials, researchers have utilized the efficient and convenient solution etching preparation, high flexibility, and easily functionalize MXene with other materials to prepare composites for gas sensing. This has opened a new chapter in high-performance gas sensing materials and provided a new approach for advanced sensor research. However, previous reviews on MXene-based composite materials in gas sensing only focused on the performance of gas sensing, without systematically explaining the gas sensing mechanisms generated by different gases, as well as summarizing and predicting the advantages and disadvantages of MXene-based composite materials. This article reviews the latest progress in the application of MXene-based composite materials in gas sensing. Firstly, a brief summary was given of the commonly used methods for preparing gas sensing device structures, followed by an introduction to the key attributes of MXene related to gas sensing performance. This article focuses on the performance of MXene-based composite materials used for gas sensing, such as MXene/graphene, MXene/Metal oxide, MXene/Transition metal sulfides (TMDs), MXene/Metal-organic framework (MOF), MXene/Polymer. It summarizes the advantages and disadvantages of MXene composite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different gases. Finally, future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.
Collapse
Affiliation(s)
- Yitong Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Min Jian
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Qinting Jiang
- Key Materials and Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Xifei Li
- Key Materials and Components of Electrical Vehicles for Overseas Expertise Introduction Center for Discipline Innovation, Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| |
Collapse
|
16
|
Mei X, Zeng Z, Xu W, Yang H, Zheng Y, Gao H, Wu C, Zheng Y, Xu Q, Wang G, Xu Y, Wu A. Sandwich-type electrochemical immunosensing of CA125 by using nanoribbon-like Ti 3C 2T x MXenes and toluidine blue/UIO-66-NH 2. ANAL SCI 2024; 40:1081-1087. [PMID: 38578575 DOI: 10.1007/s44211-024-00528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 04/06/2024]
Abstract
CA125 (carbohydrate antigen 125) is an important biomarker of ovarian cancer, so developing effective method for its detection is of great significance. In the present work, a novel sandwich-like electrochemical immunosensor (STEM) of CA125 was constructed by preparing nanoribbon-like Ti3C2Tx MXenes (Ti3C2TxNR) to immobilize primary antibody (PAb) of CA125 and UIO-66-NH2 MOFs structure to immobilize second antibody (SAb) and electroactive toluidine blue (Tb) probe. In this designed STEM assay, the as-prepared Ti3C2TxNR nanohybrid offers the advantages in large surface area and conductivity as carrier, and UIO-66-NH2 provided an ideal platform to accommodate SAb and a large number of Tb molecules as signal amplifier. In the presence of CA125, the peak currents of Tb from the formed STEM structure increase with the increase of CA125 level. After optimizing the related control conditions, a wide linear range (0.2-150.0 U mL-1) and a very low detection limit (0.05 U mL-1) of CA125 were achieved. It's thus expected the developed STEM strategy has important applications for the detection of CA125.
Collapse
Affiliation(s)
- Xuqiao Mei
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Zhenhua Zeng
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Wenxin Xu
- Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou Health Vocational College, Zhangzhou, Fujian, China
| | - Huicong Yang
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yuanhai Zheng
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Haimin Gao
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Chuncai Wu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yanping Zheng
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Qiaoli Xu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Guowei Wang
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yuhuang Xu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Ayang Wu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
17
|
Jin P, Wan P, Zhang C, Li X, Wang Y, Luo J, Li K. Analyte-perturbed balance between reducibility and fluorescence of Ti 3C 2 MXene quantum dots for label-free, dual-mode detection of silver ions. Anal Chim Acta 2024; 1303:342517. [PMID: 38609276 DOI: 10.1016/j.aca.2024.342517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND As an emerging and attractive low-dimensional functional materials, Ti3C2 MXene quantum dots (QDs) enlarge the toolbox of fluorescence sensing. However, monochromatic fluorescence, which only provide one single signal, is often beset by challenges such as false-positive readouts and limitations in selectivity. Consequently, to improve the sensing accuracy by means of cross-verified dual-signal authentication, the endeavor to engineer dual-mode nanoprobes based on Ti3C2 QDs, incorporating both the capability of fluorescence and an alternative sensing mechanism, emerges as a compelling avenue. RESULTS Here, based on the alterations in colorimetric and fluorescent signals of Ti3C2 QDs with the addition of Ag+, we propose a dual-mode sensor obviating the necessity for nanoprobe labeling. Owing to the decent reducibility of Ti3C2 QDs, Ag+ is adsorbed and reduced, resulting in the generation of plasmonic Ag nanoparticles (NPs), which simultaneously trigger colorimetric responses of the solution and enhance the fluorescent emission of Ti3C2 QDs. The confluence of colorimetry and fluorometry within this strategy optimally harnesses the modulating role of the acquired Ag NPs on the reducing capability and fluorescence characteristics of Ti3C2 QDs. The equilibrium imparts versatility and promising prospects to this analyte-triggered label-free method, which enables a remarkable specificity and an excellent detecting limit (0.45 μM) for Ag+. SIGNIFICANCE The balance between reducibility and fluorescence of Ti3C2 QDs for dual-mode detection is inventively demonstrated. With the exemplification of a direct influence of both features of the nanoprobe via the introduction of analytes, this study opens the feasibility of the analyte-perturbed felicitous equilibrium, which endows label-free methods with versatility and promising prospects. This design may evoke more biosensing strategies with the function of double-signal mutual verification.
Collapse
Affiliation(s)
- Peng Jin
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, 471023, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Pingping Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunyan Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianxin Luo
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
18
|
Huang Y, Chen S, Zhang S, Gao L, Lin F, Dai H. Self-reduced MXene-Metal interaction electrochemiluminescence support with synergistic electrocatalytic and photothermal effects for the bimodal detection of ovarian cancer biomarkers. J Colloid Interface Sci 2024; 661:793-801. [PMID: 38325177 DOI: 10.1016/j.jcis.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Novel two-dimensional MXene with unique optical and electrical properties has become a new focus in the field of sensing. In particular, their metallic conductivity, good biocompatibility and high anchoring ability to biomaterials make them attractive candidates. Despite such remarkable properties, there are certain limitations, such as low oxidative stability. MXene-Metal interactions are an effective strategy to maintain the long-term stability of MXene, while also improving the electrochemical activity and optical properties. Herein, a series of MXene/Ag nanocomposites including Ti3C2/Ag, Nb2C/Ag and V2C/Ag were designed based on the surface chemistry characteristics of MXene, where MXene served as the substrate for in-situ growth of silver nanoparticles via self-reduction of Ag(NH3)2+. The results showed that V2C MXene has the strongest self-reducing ability due to its multiple variable valence states, larger interlayer space and more reactive groups. Moreover, V2C/Ag exhibited unexpected oxygen reduction reaction catalytic activity and photothermal performance. In view of which, an electrochemiluminescence-photothermal (ECL-photothermal) immunosensor was developed using V2C/Ag as ECL anchor and photothermal reagent for ultrasensitive detection of Lipolysis stimulated lipoprotein receptor. This work not only provides a simple and effective synthesis method of MXene supported metal nanocomposites, but also provides more inspirations for exploring the efficient biosensing strategies.
Collapse
Affiliation(s)
- Yitian Huang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China; College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Sisi Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| | - Feng Lin
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 324000, China.
| |
Collapse
|
19
|
Li H, Du C, Guo T, Zhou H, Zhou Y, Huang X, Zhang YH, Wang S, Liu X, Ma L. Ratiometric electrochemical aptasensor based on split aptamer and Au-rGO for detection of aflatoxin M1. J Dairy Sci 2024; 107:2748-2759. [PMID: 38101746 DOI: 10.3168/jds.2023-23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
A novel ratiometric electrochemical aptasensor based on split aptamer and Au-reduced graphene oxide (Au-rGO) nanomaterials was proposed to detect aflatoxin M1 (AFM1). In this work, Au-rGO nanomaterials were coated on the electrode through the electrodeposition method to increase the aptamer enrichment. We split the aptamer of AFM1 into 2 sequences (S1 and S2), where S1 was immobilized on the electrode due to the Au-S bond, and S2 was tagged with methylene blue (MB) and acted as a response signal. A complementary strand to S1 (CS1) labeled with ferrocene (Fc) was introduced as another reporter. In the presence of AFM1, CS1 was released from the electrode surface due to the formation of the S1-AFM1-S2 complex, leading to a decrease in Fc and an increase in the MB signal. The developed ratiometric aptasensor exhibited a linear range of 0.03 μg L-1 to 2.00 μg L-1, with a detection limit of 0.015 μg L-1 for AFM1 detection. The ratiometric aptasensor also showed a linear relationship from 0.2 μg L-1 to 1.00 μg L-1, with a detection limit of 0.05 μg L-1 in natural milk after sample pretreatment, indicating the successful application of the developed ratiometric aptasensor. Our proposed strategy provides a new way to construct aptasensors with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Honglin Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Congcong Du
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China
| | - Xinrui Huang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Hao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, China
| | - Shuo Wang
- College of Food Science, Southwest University, Chongqing 400715, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaozhu Liu
- Foshan Micro Miracles Biotechnology Company, Guangdong 528000, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, China.
| |
Collapse
|
20
|
Gutiérrez-Gálvez L, García-Fernández D, Barrio MD, Luna M, Torres Í, Zamora F, Navío C, Milán-Rois P, Castellanos M, Abreu M, Cantón R, Galán JC, Somoza Á, Miranda R, García-Mendiola T, Lorenzo E. Free PCR virus detection via few-layer bismuthene and tetrahedral DNA nanostructured assemblies. Talanta 2024; 269:125405. [PMID: 37984235 DOI: 10.1016/j.talanta.2023.125405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
In this work we describe a highly sensitive method based on a biocatalyzed electrochemiluminescence approach. The system combines, for the first time, the use of few-layer bismuthene (FLB) as a platform for the oriented immobilization of tetrahedral DNA nanostructures (TDNs) specifically designed and synthetized to detect a specific SARS-CoV-2 gene sequence. In one of its vertices, these TDNs contain a DNA capture probe of the open reading frame 1 ab (ORF1ab) of the virus, available for the biorecognition of the target DNA/RNA. At the other three vertices, there are thiol groups that enable the stable anchoring/binding to the FLB surface. This novel geometry/approach enables not only the binding of the TDNs to surfaces, but also the orientation of the capture probe in a direction normal to the bismuthine surface so that it is readily accessible for binding/recognition of the specific SARS-CoV-2 sequence. The analytical signal is based on the anodic electrochemiluminescence (ECL) intensity of luminol which, in turn, arises as a result of the reaction with H2O2, generated by the enzymatic reaction of glucose oxidation, catalyzed by the biocatalytic label avidin-glucose oxidase conjugate (Av-GOx), which acts as co-reactant in the electrochemiluminescent reaction. The method exhibits a limit of detection (LOD) of 4.31 aM and a wide linear range from 14.4 aM to 1.00 μM, and its applicability was confirmed by detecting SARS-CoV-2 in nasopharyngeal samples from COVID-19 patients without the need of any amplification process.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Daniel García-Fernández
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Melisa Del Barrio
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Mónica Luna
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC (CEI UAM+CSIC), 28760, Tres Cantos, Madrid, Spain
| | - Íñigo Torres
- Departamento de Química Inorgánica and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Félix Zamora
- Departamento de Química Inorgánica and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristina Navío
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Paula Milán-Rois
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | | | - Melanie Abreu
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Rafael Cantón
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain; Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Álvaro Somoza
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
21
|
Das P, Marvi PK, Ganguly S, Tang XS, Wang B, Srinivasan S, Rajabzadeh AR, Rosenkranz A. MXene-Based Elastomer Mimetic Stretchable Sensors: Design, Properties, and Applications. NANO-MICRO LETTERS 2024; 16:135. [PMID: 38411801 PMCID: PMC10899156 DOI: 10.1007/s40820-024-01349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces. One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials. MXenes, a new family of 2D nanomaterials, have been drawing attention since the last decade due to their high electronic conductivity, processability, mechanical robustness and chemical tunability. In this review, we encompass the fabrication of MXene-based polymeric nanocomposites, their structure-property relationship, and applications in the flexible sensor domain. Moreover, our discussion is not only limited to sensor design, their mechanism, and various modes of sensing platform, but also their future perspective and market throughout the world. With our article, we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Parham Khoshbakht Marvi
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Sayan Ganguly
- Department of Chemistry and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, ON, Canada
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Xiaowu Shirley Tang
- Department of Chemistry and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, ON, Canada
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, People's Republic of China
| | - Bo Wang
- Chair of Functional Materials, Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
- W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada.
| | - Andreas Rosenkranz
- Department for Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.
| |
Collapse
|
22
|
Ma S, Zhao W, Liu X, Li Y, Ma P, Zhang K, Zhang Q. A novel microfluidic chip integrating with microcolumn array electrodes for rapid and ultrasensitive detection of alpha-fetoprotein. Anal Chim Acta 2024; 1291:342240. [PMID: 38280786 DOI: 10.1016/j.aca.2024.342240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Cancer posed a serious threat to human health, and early diagnosis of cancer biomarker was extremely important for the treatment and control of cancer. Electrochemistry-based assays were low-cost, responsive and easy to operate, but there were some challenges in terms of accuracy, detection limit, efficiency and portability. The combination of microfluidic devices and electrochemical methods was expected to construct a high-performance sensing platform, but long-time antigen-antibody incubation was still required. Therefore, a novel microfluidic chip needs to be developed, which has the advantages of good portability, short incubation time, high accuracy, low detection limit and great application to point-of-care testing. RESULTS A microfluidic sensor based on microcolumn array electrodes was developed, in which microcolumns could create local mixed flow to reduce the incubation time of target molecules and enhance their interaction with the sensing interface. Besides, three dimensional Mxene fibers-gold nanoparticles (3D MF-Au) was modified on the microcolumn array electrodes to increase active sites and provide more electrolyte shuttle holes. The electrolyte turbulence caused by the microcolumn array electrodes could heighten the contact between the target molecules and sensing interface and accelerate the transfer of redox pairs, thus reducing the incubation time of the target molecules and improving the electrochemical responses in synergy with the 3D MF-Au. Herein, the detection of AFP was chosen as a model, and the microfluidic sensor possessed superior performance for analysis of AFP in the range of 0.1 pg mL-1 - 200 ng mL-1 with a low detection limit (LOD) of 0.0648 pg mL-1. SIGNIFICANCE This microfluidic chip integrating with microcolumn array electrodes has been successfully implemented to detect AFP in human serum, and the results were consistent with that of electrochemical chemiluminescence method. The microfluidic chip provided a new strategy of portability, shortening incubation time and enhancing electrical signals for antigen detection of real samples, which showed great utilization potentiality in point-of-care testing.
Collapse
Affiliation(s)
- Shangshang Ma
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China; Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Wei Zhao
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China.
| | - Xutang Liu
- School of Chemical Engineering&Technology, China University of Mining and Technology, Xuzhou, 221100, China
| | - Yifan Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Ping Ma
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
| | - Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China.
| |
Collapse
|
23
|
Mustafa SK, Khan MF, Sagheer M, Kumar D, Pandey S. Advancements in biosensors for cancer detection: revolutionizing diagnostics. Med Oncol 2024; 41:73. [PMID: 38372827 DOI: 10.1007/s12032-023-02297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Cancer stands as the reigning champion of life-threatening diseases, casting a shadow with the highest global mortality rate. Unleashing the power of early cancer treatment is a vital weapon in the battle for efficient and positive outcomes. Yet, conventional screening procedures wield limitations of exorbitant costs, time-consuming endeavors, and impracticality for repeated testing. Enter bio-marker-based cancer diagnostics, which emerge as a formidable force in the realm of early detection, disease progression assessment, and ultimate cancer therapy. These remarkable devices boast a reputation for their exceptional sensitivity, streamlined setup requirements, and lightning fast response times. In this study, we embark on a captivating exploration of the most recent advancements and enhancements in the field of electrochemical marvels, targeting the detection of numerous cancer biomarkers. With each breakthrough, we inch closer to a future where cancer's grip on humanity weakens, guided by the promise of personalized treatment and improved patient outcomes. Together, we unravel the mysteries that cancer conceals and illuminate a path toward triumph against this daunting adversary. This study celebrates the relentless pursuit of progress, where electrochemical innovations take center stage in the quest for a world free from the clutches of carcinoma.
Collapse
Affiliation(s)
- Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Zip 71491, Tabuk, Saudi Arabia.
| | - Mohd Farhan Khan
- Faculty of Science, Gagan College of Management & Technology, Aligarh, 202002, India
| | - Mehak Sagheer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sadanand Pandey
- Faculty of Applied Sciences and Biotechnology, School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
24
|
Siciliano G, Alsadig A, Chiriacò MS, Turco A, Foscarini A, Ferrara F, Gigli G, Primiceri E. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta 2024; 268:125280. [PMID: 37862755 DOI: 10.1016/j.talanta.2023.125280] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Gold nanoparticles (AuNPs) have emerged as powerful tools in the construction of highly sensitive electrochemical biosensors. Their unique properties, such as the ability to serve as an effective platform for biomolecule immobilization and to facilitate electron transfer between the electrode surface and the immobilized molecules, make them a promising choice for biosensor applications. Utilizing AuNPs modified electrodes can lead to improved sensitivity and lower limits of detection compared to unmodified electrodes. This review provides a comprehensive overview of the recent advancements and applications of AuNPs-based electrochemical biosensors in the biomedical field. The synthesis methods of AuNPs, their key properties, and various strategies employed for electrode modification are discussed. Furthermore, this review highlights the remarkable applications of these nanostructure-integrated electrodes, including immunosensors, enzyme biosensors, and DNA biosensors.
Collapse
Affiliation(s)
- Giulia Siciliano
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Ahmed Alsadig
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | | | - Antonio Turco
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Alessia Foscarini
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Francesco Ferrara
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | | |
Collapse
|
25
|
Qian G, Mao Y, Zhao H, Zhang L, Xiong L, Long Z. pH-Responsive nanoplatform synergistic gas/photothermal therapy to eliminate biofilms in poly(L-lactic acid) scaffolds. J Mater Chem B 2024; 12:1379-1392. [PMID: 38247429 DOI: 10.1039/d3tb02600k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To date, implant-associated infection is still a significant clinical challenge, which cannot be effectively eliminated by single therapies due to the formation of microbial biofilms. Herein, a pH-responsive nanoplatform was constructed via the in situ growth of zinc sulfide (ZnS) nanoparticles on the surface of Ti3C2 MXene nanosheets, which was subsequently introduced in poly(L-lactic acid) (PLLA) to prepare a composite bone scaffold via selective laser sintering technology. In the acidic biofilm microenvironment, the degradation of ZnS released hydrogen sulfide (H2S) gas to eliminate the biofilm extracellular DNA (eDNA), thus destroying the compactness of the biofilm. Then, the bacterial biofilm became sensitive to hyperthermia, which could be further destroyed under near-infrared light irradiation due to the excellent photothermal property of MXene, finally achieving gas/photothermal synergistic antibiofilm and efficient sterilization. The results showed that the synergistic gas/photothermal therapy for the composite scaffold not only evidently inhibited the formation of biofilms, but also effectively eradicated the eDNA of the already-formed biofilms and killed 90.4% of E. coli and 84.2% of S. aureus under near infrared light irradiation compared with single gas or photothermal therapy. In addition, the composite scaffold promoted the proliferation and osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Thus, the designed scaffold with excellent biofilm elimination and osteogenesis ability has great potential as an alternative treatment for implant-associated bone infections.
Collapse
Affiliation(s)
- Guowen Qian
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China.
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, P. R. China.
| | - Yuqian Mao
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China.
| | - Huihui Zhao
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China.
| | - Lemin Zhang
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, P. R. China.
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, P. R. China
| | - Zhisheng Long
- Department of Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, P. R. China.
| |
Collapse
|
26
|
Huang Y, Afolabi MA, Gan L, Liu S, Chen Y. MXene-Coated Ion-Selective Electrode Sensors for Highly Stable and Selective Lithium Dynamics Monitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1359-1368. [PMID: 38079615 PMCID: PMC10795166 DOI: 10.1021/acs.est.3c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024]
Abstract
Lithium holds immense significance in propelling sustainable energy and environmental systems forward. However, existing sensors used for lithium monitoring encounter issues concerning their selectivity and long-term durability. Addressing these challenges is crucial to ensure accurate and reliable lithium measurements during the lithium recovery processes. In response to these concerns, this study proposes a novel approach involving the use of an MXene composite membrane with incorporated poly(sodium 4-styrenesulfonate) (PSS) as an antibiofouling layer on the Li+ ion selective electrode (ISE) sensors. The resulting MXene-PSS Li+ ISE sensor demonstrates exceptional electrochemical performance, showcasing a superior slope (59.42 mV/dec), lower detection limit (10-7.2 M), quicker response time (∼10 s), higher selectivity to Na+ (-2.37) and K+ (-2.54), and reduced impedance (106.9 kΩ) when compared to conventional Li+ ISE sensors. These improvements are attributed to the unique electronic conductivity and layered structure of the MXene-PSS nanosheet coating layer. In addition, the study exhibits the long-term accuracy and durability of the MXene-PSS Li+ ISE sensor by subjecting it to real wastewater testing for 14 days, resulting in sensor reading errors of less than 10% when compared to laboratory validation results. This research highlights the great potential of MXene nanosheet coatings in advancing sensor technology, particularly in challenging applications, such as detecting emerging contaminants and developing implantable biosensors. The findings offer promising prospects for future advancements in sensor technology, particularly in the context of sustainable energy and environmental monitoring.
Collapse
Affiliation(s)
| | | | - Lan Gan
- School of Civil and Environmental
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Su Liu
- School of Civil and Environmental
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Wang Y, Wang Y, Kuai Y, Jian M. "Visualization" Gas-Gas Sensors Based on High Performance Novel MXenes Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305250. [PMID: 37661585 DOI: 10.1002/smll.202305250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
The detection of toxic, harmful, explosive, and volatile gases cannot be separated from gas sensors, and gas sensors are also used to monitor the greenhouse effect and air pollution. However, existing gas sensors remain with many drawbacks, such as lower sensitivity, lower selectivity, and unstable room temperature detection. Thus, there is an imperative need to find more suitable sensing materials. The emergence of a new 2D layered material MXenes has brought dawn to solve this problem. The multiple advantages of MXenes, namely high specific surface area, enriched terminal functionality groups, hydrophilicity, and good electrical conductivity, make them among the most prolific gas-sensing materials. Therefore, this review paper describes the current main synthesis methods of MXenes materials, and focuses on summarizing and organizing the latest research results of MXenes in gas sensing applications. It also introduces the possible gas sensing mechanisms of MXenes materials on NH3 , NO2 , CH3 , and volatile organic compounds (VOCs). In conclusion, it provides insight into the problems and upcoming challenges of MXenes materials for gas sensing.
Collapse
Affiliation(s)
- Yitong Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yanbing Kuai
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Min Jian
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
28
|
Di Matteo P, Petrucci R, Curulli A. Not Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)sensing Area for Biomedical and Healthcare Applications. Molecules 2023; 29:172. [PMID: 38202755 PMCID: PMC10780376 DOI: 10.3390/molecules29010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Two-dimensional (2D) nanomaterials (e.g., graphene) have attracted growing attention in the (bio)sensing area and, in particular, for biomedical applications because of their unique mechanical and physicochemical properties, such as their high thermal and electrical conductivity, biocompatibility, and large surface area. Graphene (G) and its derivatives represent the most common 2D nanomaterials applied to electrochemical (bio)sensors for healthcare applications. This review will pay particular attention to other 2D nanomaterials, such as transition metal dichalcogenides (TMDs), metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and MXenes, applied to the electrochemical biomedical (bio)sensing area, considering the literature of the last five years (2018-2022). An overview of 2D nanostructures focusing on the synthetic approach, the integration with electrodic materials, including other nanomaterials, and with different biorecognition elements such as antibodies, nucleic acids, enzymes, and aptamers, will be provided. Next, significant examples of applications in the clinical field will be reported and discussed together with the role of nanomaterials, the type of (bio)sensor, and the adopted electrochemical technique. Finally, challenges related to future developments of these nanomaterials to design portable sensing systems will be shortly discussed.
Collapse
Affiliation(s)
- Paola Di Matteo
- Dipartimento Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, 00161 Rome, Italy; (P.D.M.); (R.P.)
| | - Rita Petrucci
- Dipartimento Scienze di Base e Applicate per l’Ingegneria, Sapienza University of Rome, 00161 Rome, Italy; (P.D.M.); (R.P.)
| | - Antonella Curulli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), 00161 Rome, Italy
| |
Collapse
|
29
|
Mashhadian A, Jian R, Tian S, Wu S, Xiong G. An Overview of Electrochemical Sensors Based on Transition Metal Carbides and Oxides: Synthesis and Applications. MICROMACHINES 2023; 15:42. [PMID: 38258161 PMCID: PMC10819441 DOI: 10.3390/mi15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Sensors play vital roles in industry and healthcare due to the significance of controlling the presence of different substances in industrial processes, human organs, and the environment. Electrochemical sensors have gained more attention recently than conventional sensors, including optical fibers, chromatography devices, and chemiresistors, due to their better versatility, higher sensitivity and selectivity, and lower complexity. Herein, we review transition metal carbides (TMCs) and transition metal oxides (TMOs) as outstanding materials for electrochemical sensors. We navigate through the fabrication processes of TMCs and TMOs and reveal the relationships among their synthesis processes, morphological structures, and sensing performance. The state-of-the-art biological, gas, and hydrogen peroxide electrochemical sensors based on TMCs and TMOs are reviewed, and potential challenges in the field are suggested. This review can help others to understand recent advancements in electrochemical sensors based on transition metal oxides and carbides.
Collapse
Affiliation(s)
| | | | | | | | - Guoping Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| |
Collapse
|
30
|
Farasati Far B, Rabiee N, Iravani S. Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective. RSC Adv 2023; 13:34562-34575. [PMID: 38024989 PMCID: PMC10668918 DOI: 10.1039/d3ra07092a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology Tehran 1684611367 Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University Sydney New South Wales 2109 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | |
Collapse
|
31
|
Wang L, Liu J, Dai X, Zhou L, Bu Y, Zhao G. A carbon quantum layer modified BiVO 4 photoelectrochemical aptamer biosensor for ultra-sensitive cTnI biomarker detection based on the interface nephelauxetic effect and heterojunction assistance. J Mater Chem B 2023; 11:9676-9684. [PMID: 37782550 DOI: 10.1039/d3tb01690k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The sensitivity and specificity of a semiconductor photoelectrochemical (PEC) aptamer biosensor are determined by the separation and transport of the photoinduced carriers as well as aptamer probe immobilization. In this study, an in situ thermal transformation organic polymer strategy was employed to produce an ∼2.5 nm carbon quantum layer on the surface of the BiVO4(BVO) photoanode. Experimental tests and theoretical calculations have revealed that this carbon quantum layer-coated BVO(C@BVO) heterostructure could generate surface charge depletion regions through an interface nephelauxetic effect. These charge depletion regions facilitated the efficient immobilization of DNA aptamer probes of the acute myocardial infarction biomarker cardiac troponin I (cTnI), while showing almost no immobilization capability on a pure-phase C quantum layer or BVO crystals. Simultaneously, the formation of the C@BVO heterostructure also enhanced the directional transport of photo-generated holes from BVO to the C quantum layer. Due to the above reasons, the C@BVO PEC aptamer biosensor achieved a linear detection range for cTnI from 10-14 g L-1 to 10-10 g L-1, with a record detection limit (LOD) of ∼0.33 × 10-14 g L-1 (N > 3). Meanwhile, the biosensor also demonstrated well the detection reproducibility and specificity for cTnI detection. Therefore, the strategy of using a carbon quantum layer-coated PEC electrode shows good potential to develop PEC biosensors with high sensitivity, specificity, and robustness.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Jie Liu
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Xianying Dai
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Linfu Zhou
- School of Medicine, Northwest University, Xi'an 710068, China
| | - Yuyu Bu
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an, 710071, China.
| | - Gang Zhao
- School of Medicine, Northwest University, Xi'an 710068, China
| |
Collapse
|
32
|
Sun J, Zhu R, Du X, Zhang B, Zheng M, Ji X, Geng L. An ultrasensitive photo-driven self-powered aptasensor for microcystin-RR assay based on ZnIn 2S 4/Ti 3C 2 MXenes integrated with a matching capacitor for multiple signal amplification. Analyst 2023; 148:5060-5069. [PMID: 37668261 DOI: 10.1039/d3an00914a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A photo-driven self-powered aptasensor was constructed based on a matching capacitor and the ZnIn2S4/Ti3C2 heterojunction as the photoanode and Cu2O as the photocathode in a dual-photoelectrode sensing matrix for multiple signal amplification for the ultrasensitive detection of microcystin-RR (MC-RR). The introduction of Ti3C2 MXene nanosheets on the photoanode surface can not only accelerate the transfer and separation of photoinduced electron/hole pairs, thus enhancing the output signal of the photo-driven self-powered system, but also provide a larger specific surface area for the immobilization of the bio-recognition unit aptamer. More importantly, for a portable and miniaturized device, a micro-workstation with the size of a universal serial bus (USB) disk and a novel short-circuit current access was proposed to capture the instantaneous output electrical signal for real-time data tracking. In such a way, a sensitivity of 2.7 mA pM-1 was achieved when the matching capacitor was integrated into the self-powered system, which was 22 times that without a capacitor. After the interaction between MC-RR and the corresponding aptamer, a 'signal-off' detection configuration was formed via the steric hindrance effect. Therefore, such a multiple signal amplification system realized the ultrasensitive and selective determination of MC-RR successfully. Under optimal conditions, the linear range of the self-powered aptasensor was 0.1 to 100 pM and the detection limit was 0.033 pM (S/N = 3). The aptasensor was applied to the detection of MC-RR in fish, exhibiting good reproducibility (≈3.88%), paving the way for detecting microcystins in real-life samples.
Collapse
Affiliation(s)
- Jun Sun
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Rongquan Zhu
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xiaojiao Du
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Bing Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Min Zheng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Xingyu Ji
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Long Geng
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
33
|
Liu J, Wang M, Tao Z, He L, Guo C, Liu B, Zhang Z. Photo-assisted Zn-air battery-driven self-powered aptasensor based on the 2D/2D Schottky heterojunction of cadmium-doped molybdenum disulfide and Ti 3C 2T x nanosheets for the sensitive detection of penicillin G. Anal Chim Acta 2023; 1270:341396. [PMID: 37311607 DOI: 10.1016/j.aca.2023.341396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
A novel photocatalyzed Zn-air battery-driven (ZAB)-based aptasensor has been manufactured using the two dimensional (2D)/2D Schottky heterojunction as photocathode and Zn plate as photoanode. It was then employed to sensitively and selectively detect penicillin G (PG) in the complex environment. The 2D/2D Schottky heterojunction was established by the in situ growth of cadmium-doped molybdenum disulfide nanosheets (Cd-MoS2 NSs) around Ti3C2Tx NSs (denoted as Cd-MoS2@Ti3C2Tx) by using phosphomolybdic acid (PMo12) as precursor, thioacetamide as sulfur source, and Cd(NO3)2 as a doping agent through the hydrothermal method. The gained Cd-MoS2@Ti3C2Tx heterojunction possessed contact interface, hierarchical structure, and plenty of sulfur and oxygen vacancies, thus showing the enhanced separation ability of photocarriers and electron transfer. Due to the enhanced UV-vis light adsorption ability, high photoelectric conversion efficiency, and exposed catalytic active sites, the constructed photocatalyzed ZAB displayed a boosted output voltage of 1.43 V under UV-vis light irradiation. The developed ZAB-driven self-powered aptasensor demonstrated an ultralow detection limit of 0.06 fg mL-1 within a PG concentration ranged from 1.0 fg mL-1 to 0.1 ng mL-1, as deduced from the power density-current curves, along with high specificity, good stability and promising reproducibility, as well as excellent regeneration ability and wide applicability. The present work provided an alternative analysis method for the sensitive analysis of antibiotics based on the portable photocatalyzed ZAB-driven self-powered aptasensor.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, PR China
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Zheng Tao
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Chuanpan Guo
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| |
Collapse
|
34
|
Liu Y, Lv Y, Chen W, Yang X, Cheng X, Rong Z, Wang S. Development of a Fluorescent Immunochromatographic Assay Based on Quantum Dot-Functionalized Two-Dimensional Monolayer Ti 3C 2 MXene Nanoprobes for the Simultaneous Detection of Influenza A Virus and SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35872-35883. [PMID: 37467383 DOI: 10.1021/acsami.3c05424] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Accurate and rapid detection of the influenza A virus (FluA) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can effectively control their spread. We developed a colorimetric and fluorescent dual-functional two-channel immunochromatographic assay (ICA) biosensor to simultaneously detect the above-mentioned viruses. A unique two-dimensional Ti3C2-QD immunoprobe was established by adsorbing dense quantum dots (QDs) onto the light green monostromatic Ti3C2 MXene surface, resulting in light green colorimetric and superior fluorescence signals and guaranteeing high sensitivity, stability, and excellent liquidity for ICA detection. Rapid visual screening for FluA and SARS-CoV-2 infections was applicable via a green colorimetric signal. Sensitive and quantitative detection of viruses in their early stages of infection was performed by using the fluorescence signal. Our proposed Ti3C2-QD-ICA biosensor can simultaneously detect 1 ng/mL or 2.4 pg/mL FluA and 1 ng/mL or 6.2 pg/mL SARS-CoV-2 via its colorimetric or fluorescence signals, respectively, with a short testing time (20 min), good reproducibility, specificity, and accuracy. In addition, this method demonstrated sensitivity higher than that of the conventional AuNP-based ICA method in throat swab samples. Hence, our proposed Ti3C2-QD-ICA method can be potentially applied for the rapid, ultrasensitive, and multiplex detection of respiratory viruses.
Collapse
Affiliation(s)
- Ye Liu
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Yue Lv
- The Third Department of Health Care, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100089, P. R. China
| | - Wenji Chen
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Xingsheng Yang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Xiaodan Cheng
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Zhen Rong
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, P. R. China
| |
Collapse
|
35
|
Chen K, Fu S, Jin C, Guo F, He Y, Ren Q, Wang X. Smartphone-Enabled Fluorescence and Colorimetric Platform for the On-Site Detection of Hg 2+ and Cl - Based on the Au/Cu/Ti 3C 2 Nanosheets. Molecules 2023; 28:5355. [PMID: 37513228 PMCID: PMC10386442 DOI: 10.3390/molecules28145355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Smartphone-assisted fluorescence and colorimetric methods for the on-site detection of Hg2+ and Cl- were established based on the oxidase-like activity of the Au-Hg alloy on the surface of Au/Cu/Ti3C2 NSs. The Au nanoparticles (NPs) were constructed via in-situ growth on the surface of Cu/Ti3C2 NSs and characterized by different characterization techniques. After the addition of Hg2+, the formation of Hg-Au alloys could promote the oxidization of o-phenylenediamine (OPD) to generate a new fluorescence emission peak of 2,3-diaminopenazine (ADP) at 570 nm. Therefore, a turn-on fluorescence method for the detection of Hg2+ was established. As the addition of Cl- can influence the fluorescence of ADP, the fluorescence intensity was constantly quenched to achieve the continuous quantitative detection of Cl-. Therefore, a turn-off fluorescence method for the detection of Cl- was established. This method had good linear ranges for the detection of Hg2+ and Cl- in 8.0-200.0 nM and 5.0-350.0 µM, with a detection limit of 0.8 nM and 27 nM, respectively. Depending on the color change with the detection of Hg2+ and Cl-, a convenient on-site colorimetric method for an analysis of Hg2+ and Cl- was achieved by using digital images combined with smartphones (color recognizers). The digital picture sensor could analyze RGB values in concentrations of Hg2+ or Cl- via a smartphone app. In summary, the proposed Au/Cu/Ti3C2 NSs-based method provided a novel and more comprehensive application for environmental monitoring.
Collapse
Affiliation(s)
- Keyan Chen
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Shiqi Fu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Chenyu Jin
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Fan Guo
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Yu He
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qi Ren
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Xuesheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
36
|
Yang H, Xia L, Ye X, Xu J, Liu T, Wang L, Zhang S, Feng W, Du D, Chen Y. Ultrathin Niobium Carbide MXenzyme for Remedying Hypertension by Antioxidative and Neuroprotective Actions. Angew Chem Int Ed Engl 2023; 62:e202303539. [PMID: 37083315 DOI: 10.1002/anie.202303539] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/22/2023]
Abstract
Hypertension, as a leading risk factor for cardiovascular diseases, is associated with oxidative stress and impairment of endogenous antioxidant mechanisms, but there is still a tremendous knowledge gap between hypertension treatment and nanomedicines. Herein, we report a specific nanozyme based on ultrathin two-dimensional (2D) niobium carbide (Nb2 C) MXene, termed Nb2 C MXenzyme, to fight against hypertension by achieving highly efficient reactive oxygen species elimination and inflammatory factors inhibition. The biocompatible Nb2 C MXenzyme displays multiple enzyme-mimicking activities, involving superoxide dismutase, catalase, glutathione peroxidase, and peroxidase, inducing cytoprotective effects by resisting oxidative stress, thereby alleviating inflammatory response and reducing blood pressure, which is systematically demonstrated in a stress-induced hypertension rat model. This strategy not only opens new opportunities for nanozymes to treat hypertension but also expands the potential biomedical applications of 2D MXene nanosystems.
Collapse
Affiliation(s)
- Hui Yang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lili Xia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuanxuan Ye
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiayi Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianfeng Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Linping Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Agriculture and Bioengineering, Heze University, Heze, 274015, P. R. China
- Shaoxing Institute of Shanghai University, Shaoxing, 312074, P. R. China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
37
|
Shelash Al-Hawary SI, Sapaev IB, Althomali RH, Musad Saleh EA, Qadir K, Romero-Parra RM, Ismael Ouda G, Hussien BM, Ramadan MF. Recent Progress in Screening of Mycotoxins in Foods and Other Commodities Using MXenes-Based Nanomaterials. Crit Rev Anal Chem 2023; 54:3066-3082. [PMID: 37307199 DOI: 10.1080/10408347.2023.2222412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycotoxin pollution in agricultural food products endangers animal and human health during the supply chains, therefore the development of accurate and rapid techniques for the determination of mycotoxins is of great importance for food safety guarantee. MXenes-based nanoprobes have attracted enormous attention as a complementary analysis and promising alternative strategies to conventional diagnostic methods, because of their fascinating features, like high electrical conductivity, various surface functional groups, high surface area, superb thermal resistance, good hydrophilicity, and environmentally-friendlier characteristics. In this study, we outline the state-of-the-art research on MXenes-based probes in detecting various mycotoxins like aflatoxin, ochratoxin, deoxynivalenol, zearalenone, and other toxins as a most commonly founded mycotoxin in the agri-food supply chain. First, we present the diverse synthesis approaches and exceptional characteristics of MXenes. Afterward, based on the detecting mechanism, we divide the biosensing utilizations of MXenes into two subcategories: electrochemical, and optical biosensors. Then their performance in effective sensing of mycotoxins is comprehensively deliberated. Finally, present challenges and prospective opportunities for MXenes are debated.
Collapse
Affiliation(s)
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Saudi Arabia
| | - Kamran Qadir
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin, China
| | | | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
38
|
Yang M, Wang L, Lu H, Dong Q. Advances in MXene-Based Electrochemical (Bio)Sensors for Neurotransmitter Detection. MICROMACHINES 2023; 14:mi14051088. [PMID: 37241710 DOI: 10.3390/mi14051088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Neurotransmitters are chemical messengers that play an important role in the nervous system's control of the body's physiological state and behaviour. Abnormal levels of neurotransmitters are closely associated with some mental disorders. Therefore, accurate analysis of neurotransmitters is of great clinical importance. Electrochemical sensors have shown bright application prospects in the detection of neurotransmitters. In recent years, MXene has been increasingly used to prepare electrode materials for fabricating electrochemical neurotransmitter sensors due to its excellent physicochemical properties. This paper systematically introduces the advances in MXene-based electrochemical (bio)sensors for the detection of neurotransmitters (including dopamine, serotonin, epinephrine, norepinephrine, tyrosine, NO, and H2S), with a focus on their strategies for improving the electrochemical properties of MXene-based electrode materials, and provides the current challenges and future prospects for MXene-based electrochemical neurotransmitter sensors.
Collapse
Affiliation(s)
- Meiqing Yang
- Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China
| | - Lu Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haozi Lu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qizhi Dong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
39
|
Wu Q, Wang Z, Hu Q, Ji Y, Li D, Wang J, Xia Q, Wang L, Zhou A. Lithium storage performance enhanced by lithiation-induced structural phase transitions of fluorinated MXenes. Phys Chem Chem Phys 2023; 25:14406-14416. [PMID: 37183999 DOI: 10.1039/d3cp00974b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Structural phase transitions in electrode materials of Li-ion batteries (LIBs) often occur along with Li-ion extraction/intercalation during charge and discharge processes. Lithiation-induced phase transition behaviors of two-dimensional fluorinated MXenes were investigated systematically by first-principles density functional calculations. The calculated results show that fluorine atoms in the nine MXenes studied moved from the FCC site (or HCP site for Ta2CF2) to the TOP site during Li adsorption. Further all the predicted phase transitions were confirmed by ab initio molecular dynamic simulations. The band structure, density of state, diffusion energy barrier, average voltage and storage capacity were calculated to evaluate the lithium storage properties of fluorinated MXenes, which revealed that V2CF2 and Ti2CF2 are the optimal candidates for LIB electrode materials. The structural phase transition led to improvements in the cycle stability, storage capacity, average voltage, and other lithium storage properties of the fluorinated MXenes.
Collapse
Affiliation(s)
- Qinghua Wu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Zhe Wang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Qianku Hu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Yuhuan Ji
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Dandan Li
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Junkai Wang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Qixun Xia
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Libo Wang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Aiguo Zhou
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
| |
Collapse
|
40
|
Yang F, Hu P, Yang FF, Chen B, Yin F, Sun R, Hao K, Zhu F, Wang K, Yin Z. Emerging Enhancement and Regulation Strategies for Ferromagnetic 2D Transition Metal Dichalcogenides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300952. [PMID: 37178366 PMCID: PMC10375142 DOI: 10.1002/advs.202300952] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) present promising applications in various fields such as electronics, optoelectronics, memory devices, batteries, superconductors, and hydrogen evolution reactions due to their regulable energy band structures and unique properties. For emerging spintronics applications, materials with excellent room-temperature ferromagnetism are required. Although most transition metal compounds do not possess room-temperature ferromagnetism on their own, they are widely modified by researchers using the emerging strategies to engineer or modulate their intrinsic properties. This paper reviews recent enhancement approaches to induce magnetism in 2D TMDs, mainly using doping, vacancy defects, composite of heterostructures, phase modulation, and adsorption, and also by electron irradiation induction, O plasma treatment, etc. On this basis, the produced effects of these methods for the introduction of magnetism into 2D TMDs are compressively summarized and constructively discussed. For perspective, research on magnetic doping techniques for 2D TMDs materials should be directed toward more reliable and efficient directions, such as exploring advanced design strategies to combine dilute magnetic semiconductors, antiferromagnetic semiconductors, and superconductors to develop new types of heterojunctions; and advancing experimentation strategies to fabricate the designed materials and enable their functionalities with simultaneously pursuing the upscalable growth methods for high-quality monolayers to multilayers.
Collapse
Affiliation(s)
- Fan Yang
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ping Hu
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fairy Fan Yang
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bo Chen
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fei Yin
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruiyan Sun
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ke Hao
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fei Zhu
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kuaishe Wang
- School of Metallurgy Engineering, State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
41
|
Zheng Y, Cui X, Yin H, Zhang H, Cao L, Gao L, Zhou Y, Ju P, Ai S. Antibody-free photoelectrochemical biosensor for DNA carboxylation detection based on SnS 2@Ti 3C 2 heterojunction. Anal Chim Acta 2023; 1251:341011. [PMID: 36925312 DOI: 10.1016/j.aca.2023.341011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
As an important epigenetic modification, 5-carboxycytosine (5caC) played an important role in gene regulation, cell differentiation and growth. 5caC existed in many cells and tissues, but it was highly similar to the structure of other cytosine derivatives and had less content in the genome. Therefore, it was urgent to develop a sensitive and highly selective trace biosensor to detect 5caC. A novel photoelectrochemical biosensor was fabricated for 5-carboxy-2'-deoxycytidine-5'-triphosphate (5cadCTP) detection, where SnS2@Ti3C2 nanocomposite was employed as photoactive material, polyethyleneimine was used as 5cadCTP recognition and capture reagent, and Ru(NH3)63+ was used as photosensitizer for signal amplification. Due the good conductivity of Ti3C2 MXene and the matched energy band between Ti3C2 MXene and SnS2, SnS2@Ti3C2 nanocomposite presented strong photoactivity, which was beneficial to the high detection sensitivity. For specific recognition of 5cadCTP, the covalent interaction of -NH2 in 5cadCTP with -COOH on the substrate electrode was used, which was beneficial to the high detection selectivity. A broad linear relationship between photocurrent and 5cadCTP concentration was observed ranging from 1 pM to 0.2 μM. The low detection limit of 260 fM was achieved. The developed method has high detection specificity and can even distinguish 5caC with its derivatives. In addition, the applicability was evaluated by detecting the content change of 5caC in the genomic DNA of rice seedlings after cultured with environmental pollutants. This work provides a novel platform for 5cadCTP detection, and it can also be applied to detect other cytosine derivatives with suitable recognition strategies.
Collapse
Affiliation(s)
- Yulin Zheng
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Haowei Zhang
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, People's Republic of China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| |
Collapse
|
42
|
Estili M, Matsuda S, Jia L, Sakai N, Ma R, Suzuki TS, Uosaki K. CNT-MXene ultralight membranes: fabrication, surface nano/microstructure, 2D-3D stacking architecture, ion-transport mechanism, and potential application as interlayers for Li-O 2 batteries. NANOSCALE 2023; 15:8289-8303. [PMID: 37078832 DOI: 10.1039/d3nr00712j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have shown effectiveness in improving the suitability of MXenes for energy-related applications. However, the ability of individually dispersed MWCNTs to control the structure of MXene-based macrostructures is unclear. Here, the correlation among composition, surface nano- and microstructure, MXenes' stacking order, structural swelling, and Li-ion transport mechanisms and properties in individually dispersed MWCNT-Ti3C2 films was investigated. The compact surface microstructure of MXene film, characterized by prominent wrinkles, is dramatically changed as MWCNTs occupy MXene/MXene edge interfaces. The 2D stacking order is preserved up to 30 wt% MWCNTs despite a significant swelling of ∼400%. Such alignment is completely disrupted at 40 wt%, and a more pronounced surface opening and internal expansion of ∼770% are realized. Both 30 wt% and 40 wt% membranes show stable cycling performance under a significantly higher current density due to faster transport channels. Notably, for the 3D membrane, the overpotential during repeated Li deposition/dissolution reactions is further reduced by ∼50%. Ion-transport mechanisms in the absence and presence of MWCNTs are discussed. Furthermore, ultralight yet continuous hybrid films comprising up to ∼0.027 mg cm-2 Ti3C2 can be prepared using aqueous colloidal dispersions and vacuum filtration for specific applications. The potential application of such ultralight membranes as interlayers for Li-O2 batteries is briefly examined.
Collapse
Affiliation(s)
- Mehdi Estili
- Ceramics Processing Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan.
| | - Shoichi Matsuda
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Japan.
- NIMS-SoftBank Advanced Technologies Development Center, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Japan
| | - Lulu Jia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Japan
| | - Nobuyuki Sakai
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Japan
| | - Renzhi Ma
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Japan
| | - Tohru S Suzuki
- Ceramics Processing Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan.
| | - Kohei Uosaki
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Japan.
- NIMS-SoftBank Advanced Technologies Development Center, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Japan
| |
Collapse
|
43
|
Topor CV, Puiu M, Bala C. Strategies for Surface Design in Surface Plasmon Resonance (SPR) Sensing. BIOSENSORS 2023; 13:bios13040465. [PMID: 37185540 PMCID: PMC10136606 DOI: 10.3390/bios13040465] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Surface plasmon resonance (SPR) comprises several surface-sensitive techniques that enable the trace and ultra-trace detection of various analytes through affinity pairing. Although enabling label-free, sensitive detection and real-time monitoring, several issues remain to be addressed, such as poor stability, non-specific adsorption and the loss of operational activity of biomolecules. In this review, the progress over sensor modification, immobilization techniques and novel 2D nanomaterials, gold nanostructures and magnetic nanoparticles for signal amplification is discussed. The advantages and disadvantages of each design strategy will be provided together with some of the recent achievements.
Collapse
Affiliation(s)
- Cristina-Virginia Topor
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Mihaela Puiu
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Camelia Bala
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| |
Collapse
|
44
|
Simonenko EP, Nagornov IA, Mokrushin AS, Averin AA, Gorban YM, Simonenko TL, Simonenko NP, Kuznetsov NT. Gas-Sensitive Properties of ZnO/Ti 2CT x Nanocomposites. MICROMACHINES 2023; 14:725. [PMID: 37420958 DOI: 10.3390/mi14040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 07/09/2023]
Abstract
At present, a new class of 2D nanomaterials, MXenes, is of great scientific and applied interest, and their application prospects are very broad, including as effective doping components for receptor materials of MOS sensors. In this work we have studied the influence on the gas-sensitive properties of nanocrystalline zinc oxide synthesized by atmospheric pressure solvothermal synthesis, with the addition of 1-5% of multilayer two-dimensional titanium carbide Ti2CTx, obtained by etching Ti2AlC with NaF solution in hydrochloric acid. It was found that all the obtained materials have high sensitivity and selectivity with respect to 4-20 ppm NO2 at a detection temperature of 200 °C. It is shown that the selectivity towards this compound is best for the sample containing the highest amount of Ti2CTx dopant. It has been found that as the MXene content increases, there is an increase in nitrogen dioxide (4 ppm) from 1.6 (ZnO) to 20.5 (ZnO-5 mol% Ti2CTx). reactions which the responses to nitrogen dioxide increase. This may be due to the increase in the specific surface area of the receptor layers, the presence of MXene surface functional groups, as well as the formation of the Schottky barrier at the interface between the phases of the components.
Collapse
Affiliation(s)
- Elizaveta P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ilya A Nagornov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Artem S Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Aleksey A Averin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 199071, Russia
| | - Yulia M Gorban
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Tatiana L Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nikolay T Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
45
|
Nanomaterials Aspects for Photocatalysis as Potential for the Inactivation of COVID-19 Virus. Catalysts 2023. [DOI: 10.3390/catal13030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
Coronavirus disease-2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is the most difficult recent global outbreak. Semiconducting materials can be used as effective photocatalysts in photoactive technology by generating various reactive oxidative species (ROS), including superoxide (•O2−) and hydroxyl (•OH) radicals, either by degradation of proteins, DNA, and RNA or by inhibition of cell development through terminating the cellular membrane. This review emphasizes the capability of photocatalysis as a reliable, economical, and fast-preferred method with high chemical and thermal stability for the deactivation and degradation of SARS-CoV-2. The light-generated holes present in the valence band (VB) have strong oxidizing properties, which result in the oxidation of surface proteins and their inactivation under light illumination. In addition, this review discusses the most recent photocatalytic systems, including metals, metal oxides, carbonaceous nanomaterials, and 2-dimensional advanced structures, for efficient SARS-CoV-2 inactivation using different photocatalytic experimental parameters. Finally, this review article summarizes the limitations of these photocatalytic approaches and provides recommendations for preserving the antiviral properties of photocatalysts, large-scale treatment, green sustainable treatment, and reducing the overall expenditure for applications.
Collapse
|
46
|
Hu Q, Ji Y, Li D, Wang Z, Han K, Wu Q, Wang J, Xia Q, Wang L, Zhou A. A systematic computational investigation of lithiation-induced structural phase transitions of O-functionalized MXenes. Phys Chem Chem Phys 2023; 25:9428-9436. [PMID: 36928729 DOI: 10.1039/d3cp00012e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Along with Li-ion extraction/intercalation during charge and discharge processes, structural phase transitions often occur in the electrode materials of Li-ion batteries (LIBs). By determining atomic positions before and after Li adsorptions, structural phase transitions of two-dimensional MXenes were investigated systematically using first-principles density functional calculations. The lithiation-induced phase transitions of ten M2C MXenes with oxygen groups can be divided into three types. No phase transitions occur for Ti-type MXenes including Ti2CO2, Zr2CO2 and Hf2CO2. The oxygens in Ta-type MXenes (Sc2CO2, Y2CO2, Nb2CO2 and Ta2CO2) move from one type of octahedral void to another type of octahedral void. However, for Mo-type MXenes including V2CO2, Cr2CO2 and Mo2CO2, the oxygens move from octahedral voids to tetrahedral voids. The mechanisms whether phase transitions happen or not are dependent on the sizes of M ions. Furthermore, all the predicted phase transitions were confirmed by ab initio molecular dynamics simulations. The calculated results of electron localization functions and Bader charge illustrate that there exist strong Coulomb interactions (ionic bonds) between Li and MXene surfaces. The band structure, diffusion energy barrier, open circuit voltage and storage capacity were calculated to evaluate the lithium storage properties of different MXenes, which reveals that V2CO2 and Cr2CO2 should be optimal candidates as electrode materials for LIBs.
Collapse
Affiliation(s)
- Qianku Hu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yuhuan Ji
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Dandan Li
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Zhe Wang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Kun Han
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Qinghua Wu
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Junkai Wang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Qixun Xia
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Libo Wang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Aiguo Zhou
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
47
|
Divya KP, Keerthana S, Viswanathan C, Ponpandian N. MXene supported biomimetic bilayer lipid membrane biosensor for zeptomole detection of BRCA1 gene. Mikrochim Acta 2023; 190:116. [PMID: 36877256 DOI: 10.1007/s00604-023-05694-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
A biomimetic bilayer lipid membrane supported MXene based biosensor is reported for electrochemical hybridization detection of the most prevalent and potential BC biomarker BRCA1. 2D MXene nanosheet-anchored gold nanoparticle-decorated biomimetic bilayer lipid membrane (AuNP@BLM) biosensor is used for the attachment of thiolated single-stranded DNA (HS-ssDNA) targeting hybridization detection. The interaction of biomimetic bilayer lipid membrane with 2D MXene nanosheets is explored in this work for the first time. The synergistic combination of MXene and AuNP@BLM has proven to efficiently improve the detection signal to several folds. The sensor provides hybridization signals only to the complementary DNA (cDNA) sequence with a linearity range 10 zM to 1 µM and LOD of 1 zM without the need of any further amplification. The specificity of the biosensor is validated using non-complementary (ncDNA) and double base mis-match oligonucleotide DNA (dmmDNA) sequences. The sensor successfully distinguishes the signal for different target DNAs with good reproducibility indicated by the RSD value of 4.9%. Hence, we envision that the reported biosensor can be used to construct efficient diagnostic point-of-care tools based on molecular affinity interactions.
Collapse
Affiliation(s)
- Karutha Pandian Divya
- Bharathiar Cancer Theranostics Research Centre (BCTRC), RUSA 2.0, Bharathiar University, Coimbatore, 641 046, India.,Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | | | | | - Nagamony Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
48
|
Yang G, Liu F, Zhao J, Fu L, Gu Y, Qu L, Zhu C, Zhu JJ, Lin Y. MXenes-based nanomaterials for biosensing and biomedicine. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Cui A, Meng P, Hu J, Yang H, Yang Z, Li H, Sun Y. Fabrication of high-performance cell-imprinted polymers based on AuNPs/MXene composites via metal-free visible light-induced ATRP. Analyst 2023; 148:1058-1067. [PMID: 36728941 DOI: 10.1039/d2an01896a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell-imprinted polymers (CIPs) for yeasts were fabricated via metal-free visible-light-induced atom transfer radical polymerization (MVL ATRP) on the surface of a glassy carbon electrode (GCE) which had been modified with gold nanoparticles (AuNPs)/MXene (Ti3C2Tx) composites. Here, the AuNPs/Ti3C2Tx composites form a macroporous structure, which could improve the electron transfer rate of the materials and facilitate the leaving or rebinding of cells. Methacrylic acid (MAA) and N,N'-methylene bis-acrylamide (MBA) were selected as the functional monomer and cross-linker of CIPs, because they could form efficient hydrogen bonding with mannan from yeast cell walls. The obtained electrode (CIPs/AuNPs/Ti3C2Tx/GCE) was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Further experiments indicated that the CIPs/AuNPs/Ti3C2Tx/GCE electrode could be utilized as an electrochemical biosensor to determine yeast cells by differential pulse voltammetry (DPV). The linear response range was 1.0 × 102 to 1.0 × 109 cells per mL and the detection limit was 20 cells per mL (S/N = 3). The CIPs/AuNPs/Ti3C2Tx/GCE electrode also showed good selectivity, repeatability, reproducibility, and regeneration. Finally, the proposed sensor was used to detect yeast cells in commercial samples of Saccharomyces boulardii sachets by a standard addition method. The obtained recovery was from 96.9 to 104.8% showing its potential applications in clinical and diagnostic research.
Collapse
Affiliation(s)
- Ailu Cui
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Peiran Meng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Jing Hu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Huimin Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Zuan Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Hongchao Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
50
|
Simonenko EP, Simonenko NP, Mokrushin AS, Simonenko TL, Gorobtsov PY, Nagornov IA, Korotcenkov G, Sysoev VV, Kuznetsov NT. Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:850. [PMID: 36903729 PMCID: PMC10004978 DOI: 10.3390/nano13050850] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/14/2023]
Abstract
The titanium carbide MXenes currently attract an extreme amount of interest from the material science community due to their promising functional properties arising from the two-dimensionality of these layered structures. In particular, the interaction between MXene and gaseous molecules, even at the physisorption level, yields a substantial shift in electrical parameters, which makes it possible to design gas sensors working at RT as a prerequisite to low-powered detection units. Herein, we consider to review such sensors, primarily based on Ti3C2Tx and Ti2CTx crystals as the most studied ones to date, delivering a chemiresistive type of signal. We analyze the ways reported in the literature to modify these 2D nanomaterials for (i) detecting various analyte gases, (ii) improving stability and sensitivity, (iii) reducing response/recovery times, and (iv) advancing a sensitivity to atmospheric humidity. The most powerful approach based on designing hetero-layers of MXenes with other crystals is discussed with regard to employing semiconductor metal oxides and chalcogenides, noble metal nanoparticles, carbon materials (graphene and nanotubes), and polymeric components. The current concepts on the detection mechanisms of MXenes and their hetero-composites are considered, and the background reasons for improving gas-sensing functionality in the hetero-composite when compared with pristine MXenes are classified. We formulate state-of-the-art advances and challenges in the field while proposing some possible solutions, in particular via employing a multisensor array paradigm.
Collapse
Affiliation(s)
- Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Artem S. Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Tatiana L. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Philipp Yu. Gorobtsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ilya A. Nagornov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| | - Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, 2009 Chisinau, Moldova
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|