1
|
Gao H, Zhang H, Qi X, Miao M, Que L, Gu X, Chang D, Pan H. CRISPR/Cas12a dual-mode biosensor for Staphylococcus aureus detection via enzyme-free isothermal amplification. Talanta 2025; 282:127013. [PMID: 39406093 DOI: 10.1016/j.talanta.2024.127013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024]
Abstract
Accurate and reliable detection of Staphylococcus aureus (S. aureus) is essential for preventing infections, particularly in healthcare and food safety contexts. This work presents a novel dual-mode biosensor that integrates the CRISPR/Cas12a system with an enzyme-free isothermal amplification method for detecting S. aureus. Hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) amplify the aptamer-triggered response, significantly enhancing sensitivity. CRISPR/Cas12a's nuclease activity is utilized in two modes: cis cleavage generates a fluorescence signal, while trans cleavage produces an electrochemical signal, enabling dual-mode detection. The biosensor demonstrates outstanding performance, with a limit of detection (LOD) as low as 5.7 CFU mL-1 in electrochemical mode and 133.7 CFU mL-1 in fluorescence mode, showcasing excellent accuracy, stability, and sensitivity. It has been successfully applied to detecting actual samples, confirming its practical applicability. This innovative approach offers a powerful tool for the swift and precise identification of S. aureus and paves the way for developing next-generation dual-mode biosensors for various analytes. Future research will aim to simplify the detection process further, making it more accessible for use in resource-limited settings.
Collapse
Affiliation(s)
- Hongmin Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xue Qi
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Meng Miao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Longbin Que
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xin Gu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, People's Republic of China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; The Affiliated Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
2
|
Zhu A, Ahmad W, Xu Y, Wei W, Jiao T, Ouyang Q, Chen Q. Trace detection of S. aureus cells in food samples via RCA-assisted SERS signal amplification with core-shell nanoprobe. Talanta 2024; 286:127458. [PMID: 39755075 DOI: 10.1016/j.talanta.2024.127458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Staphylococcus aureus (S. aureus) has been identified as a indicator of food contamination. In this study, a sensitive and accurate biosensor strategy for S. aureus through rolling circle amplification-assisted surface-enhanced Raman scattering (RCA-assisted-SERS), has been established. The work relies on the interaction between the aptamer and its partial complementary DNA strands fabricated on the surface of gold and silver-assisted magnetic microspheres and the subsequent detachment to trigger the activation of the RCA process. In RCA, template DNA, T4 DNA ligase, and Phi29 DNA polymerase were assembled to form long single-stranded DNA containing repetitive sequences. The gold core encapsulated with a layer of 4-nitrothiophenol and further covered with a silica shell was employed as the SERS nanoprobe (Au@NTP@SiO2). Subsequently, the output and amplification of SERS signal were performed by hybridizing ssDNA functionalized Au@NTP@SiO2 to realize the quantitative detection of S. aureus. Under the optimal conditions, S. aureus sensing was monitored (36.0-3.6 × 108 cfu/mL) with a limit of detection of 2.0 cfu/mL. This strategy was further validated for S. aureus recognition in spiked real samples with favorable recoveries (94.0-103.4 %) at p > 0.05. The suggested RCA-assisted SERS approach exhibits potential for multiple foodborne pathogens in both food safety and biomedical investigations.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Yi Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Peng L, Zhu A, Ahmad W, Adade SYSS, Chen Q, Wei W, Chen X, Wei J, Jiao T, Chen Q. A three-channel biosensor based on stimuli-responsive catalytic activity of the Fe 3O 4@Cu for on-site detection of tetrodotoxin in fish. Food Chem 2024; 460:140566. [PMID: 39067423 DOI: 10.1016/j.foodchem.2024.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Tetrodotoxin (TTX), a lethal neurotoxin, poses a grave threat to human health. The available spectroscopic methods suffer from limitations such as complex procedures and inadequate on-site capabilities. In this study, we proposed a method using Fe3O4@Cu as a catalytic biosensor combined with SERS, colorimetry and image processing for TTX detection. Integrating the aptamer amplifies the specificity of the system and masks the catalytic activity of Fe3O4@Cu. The catalytic efficiency of Fe3O4@Cu in the H2O2-TMB reaction can quantify the concentration of TTX in the system. Consequently, oxidation of TMB (oxTMB) led to the generation and change of signals for SERS, colorimetry and image processing, enabling a three-channel quantitative detection of TTX. Under the optimal conditions, the detection limit of established SERS, colorimetry and image processing were 0.055, 2.127 and 0.243 ng/mL, respectively. This three-channel biosensor was applied to real samples, providing an accurate, stable and adaptable alternative for on-site TTX detection.
Collapse
Affiliation(s)
- Lijie Peng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | | | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
4
|
Wen P, Yang F, Zhao H, Li S, Xu Y, Chen L. Microcavity Array-Based Digital SERS Chip for Rapid and Accurate Label-free Quantitative Detection of Live Bacteria. ACS Sens 2024. [PMID: 39496288 DOI: 10.1021/acssensors.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
In this study, we developed a novel digital surface-enhanced Raman spectroscopy (SERS) chip that integrates an inverted pyramid microcavity array, a microchannel cover plate, and a multilayer gold nanoparticle (AuNP) SERS substrate. This innovative design exploits the synergistic effects of the microcavity array and the microchannel to enable rapid and large-scale digital discretization of bacterial suspensions. The concentration effect of the picoliter cavities, combined with the superior Raman enhancement effect of the multilayer AuNP SERS substrate, allows for the precise identification of live bacteria within the microcavities through in situ and label-free SERS testing after a short incubation period. By counting the resulting positive or negative signals, the concentration of the target analyte can be directly determined via Poisson statistics. Experimental results demonstrate that this method enables the accurate quantification of Escherichia coli (E. coli) BL21 within a 4-h incubation period. Compared with traditional analog SERS detection methods, our proposed digital SERS detection strategy reduces the impact of signal intensity fluctuations, thereby significantly improving detection efficiency and accuracy. We believe that this digital SERS chip has great application prospects in the fields of bacterial detection, antibiotic resistance analysis, and cellular dynamics monitoring.
Collapse
Affiliation(s)
- Ping Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Feng Yang
- School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Haixia Zhao
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Shunbo Li
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Yi Xu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Li Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Wang B, Han Y, Zhang L, Chen Z, Zhang W, Ren M, Shi J, Xu X, Yang Y. Surface-enhanced Raman scattering based on noble metal nanoassemblies for detecting harmful substances in food. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39388195 DOI: 10.1080/10408398.2024.2413656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Residues of harmful substances in food can severely damage human health. The content of these substances in food is generally low, making detection difficult. Surface-enhanced Raman scattering (SERS), based on noble metal nanomaterials, mainly gold (Au) and silver (Ag), has exhibited excellent capabilities for trace detection of various substances. Noble metal nanoassemblies, in particular, have extraordinary flexibility and tunable optical properties, which cannot be offered by single nanoparticles (NPs). These nanoassemblies, with their various morphologies synthesized using NPs through artificially induced self-assembly or template-driven preparation, can significantly enhance the local electric field and create "hot spots" due to the gaps between adjacent NPs. Consequently, the SERS properties of NPs become more prominent, leading to improved performance in the trace detection of various substances and detection limits that are considerably lower than the current relevant standards. Noble metal nanoassemblies show promising potential in ensuring food safety. This review discusses the synthesis methods and SERS properties of noble metal nanoassemblies and then concentrates on their application in detecting biotoxins, drug residues, illegal additives, and heavy metals. The study provides valuable references for further research into the application of nanoassemblies in food safety detection.
Collapse
Affiliation(s)
- Baojun Wang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zikuo Chen
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
6
|
Yuwen L, Ni J, Liang J, Liu X, Chen Z, Li X, Lv H, Zhang J, Song C. Portable SERS biosensor based on aptamer-assisted catalytic hairpin assembly signal amplification for ultrasensitive detection of Staphylococcus aureus. Talanta 2024; 278:126565. [PMID: 39018762 DOI: 10.1016/j.talanta.2024.126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Bacteria infections pose a serious threat to public health, and it is urgent to develop facile and accurate detection methods. To meet the important need, a potable and high-sensitive surface enhanced Raman scattering (SERS) biosensor based on aptamer recognition and catalytic hairpin assembly (CHA) signal amplification was proposed for point-of-care detection of Staphylococcus aureus (S. aureus). The SERS biosensor contains three parts: recognition probes, SERS sensing chip, and SERS tags. The feasibility of the strategy was verified by gel electrophoresis, and the one-step test route was optimized. The bacteria SERS biosensor has a good linear relationship ranging from 10 to 107 CFU mL-1 with high sensitivity low to 5 CFU mL-1, and shows excellent specificity, uniformity, and repeatability on S. aureus identification and enumeration, which can distinguish S. aureus from other bacteria. The SERS biosensor shows a good recovery rate (95.73 %-109.65 %) for testing S. aureus spiked in milk, and has good practicability for detecting S. aureus infected mouse wound, which provides a facile and reliable approach for detection of trace bacteria in the real samples.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Ni
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jing Liang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xinyu Liu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhilong Chen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiao Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huiming Lv
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
7
|
Wang Y, Wang S, Zou Y, Gao Y, Ma B, Zhang Y, Dai H, Ma J, Zhao W. Controllable Construction of Aptamer-Modified Fe 3O 4@SiO 2-Au Core-Shell-Satellite Nanocomposites with Surface-Enhanced Raman Scattering and Photothermal Properties and Their Effective Capture, Detection, and Elimination of Staphylococcus aureus. Molecules 2024; 29:3593. [PMID: 39124998 PMCID: PMC11314609 DOI: 10.3390/molecules29153593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The early monitoring and inactivation of bacteria are of crucial importance in preventing the further spread of foodborne pathogens. Staphylococcus aureus (S. aureus), a prototypical foodborne pathogen, is widely present in the natural environment and has the capability to trigger a range of diseases at low concentrations. In this work, we designed Fe3O4@SiO2-Au core-shell-satellite nanocomposites (NCs) modified with aptamer for efficient capture, high-sensitivity surface-enhanced Raman scattering (SERS) detection, and photothermal therapy (PTT) against S. aureus. Fe3O4@SiO2-Au NCs with tunable Au nanocrystal nanogaps were prepared. By combining the finite-difference time-domain (FDTD) method and experimental results, we studied the electric field distribution of Fe3O4@SiO2-Au under different Au nanogaps and ultimately obtained the optimal SERS substrate FSA-60. The modification of aptamer on the surfaces of FSA-60 could be used for the specific capture and selective detection of S. aureus, achieving a detection limit of as low as 50 cfu/mL. Furthermore, Apt-FSA-60 possessed excellent photothermal properties, demonstrating the strong photothermal killing ability against S. aureus. Therefore, Apt-FSA-60 is a promising high-sensitivity SERS substrate and efficient photothermal agent and is expected to be widely applied and promoted in future disease prevention and treatment.
Collapse
Affiliation(s)
- Yongdan Wang
- School of Foreign Languages, Jilin Normal University, Siping 136000, China (Y.Z.)
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.W.); (Y.G.); (B.M.); (Y.Z.); (H.D.); (J.M.)
| | - Shengyi Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.W.); (Y.G.); (B.M.); (Y.Z.); (H.D.); (J.M.)
| | - Yuhui Zou
- School of Foreign Languages, Jilin Normal University, Siping 136000, China (Y.Z.)
| | - Yuze Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.W.); (Y.G.); (B.M.); (Y.Z.); (H.D.); (J.M.)
| | - Boya Ma
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.W.); (Y.G.); (B.M.); (Y.Z.); (H.D.); (J.M.)
| | - Yuhan Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.W.); (Y.G.); (B.M.); (Y.Z.); (H.D.); (J.M.)
| | - Huasong Dai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.W.); (Y.G.); (B.M.); (Y.Z.); (H.D.); (J.M.)
| | - Jingmei Ma
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.W.); (Y.G.); (B.M.); (Y.Z.); (H.D.); (J.M.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.W.); (Y.G.); (B.M.); (Y.Z.); (H.D.); (J.M.)
| |
Collapse
|
8
|
Wang P, Liu Y, Li X, Li C, Li G. A ratiometric SERS aptasensor based on catalytic hairpin self-assembly mediated cyclic signal amplification strategy for the reliable determination of E. coli O157:H7. Mikrochim Acta 2024; 191:441. [PMID: 38954045 DOI: 10.1007/s00604-024-06475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.
Collapse
Affiliation(s)
- Panxue Wang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Ying Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Xiang Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Cen Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| |
Collapse
|
9
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
10
|
Yu W, Li J, Huang G, He Z, Tian H, Xie F, Jin W, Huang Q, Fu W, Yang X. Rapid and sensitive detection of Staphylococcus aureus using a THz metamaterial biosensor based on aptamer-functionalized Fe 3O 4@Au nanocomposites. Talanta 2024; 272:125760. [PMID: 38364563 DOI: 10.1016/j.talanta.2024.125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Staphylococcus aureus (S. aureus) poses a serious threat to global public health, necessitating the establishment of rapid and simple tools for its accurate identification. Herein, we developed a terahertz (THz) metamaterial biosensor based on aptamer-functionalized Fe3O4@Au nanocomposites for quantitative S. aureus assays in different clinical samples. Fe3O4@Au@Cys@Apt has the dual advantages of magnetism and a high refractive index in the THz range and was used to rapidly separate and enrich target bacteria in a complex environmental solution. Furthermore, conjugation to the nanocomposites significantly increased the resonance frequency shift of the THz metamaterial after target loading. Our results showed that the shifts in the metamaterial resonance frequency were linearly related to S. aureus concentrations ranging from 1.0 × 103 to 1.0 × 107 CFU/mL, with a detection limit of 4.78 × 102 CFU/mL. The biosensor was further applied to S. aureus detection in spiked human urine and blood with satisfactory recoveries (82.4-109.6%). Our approach also demonstrated strong concordance with traditional plate counting (R2 = 0.99306) while significantly lowering the analysis time from 24 h to <1 h. In conclusion, the proposed biosensor can not only perform culture-free and extraction-free detection of target bacteria but can also be easily extended to the determination of other pathogenic bacteria, rendering it suitable for various bacteria-related disease diagnoses.
Collapse
Affiliation(s)
- Wenjing Yu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jining Li
- Institute of Laser and Opto-electronics, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhe He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Weidong Jin
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
11
|
Bai Y, Xu P, Li S, Wang D, Zhang K, Zheng D, Yue D, Zhang G, He S, Li Y, Zou H, Deng Y. Signal amplification strategy of DNA self-assembled biosensor and typical applications in pathogenic microorganism detection. Talanta 2024; 272:125759. [PMID: 38350248 DOI: 10.1016/j.talanta.2024.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Biosensors have emerged as ideal analytical devices for various bio-applications owing to their low cost, convenience, and portability, which offer great potential for improving global healthcare. DNA self-assembly techniques have been enriched with the development of innovative amplification strategies, such as dispersion-to-localization of catalytic hairpin assembly, and dumbbell hybridization chain reaction, which hold great significance for building biosensors capable of realizing sensitive, rapid and multiplexed detection of pathogenic microorganisms. Here, focusing primarily on the signal amplification strategies based on DNA self-assembly, we concisely summarized the strengths and weaknesses of diverse isothermal nucleic acid amplification techniques. Subsequently, both single-layer and cascade amplification strategies based on traditional catalytic hairpin assembly and hybridization chain reaction were critically explored. Furthermore, a comprehensive overview of the recent advances in DNA self-assembled biosensors for the detection of pathogenic microorganisms is presented to summarize methods for biorecognition and signal amplification. Finally, a brief discussion is provided about the current challenges and future directions of DNA self-assembled biosensors.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shi Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shuya He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China.
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| |
Collapse
|
12
|
Guo X. Research progress on the detection of foodborne pathogens based on aptamer recognition. Mikrochim Acta 2024; 191:318. [PMID: 38727855 DOI: 10.1007/s00604-024-06375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/20/2024] [Indexed: 05/15/2024]
Abstract
Foodborne diseases caused by bacterial contamination are a serious threat to food safety and human health. The classical plate culture method has the problems of long detection cycle, low sensitivity and specificity, and complicated operation, which cannot meet the growing demand for rapid quantitative detection of pathogenic bacteria. The frequent outbreak of foodborne diseases has put forward higher requirements for rapid and simple detection technology of foodborne pathogens. Aptamer is a kind of oligonucleotide fragment that can recognize targets with the advantages of high affinity and good specificity. The target can be range from proteins, small molecules, cells bacteria, and even viruses. Herein, the latest advances in sensitive and rapid detection of foodborne pathogens based on aptamer recognition was reviewed. Special attention has been paid to the obtained sequences of aptamers to various foodborne pathogens, the optimization of sequences, and the mechanism of aptamer recognition. Then, the research progress of biosensors for the detection of pathogenic bacteria based on aptamer recognition were summarized. Some challenges and prospects for the detection of foodborne pathogens based on aptamer recognition were prospected. In summary, with the further deepening of aptamer research and improvement of detection technology, aptamer-based recognition can meet the needs of rapid, sensitive, and accurate detection in practical applications.
Collapse
Affiliation(s)
- Xianglin Guo
- School of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
13
|
Chen Q, Chen H, Kong H, Chen R, Gao S, Wang Y, Zhou P, Huang W, Cheng H, Li L, Feng J. Enzyme-free sensitive SERS biosensor for the detection of thalassemia-associated microRNA-210 using a cascade dual-signal amplification strategy. Anal Chim Acta 2024; 1292:342255. [PMID: 38309848 DOI: 10.1016/j.aca.2024.342255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND β-thalassemia is a blood disorder caused by autosomal mutations. Gene modulation therapy to activate the γ-globin gene to induce fetal hemoglobin (HbF) synthesis has become a new option for the treatment of β-thalassemia. MicroRNA-210 (miR-210) contributes to studying the mechanism regulating γ-globin gene expression and is a potential biomarker for rapid β-thalassemia screening. Traditional miRNA detection methods perform well but necessitate complex and time-consuming miRNA sample processing. Therefore, the development of a sensitive, accurate, and simple miRNA level monitoring method is essential. RESULTS We have developed a non-enzymatic surface-enhanced Raman scattering (SERS) biosensor utilizing a signal cascade amplification of catalytic hairpin assembly reaction (CHA) and proximity hybridization-induced hybridization chain reaction (HCR). Au@Ag NPs were used as the SERS substrate, and methylene blue (MB)- modified DNA hairpins were used as the SERS tags. The SERS assay involved two stages: implementing the CHA-HCR cascade signal amplification strategy and conducting SERS measurements on the resulting product. The HCR was started by the products of target-triggered CHA, which formed lengthy nicked double-stranded DNA (dsDNA) on the Au@Ag NPs surface to which numerous SERS tags were attached, leading to a significant increase in the SERS signal intensity. High specificity and sensitivity for miR-210 detection was achieved by monitoring MB SERS intensity changes. The suggested SERS biosensor has a low detection limit of 5.13 fM and is capable of detecting miR-210 at concentration between 10 fM and 1.0 nM. SIGNIFICANCE The biosensor can detect miR-210 levels in the erythrocytes of β-thalassemia patients, enabling rapid screening for β-thalassemia and suggesting a novel approach for investigating the regulation mechanism of miR-210 on γ-globin gene expression. In the meantime, this innovative technique has the potential to detect additional miRNAs and to become an important tool for the early diagnosis of diseases and for biomedical research.
Collapse
Affiliation(s)
- Qiying Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Huagan Chen
- Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001, Guangxi, PR China
| | - Hongxing Kong
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Ruijue Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Si Gao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Ying Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Pei Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi, PR China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, PR China.
| |
Collapse
|
14
|
Tan Y, Zhou Z, Xu Y, Xie A, Wu S, Xue C. Detection of organic dyes using Ag NPAs/SMP SERS substrate produced via sandpaper template-assisted lithography and liquid-liquid interface self-assembly. Anal Bioanal Chem 2024; 416:1047-1056. [PMID: 38095682 DOI: 10.1007/s00216-023-05094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and reliable fingerprinting technique. However, its analytical capability is closely related to the quality of a SERS substrate used for the analysis. In particular, conventional colloidal substrates possess disadvantages in terms of controllability, stability, and reproducibility, which limit their application. In order to address these issues, a simple, cost-effective, and efficient SERS substrate based on silver nanoparticle arrays (Ag NPAs) and sandpaper-molded polydimethylsiloxane (SMP) was proposed in this work. Successfully prepared via template lithography and liquid-liquid interface self-assembly (LLISA), the substrate can be applied to the specific detection of organic dyes in the environment. The substrate exhibited good SERS performance, and the limit of detection (LOD) of rhodamine 6G (R6G) was shown to be 10-7 M under the optimal conditions (1000 grit sandpaper) with a relative standard deviation (RSD) of 7.76%. Moreover, the SERS signal intensity was maintained at 60% of the initial intensity after the substrate was stored for 30 days. In addition, the Ag NPAs/SMP SERS substrate was also employed to detect crystal violet (CV) and methylene blue (MB) with the LODs of 10-6 M and 10-7 M, respectively. In summary, the Ag NPAs/SMP SERS substrate prepared in this study has great potential for the detection of organic dyes in ecological environments.
Collapse
Affiliation(s)
- Yuanhang Tan
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Ziyu Zhou
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Yiting Xu
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Atian Xie
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Changguo Xue
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China.
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
15
|
Cheng S, Tu Z, Zheng S, Khan A, Yang P, Shen H, Gu B. Development of a Magnetically-Assisted SERS Biosensor for Rapid Bacterial Detection. Int J Nanomedicine 2024; 19:389-401. [PMID: 38250194 PMCID: PMC10799629 DOI: 10.2147/ijn.s433316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Ultrasensitive bacterial detection methods are crucial to ensuring accurate diagnosis and effective clinical monitoring, given the significant threat bacterial infections pose to human health. The aim of this study is to develop a biosensor with capabilities for broad-spectrum bacterial detection, rapid processing, and cost-effectiveness. Methods A magnetically-assisted SERS biosensor was designed, employing wheat germ agglutinin (WGA) for broad-spectrum recognition and antibodies for specific capture. Gold nanostars (AuNSs) were sequentially modified with the Raman reporter molecules and WGA, creating a versatile SERS tag with high affinity for a diverse range of bacteria. Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) antibody-modified Fe3O4 magnetic gold nanoparticles (MGNPs) served as the capture probes. Target bacteria were captured by MGNPs and combined with SERS tags, forming a "sandwich" composite structure for bacterial detection. Results AuNSs, with a core size of 65 nm, exhibited excellent storage stability (RSD=5.6%) and demonstrated superior SERS enhancement compared to colloidal gold nanoparticles. Efficient binding of S. aureus and P. aeruginosa to MGNPs resulted in capture efficiencies of 89.13% and 85.31%, respectively. Under optimized conditions, the developed assay achieved a limit of detection (LOD) of 7 CFU/mL for S. aureus and 5 CFU/mL for P. aeruginosa. The bacterial concentration (10-106 CFU/mL) showed a strong linear correlation with the SERS intensity at 1331 cm-1. Additionally, high recoveries (84.8% - 118.0%) and low RSD (6.21% - 11.42%) were observed in spiked human urine samples. Conclusion This study introduces a simple and innovative magnetically-assisted SERS biosensor for the sensitive and quantitative detection of S. aureus or P. aeruginosa, utilizing WGA and antibodies. The developed biosensor enhances the capabilities of the "sandwich" type SERS biosensor, offering a novel and effective platform for accurate and timely clinical diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Siyun Cheng
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Medical Technology School of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zhijie Tu
- Medical Technology School of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Shuai Zheng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology, Bannu, KP, Pakistan
| | - Ping Yang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Han Shen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Chen J, Yu S, Qian Z, He K, Li B, Cao Y, Tang K, Yu S, Wu YX. Target-triggered enzyme-free amplification for highly efficient AND-gated bioimaging in living cells. Analyst 2023; 148:5963-5971. [PMID: 37867382 DOI: 10.1039/d3an01157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Rapid, simultaneous, and sensitive detection of biomolecules has important application prospects in disease diagnosis and biomedical research. However, because the content of intracellular endogenous target biomolecules is usually very low, traditional detection methods can't be used for effective detection and imaging, and to enhance the detection sensitivity, signal amplification strategies are frequently required. The hybridization chain reaction (HCR) has been used to detect many disease biomarkers because of its simple operation, good reproducibility, and no enzyme involvement. Although HCR signal amplification methods have been employed to detect and image intracellular biomolecules, there are still false positive signals. Therefore, a target-triggered enzyme-free amplification system (GHCR system) was developed, as a fluorescent AND-gated sensing platform for intracellular target probing. The false positive signals can be well avoided and the accuracy of detection and imaging can be improved by using the design of the AND gate. Two cancer markers, GSH and miR-1246, were used as two orthogonal inputs for the AND gated probe. The AND-gated probe only works when GSH and miR-1246 are the inputs at the same time, and FRET signals can be the output. In addition to the use of AND-gated imaging, FRET-based high-precision ratiometric fluorescence imaging was employed. FRET-based ratiometric fluorescent probes have a higher ability to resist interference from the intracellular environment, they can avoid false positive signals well, and they are expected to have good specificity. Due to the advantages of HCR, AND-gated, and FRET fluorescent probes, the GHCR system exhibited highly efficient AND-gated FRET bioimaging for intracellular endogenous miRNAs with a lower detection limit of 18 pM, which benefits the applications of ratiometric intracellular biosensing and bioimaging and offers a novel concept for advancing the diagnosis and therapeutic strategies in the field of cancer.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shengrong Yu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Zhiling Qian
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Kangdi He
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Bingqian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yuting Cao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Keqi Tang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Shengjia Yu
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong-Xiang Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
17
|
Zhao J, Guo Y, Ma X, Liu S, Sun C, Cai M, Chi Y, Xu K. The Application of Hybridization Chain Reaction in the Detection of Foodborne Pathogens. Foods 2023; 12:4067. [PMID: 38002125 PMCID: PMC10670596 DOI: 10.3390/foods12224067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 11/26/2023] Open
Abstract
Today, with the globalization of the food trade progressing, food safety continues to warrant widespread attention. Foodborne diseases caused by contaminated food, including foodborne pathogens, seriously threaten public health and the economy. This has led to the development of more sensitive and accurate methods for detecting pathogenic bacteria. Many signal amplification techniques have been used to improve the sensitivity of foodborne pathogen detection. Among them, hybridization chain reaction (HCR), an isothermal nucleic acid hybridization signal amplification technique, has received increasing attention due to its enzyme-free and isothermal characteristics, and pathogenic bacteria detection methods using HCR for signal amplification have experienced rapid development in the last five years. In this review, we first describe the development of detection technologies for food contaminants represented by pathogens and introduce the fundamental principles, classifications, and characteristics of HCR. Furthermore, we highlight the application of various biosensors based on HCR nucleic acid amplification technology in detecting foodborne pathogens. Lastly, we summarize and offer insights into the prospects of HCR technology and its application in pathogen detection.
Collapse
Affiliation(s)
- Jinbin Zhao
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yulan Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Xueer Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Shitong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Chunmeng Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Ming Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuyang Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
| |
Collapse
|
18
|
Zhou J, Wang TY, Lan Z, Yang HJ, Ye XJ, Min R, Wang ZH, Huang Q, Cao J, Gao YE, Wang WL, Sun XL, Zhang Y. Strategy of functional nucleic acids-mediated isothermal amplification for detection of foodborne microbial contaminants: A review. Food Res Int 2023; 173:113286. [PMID: 37803599 DOI: 10.1016/j.foodres.2023.113286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023]
Abstract
Foodborne microbial contamination (FMC) is the leading cause of food poisoning and foodborne illness. The foodborne microbial detection methods based on isothermal amplification have high sensitivity and short detection time, and functional nucleic acids (FNAs) could extend the detectable object of isothermal amplification to mycotoxins. Therefore, the strategy of FNAs-mediated isothermal amplification has been emergingly applied in biosensors for foodborne microbial contaminants detection, making biosensors more sensitive with lower cost and less dependent on nanomaterials for signal output. Here, the mechanism of six isothermal amplification technologies and their application in detecting FMC is firstly introduced. Then the strategy of FNAs-mediated isothermal amplification is systematically discussed from perspectives of FNAs' versatility including recognition elements (Aptamer, DNAzyme), programming tools (DNA tweezer, DNA walker and CRISPR-Cas) and signal units (G-quadruplex, FNAs-based nanomaterials). Finally, challenges and prospects are presented in terms of addressing the issue of nonspecific amplification reaction, developing better FNAs-based sensing elements and eliminating food matrix effects.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Teng-Yu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhi Lan
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Han-Jie Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xing-Jian Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Min
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhao-Hui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qing Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Cao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu-E Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen-Long Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Lan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Lin DY, Yu CY, Ku CA, Chung CK. Design, Fabrication, and Applications of SERS Substrates for Food Safety Detection: Review. MICROMACHINES 2023; 14:1343. [PMID: 37512654 PMCID: PMC10385374 DOI: 10.3390/mi14071343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Sustainable and safe food is an important issue worldwide, and it depends on cost-effective analysis tools with good sensitivity and reality. However, traditional standard chemical methods of food safety detection, such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and tandem mass spectrometry (MS), have the disadvantages of high cost and long testing time. Those disadvantages have prevented people from obtaining sufficient risk information to confirm the safety of their products. In addition, food safety testing, such as the bioassay method, often results in false positives or false negatives due to little rigor preprocessing of samples. So far, food safety analysis currently relies on the enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), HPLC, GC, UV-visible spectrophotometry, and MS, all of which require significant time to train qualified food safety testing laboratory operators. These factors have hindered the development of rapid food safety monitoring systems, especially in remote areas or areas with a relative lack of testing resources. Surface-enhanced Raman spectroscopy (SERS) has emerged as one of the tools of choice for food safety testing that can overcome these dilemmas over the past decades. SERS offers advantages over chromatographic mass spectrometry analysis due to its portability, non-destructive nature, and lower cost implications. However, as it currently stands, Raman spectroscopy is a supplemental tool in chemical analysis, reinforcing and enhancing the completeness and coverage of the food safety analysis system. SERS combines portability with non-destructive and cheaper detection costs to gain an advantage over chromatographic mass spectrometry analysis. SERS has encountered many challenges in moving toward regulatory applications in food safety, such as quantitative accuracy, poor reproducibility, and instability of large molecule detection. As a result, the reality of SERS, as a screening tool for regulatory announcements worldwide, is still uncommon. In this review article, we have compiled the current designs and fabrications of SERS substrates for food safety detection to unify all the requirements and the opportunities to overcome these challenges. This review is expected to improve the interest in the sensing field of SERS and facilitate the SERS applications in food safety detection in the future.
Collapse
Affiliation(s)
- Ding-Yan Lin
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chung-Yu Yu
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chin-An Ku
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chen-Kuei Chung
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
20
|
Ahmad W, Wang L, Zareef M, Chen Q. Ultrasensitive detection of Staphylococcus aureus using a non-fluorescent cDNA-grafted dark BBQ®-650 chromophore integrated hydrophilic upconversion nanoparticles/aptamer system. Mikrochim Acta 2023; 190:250. [PMID: 37278765 DOI: 10.1007/s00604-023-05823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
A highly structured fluorometric bioassay has been proposed for screening Staphylococcus aureus (S. aureus). The study exploits (i) the spectral attributes of the hexagonal NaYF4:Yb,Er upconversion nanoparticle (UCNP)-coated 3-aminopropyl)triethoxysilane; (ii) the intrinsic non-fluorescent quenching features of the highly stable dark blackberry (BBQ®-650) receptor; (iii) the aptamer (Apt-) biorecognition and binding affinity, and (iv) the complementary DNA hybridizer-linkage efficacy. The principle relied on the excited state energy transfer between the donor Apt-labeled NH2-UCNPs at the 3' end, and cDNA-grafted BBQ®-650 at the 5' end, as the effective receptors. The donor moieties in proximity (< 10.0 nm) trigger hybridization with the cDNA-grafted dark BBQ®-650, as the receptors of energy from the 2F5/2 level of Yb3+ ions to initiate the Förster resonance energy transfer pathway. This was confirmed by the decline in the excited-state lifetimes from 223.52 μs (τ1) to 179.26 μs (τ2). The existence of the target S. aureus in the bioassay attracts the Apt- resulting in the detachment of the acceptor, and disintegration of the complex configuration via conformation reversal. The re-activated fluorescence monitored at λex/em = 980/652 nm, as a function of the logarithmic concentration of S. aureus (42 to 4.2 × 108 CFU mL-1), yielded an ultra-low detection response of 2.0 CFU mL-1. The bioassay screening of S. aureus in real samples revealed satisfactory recoveries (92.44-107.82%) and validation results (p > 0.05). Hence, the comprehensive Apt-labeled NH2-UCNPs-cDNA-grafted dark BBQ®-650 bioassay offered fast and precise S. aureus screening in food and environmental settings.
Collapse
Affiliation(s)
- Waqas Ahmad
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Li Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, People's Republic of China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
21
|
Rodriguez L, Zhang Z, Wang D. Recent advances of Raman spectroscopy for the analysis of bacteria. ANALYTICAL SCIENCE ADVANCES 2023; 4:81-95. [PMID: 38715923 PMCID: PMC10989577 DOI: 10.1002/ansa.202200066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 11/17/2024]
Abstract
Rapid and sensitive bacteria detection and identification are becoming increasingly important for a wide range of areas including the control of food safety, the prevention of infectious diseases, and environmental monitoring. Raman spectroscopy is an emerging technology which provides comprehensive information for the analysis of bacteria in a short time and with high sensitivity. Raman spectroscopy offers many advantages including relatively simple operation, non-destructive analysis, and information on molecular differences between bacteria species and strains. A variety of biochemical properties can be measured in a single spectrum. This short review covers the recent advancements and applications of Raman spectroscopy for bacteria analysis with specific focuses on bacteria detection, bacteria identification and discrimination, as well as bacteria antibiotic susceptibility testing in 2022. The development of novel substrates, the combination with other techniques, and the utilization of advanced data processing tools for the improvement of Raman spectroscopy and future directions are discussed.
Collapse
Affiliation(s)
- Linsey Rodriguez
- Department of Nutrition and Food SciencesTexas Woman's UniversityDentonTexasUSA
| | - Zhiyun Zhang
- Research and DevelopmentDaisy BrandGarlandTexasUSA
| | - Danhui Wang
- Department of Nutrition and Food SciencesTexas Woman's UniversityDentonTexasUSA
| |
Collapse
|
22
|
Facile Synthesis of Ag NP Films via Evaporation-Induced Self-Assembly and the BA-Sensing Properties. Foods 2023; 12:foods12061285. [PMID: 36981211 PMCID: PMC10048188 DOI: 10.3390/foods12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Herein, we design and prepare large-area silver nanoparticle (Ag NP) films based on evaporation-induced self-assembly, which offers the visual and real-time detection of chilled broiler meat freshness. The color change is based on the fact that an increase in the biogenic amine (BA) concentration causes a change in the absorption wavelength of Ag NPs caused by aggregation and etch of the Ag NPs, resulting in a yellow to brown color change, thus enabling a naked-eye readout of the BA exposure. The Ag NP films exhibit a rapid, sensitive, and linear response to BAs in a wide detection range of 2 µM to 100 µM. The Ag NP films are successfully applied as a quick-response, online, high-contrasting colorimetric sensor for visual detection of the freshness of chilled broiler meat.
Collapse
|
23
|
Zhu A, Ali S, Jiao T, Wang Z, Ouyang Q, Chen Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:1466-1494. [PMID: 36856528 DOI: 10.1111/1541-4337.13118] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Rapid control and prevention of diseases caused by foodborne pathogens is one of the existing food safety regulatory issues faced by various countries and has received wide attention from all sectors of society. The development of rapid and reliable detection methods for foodborne pathogens remains a hot research area for food safety and public health because of the limitations of complex steps, time-consuming, low sensitivity, or poor selectivity of commonly used methods. Surface-enhanced Raman spectroscopy (SERS), as a novel spectroscopic technique, has the advantages of high sensitivity, selectivity, rapid and nondestructive detection and has exhibited broad application prospects in the determination of pathogenic bacteria. In this study, the enhancement mechanisms of SERS are briefly introduced, then the characteristics and properties of liquid-phase, rigid solid-phase, and flexible solid-phase are categorized. Furthermore, a comprehensive review of the advances in label-free or label-based SERS strategies and SERS-compatible techniques for the detection of foodborne pathogens is provided, and the advantages and disadvantages of these methods are reviewed. Finally, the current challenges of SERS technology applied in practical applications are listed, and the possible development trends of SERS in the field of foodborne pathogens detection in the future are discussed.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Tianhui Jiao
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| | - Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.,College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
24
|
Yuan X, Ge L, Zhou H, Tang J. Size, composition, and surface capping-dependent catalytic activity of spherical gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122082. [PMID: 36370632 DOI: 10.1016/j.saa.2022.122082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Gold nanostructures are used as catalysts in heterogeneous catalytic processes and have intrigued chemists and materials scientists. Isotropic spherical gold nanoparticles (AuNPs) are ideal for catalysis due to their simple preparation process, controllable surface-active site, tunable size, and composition-dependent catalytic activity. In this study, spherical AuNPs with different size, composition, and surface capping agents have been prepared, and their catalytic activity in reduction of 4-nitrophenol (4-NP) is evaluated. The catalytic activity of AuNPs decreases as their size increases. Meanwhile, the catalytic activity of AuNPs with tartrate as the reducing agent show no evident changes because of containing anisotropic AuNPs. Moreover, silver not only improves monodisperse and spherical AuNPs, but also increases the catalytic activity of small AuNPs. Since the molecular structures of tartrate and citrate are similar, there is no remarkable difference in the catalytic activity of AuNPs using tartrate and citrate as capping agents. These results demonstrate the influence of size, composition, and surface capping on the catalytic activity of AuNPs. Overall, this study facilitates the applicability of gold-based catalyst and AuNPs in plasmonics, nanophotonics, biomedical photonics, and photocatalysis.
Collapse
Affiliation(s)
- Xujing Yuan
- College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Linlin Ge
- College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Haichun Zhou
- College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Junqi Tang
- College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|