1
|
Bammigatti A, Ghosh SK, Bandyopadhyay S, Saha B. Messages in CD40L are encrypted for residue-specific functions. Cytokine 2025; 185:156824. [PMID: 39615244 DOI: 10.1016/j.cyto.2024.156824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
CD40-CD40-ligand (CD40L) interaction plays crucial immunoregulatory roles, as CD40 signals through different signaling intermediates to convert the messages from CD40L to effector functions. Being a TNFα receptor family member, CD40 binds TNFα receptor-associated factors, assembles signalosome complexes and decrypts the messages from CD40L through different signaling modules to result in residue-specific effector functions. The evidence for such a residue-specific message encryption first came from the CD40L mutations resulting in X-linked hyper-IgM syndrome, as the extent of effects varied with the residue mutated. The structural studies on the CD40-CD40L interaction implied differential involvement of the interacting residues on CD40L in influencing the effector functions. Three lines of evidence indicate the previously implied residue-specific message encryption in CD40L: screening of a dodecameric peptide library for CD40 binders identified two peptides with different sequences resulting in counteractive effector functions in macrophages; a series of CD40L mutants identified that the mutations in these residues selectively affected CD40 signaling and macrophage effector functions; and, a panel of 40-mer peptides, representing the CD40-interacting domain of mouse CD40L, with single substitutions resulted in altered CD40 signaling through various signaling intermediates and effector functions in mouse macrophages. We therefore construct the first-ever message encryption-decryption in a biological receptor-ligand system wherein the CD40L residues that interact with CD40 residues have encrypted messages, which are decoded by CD40 signaling to result in residue-specific effector functions. This review presents a novel perspective of receptor-ligand interaction as a system of message transmission, message decoding by signaling, and its transcription to various read-outs. [250 words].
Collapse
Affiliation(s)
| | | | | | - Bhaskar Saha
- JSPS Government Homeopathic Medical College, Hyderabad 500013, India.
| |
Collapse
|
2
|
Madeja B, Wilke P, Scheck J, Kellermeier M. Identification of Peptide Binding Motifs for Calcium Sulfate Hemihydrate using Phage Display. Chemistry 2024; 30:e202402580. [PMID: 39373021 DOI: 10.1002/chem.202402580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
Selective control over crystallization in complex multicomponent systems such as hydrating cements is a key issue in modern material science. In this context, rational selection-based approaches appear highly promising in the quest for new additive chemistries. Here we have used phage display to identify peptide structures showing high affinity to adsorb on the surfaces of calcium sulfate hemihydrate (also referred to as bassanite), an important hydraulic binder employed in large scales by the construction industry. The results suggest a triplet of amino acids consisting of aspartic acid, serine and leucine, to maintain strong interactions with the surfaces of hemihydrate particles. This notion is confirmed by actual hydration experiments, in which the identified peptide motif provides strictly selective effects during the transformation of bassanite into more stable gypsum. Our work thus contributes to a better understanding of hydraulic binders and their required improvement for a sustainable future.
Collapse
Affiliation(s)
- Benjamin Madeja
- Physical Chemistry, University of Konstanz, Universitätsstr. 10, D-78464, Konstanz, Germany
| | - Patrick Wilke
- Material Science, BASF SE, Carl-Bosch-Str. 38, D-67056, Ludwigshafen, Germany
| | - Johanna Scheck
- Physical Chemistry, University of Konstanz, Universitätsstr. 10, D-78464, Konstanz, Germany
| | | |
Collapse
|
3
|
Jung J, Kim TH, Park JY, Kwon S, Sung JS, Kang MJ, Jose J, Lee M, Shin HJ, Pyun JC. SARS-CoV-2 vaccine based on ferritin complexes with screened immunogenic sequences from the Fv-antibody library. J Mater Chem B 2024. [PMID: 39668674 DOI: 10.1039/d4tb01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In this study, the vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was developed using ferritin complexes with the immunogenic sequences screened against the SARS-CoV-2 spike protein (SP) from the Fv-antibody library. The Fv-antibody library was prepared on the outer membrane of E. coli by the expression of the VH region of immunoglobulin G (IgG) with a randomized complementarity-determining region 3 (CDR3). Four Fv-antibodies to the receptor-binding domain (RBD) were screened from the Fv-antibody library, which had a comparable binding constant (KD) between SARS-CoV-2 SP and the angiotensin-converting enzyme 2 (ACE2) receptor. The binding sites of screened Fv-antibodies on the RBD were analyzed using a docking analysis, and these binding sites were used as immunogenic sequences for the vaccine. The four immunogenic sequences were modified and co-expressed as a part of ferritin which was assembled into a ferritin complex. After the vaccination of ferritin complexes to mice, the anti-sera were analyzed to have a high enough titer. Additionally, the immune responses were found to be activated by vaccination, such as the expression of IgG subclasses and the increased level of cytokines. The neutralizing activity of the anti-sera was estimated using a cell-based infection assay based on pseudo-virus expressing the SP of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02456, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, University of Munster, Münster (48149), Germany
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
4
|
Singh V, Bhutkar M, Choudhary S, Nehul S, Kumar R, Singla J, Kumar P, Tomar S. Structure-guided mutations in CDRs for enhancing the affinity of neutralizing SARS-CoV-2 nanobody. Biochem Biophys Res Commun 2024; 734:150746. [PMID: 39366179 DOI: 10.1016/j.bbrc.2024.150746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The optimization of antibodies to attain the desired levels of affinity and specificity holds great promise for the development of next generation therapeutics. This study delves into the refinement and engineering of complementarity-determining regions (CDRs) through in silico affinity maturation followed by binding validation using isothermal titration calorimetry (ITC) and pseudovirus-based neutralization assays. Specifically, it focuses on engineering CDRs targeting the epitopes of receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. A structure-guided virtual library of 112 single mutations in CDRs was generated and screened against RBD to select the potential affinity-enhancing mutations. Protein-protein docking analysis identified 32 single mutants of which nine mutants were selected for molecular dynamics (MD) simulations. Subsequently, biophysical ITC studies provided insights into binding affinity, and consistent with in silico findings, six mutations that demonstrated better binding affinity than native nanobody were further tested in vitro for neutralization activity against SARS-CoV-2 pseudovirus. Leu106Thr mutant was found to be most effective in virus-neutralization with IC50 values of ∼0.03 μM, as compared to the native nanobody (IC50 ∼0.77 μM). Thus, in this study, the developed computational pipeline guided by structure-aided interface profiles and thermodynamic analysis holds promise for the streamlined development of antibody-based therapeutic interventions against emerging variants of SARS-CoV-2 and other infectious pathogens.
Collapse
Affiliation(s)
- Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mandar Bhutkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Rajesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
5
|
Marton HL, Sagona AP, Kilbride P, Gibson MI. Acidic polymers reversibly deactivate phages due to pH changes. RSC APPLIED POLYMERS 2024; 2:1082-1090. [PMID: 39184364 PMCID: PMC11342163 DOI: 10.1039/d4lp00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Bacteriophages are promising as therapeutics and biotechnological tools, but they also present a problem for routine and commercial bacterial cultures, where contamination must be avoided. Poly(carboxylic acids) have been reported to inhibit phages' ability to infect their bacterial hosts and hence offer an exciting route to discover additives to prevent infection. Their mechanism and limitations have not been explored. Here, we report the role of pH in inactivating phages to determine if the polymers are unique or simply acidic. It is shown that lower pH (=3) triggered by either acidic polymers or similar changes in pH using HCl lead to inhibition. There is no inhibitory activity at higher pHs (in growth media). This was shown across a panel of phages and different molecular weights of commercial and controlled-radical polymerization-derived poly(acrylic acid)s. It is shown that poly(acrylic acid) leads to reversible deactivation of phage, but when the pH is adjusted using HCl alone the phage is irreversibly deactivated. Further experiments using metal binders ruled out ion depletion as the mode of action. These results show that polymeric phage inhibitors may work by unique mechanisms of action and that pH alone cannot explain the observed effects whilst also placing constraints on the practical utility of poly(acrylic acid).
Collapse
Affiliation(s)
- Huba L Marton
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK +44 247 652 4112
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK +44 247 652 4112
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
6
|
Zhang Y, Li Y, Ren T, Xiao P, Duan JA. Novel and efficient techniques in the discovery of antioxidant peptides. Crit Rev Food Sci Nutr 2024; 64:11934-11948. [PMID: 37585700 DOI: 10.1080/10408398.2023.2245052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
As a research hotspot in food science and nutrition, antioxidant peptides can function by scavenging free radicals, inhibiting peroxides, and chelating metal ions. Therefore, how to efficiently discover and screen antioxidant peptides has become a key issue in research and production. Traditional discovery methods are time-consuming and costly, but also challenging to resolve the quantitative structure-activity relationship of antioxidant peptides. Several novel techniques, including artificial intelligence, molecular docking, bioinformatics, quantum chemistry, phage display, switchSENSE, surface plasmon resonance, and fluorescence polarization, are emerging rapidly as solutions. These techniques possess efficient capability for the discovery of antioxidant peptides, even with the potential for high-throughput screening. In addition, the quantitative structure-activity relationship can be resolved. Notably, combining these novel techniques can overcome the drawbacks of a single one, thus improving efficiency and expanding the discovery horizon. This review has summarized eight novel and efficient techniques for discovering antioxidant peptides and the combination of techniques. This review aims to provide scientific evidence and perspectives for antioxidant peptide research.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Lin J, Wang Z, Wang H, Li Y, Liu Y, He Y, Liu Q, Chen Z, Ji Y. Screening of Diabetes-Associated Autoantigens and Serum Antibody Profiles Using a Phage Display System. Int J Microbiol 2024; 2024:1220644. [PMID: 39483642 PMCID: PMC11527542 DOI: 10.1155/2024/1220644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/10/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Aims/Introduction: Phage display method is a crucial tool to find novel clinically valuable diabetes-associated autoantigens and identify known autoantigen epitopes that are associated with diabetes and could provide scientific support and guidance for the artificial construction and synthesis of Type I diabetes mellitus (T1DM) novel biomarkers. Materials and Methods: The phage display system was used for the "biopanning" of T1DM serum. Following the sequencing of the phage DNAs, the homologous sequences of the above fusion heptapeptide were further investigated by BLAST to track the origin of the polypeptide sequences. The antibody spectrum revealed new T1DM-associated epitopes and antibodies. Results: A total of 1200 phage DNA were sequenced and 9 conserved polypeptide sequences were collected. It was confirmed that the zinc transporter and islet amyloid protease were among them. The conserved polypeptide sequence 8 and another three distinctive polypeptide sequences derived from Proteus were discovered. Furthermore, we expressed recombinant proteins with homologous polypeptide sequences for the human islet amyloid polypeptide (IAPP) and polypeptide precursor human zinc transporter 8 (ZNT8). Through clinical sample detection for the serum from T1DM (n = 100) and T2DM (n = 200) patients, results demonstrate the importance and relevance of these polypeptides in the recognition and classification of various forms of diabetes. Conclusion: Human pancreatic and concurrent bacterial-derived protein antigens and their epitopes were identified in this research by the phage display system, which is crucial for distinguishing different types of diabetes.
Collapse
Affiliation(s)
- Jun Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Zhenyu Wang
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Hongtao Wang
- Shenzhen Blot Bio-Products Ltd, Nanshan Knowledge Service Building, 3025 Nanhai Avenue, Nanshan, Shenzhen 518052, China
| | - Yuping Li
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Yao Liu
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Yige He
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Qian Liu
- Shenzhen Blot Bio-Products Ltd, Nanshan Knowledge Service Building, 3025 Nanhai Avenue, Nanshan, Shenzhen 518052, China
| | - Zichuan Chen
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Yuan Ji
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| |
Collapse
|
8
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
9
|
Koss KM, Son T, Li C, Hao Y, Cao J, Churchward MA, Zhang ZJ, Wertheim JA, Derda R, Todd KG. Toward discovering a novel family of peptides targeting neuroinflammatory states of brain microglia and astrocytes. J Neurochem 2024; 168:3386-3414. [PMID: 37171455 PMCID: PMC10640667 DOI: 10.1111/jnc.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Microglia are immune-derived cells critical to the development and healthy function of the brain and spinal cord, yet are implicated in the active pathology of many neuropsychiatric disorders. A range of functional phenotypes associated with the healthy brain or disease states has been suggested from in vivo work and were modeled in vitro as surveying, reactive, and primed sub-types of primary rat microglia and mixed microglia/astrocytes. It was hypothesized that the biomolecular profile of these cells undergoes a phenotypical change as well, and these functional phenotypes were explored for potential novel peptide binders using a custom 7 amino acid-presenting M13 phage library (SX7) to identify unique peptides that bind differentially to these respective cell types. Surveying glia were untreated, reactive were induced with a lipopolysaccharide treatment, recovery was modeled with a potent anti-inflammatory treatment dexamethasone, and priming was determined by subsequently challenging the cells with interferon gamma. Microglial function was profiled by determining the secretion of cytokines and nitric oxide, and expression of inducible nitric oxide synthase. After incubation with the SX7 phage library, populations of SX7-positive microglia and/or astrocytes were collected using fluorescence-activated cell sorting, SX7 phage was amplified in Escherichia coli culture, and phage DNA was sequenced via next-generation sequencing. Binding validation was done with synthesized peptides via in-cell westerns. Fifty-eight unique peptides were discovered, and their potential functions were assessed using a basic local alignment search tool. Peptides potentially originated from proteins ranging in function from a variety of supportive glial roles, including synapse support and pruning, to inflammatory incitement including cytokine and interleukin activation, and potential regulation in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- K M Koss
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - T Son
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - C Li
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - Y Hao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
| | - J Cao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biology and Environmental Sciences, Concordia University of Edmonton, Alberta, Edmonton, Canada
| | - Z J Zhang
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
| | - J A Wertheim
- Comprehensive Transplant Center and Department of Surgery, Feinberg School of Medicine, Northwestern University, Illinois, Chicago, USA
- Department of Surgery, University of Arizona College of Medicine, Arizona, Tucson, USA
| | - R Derda
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery Inc, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Alberta, Edmonton, Canada
- Department of Biomedical Engineering, University of Alberta, Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Li Y, Sun Y, Zhang X, Wang D, Yang X, Wei H, Wang C, Shi Z, Li X, Zhang F, Sun W, Yang Z, Song Y, Qing G. Selective Clearance of Circulating Histones Based on Dodecapeptide-Grafted Copolymer Material for Sepsis Blood Purification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47110-47123. [PMID: 39189050 DOI: 10.1021/acsami.4c07494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Research indicates that circulating histones, as pathogenic factors, may represent a therapeutic target for sepsis. However, effectively clearing circulating histones poses a challenge due to their structural similarity to normal blood proteins, their low abundance in the bloodstream, and serious interference from other blood biomacromolecules. Here we design a dodecapeptide-based functional polymer that can selectively adsorb circulating histones from the blood. The peptide, named P1 (HNHHQLALVESY), was discovered through phage display screening and demonstrated a strong affinity for circulating histones while exhibiting negligible affinities for common proteins in the blood, such as human serum albumin (HSA), immunoglobulin G (IgG), and transferrin (TRF). Furthermore, the P1 peptide was incorporated into a functional polymer design, poly(PEGMA-co-P1), which was immobilized onto a silica gel surface through reversible addition-fragmentation chain transfer polymerization. The resulting material was characterized using solid nuclear magnetic resonance, thermogravimetric analysis, and X-ray photoelectron spectroscopy. This material demonstrated the ability to selectively and efficiently capture circulating histones from both model solutions and whole blood samples while also exhibiting satisfactory blood compatibility, good antifouling properties, and resistance to interference. Satisfactory binding affinity and efficient capture capacity toward histone were also observed for the other screened peptide P2 (QMSMDLFGSNFV)-grafted polymer, validating phage display as a reliable ligand screening strategy. These findings present an approach for the specific clearance of circulating histones and hold promise for future clinical applications in blood purification toward sepsis.
Collapse
Affiliation(s)
- Yan Li
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yue Sun
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaoyu Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xindi Yang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Haijie Wei
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cunli Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhenqiang Shi
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaonan Li
- Department of Spine Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Fenglin Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Department of Spine Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Wenjing Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhiying Yang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanling Song
- College of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Gouws CA, Naicker T, de la Torre BG, Albericio F, Duvenhage J, Kruger HG, Marjanovic-Painter B, Mdanda S, Zeevaart JR, Ebenhan T, Govender T. 68Ga Radiolabeling of NODASA-Functionalized Phage Display-Derived Peptides for Prospective Assessment as Tuberculosis-Specific PET Radiotracers. J Labelled Comp Radiopharm 2024; 67:360-374. [PMID: 39118205 DOI: 10.1002/jlcr.4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
This research presents the development of positron emission tomography (PET) radiotracers for detecting Mycobacterium tuberculosis (MTB) for the diagnosis and monitoring of tuberculosis. Two phage display-derived peptides with proven selective binding to MTB were identified for development into PET radiopharmaceuticals: H8 (linear peptide) and PH1 (cyclic peptide). We sought to functionalize H8/PH1 with NODASA, a bifunctional chelator that allows complexation of PET-compatible radiometals such as gallium-68. Herein, we report on the chelator functionalization, optimized radiosynthesis, and assessment of the radiopharmaceutical properties of [68Ga]Ga-NODASA-H8 and [68Ga]Ga-NODASA-PH1. Robust radiolabeling was achieved using the established routine method, indicating consistent production of a radiochemically pure product (RCP ≥ 99.6%). For respective [68Ga]Ga-NODASA-H8 and [68Ga]Ga-NODASA-PH1, relatively high levels of decay-corrected radiochemical yield (91.2% ± 2.3%, 86.7% ± 4.0%) and apparent molar activity (Am, 3.9 ± 0.8 and 34.0 ± 5.3 GBq/μmol) were reliably achieved within 42 min, suitable for imaging purposes. Notably, [68Ga]Ga-NODASA-PH1 remained stable in blood plasma for up to 2 h, while [68Ga]Ga-NODASA-H8 degraded within 30 min. For both 68Ga peptides, minimal whole-blood cell binding and plasma protein binding were observed, indicating a favorable pharmaceutical behavior. [68Ga]Ga-NODASA-PH1 is a promising candidate for further in vitro/in vivo evaluation as a tuberculosis-specific infection imaging agent.
Collapse
Affiliation(s)
- Christiaan A Gouws
- Catalysis and Peptide Research Unit, School of Health Sciences and School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences and School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Janie Duvenhage
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences and School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Sipho Mdanda
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
| | - Jan R Zeevaart
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Radiochemistry, the South African Nuclear Energy Corporation (Necsa) SOC Ltd, Pelindaba, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | - Thomas Ebenhan
- Pre-clinical Imaging Facility (PCIF), Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
12
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
13
|
Ahmed H, Lopez H, Boselli F, Tarricone G, Vercellino S, Costantini PE, Castagnola V, Veronesi M, Benfenati F, Danielli A, Boselli L, Pompa PP. Biomimetic Plasmonic Nanophages by Head/Tail Self-Assembling: Gold Nanoparticle/Virus Interactions. ACS NANO 2024. [PMID: 39083652 DOI: 10.1021/acsnano.4c05198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Gold nanoparticles (AuNPs), because of their dual plasmonic and catalytic functionalities, are among the most promising nanomaterials for the development of therapeutic and diagnostic tools for severe diseases such as cancer and neurodegeneration. Bacteriophages, massively present in human biofluids, are emerging as revolutionary biotechnological tools as they can be engineered to display multiple specific binding moieties, providing effective targeting ability, high stability, low cost, and sustainable production. Coupling AuNPs with phages can lead to an advanced generation of nanotools with great potential for biomedical applications. In the present study, we analyzed the interactions between differently sized AuNPs and filamentous M13 phages, establishing an advanced characterization platform that combines analytical techniques and computational models for an in-depth understanding of these hybrid self-assembling systems. A precise and structurally specific interaction of the AuNP-M13 hybrid complexes was observed, leading to a peculiar head/tail "tadpole-like" configuration. In silico simulations allowed explaining the mechanisms underlying the preferential assembly route and providing information about AuNPs' size-dependent interplay with specific M13 capsid proteins. The AuNP-M13 structures were proven to be biomimetic, eluding the formation of biomolecular corona. By keeping the biological identity of the virion, hybrid nanostructures maintained their natural recognition/targeting ability even in the presence of biomolecular crowding. In addition, we were able to tune the hybrid nanostructures' tropism toward E. coli based on the AuNP size. Overall, our results set the fundamental basis and a standard workflow for the development of phage-based targeting nanotools, valuable for a wide spectrum of nanotechnology applications.
Collapse
Affiliation(s)
- Hazem Ahmed
- Nanobiointeractions & Nanodiagnostics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Hender Lopez
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Grangegorman D07 ADY7, Ireland
| | - Francesco Boselli
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
- Department of Engineering, Durham University, South Road, Durham DH1 3LE, U.K
| | - Giulia Tarricone
- Nanobiointeractions & Nanodiagnostics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Silvia Vercellino
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi 3, Bologna 40126, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Marina Veronesi
- Structural Biophysics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova 16132, Italy
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi 3, Bologna 40126, Italy
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
14
|
da Fonseca Alves R, Pallarès-Rusiñol A, Rossi R, Martí M, Vaz ER, de Araújo TG, Sotomayor MDPT, Pividori MI. Peptide-based biosensing approaches for targeting breast cancer-derived exosomes. Biosens Bioelectron 2024; 255:116211. [PMID: 38537428 DOI: 10.1016/j.bios.2024.116211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Exosomes are nanovesicles present in all the biological fluids, making them attractive as non-invasive biomarkers for diseases like cancer, among many others. However, exosomes are complex to separate and detect, requiring comprehensive molecular characterization for their routine use in diagnostics. This study explores the use of peptides as cost-effective and stable alternatives to antibodies for exosome binding. To achieve that, phage display technology was employed to select peptides with high specificity for target molecules in exosomes. Specifically, a selected peptide was evaluated for its ability to selectively bind breast cancer-derived exosomes. Proteomic analysis identified 38 protein candidates targeted by the peptide on exosome membranes. The binding of the peptide to breast cancer-derived exosomes was successfully demonstrated by flow cytometry and magneto-actuated immunoassays. Furthermore, an electrochemical biosensor was also tested for breast cancer-derived exosome detection and quantification. The peptide demonstrated effective binding to exosomes from aggressive cancer cell lines, offering promising results in terms of specificity and recovery. This research shows potential for developing rapid, accessible diagnostic tools for breast cancer, especially in low-resource healthcare settings.
Collapse
Affiliation(s)
- Rafael da Fonseca Alves
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain; Institute of Chemistry, State University of São Paulo (UNESP), Brazil
| | - Arnau Pallarès-Rusiñol
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosanna Rossi
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Merce Martí
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Spain
| | - Emilia Rezende Vaz
- Institute of Biotechnology (IBTEC), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | | | | | - Maria Isabel Pividori
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Spain; Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
15
|
Sadraeian M, Maleki R, Moraghebi M, Bahrami A. Phage Display Technology in Biomarker Identification with Emphasis on Non-Cancerous Diseases. Molecules 2024; 29:3002. [PMID: 38998954 PMCID: PMC11243120 DOI: 10.3390/molecules29133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, phage display technology has become vital in clinical research. It helps create antibodies that can specifically bind to complex antigens, which is crucial for identifying biomarkers and improving diagnostics and treatments. However, existing reviews often overlook its importance in areas outside cancer research. This review aims to fill that gap by explaining the basics of phage display and its applications in detecting and treating various non-cancerous diseases. We focus especially on its role in degenerative diseases, inflammatory and autoimmune diseases, and chronic non-communicable diseases, showing how it is changing the way we diagnose and treat illnesses. By highlighting important discoveries and future possibilities, we hope to emphasize the significance of phage display in modern healthcare.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Reza Maleki
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mahta Moraghebi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Abasalt Bahrami
- Department of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Hou X, Zhang B, Cheng K, Zhang F, Xie X, Chen W, Tan L, Fan J, Liu B, Xu Q. Engineering Phage Nanocarriers Integrated with Bio-Intelligent Plasmids for Personalized and Tunable Enzyme Delivery to Enhance Chemodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308349. [PMID: 38582522 PMCID: PMC11199971 DOI: 10.1002/advs.202308349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Customizable and number-tunable enzyme delivery nanocarriers will be useful in tumor therapy. Herein, a phage vehicle, T4-Lox-DNA-Fe (TLDF), which adeptly modulates enzyme numbers using phage display technology to remodel the tumor microenvironment (TME) is presented. Regarding the demand for lactic acid in tumors, each phage is engineered to display 720 lactate oxidase (Lox), contributing to the depletion of lactic acid to restructure the tumor's energy metabolism. The phage vehicle incorporated dextran iron (Fe) with Fenton reaction capabilities. H2O2 is generated through the Lox catalytic reaction, amplifying the H2O2 supply for dextran iron-based chemodynamic therapy (CDT). Drawing inspiration from the erythropoietin (EPO) biosynthetic process, an EPO enhancer is constructed to impart the EPO-Keap1 plasmid (DNA) with tumor hypoxia-activated functionality, disrupting the redox homeostasis of the TME. Lox consumes local oxygen, and positive feedback between the Lox and the plasmid promotes the expression of kelch ECH Associated Protein 1 (Keap1). Consequently, the downregulation of the antioxidant transcription factor Nrf2, in synergy with CDT, amplifies the oxidative killing effect, leading to tumor suppression of up to 78%. This study seamlessly integrates adaptable T4 phage vehicles with bio-intelligent plasmids, presenting a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Xiao‐Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Xiao‐Ting Xie
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Lin‐Fang Tan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Jin‐Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- Key Laboratory of Biomedical Photonics (HUST)Ministry of EducationHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical DevicesHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Qiu‐Ran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized MedicineZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiang310014P. R. China
| |
Collapse
|
17
|
Ivanova A, Kohl F, González-King Garibotti H, Chalupska R, Cvjetkovic A, Firth M, Jennbacken K, Martinsson S, Silva AM, Viken I, Wang QD, Wiseman J, Dekker N. In vivo phage display identifies novel peptides for cardiac targeting. Sci Rep 2024; 14:12177. [PMID: 38806609 PMCID: PMC11133476 DOI: 10.1038/s41598-024-62953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
Heart failure remains a leading cause of mortality. Therapeutic intervention for heart failure would benefit from targeted delivery to the damaged heart tissue. Here, we applied in vivo peptide phage display coupled with high-throughput Next-Generation Sequencing (NGS) and identified peptides specifically targeting damaged cardiac tissue. We established a bioinformatics pipeline for the identification of cardiac targeting peptides. Hit peptides demonstrated preferential uptake by human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and immortalized mouse HL1 cardiomyocytes, without substantial uptake in human liver HepG2 cells. These novel peptides hold promise for use in targeted drug delivery and regenerative strategies and open new avenues in cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Alena Ivanova
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden.
| | - Franziska Kohl
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, Solna, 171 77, Stockholm, Sweden
| | - Hernán González-King Garibotti
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
| | - Renata Chalupska
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
| | - Aleksander Cvjetkovic
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
| | - Sofia Martinsson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
| | - Andreia M Silva
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
| | - Ida Viken
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
| | - John Wiseman
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden
| | - Niek Dekker
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50, Gothenburg, Sweden.
| |
Collapse
|
18
|
Mustafa MI, Mohammed A. Developing recombinant antibodies by phage display technology to neutralize viral infectious diseases. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100140. [PMID: 38182043 DOI: 10.1016/j.slasd.2024.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The use of recombinant antibodies developed through phage display technology offers a promising approach for combating viral infectious diseases. By specifically targeting antigens on viral surfaces, these antibodies have the potential to reduce the severity of infections or even prevent them altogether. With the emergence of new and more virulent strains of viruses, it is crucial to develop innovative methods to counteract them. Phage display technology has proven successful in generating recombinant antibodies capable of targeting specific viral antigens, thereby providing a powerful tool to fight viral infections. In this mini-review article, we examine the development of these antibodies using phage display technology, and discuss the associated challenges and opportunities in developing novel treatments for viral infectious diseases. Furthermore, we provide an overview of phage display technology. As these methods continue to evolve and improve, novel and sophisticated tools based on phage display and peptide display systems are constantly emerging, offering exciting prospects for solving scientific, medical, and technological problems related to viral infectious diseases in the near future.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan.
| | - Ahmed Mohammed
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic university, Omdurman, Sudan
| |
Collapse
|
19
|
Gao X, Kaluarachchi H, Zhang Y, Hwang S, Hannoush RN. A phage-displayed disulfide constrained peptide discovery platform yields novel human plasma protein binders. PLoS One 2024; 19:e0299804. [PMID: 38547072 PMCID: PMC10977726 DOI: 10.1371/journal.pone.0299804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/15/2024] [Indexed: 04/02/2024] Open
Abstract
Disulfide constrained peptides (DCPs) show great potential as templates for drug discovery. They are characterized by conserved cysteine residues that form intramolecular disulfide bonds. Taking advantage of phage display technology, we designed and generated twenty-six DCP phage libraries with enriched molecular diversity to enable the discovery of ligands against disease-causing proteins of interest. The libraries were designed based on five DCP scaffolds, namely Momordica charantia 1 (Mch1), gurmarin, Asteropsin-A, antimicrobial peptide-1 (AMP-1), and potato carboxypeptidase inhibitor (CPI). We also report optimized workflows for screening and producing synthetic and recombinant DCPs. Examples of novel DCP binders identified against various protein targets are presented, including human IgG Fc, serum albumin, vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor (PDGF). We identified DCPs against human IgG Fc and serum albumin with sub-micromolar affinity from primary panning campaigns, providing alternative tools for potential half-life extension of peptides and small protein therapeutics. Overall, the molecular diversity of the DCP scaffolds included in the designed libraries, coupled with their distinct biochemical and biophysical properties, enables efficient and robust identification of de novo binders to drug targets of therapeutic relevance.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, United States of America
- Department of Peptide Therapeutics, Genentech, South San Francisco, California, United States of America
| | - Harini Kaluarachchi
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, United States of America
| | - Yingnan Zhang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, United States of America
- Department of Biological Chemistry, Genentech, South San Francisco, California, United States of America
| | - Sunhee Hwang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, United States of America
- Department of Peptide Therapeutics, Genentech, South San Francisco, California, United States of America
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, United States of America
| |
Collapse
|
20
|
Odom TL, LeBroc HD, Callmann CE. Biomacromolecule-tagged nanoscale constructs for crossing the blood-brain barrier. NANOSCALE 2024; 16:3969-3976. [PMID: 38305381 DOI: 10.1039/d3nr06154j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Access to the brain is restricted by the low permeability of the blood-brain barrier (BBB), greatly hampering modern drug delivery efforts. A promising approach to overcome this boundary is to utilize biomacromolecules (peptides, nucleic acids, carbohydrates) as targeting ligands on nanoscale delivery vehicles to shuttle cargo across the BBB. In this mini-review, we highlight the most recent approaches for crossing the BBB using synthetic nanoscale constructs decorated with members of these general classes of biomacromolecules to safely and selectively deliver therapeutic materials to the brain.
Collapse
Affiliation(s)
- Tyler L Odom
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Hayden D LeBroc
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Cassandra E Callmann
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| |
Collapse
|
21
|
Li Q, Liu K, Cai G, Yang X, Ngo JCK. Developing Lipase Inhibitor as a Novel Approach to Address the Rice Bran Rancidity Issue─A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3277-3290. [PMID: 38329044 DOI: 10.1021/acs.jafc.3c07492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Rice bran is a valuable byproduct from the food processing industry, which contains abundant protein, essential unsaturated fatty acids, and numerous bioactive compounds. However, its susceptibility to rancidity greatly restricts its wide utilization. Many strategies have been proposed to delay the rancidity of rice bran, but most of them have their respective limitations. Here, we proposed that developing rice ban lipase peptide inhibitors represents an alternative and promising prescription for impeding the rancidity of rice bran, in contrast to the conventional stabilization approaches for rice bran. For this reason, the rancidity mechanisms of rice bran and the research progress of rice bran lipases were discussed. In addition, the feasibility of utilizing in silico screening and phage display, two state-of-the-art technologies, in the design of the related peptide inhibitors was also highlighted. This knowledge is expected to provide a theoretical basis for opening a new avenue for stabilizing rice bran.
Collapse
Affiliation(s)
- Qingyun Li
- College of Food Science and Engineering and School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering and School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Gongli Cai
- School of Life Sciences and Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR 999077, China
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Jacky Chi Ki Ngo
- School of Life Sciences and Hong Kong Branch of National Engineering Research Center of Genetic Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR 999077, China
| |
Collapse
|
22
|
Liu Z, Kim D, Kang S, Jung JU. A Detailed Protocol for Constructing a Human Single-Chain Variable Fragment (scFv) Library and Downstream Screening via Phage Display. Methods Protoc 2024; 7:13. [PMID: 38392687 PMCID: PMC10893473 DOI: 10.3390/mps7010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The development of monoclonal antibodies (mAbs) represents a significant milestone in both basic research and clinical applications due to their target specificity and versatility in therapeutic and diagnostic applications. The innovative strategy of mAb screening, utilizing phage display, facilitates the in vitro screening of antibodies with high affinity to target antigens. The single-chain variable fragment (scFv) is a subset of mAb derivatives, known for its high binding affinity and smaller size-just one-third of that of human IgG. This report outlines a detailed and comprehensive procedure for constructing a scFv phagemid library derived from human patients, followed by screening via phage display affinity selection. The protocol utilizes 348 primer combinations spanning the entire human antibody repertoire to minimize sequence bias and maintain library diversity during polymerase chain reaction (PCR) for scFv generation, resulting in a library size greater than 1 × 108. Furthermore, we describe a high-throughput phage display screening protocol using enzyme-linked immunosorbent assay (ELISA) to evaluate more than 1200 scFv candidates. The generation of a highly diverse scFv library, coupled with the implementation of a phage display screening methodology, is expected to provide a valuable resource for researchers in pursuit of scFvs with high affinity for target antigens, thus advancing both research and clinical endeavors.
Collapse
Affiliation(s)
- Ziyi Liu
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dokyun Kim
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Seokmin Kang
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jae U. Jung
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (Z.L.); (D.K.); (S.K.)
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
23
|
Purohit K, Reddy N, Sunna A. Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. Int J Mol Sci 2024; 25:1391. [PMID: 38338676 PMCID: PMC10855437 DOI: 10.3390/ijms25031391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Bioactive peptides, specific protein fragments with positive health effects, are gaining traction in drug development for advantages like enhanced penetration, low toxicity, and rapid clearance. This comprehensive review navigates the intricate landscape of peptide science, covering discovery to functional characterization. Beginning with a peptidomic exploration of natural sources, the review emphasizes the search for novel peptides. Extraction approaches, including enzymatic hydrolysis, microbial fermentation, and specialized methods for disulfide-linked peptides, are extensively covered. Mass spectrometric analysis techniques for data acquisition and identification, such as liquid chromatography, capillary electrophoresis, untargeted peptide analysis, and bioinformatics, are thoroughly outlined. The exploration of peptide bioactivity incorporates various methodologies, from in vitro assays to in silico techniques, including advanced approaches like phage display and cell-based assays. The review also discusses the structure-activity relationship in the context of antimicrobial peptides (AMPs), ACE-inhibitory peptides (ACEs), and antioxidative peptides (AOPs). Concluding with key findings and future research directions, this interdisciplinary review serves as a comprehensive reference, offering a holistic understanding of peptides and their potential therapeutic applications.
Collapse
Affiliation(s)
- Kruttika Purohit
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
| | - Narsimha Reddy
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- School of Science, Parramatta Campus, Western Sydney University, Penrith, NSW 2751, Australia
| | - Anwar Sunna
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Sydney, NSW 2109, Australia;
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
24
|
Gallo E. Current advancements in B-cell receptor sequencing fast-track the development of synthetic antibodies. Mol Biol Rep 2024; 51:134. [PMID: 38236361 DOI: 10.1007/s11033-023-08941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024]
Abstract
Synthetic antibodies (Abs) are a class of engineered proteins designed to mimic the functions of natural Abs. These are produced entirely in vitro, eliminating the need for an immune response. As such, synthetic Abs have transformed the traditional methods of raising Abs. Likewise, deep sequencing technologies have revolutionized genomics and molecular biology. These enable the rapid and cost-effective sequencing of DNA and RNA molecules. They have allowed for accurate and inexpensive analysis of entire genomes and transcriptomes. Notably, via deep sequencing it is now possible to sequence a person's entire B-cell receptor immune repertoire, termed BCR sequencing. This procedure allows for big data explorations of natural Abs associated with an immune response. Importantly, the identified sequences have the ability to improve the design and engineering of synthetic Abs by offering an initial sequence framework for downstream optimizations. Additionally, machine learning algorithms can be introduced to leverage the vast amount of BCR sequencing datasets to rapidly identify patterns hidden in big data to effectively make in silico predictions of antigen selective synthetic Abs. Thus, the convergence of BCR sequencing, machine learning, and synthetic Ab development has effectively promoted a new era in Ab therapeutics. The combination of these technologies is driving rapid advances in precision medicine, diagnostics, and personalized treatments.
Collapse
Affiliation(s)
- Eugenio Gallo
- Avance Biologicals, Department of Medicinal Chemistry, 950 Dupont Street, Toronto, ON, M6H 1Z2, Canada.
- RevivAb, Department of Protein Engineering, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
25
|
Li Y, Yang KD, Kong DC, Li XM, Duan HY, Ye JF. Harnessing filamentous phages for enhanced stroke recovery. Front Immunol 2024; 14:1343788. [PMID: 38299142 PMCID: PMC10829096 DOI: 10.3389/fimmu.2023.1343788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Stroke poses a critical global health challenge, leading to substantial morbidity and mortality. Existing treatments often miss vital timeframes and encounter limitations due to adverse effects, prompting the pursuit of innovative approaches to restore compromised brain function. This review explores the potential of filamentous phages in enhancing stroke recovery. Initially antimicrobial-centric, bacteriophage therapy has evolved into a regenerative solution. We explore the diverse role of filamentous phages in post-stroke neurological restoration, emphasizing their ability to integrate peptides into phage coat proteins, thereby facilitating recovery. Experimental evidence supports their efficacy in alleviating post-stroke complications, immune modulation, and tissue regeneration. However, rigorous clinical validation is essential to address challenges like dosing and administration routes. Additionally, genetic modification enhances their potential as injectable biomaterials for complex brain tissue issues. This review emphasizes innovative strategies and the capacity of filamentous phages to contribute to enhanced stroke recovery, as opposed to serving as standalone treatment, particularly in addressing stroke-induced brain tissue damage.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao-meng Li
- School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
26
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
27
|
Howell AA, Versoza CJ, Pfeifer SP. Computational host range prediction-The good, the bad, and the ugly. Virus Evol 2023; 10:vead083. [PMID: 38361822 PMCID: PMC10868548 DOI: 10.1093/ve/vead083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
The rapid emergence and spread of antimicrobial resistance across the globe have prompted the usage of bacteriophages (i.e. viruses that infect bacteria) in a variety of applications ranging from agriculture to biotechnology and medicine. In order to effectively guide the application of bacteriophages in these multifaceted areas, information about their host ranges-that is the bacterial strains or species that a bacteriophage can successfully infect and kill-is essential. Utilizing sixteen broad-spectrum (polyvalent) bacteriophages with experimentally validated host ranges, we here benchmark the performance of eleven recently developed computational host range prediction tools that provide a promising and highly scalable supplement to traditional, but laborious, experimental procedures. We show that machine- and deep-learning approaches offer the highest levels of accuracy and precision-however, their predominant predictions at the species- or genus-level render them ill-suited for applications outside of an ecosystems metagenomics framework. In contrast, only moderate sensitivity (<80 per cent) could be reached at the strain-level, albeit at low levels of precision (<40 per cent). Taken together, these limitations demonstrate that there remains room for improvement in the active scientific field of in silico host prediction to combat the challenge of guiding experimental designs to identify the most promising bacteriophage candidates for any given application.
Collapse
Affiliation(s)
| | - Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
28
|
Koskela SA, Figueiredo CR. From antimicrobial to anticancer: the pioneering works of Prof. Luiz Rodolpho Travassos on bioactive peptides. Braz J Microbiol 2023; 54:2561-2570. [PMID: 37725261 PMCID: PMC10689714 DOI: 10.1007/s42770-023-01118-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Prof. Luiz Rodolpho Travassos, a distinguished Brazilian scientist, was instrumental in fostering an interdisciplinary research approach that seamlessly combined microbiology and oncology. This work has opened new pathways into the understanding of tumorigenesis and aided in the development of innovative therapeutic tools. One significant area of his work has been the exploration of bioactive peptides, many of which were first identified for their antimicrobial properties. These peptides demonstrate promise as potential cancer therapeutics due to their selectivity, cost-effectiveness, ease of synthesis, low antigenicity, and excellent tissue penetration. Prof. Travassos' pioneering work uncovered on the potential of peptides derived from microbiological sources, such as those obtained using phage display techniques. More importantly, in international cooperation, peptides derived from complementarity-determining regions (CDRs) that showed antimicrobial activity against Candida albicans further showed to be promising tools with cytotoxic properties against cancer cells. Similarly, peptides derived from natural sources, such as the gomesin peptide, not only had shown antimicrobial properties but could treat cutaneous melanoma in experimental models. These therapeutic tools allowed Prof. Travassos and his group to navigate the intricate landscape of factors and pathways that drive cancer development, including persistent proliferative signaling, evasion of tumor suppressor genes, inhibition of programmed cell death, and cellular immortality. This review examines the mechanisms of action of these peptides, aligning them with the universally recognized hallmarks of cancer, and evaluates their potential as drug candidates. It highlights the crucial need for more selective, microbiology-inspired anti-cancer strategies that spare healthy cells, a challenge that current therapies often struggle to address. By offering a comprehensive assessment of Prof. Travassos' innovative contributions and a detailed discussion on the increasing importance of microbiology-derived peptides, this review presents an informed and robust perspective on the possible future direction of cancer therapy.
Collapse
Affiliation(s)
- Saara A Koskela
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
29
|
Mortensen ACL, Berglund H, Segerström L, Walle M, Hofström C, Persson H, Nygren PÅ, Nilvebrant J, Frejd FY, Nestor M. Selection, characterization and in vivo evaluation of novel CD44v6-targeting antibodies for targeted molecular radiotherapy. Sci Rep 2023; 13:20648. [PMID: 38001360 PMCID: PMC10673843 DOI: 10.1038/s41598-023-47891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Molecular radiotherapy combines the advantages of systemic administration of highly specific antibodies or peptides and the localized potency of ionizing radiation. A potential target for molecular radiotherapy is the cell surface antigen CD44v6, which is overexpressed in numerous cancers, with limited expression in normal tissues. The aim of the present study was to generate and characterize a panel of human anti-CD44v6 antibodies and identify a suitable candidate for future use in molecular radiotherapy of CD44v6-expressing cancers. Binders were first isolated from large synthetic phage display libraries containing human scFv and Fab antibody fragments. The antibodies were extensively analyzed through in vitro investigations of binding kinetics, affinity, off-target binding, and cell binding. Lead candidates were further subjected to in vivo biodistribution studies in mice bearing anaplastic thyroid cancer xenografts that express high levels of CD44v6. Additionally, antigen-dependent tumor uptake of the lead candidate was verified in additional xenograft models with varying levels of target expression. Interestingly, although only small differences were observed among the top antibody candidates in vitro, significant differences in tumor uptake and retention were uncovered in in vivo experiments. A high-affinity anti-CD44v6 lead drug candidate was identified, mAb UU-40, which exhibited favorable target binding properties and in vivo distribution. In conclusion, a panel of human anti-CD44v6 antibodies was successfully generated and characterized in this study. Through comprehensive evaluation, mAb UU-40 was identified as a promising lead candidate for future molecular radiotherapy of CD44v6-expressing cancers due to its high affinity, excellent target binding properties, and desirable in vivo distribution characteristics.
Collapse
Affiliation(s)
- A C L Mortensen
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden.
| | - H Berglund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - L Segerström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - M Walle
- Drug Discovery and Development Platform, Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - C Hofström
- Drug Discovery and Development Platform, Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - H Persson
- Drug Discovery and Development Platform, Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - P-Å Nygren
- Drug Discovery and Development Platform, Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - J Nilvebrant
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - F Y Frejd
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| | - M Nestor
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Watanabe S, Wada Y, Kawano M, Higashibayashi S, Sugai T, Hanaya K. Selective modification of tryptophan in polypeptides via C-N coupling with azoles using in situ-generated iodine-based oxidants in aqueous media. Chem Commun (Camb) 2023; 59:13026-13029. [PMID: 37842839 DOI: 10.1039/d3cc03731b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
This study demonstrates the C-N coupling of tryptophan with azoles, promoted by an in situ-generated iodine-based oxidant. The protocol was successfully applied to the selective modification of tryptophan in nonprotected polypeptide bearing oxidatively sensitive residues in acidic aqueous media. The present method allows the attachment of reactive handles to polypeptides and the peptide stapling.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Yuki Wada
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masaki Kawano
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
31
|
Song L, Cao J, Chen L, Du Z, Zhang N, Cao D, Xiong B. Screening and optimization of phage display cyclic peptides against the WDR5 WBM site. RSC Med Chem 2023; 14:2048-2057. [PMID: 37859722 PMCID: PMC10583817 DOI: 10.1039/d3md00288h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
Of the various WD40 family proteins, WDR5 is a particularly important multifunctional adaptor protein that can bind to several protein complexes to regulate gene activation, so it was considered as a promising epigenetic target in anti-cancer drug development. Despite many inhibitors having been discovered directing against the arginine-binding cavity in WDR5 called the WIN site, the side hydrophobic cavity called the WBM site receives rather scant attention. Herein, we aim to obtain novel WBM-targeted peptidic inhibitors with high potency and selectivity. We employed two improved biopanning approaches with a disulfide-constrained cyclic peptide phage library containing 7 randomized residues and identified several peptides with micromole binding activity by docking and binding assay. To further optimize the stability and activity, 9 thiol-reactive chemical linkers were utilized in the cyclization of the candidate peptide DH226027, which had good binding affinity. This study provides an effective method to discover potent peptides targeting protein-protein interactions and highlights a broader perspective of peptide-mimic drugs.
Collapse
Affiliation(s)
- Lingyu Song
- Department of College of Pharmacy, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Jiawen Cao
- Department of College of Pharmacy, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Naixia Zhang
- Department of College of Pharmacy, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Bing Xiong
- Department of College of Pharmacy, University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| |
Collapse
|
32
|
Jung J, Bong JH, Sung JS, Park JH, Kim TH, Kwon S, Kang MJ, Jose J, Pyun JC. Immunoaffinity biosensors for the detection of SARS-CoV-1 using screened Fv-antibodies from an autodisplayed Fv-antibody library. Biosens Bioelectron 2023; 237:115439. [PMID: 37301177 PMCID: PMC10223632 DOI: 10.1016/j.bios.2023.115439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus (SARS-CoV-1) was demonstrated using screened Fv-antibodies for SPR biosensor and impedance spectrometry. The Fv-antibody library was first prepared on the outer membrane of E. coli using autodisplay technology and the Fv-variants (clones) with a specific affinity toward the SARS-CoV-1 spike protein (SP) were screened using magnetic beads immobilized with the SP. Upon screening the Fv-antibody library, two target Fv-variants (clones) with a specific binding affinity toward the SARS-CoV-1 SP were determined and the Fv-antibodies on two clones were named "Anti-SP1" (with CDR3 amino acid sequence: 1GRTTG5NDRPD11Y) and "Anti-SP2" (with CDR3 amino acid sequence: 1CLRQA5GTADD11V). The binding affinities of the two screened Fv-variants (clones) were analyzed using flow cytometry and the binding constants (KD) were estimated to be 80.5 ± 3.6 nM for Anti-SP1 and 45.6 ± 8.9 nM for Anti-SP2 (n = 3). In addition, the Fv-antibody including three CDR regions (CDR1, CDR2, and CDR3) and frame regions (FRs) between the CDR regions was expressed as a fusion protein (Mw. 40.6 kDa) with a green fluorescent protein (GFP) and the KD values of the expressed Fv-antibodies toward the SP estimated to be 15.3 ± 1.5 nM for Anti-SP1 (n = 3) and 16.3 ± 1.7 nM for Anti-SP2 (n = 3). Finally, the expressed Fv-antibodies screened against SARS-CoV-1 SP (Anti-SP1 and Anti-SP2) were applied for the detection of SARS-CoV-1. Consequently, the detection of SARS-CoV-1 was demonstrated to be feasible using the SPR biosensor and impedance spectrometry utilizing the immobilized Fv-antibodies against the SARS-CoV-1 SP.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westphalian Wilhelms-University Münster, Münster, 48149, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
33
|
Yu H, Mao G, Pei Z, Cen J, Meng W, Wang Y, Zhang S, Li S, Xu Q, Sun M, Xiao K. In Vitro Affinity Maturation of Nanobodies against Mpox Virus A29 Protein Based on Computer-Aided Design. Molecules 2023; 28:6838. [PMID: 37836685 PMCID: PMC10574621 DOI: 10.3390/molecules28196838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Mpox virus (MPXV), the most pathogenic zoonotic orthopoxvirus, caused worldwide concern during the SARS-CoV-2 epidemic. Growing evidence suggests that the MPXV surface protein A29 could be a specific diagnostic marker for immunological detection. In this study, a fully synthetic phage display library was screened, revealing two nanobodies (A1 and H8) that specifically recognize A29. Subsequently, an in vitro affinity maturation strategy based on computer-aided design was proposed by building and docking the A29 and A1 three-dimensional structures. Ligand-receptor binding and molecular dynamics simulations were performed to predict binding modes and key residues. Three mutant antibodies were predicted using the platform, increasing the affinity by approximately 10-fold compared with the parental form. These results will facilitate the application of computers in antibody optimization and reduce the cost of antibody development; moreover, the predicted antibodies provide a reference for establishing an immunological response against MPXV.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Guanchao Mao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Zhipeng Pei
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Jinfeng Cen
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Wenqi Meng
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Yunqin Wang
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Shanshan Zhang
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Songling Li
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Mingxue Sun
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
| | - Kai Xiao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (G.M.); (Z.P.); (J.C.); (W.M.); (Y.W.); (S.Z.); (S.L.)
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| |
Collapse
|
34
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
35
|
Lim HT, Kok BH, Leow CY, Leow CH. Exploring shark VNAR antibody against infectious diseases using phage display technology. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108986. [PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
Collapse
Affiliation(s)
- Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
36
|
Mohammad Hasani S, Ghafouri E, Kouhpayeh S, Amerizadeh F, Rahimmanesh I, Amirkhani Z, Khanahmad H. Phage based vaccine: A novel strategy in prevention and treatment. Heliyon 2023; 9:e19925. [PMID: 37809683 PMCID: PMC10559356 DOI: 10.1016/j.heliyon.2023.e19925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The vaccine was first developed in 1796 by a British physician, Edward Jenner, against the smallpox virus. This invention revolutionized medical science and saved lives around the world. The production of effective vaccines requires dominant immune epitopes to elicit a robust immune response. Thus, applying bacteriophages has attracted the attention of many researchers because of their advantages in vaccine design and development. Bacteriophages are not infectious to humans and are unlikely to bind to cellular receptors and activate signaling pathways. Phages could activate both cellular and humoral immunity, which is another goal of an effective vaccine design. Also, phages act as an effective adjuvant, along with the antigens, and induce a robust immune response. Phage-based vaccines can also be administered orally because of their stability in the gastrointestinal tract, in contrast to common vaccination routes, which are intradermal, subcutaneous, or intramuscular. This review presents the current improvements in phage-based vaccines and their applications as preventive or therapeutic vaccines.
Collapse
Affiliation(s)
- Sharareh Mohammad Hasani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan, Iran
| | - Forouzan Amerizadeh
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohre Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Tian J, Ma J. The Value of Microbes in Cancer Neoantigen Immunotherapy. Pharmaceutics 2023; 15:2138. [PMID: 37631352 PMCID: PMC10459105 DOI: 10.3390/pharmaceutics15082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Tumor neoantigens are widely used in cancer immunotherapy, and a growing body of research suggests that microbes play an important role in these neoantigen-based immunotherapeutic processes. The human body and its surrounding environment are filled with a large number of microbes that are in long-term interaction with the organism. The microbiota can modulate our immune system, help activate neoantigen-reactive T cells, and play a great role in the process of targeting tumor neoantigens for therapy. Recent studies have revealed the interconnection between microbes and neoantigens, which can cross-react with each other through molecular mimicry, providing theoretical guidance for more relevant studies. The current applications of microbes in immunotherapy against tumor neoantigens are mainly focused on cancer vaccine development and immunotherapy with immune checkpoint inhibitors. This article summarizes the related fields and suggests the importance of microbes in immunotherapy against neoantigens.
Collapse
Affiliation(s)
- Junrui Tian
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| |
Collapse
|
38
|
Juárez-Estrada MA, Tellez-Isaias G, Graham DM, Laverty L, Gayosso-Vázquez A, Alonso-Morales RA. Identification of Eimeria tenella sporozoite immunodominant mimotopes by random phage-display peptide libraries-a proof of concept study. Front Vet Sci 2023; 10:1223436. [PMID: 37554540 PMCID: PMC10405736 DOI: 10.3389/fvets.2023.1223436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Coccidiosis, caused by parasites of numerous Eimeria species, has long been recognized as an economically significant disease in the chicken industry worldwide. The rise of anti-coccidian resistance has driven a search for other parasite management techniques. Recombinant antigen vaccination presents a highly feasible alternative. Properly identifying antigens that might trigger a potent immune response is one of the major obstacles to creating a viable genetically modified vaccine. METHODS This study evaluated a reverse immunology approach for the identification of B-cell epitopes. Antisera from rabbits and hens inoculated with whole-sporozoites of E. tenella were used to identify Western blot antigens. The rabbit IgG fraction from the anti-sporozoite serum exhibited the highest reactogenicity; consequently, it was purified and utilized to screen two random Phage-display peptide libraries (12 mer and c7c mer). After three panning rounds, 20 clones from each library were randomly selected, their nucleotide sequences acquired, and their reactivity to anti-sporozoite E. tenella serum assessed. The selected peptide clones inferred amino acid sequences matched numerous E. tenella proteins. RESULTS AND CONCLUSIONS The extracellular domain of the epidermal growth factor-like (EGF-like) repeats, and the thrombospondin type-I (TSP-1) repeats of E. tenella micronemal protein 4 (EtMIC4) matched with the c7c mer selected clones CNTGSPYEC (2/20) and CMSTGLSSC (1/20) respectively. The clone CSISSLTHC that matched with a conserved hypothetical protein of E. tenella was widely selected (3/20). Selected clones from the 12-mer phage display library AGHTTQFNSKTT (7/20), GPNSAFWAGSER (2/20) and HFAYWWNGVRGP (8/20) showed similarities with a cullin homolog, elongation factor-2 and beta-dynein chain a putative E. tenella protein, respectively. Four immunodominant clones were previously selected and used to immunize rabbits. By ELISA and Western blot, all rabbit anti-clone serums detected E. tenella native antigens. DISCUSSION Thus, selected phagotopes contained recombinant E. tenella antigen peptides. Using antibodies against E. tenella sporozoites, this study demonstrated the feasibility of screening Phage-display random peptide libraries for true immunotopes. In addition, this study looked at an approach for finding novel candidates that could be used as an E. tenella recombinant epitope-based vaccine.
Collapse
Affiliation(s)
- Marco A. Juárez-Estrada
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Danielle M. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lauren Laverty
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Amanda Gayosso-Vázquez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rogelio A. Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
39
|
Kamstrup Sell D, Sinkjaer AW, Bakhshinejad B, Kjaer A. Propagation Capacity of Phage Display Peptide Libraries Is Affected by the Length and Conformation of Displayed Peptide. Molecules 2023; 28:5318. [PMID: 37513190 PMCID: PMC10386350 DOI: 10.3390/molecules28145318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The larger size and diversity of phage display peptide libraries enhance the probability of finding clinically valuable ligands. A simple way of increasing the throughput of selection is to mix multiple peptide libraries with different characteristics of displayed peptides and use it as biopanning input. In phage display, the peptide is genetically coupled with a biological entity (the phage), and the representation of peptides in the selection system is dependent on the propagation capacity of phages. Little is known about how the characteristics of displayed peptides affect the propagation capacity of the pooled library. In this work, next-generation sequencing (NGS) was used to investigate the amplification capacity of three widely used commercial phage display peptide libraries (Ph.D.™-7, Ph.D.™-12, and Ph.D.™-C7C from New England Biolabs). The three libraries were pooled and subjected to competitive propagation, and the proportion of each library in the pool was quantitated at two time points during propagation. The results of the inter-library competitive propagation assay led to the conclusion that the propagation capacity of phage libraries on a population level is decreased with increasing length and cyclic conformation of displayed peptides. Moreover, the enrichment factor (EF) analysis of the phage population revealed a higher propagation capacity of the Ph.D.TM-7 library. Our findings provide evidence for the contribution of the length and structural conformation of displayed peptides to the unequal propagation rates of phage display libraries and suggest that it is important to take peptide characteristics into account once pooling multiple combinatorial libraries for phage display selection through biopanning.
Collapse
Affiliation(s)
- Danna Kamstrup Sell
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anders Wilgaard Sinkjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Babak Bakhshinejad
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
40
|
Konakbayeva D, Karlsson AJ. Strategies and opportunities for engineering antifungal peptides for therapeutic applications. Curr Opin Biotechnol 2023; 81:102926. [PMID: 37028003 PMCID: PMC10229436 DOI: 10.1016/j.copbio.2023.102926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/09/2023]
Abstract
Antifungal peptides (AFPs) are widely described as promising prospects to treat and prevent fungal infections, though they are far less studied than their antibacterial counterparts. Although promising, AFPs have practical limitations that have hindered their use as therapeutics. Rational design and combinatorial engineering are powerful protein engineering strategies with much potential to address the limitations of AFPs by designing peptides with improved physiochemical and biological characteristics. We examine how rational design and combinatorial engineering approaches have already been used to improve the properties of AFPs and propose key opportunities for applying these strategies to push the design and application of AFPs forward.
Collapse
Affiliation(s)
- Dinara Konakbayeva
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), 4418 Stadium Drive, College Park, MD 20742, USA
| | - Amy J Karlsson
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), 4418 Stadium Drive, College Park, MD 20742, USA.
| |
Collapse
|
41
|
Zhu J, Batra H, Ananthaswamy N, Mahalingam M, Tao P, Wu X, Guo W, Fokine A, Rao VB. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat Commun 2023; 14:2928. [PMID: 37253769 PMCID: PMC10229621 DOI: 10.1038/s41467-023-38364-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Designing artificial viral vectors (AVVs) programmed with biomolecules that can enter human cells and carry out molecular repairs will have broad applications. Here, we describe an assembly-line approach to build AVVs by engineering the well-characterized structural components of bacteriophage T4. Starting with a 120 × 86 nm capsid shell that can accommodate 171-Kbp DNA and thousands of protein copies, various combinations of biomolecules, including DNAs, proteins, RNAs, and ribonucleoproteins, are externally and internally incorporated. The nanoparticles are then coated with cationic lipid to enable efficient entry into human cells. As proof of concept, we assemble a series of AVVs designed to deliver full-length dystrophin gene or perform various molecular operations to remodel human genome, including genome editing, gene recombination, gene replacement, gene expression, and gene silencing. These large capacity, customizable, multiplex, and all-in-one phage-based AVVs represent an additional category of nanomaterial that could potentially transform gene therapies and personalized medicine.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Himanshu Batra
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Neeti Ananthaswamy
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Marthandan Mahalingam
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Pan Tao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Wenzheng Guo
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
42
|
Alizadeh Sahraei A, Mejia Bohorquez B, Tremblay D, Moineau S, Garnier A, Larachi F, Lagüe P. Insight into the Binding Mechanisms of Quartz-Selective Peptides: Toward Greener Flotation Processes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17922-17937. [PMID: 37010879 PMCID: PMC10103053 DOI: 10.1021/acsami.3c01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Mining practices, chiefly froth flotation, are being critically reassessed to replace their use of biohazardous chemical reagents in favor of biofriendly alternatives as a path toward green processes. In this regard, this study aimed at evaluating the interactions of peptides, as potential floatation collectors, with quartz using phage display and molecular dynamics (MD) simulations. Quartz-selective peptide sequences were initially identified by phage display at pH = 9 and further modeled by a robust simulation scheme combining classical MD, replica exchange MD, and steered MD calculations. Our residue-specific analyses of the peptides revealed that positively charged arginine and lysine residues were favorably attracted by the quartz surface at basic pH. The negatively charged residues at pH 9 (i.e., aspartic acid and glutamic acid) further showed affinity toward the quartz surface through electrostatic interactions with the positively charged surface-bound Na+ ions. The best-binding heptapeptide combinations, however, contained both positively and negatively charged residues in their composition. The flexibility of peptide chains was also shown to directly affect the adsorption behavior of the peptide. While attractive intrapeptide interactions were dominated by a weak peptide-quartz binding, the repulsive self-interactions in the peptides improved the binding propensity to the quartz surface. Our results showed that MD simulations are fully capable of revealing mechanistic details of peptide adsorption to inorganic surfaces and are an invaluable tool to accelerate the rational design of peptide sequences for mineral processing applications.
Collapse
Affiliation(s)
- Abolfazl Alizadeh Sahraei
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Barbara Mejia Bohorquez
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Denise Tremblay
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- IBIS,
Institut de biologie intégrative et des systèmes, 1030 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Sylvain Moineau
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- IBIS,
Institut de biologie intégrative et des systèmes, 1030 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Alain Garnier
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Faïçal Larachi
- Department
of Chemical Engineering, Université
Laval, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Patrick Lagüe
- PROTEO,
The Quebec Network for Research on Protein Function, Engineering,
and Applications, 1045
Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- IBIS,
Institut de biologie intégrative et des systèmes, 1030 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
43
|
Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis. Molecules 2023; 28:molecules28062621. [PMID: 36985593 PMCID: PMC10052323 DOI: 10.3390/molecules28062621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The emergence of antibiotic-resistant-bacteria is a serious public health threat, which prompts us to speed up the discovery of novel antibacterial agents. Phage display technology has great potential to screen peptides or antibodies with high binding capacities for a wide range of targets. This property is significant in the rapid search for new antibacterial agents for the control of bacterial resistance. In this paper, we not only summarized the recent progress of phage display for the discovery of novel therapeutic agents, identification of action sites of bacterial target proteins, and rapid detection of different pathogens, but also discussed several problems of this technology that must be solved. Breakthrough in these problems may further promote the development and application of phage display technology in the biomedical field in the future.
Collapse
|
44
|
Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, Bui NL, Chu D, Karapurkar JK, Jang SH, Chung HY, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens. Bioeng Transl Med 2023; 8:e10381. [PMID: 36925687 PMCID: PMC10013820 DOI: 10.1002/btm2.10381] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance ranks among the top threats to humanity. Due to the frequent use of antibiotics, society is facing a high prevalence of multidrug resistant pathogens, which have managed to evolve mechanisms that help them evade the last line of therapeutics. An alternative to antibiotics could involve the use of bacteriophages (phages), which are the natural predators of bacterial cells. In earlier times, phages were implemented as therapeutic agents for a century but were mainly replaced with antibiotics, and considering the menace of antimicrobial resistance, it might again become of interest due to the increasing threat of antibiotic resistance among pathogens. The current understanding of phage biology and clustered regularly interspaced short palindromic repeats (CRISPR) assisted phage genome engineering techniques have facilitated to generate phage variants with unique therapeutic values. In this review, we briefly explain strategies to engineer bacteriophages. Next, we highlight the literature supporting CRISPR-Cas9-assisted phage engineering for effective and more specific targeting of bacterial pathogens. Lastly, we discuss techniques that either help to increase the fitness, specificity, or lytic ability of bacteriophages to control an infection.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gargi Bhattacharjee
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Nisarg Gohil
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gurneet K. Dhanoa
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Antonia P. Sagona
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Indra Mani
- Department of MicrobiologyGargi College, University of DelhiNew DelhiIndia
| | - Nhat Le Bui
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
| | - Dinh‐Toi Chu
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
- Faculty of Applied SciencesInternational School, Vietnam National UniversityHanoiVietnam
| | | | - Su Hwa Jang
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
| | - Hee Yong Chung
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Rupesh Maurya
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories SciencesCollege of Applied Medical Sciences, Taif UniversityTaifSaudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Vijai Singh
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| |
Collapse
|
45
|
Działak P, Syczewski MD, Błachowski A, Kornaus K, Bajda T, Zych Ł, Osial M, Borkowski A. Surface modification of magnetic nanoparticles by bacteriophages and ionic liquids precursors. RSC Adv 2023; 13:926-936. [PMID: 36686914 PMCID: PMC9811242 DOI: 10.1039/d2ra06661k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have recently been a point of interest for many researchers due to their properties. However, the studies on the influence of bacteriophages on the synthesis of MNPs seem to be lacking. Furthermore, bacteriophage-modified MNPs have not been combined with n-alkyl quaternary ammonium ionic liquid precursors (QAS). In this study, the aim was to assess the influence of two distinctly different bacteriophages (Escherichia phage P1 and Pseudomonas phage Φ6) on MNPs synthesis in the presence or absence of QAS. Synthesized MNPs have been characterized with X-ray diffraction (XRD) and Mössbauer spectroscopy in terms of changes in the crystallographic structure; scanning electron microscopy (SEM) for changes in the morphology; and ζ-potential. Moreover, the sorption parameters and the loss of viability of bacteria that interacted with MNPs have been determined. The sorption of bacteria differs significantly among the tested samples. Furthermore, the viability of the bacteria adsorbed on MNPs varies in the presence of QAS, depending on the length of the n-alkyl chain. The study has revealed that MNPs can be bound with bacteriophages. Mössbauer spectroscopy has also revealed the probable influence of bacteriophages on the formation of crystals. However, these phenomena require further studies.
Collapse
Affiliation(s)
- Paweł Działak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology Al. Mickiewicza 30 30-059 Krakow Poland
| | - Marcin Daniel Syczewski
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences D-14473 Potsdam Germany
- Faculty of Geology, University of Warsaw ul. Żwirki i Wigury 93 02-089 Warsaw Poland
| | - Artur Błachowski
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology Al. Mickiewicza 30 30-059 Krakow Poland
| | - Kamil Kornaus
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Al. Mickiewicza 30 30-059 Krakow Poland
| | - Tomasz Bajda
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology Al. Mickiewicza 30 30-059 Krakow Poland
| | - Łukasz Zych
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Al. Mickiewicza 30 30-059 Krakow Poland
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5B 02-106 Warsaw Poland
| | - Andrzej Borkowski
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology Al. Mickiewicza 30 30-059 Krakow Poland
| |
Collapse
|
46
|
Steinke S, Roth KDR, Englick R, Langreder N, Ballmann R, Fühner V, Zilkens KJK, Moreira GMSG, Koch A, Azzali F, Russo G, Schubert M, Bertoglio F, Heine PA, Hust M. Mapping Epitopes by Phage Display. Methods Mol Biol 2023; 2702:563-585. [PMID: 37679639 DOI: 10.1007/978-1-0716-3381-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Monoclonal antibodies (mAbs) are valuable biological molecules, serving for many applications. Therefore, it is advantageous to know the interaction pattern between antibodies and their antigens. Regions on the antigen which are recognized by the antibodies are called epitopes, and the respective molecular counterpart of the epitope on the mAbs is called paratope. These epitopes can have many different compositions and/or structures. Knowing the epitope is a valuable information for the development or improvement of biological products, e.g., diagnostic assays, therapeutic mAbs, and vaccines, as well as for the elucidation of immune responses. Most of the techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Among the techniques used for epitope mapping, phage display is a versatile technology that allows the display of a library of oligopeptides or fragments from a single gene product on the phage surface, which then can interact with several antibodies to define epitopes. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.
Collapse
Affiliation(s)
- Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ruben Englick
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Gustavo Marçal Schmidt Garcia Moreira
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Sector for Antibody and Protein Biochemistry, Tacalyx GmbH, Berlin, Germany
| | - Allan Koch
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Innovationszentrum Niedersachsen GmbH, startup.niedersachsen, Hannover, Germany
| | - Filippo Azzali
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
47
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
48
|
Chen Y, Duan C, Chen K, Sun S, Zhang D, Meng X. Screening technology of cyclic peptide library based on gene encoding. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Bakhshinejad B, Sadeghizadeh M. Identification of a novel colon adenocarcinoma cell targeting peptide using phage display library biopanning. Biotechnol Appl Biochem 2022; 69:2753-2765. [PMID: 35103339 DOI: 10.1002/bab.2320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/19/2021] [Indexed: 12/27/2022]
Abstract
Phage display is well recognized as a promising high-throughput screening tool for the discovery of novel cancer-targeting peptides. Here, we screened a phage display library of 7-mer random peptides through in vitro biopanning to isolate peptide ligands binding to SW480 human colon adenocarcinoma cells. Three rounds of negative and positive selection caused a remarkable enrichment of colon cancer cell-binding phage clones with a significant enhancement of phage recovery efficiency (about 157-fold). A number of phage clones were picked out from the eluted phages of last selection round and sequenced. According to the results of cell binding assay and phage cell-based ELISA, one of the isolated peptides denoted as CCBP1 (with the sequence HAMRAQP) was indicated to have the highest binding efficiency, selectivity, and specificity toward colon cancer cells with no significant binding to control cells. Peptide competitive inhibition assay revealed that binding of the phage-displayed CCBP1 is competitively inhibited by the same free peptide, suggesting that CCBP1 specific binding to the target cell is independent of the phage context. Taken together, our findings provide support for the notion that CCBP1 binds specifically to colon cancer cells and might be a potential lead candidate for targeted delivery of imaging agents or therapeutic genes/drugs to colon tumors.
Collapse
Affiliation(s)
- Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
50
|
Zhang X, Li S, Luo H, He S, Yang H, Li L, Tian T, Han Q, Ye J, Huang C, Liu A, Jiang Y. Identification of heptapeptides targeting a lethal bacterial strain in septic mice through an integrative approach. Signal Transduct Target Ther 2022; 7:245. [PMID: 35871689 PMCID: PMC9309159 DOI: 10.1038/s41392-022-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/06/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022] Open
Abstract
Effectively killing pathogenic bacteria is key for the treatment of sepsis. Although various anti-infective drugs have been used for the treatment of sepsis, the therapeutic effect is largely limited by the lack of a specific bacterium-targeting delivery system. This study aimed to develop antibacterial peptides that specifically target pathogenic bacteria for the treatment of sepsis. The lethal bacterial strain Escherichia coli MSI001 was isolated from mice of a cecal ligation and puncture (CLP) model and was used as a target to screen bacterial binding heptapeptides through an integrative bioinformatics approach based on phage display technology and high-throughput sequencing (HTS). Heptapeptides binding to E. coli MSI001 with high affinity were acquired after normalization by the heptapeptide frequency of the library. A representative heptapeptide VTKLGSL (VTK) was selected for fusion with the antibacterial peptide LL-37 to construct the specific-targeting antibacterial peptide VTK-LL37. We found that, in comparison with LL37, VTK-LL37 showed prominent bacteriostatic activity and an inhibitive effect on biofilm formation in vitro. In vivo experiments demonstrated that VTK-LL37 significantly inhibited bacterial growth, reduced HMGB1 expression, alleviated lesions of vital organs and improved the survival of mice subjected to CLP modeling. Furthermore, membrane DEGP and DEGQ were identified as VTK-binding proteins by proteomic methods. This study provides a novel strategy for targeted pathogen killing, which is helpful for the treatment of sepsis in the era of precise medicine.
Collapse
|