1
|
Roseti L, Borciani G, Grassi F, Desando G, Gambari L, Grigolo B. Nutraceuticals in osteoporosis prevention. Front Nutr 2024; 11:1445955. [PMID: 39416651 PMCID: PMC11479890 DOI: 10.3389/fnut.2024.1445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Nutraceuticals are gaining popularity as they can contribute to bone health by delaying the onset or slowing down the progression of pathological bone loss. Osteoporosis's bone loss is a concern for older adults and a crucial aspect of aging. Maintaining healthy bones is the key to living a full and active life. Our review explores the current knowledge on the role of nutraceuticals in preventing osteoporosis by focusing on three main aspects. First, we provide an overview of osteoporosis. Second, we discuss the latest findings on natural nutraceuticals and their efficacy in reducing bone loss, emphasizing clinical trials. Third, we conduct a structured analysis to evaluate nutraceuticals' pros and cons and identify translational gaps. In conclusion, we must address several challenges to consolidate our knowledge, better support clinicians in their prescriptions, and provide people with more reliable nutritional recommendations to help them lead healthier lives.
Collapse
Affiliation(s)
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | | | | |
Collapse
|
2
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
3
|
Cai G, Ren L, Yu J, Jiang S, Liu G, Wu S, Cheng B, Li W, Xia J. A Microenvironment-Responsive, Controlled Release Hydrogel Delivering Embelin to Promote Bone Repair of Periodontitis via Anti-Infection and Osteo-Immune Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403786. [PMID: 38978324 PMCID: PMC11425865 DOI: 10.1002/advs.202403786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Indexed: 07/10/2024]
Abstract
Periodontitis, a prevalent chronic inflammatory disease, poses significant challenges for effective treatment due to its complex etiology involving specific bacteria and the inflammatory immune microenvironment. Here, this study presents a novel approach for the targeted treatment of periodontitis utilizing the immunomodulatory and antibacterial properties of Embelin, a plant-derived compound, within an injectable hydrogel system. The developed Carboxymethyl Chitosan-Oxidized Dextran (CMCS-OD) hydrogel formed via dynamic chemical bonds exhibited self-healing capabilities and pH-responsive behavior, thereby facilitating the controlled release of Embelin and enhancing its efficacy in a dynamic oral periodontitis microenvironment. This study demonstrates that this hydrogel system effectively prevents bacterial invasion and mitigates excessive immune response activation. Moreover, it precisely modulates macrophage M1/M2 phenotypes and suppresses inflammatory cytokine expression, thereby fostering a conducive environment for bone regeneration and addressing periodontitis-induced bone loss. These findings highlight the potential of the approach as a promising strategy for the clinical management of periodontitis-induced bone destruction.
Collapse
Affiliation(s)
- Guanming Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Jiali Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Siqi Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| |
Collapse
|
4
|
Sun H, Qi Q, Pan X, Zhou J, Wang J, Li L, Li D, Wang L. Bu-Shen-Ning-Xin decoction inhibits macrophage activation to ameliorate premature ovarian insufficiency-related osteoimmune disorder via FSH/FSHR pathway. Drug Discov Ther 2024; 18:106-116. [PMID: 38631868 DOI: 10.5582/ddt.2024.01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Limited studies are associated with premature ovarian insufficiency (POI)-related osteoimmune disorder currently. Bu-Shen-Ning-Xin decoction (BSNXD) displayed a favorable role in treating postmenopausal osteoporosis. However, its impact on the POI-related osteoimmune disorder remains unclear. The study primarily utilized animal experiments and network pharmacology to investigate the effects and underlying mechanisms of BSNXD on the POI-related osteoimmune disorder. First, a 4-vinylcyclohexene dioxide (VCD)-induced POI murine model was conducted to explore the therapeutical action of BSNXD. Second, we analyzed the active compounds of BSNXD and predicted their potential mechanisms for POI-related osteoimmune disorder via network pharmacology, further confirmed by molecular biology experiments. The results demonstrated that VCD exposure led to elevated follicle-stimulating hormone (FSH) levels, a 50% reduction in the primordial follicles, bone microstructure changes, and macrophage activation, indicating an osteoimmune disorder. BSNXD inhibited macrophage activation and osteoclast differentiation but did not affect serum FSH and estradiol levels in the VCD-induced POI model. Network pharmacology predicted the potential mechanisms of BSNXD against the POI-related osteoimmune disorder involving tumor necrosis factor α and MAPK signaling pathways, highlighting BSNXD regulated inflammation, hormone, and osteoclast differentiation. Further experiments identified BSNXD treatment suppressed macrophage activation via downregulating FSH receptor (FSHR) expression and inhibiting the phosphorylation of ERK and CCAAT enhancer binding proteins β. In conclusion, BSNXD regulated POI-related osteoimmune disorder by suppressing the FSH/FSHR pathway to reduce macrophage activation and further inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
- Hexi University, Zhangye, Gansu, China
| | - Qing Qi
- Wuhan Business University, Wuhan, Hubei, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Dajing Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
5
|
Effendi SSW, Ng IS. Challenges and opportunities for engineered Escherichia coli as a pivotal chassis toward versatile tyrosine-derived chemicals production. Biotechnol Adv 2023; 69:108270. [PMID: 37852421 DOI: 10.1016/j.biotechadv.2023.108270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of high-volume fuels and high-value-added compounds. The shikimate pathway, an imperative pathway in most microorganisms, is branched with tyrosine as the rate-limiting step precursor of valuable aromatic substances. Such occurrence suggests the shikimate pathway as a promising route in developing microbial cell factories with multiple applications in the nutraceutical, pharmaceutical, and chemical industries. Therefore, an increasing number of studies have focused on this pathway to enable the biotechnological manufacture of pivotal and versatile aromatic products. With advances in genome databases and synthetic biology tools, genetically programmed Escherichia coli strains are gaining immense interest in the sustainable synthesis of chemicals. Engineered E. coli is expected to be the next bio-successor of fossil fuels and plants in commercial aromatics synthesis. This review summarizes successful and applicable genetic and metabolic engineering strategies to generate new chassis and engineer the iterative pathway of the tyrosine route in E. coli, thus addressing the opportunities and current challenges toward the realization of sustainable tyrosine-derived aromatics.
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
6
|
Yang S, Sun Y, Kapilevich L, Zhang X, Huang Y. Protective effects of curcumin against osteoporosis and its molecular mechanisms: a recent review in preclinical trials. Front Pharmacol 2023; 14:1249418. [PMID: 37790808 PMCID: PMC10544586 DOI: 10.3389/fphar.2023.1249418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Osteoporosis (OP) is one of the most common metabolic skeletal disorders and is commonly seen in the elderly population and postmenopausal women. It is mainly associated with progressive loss of bone mineral density, persistent deterioration of bone microarchitecture, and increased fracture risk. To date, drug therapy is the primary method used to prevent and treat osteoporosis. However, long-term drug therapy inevitably leads to drug resistance and specific side effects. Therefore, researchers are constantly searching for new monomer compounds from natural plants. As a candidate for the treatment of osteoporosis, curcumin (CUR) is a natural phenolic compound with various pharmacological and biological activities, including antioxidant, anti-apoptotic, and anti-inflammatory. This compound has gained research attention for maintaining bone health in various osteoporosis models. We reviewed preclinical and clinical studies of curcumin in preventing and alleviating osteoporosis. These results suggest that if subjected to rigorous pharmacological and clinical trials, naturally-derived curcumin could be used as a complementary and alternative medicine for the treatment of osteoporosis by targeting osteoporosis-related mechanistic pathways. This review summarizes the mechanisms of action and potential therapeutic applications of curcumin in the prevention and mitigation of osteoporosis and provides reference for further research and development of curcumin.
Collapse
Affiliation(s)
- Shenglei Yang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuying Sun
- School of Stomatology, Binzhou Medical College, Yantai, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russiа
| | - Xin’an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
7
|
Zhang B, Chen ZY, Jiang Z, Huang S, Liu XH, Wang L. Nephroprotective Effects of Cardamonin on Renal Ischemia Reperfusion Injury/UUO-Induced Renal Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13284-13303. [PMID: 37646396 PMCID: PMC10510707 DOI: 10.1021/acs.jafc.3c01880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Acute kidney injury and chronic renal fibrosis are intractable pathological processes to resolve, yet limited strategies are able to effectively address them. Cardamonin (CAD) is a flavonoid with talented antioxidant, anti-inflammatory capacity, and satisfactory biosafety. In our study, animal and cellular models of renal ischemia/reperfusion (I/R) and unilateral ureteral obstruction (UUO) were successfully constructed to confirm whether CAD confers protective effects and underlying mechanisms. Animal experiments demonstrated that CAD application (100 mg/kg) distinctly ameliorated tissue damage and improved renal function. Meanwhile, the continuous oral administration of CAD after UUO surgery efficiently inhibited renal fibrosis as confirmed by hematoxylin-eosin (H&E), Sirius red, and Masson staining as well as the downregulated mRNA and protein expression of collagen I, α-smooth muscle actin (α-SMA), collagen III, and fibronectin. Interestingly, in transforming growth factor β1 (TGF-β1)-stimulated and hypoxia/reoxygenation (H/R)-exposed human kidney-2 (HK-2) cells, protective effects of CAD were again authenticated. Meanwhile, we performed bioinformatics analysis and constructed the "ingredient-target-pathway-disease" network to conclude that the potential mechanisms of CAD protection may be through the regulation of oxidative stress, inflammation, apoptosis, and mitogen-activated protein kinase (MAPK) pathway. Furthermore, experimental data validated that CAD evidently decreased the reactive oxygen species (ROS) production and malondialdehyde (MDA) content while depressing the mRNA and protein expression of inflammatory markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and Il-1β) and inhibiting apoptosis as evidenced by decreased levels of P53, BAX, cleaved caspase-3, and apoptotic rate in renal I/R and UUO models. In addition, the impact of CAD on restraining oxidative stress and inflammation was attributed to its ability to elevate antioxidant enzyme activities including catalase, superoxide dismutase 1 (SOD1), and superoxide dismutase 2 (SOD2) and to inhibit the inflammation-associated MARK/nuclear factor-κB (MAPK/NF-κB) signaling pathway. In conclusion, cardamonin restored the antioxidative capacity to block oxidative stress and suppressed the MAPK/NF-κB signaling pathway to alleviate inflammatory response, thus mitigating I/R-generated acute kidney injury/UUO-induced renal fibrosis in vivo and in vitro, which indicated the potential therapeutic advantage of cardamonin in attenuating acute and chronic kidney injuries.
Collapse
Affiliation(s)
- Banghua Zhang
- Department
of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Wuhan
University Institute of Urological Disease, Wuhan 430060, China
- Hubei
Key Laboratory of Digestive System Disease, Wuhan 430060, China
| | - Zhi-Yuan Chen
- Department
of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Wuhan
University Institute of Urological Disease, Wuhan 430060, China
| | - Zhengyu Jiang
- Department
of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Wuhan
University Institute of Urological Disease, Wuhan 430060, China
| | - Shiyu Huang
- Department
of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Wuhan
University Institute of Urological Disease, Wuhan 430060, China
- Hubei
Key Laboratory of Digestive System Disease, Wuhan 430060, China
| | - Xiu-Heng Liu
- Department
of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Wuhan
University Institute of Urological Disease, Wuhan 430060, China
| | - Lei Wang
- Department
of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Wuhan
University Institute of Urological Disease, Wuhan 430060, China
| |
Collapse
|
8
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. From Cells to Environment: Exploring the Interplay between Factors Shaping Bone Health and Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1546. [PMID: 37763665 PMCID: PMC10532995 DOI: 10.3390/medicina59091546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
The skeletal system is an extraordinary structure that serves multiple purposes within the body, including providing support, facilitating movement, and safeguarding vital organs. Moreover, it acts as a reservoir for essential minerals crucial for overall bodily function. The intricate interplay of bone cells plays a critical role in maintaining bone homeostasis, ensuring a delicate balance. However, various factors, both intrinsic and extrinsic, can disrupt this vital physiological process. These factors encompass genetics, aging, dietary and lifestyle choices, the gut microbiome, environmental toxins, and more. They can interfere with bone health through several mechanisms, such as hormonal imbalances, disruptions in bone turnover, direct toxicity to osteoblasts, increased osteoclast activity, immune system aging, impaired inflammatory responses, and disturbances in the gut-bone axis. As a consequence, these disturbances can give rise to a range of bone disorders. The regulation of bone's physiological functions involves an intricate network of continuous processes known as bone remodeling, which is influenced by various intrinsic and extrinsic factors within the organism. However, our understanding of the precise cellular and molecular mechanisms governing the complex interactions between environmental factors and the host elements that affect bone health is still in its nascent stages. In light of this, this comprehensive review aims to explore emerging evidence surrounding bone homeostasis, potential risk factors influencing it, and prospective therapeutic interventions for future management of bone-related disorders.
Collapse
Affiliation(s)
- Samradhi Singh
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA;
| | - Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| |
Collapse
|
9
|
Mesa NC, Alves IA, Vilela FMP, E Silva DM, Forero LAP, Novoa DMA, de Carvalho da Costa J. Fruits as nutraceuticals: A review of the main fruits included in nutraceutical patents. Food Res Int 2023; 170:113013. [PMID: 37316080 DOI: 10.1016/j.foodres.2023.113013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/24/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Fruits have relevant usefulness in the elaboration of nutraceutical compositions and, as it is considered a "natural medicine", its market has been growing exponentially each year. Fruits, in general, contain a large source of phytochemicals, carbohydrates, vitamins, amino acids, peptides and antioxidants that are of interest to be prepared as nutraceuticals. The biological properties of its nutraceuticals can range from antioxidant, antidiabetic, antihypertensive, anti-Alzheimer, antiproliferative, antimicrobial, antibacterial, anti-inflammatory, among others. Furthermore, the need for innovative extraction methods and products reveals the importance of developing new nutraceutical compositions. This review was developed by searching patents of nutraceuticals from January 2015 until January 2022 in Espacenet, the search database of the European Patent Office (EPO). Of 215 patents related to nutraceuticals, 43% (92 patents) were including fruits, mainly berries. A great number of patents were focused on the treatment of metabolic diseases, representing 45% of the total patents. The principal patent applicant was the United States of America (US), with 52%. The patents were applied by researchers, industries, research centers and institutes. It is important to highlight that from 92 fruit nutraceutical patent applications reviewed, 13 already have their products available on the market.
Collapse
Affiliation(s)
- Natalia Casas Mesa
- Faculty of Science, Chemistry Department, National University of Colombia, Bogotá, Colombia; Chemistry Department, Exact Science Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Izabel Almeida Alves
- Faculty of Pharmacy, Medicine Department, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Fernanda Maria Pinto Vilela
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Dominique Mesquita E Silva
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Juliana de Carvalho da Costa
- Faculty of Pharmacy, Pharmaceutical Sciences Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
10
|
The Role of Selective Flavonoids on Triple-Negative Breast Cancer: An Update. SEPARATIONS 2023. [DOI: 10.3390/separations10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Among the many types of breast cancer (BC), Triple-Negative Breast Cancer (TNBC) is the most alarming. It lacks receptors for the three main biomarkers: estrogen, progesterone, and human epidermal growth factor, hence the name TNBC. This makes its treatment a challenge. Surgical procedures and chemotherapy, performed either alone or in combination, seem to be the primary therapeutic possibilities; however, they are accompanied by severe complications. Currently, the formulation of drugs using natural products has been playing an important role in the pharmaceutical industries, owing to the drugs’ increased efficacies and significantly lessened side effects. Hence, treating TNBC with chemotherapeutic drugs developed using natural products such as flavonoids in the near future is much warranted. Flavonoids are metabolic compounds largely present in all plants, vegetables, and fruits, such as blueberries, onions, (which are widely used to make red wine,) chocolates, etc. Flavonoids are known to have enormous health benefits, such as anticancer, antiviral, anti-inflammatory, and antiallergic properties. They are known to arrest the cell cycle of the tumor cells and induces apoptosis by modulating Bcl-2, Bax, and Caspase activity. They show a considerable effect on cell proliferation and viability and angiogenesis. Various studies were performed at both the biochemical and molecular levels. The importance of flavonoids in cancer treatment and its methods of extraction and purification to date have been reported as individual publications. However, this review article explains the potentiality of flavonoids against TNBC in the preclinical levels and also emphasizes their molecular mechanism of action, along with a brief introduction to its methods of extraction, isolation, and purification in general, emphasizing the fact that its quantum of yield if enhanced and its possible synergistic effects with existing chemotherapeutics may pave the way for better anticancer agents of natural origin and significantly lessened side-effects.
Collapse
|
11
|
Lorusso F, Scarano A, Fulle S, Valbonetti L, Mancinelli R, Di Filippo ES. Effectiveness of Apigenin, Resveratrol, and Curcumin as Adjuvant Nutraceuticals for Calvarial Bone Defect Healing: An In Vitro and Histological Study on Rats. Nutrients 2023; 15:nu15051235. [PMID: 36904236 PMCID: PMC10005597 DOI: 10.3390/nu15051235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Bone healing is a major clinical issue, especially in bone defects of critical dimensions. Some studies have reported in vivo positive effects on bone healing by some bioactive compounds, such as the phenolic derivatives found in vegetables and plants, such as resveratrol, curcumin, and apigenin. The aim of this work was (1) to analyze in vitro in human dental pulp stem cells the effects of these three natural compounds on the gene expression of related genes downstream to RUNX2 and SMAD5, key factor transcriptions associated with osteoblast differentiation, in order to better understand the positive effects that can occur in vivo in bone healing, and (2) to evaluate in vivo the effects on bone healing of critical-size defects in the calvaria in rats of these three nutraceuticals tested in parallel and for the first time administered by the gastric route. Upregulation of the RUNX2, SMAD5, COLL1, COLL4, and COLL5 genes in the presence of apigenin, curcumin, and resveratrol was detected. In vivo, apigenin induced more consistent significant bone healing in critical-size defects in rat calvaria compared to the other study groups. The study findings encourage a possible therapeutic supplementation with nutraceuticals during the bone regeneration process.
Collapse
Affiliation(s)
- Felice Lorusso
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (F.L.); (R.M.)
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (F.L.); (R.M.)
| | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
12
|
Cirsium Setidens Water Extracts Containing Linarin Block Estrogen Deprivation-Induced Bone Loss in Mice. Int J Mol Sci 2023; 24:ijms24021620. [PMID: 36675135 PMCID: PMC9863805 DOI: 10.3390/ijms24021620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Osteoporosis is evident in postmenopausal women and is an osteolytic disease characterized by bone loss that further increases the susceptibility to bone fractures and frailty. The use of complementary therapies to alleviate postmenopausal osteoporosis is fairly widespread among women. Edible Cirsium setidens contains various polyphenols of linarin, pectolinarin, and apigenin with antioxidant and hepatoprotective effects. This study aimed to determine whether Cirsium setidens water extracts (CSEs), the component linarin, and its aglycone acacetin blocked ovariectomy (OVX)-induced bone loss. This study employed OVX C57BL/6 female mice as a model for postmenopausal osteoporosis. CSEs, acacetin, or linarin was orally administrated to OVX mice at a dose of 20 mg/kg for 8 weeks. Surgical estrogen loss in mice for 8 weeks reduced bone mineral density (BMD) of mouse femur and serum 17β-estradiol level and enhanced the serum receptor activator of NF-κB ligand/osteoprotegerin ratio with uterine atrophy. CSEs and linarin reversed such adverse effects and enhanced femoral BMD in OVX mice. Oral administration of CSEs and linarin attenuated tartrate-resistant acid phosphate activity and the induction of αvβ3 integrins and proton suppliers in resorption lacunae in femoral bone tissue of OVX mice. In addition, CSEs and linarin curtailed the bone levels of cathepsin K and matrix metalloproteinase-9 responsible for osteoclastic bone resorption. On the other hand, CSEs and linarin enhanced the formation of trabecular bones in estrogen-deficient femur with increased induction of osteocalcin and osteopontin. Further, treatment with CSEs and linarin enhanced the collagen formation-responsive propeptide levels in the circulation along with the increase in the tissue non-specific alkaline phosphatase level in bone exposed to OVX. Supplementing CSEs, acacetin, or linarin to OVX mice elevated the formation of collagen fibers in OVX trabecular bone, evidenced using Picrosirius red staining. Accordingly, CSEs and linarin were effective in retarding osteoclastic bone resorption and promoting osteoblastic bone matrix mineralization under OVX conditions. Therefore, linarin, which is abundant in CSEs, may be a natural compound for targeting postmenopausal osteoporosis and pathological osteoresorptive disorders.
Collapse
|
13
|
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13:943321. [PMID: 35935939 PMCID: PMC9355713 DOI: 10.3389/fimmu.2022.943321] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Quercetin, a naturally non-toxic flavonoid within the safe dose range with antioxidant, anti-apoptotic and anti-inflammatory properties, plays an important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a member of NAD+-dependent deacetylase enzyme family, is extensively explored as a potential therapeutic target for attenuating aging-induced disorders. SIRT1 possess beneficial effects against aging-related diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have reported that aging increases tissue susceptibility, whereas, SIRT1 regulates cellular senescence and multiple aging-related cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3β mediated oxidative stress, SIRT1/NF-κB and SIRT1/NLRP3 regulated inflammatory response, SIRT1/PGC1α/eIF2α/ATF4/CHOP and SIRT1/PKD1/CREB controlled phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage, SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkβ-catenin mediated neuroprotective effects. In this review, we summarized the role of SIRT1 in the improvement of the attenuation effect of quercetin on aging-related diseases and the relationship between relevant signaling pathways regulated by SIRT1. Moreover, the functional regulation of quercetin in aging-related markers such as oxidative stress, inflammatory response, mitochondrial function, autophagy and apoptosis through SIRT1 was discussed. Finally, the prospects of an extracellular vesicles (EVs) as quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for treating aging-related diseases, as well as discussed the ferroptosis alleviation effects of quercetin to protect against aging-related disease via activating SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the treatment of aging-related diseases via inhibiting oxidative stress, reducing inflammatory responses, and restoring mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xiaoling Zhao,
| |
Collapse
|
14
|
Antiosteoporosis Studies of 20 Medicine Food Homology Plants Containing Quercetin, Rutin, and Kaempferol: TCM Characteristics, In Vivo and In Vitro Activities, Potential Mechanisms, and Food Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5902293. [PMID: 35399639 PMCID: PMC8989562 DOI: 10.1155/2022/5902293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
Abstract
Dietary nutraceutical compounds have been evidenced as backbone for bone health in recent years. It is reported that medicine food homology (MFH) plants have multiple nutraceutical compounds. Based on our literature research, 20 MFH plants caught our attention because they contain three popular antiosteoporosis compounds simultaneously: quercetin, rutin, and kaempferol. According to traditional Chinese medicine (TCM), their characteristics including natures, flavors, attributive to meridian tropism, and efficacies were listed. The relationships between TCM efficacies, such as “heat clearing,” “tonic,” and “the interior warming,” and antiosteoporosis pharmacological actions such as antioxidant and immune regulation were discussed. The in vivo antiosteoporosis effects of the 20 MFH plants were summarized. The in vitro antiosteoporosis activities and related mechanisms of the 20 plants and quercetin, rutin, kaempferol were detailed. The TGF-β-Smad signaling, fibroblast growth factor, and Wnt/β-catenin signaling on bone formation and the RANKL signaling, NF-κB signaling, and macrophage-colony-stimulating factor on bone resorption were identified. From food point, these 20 MFH plants could be classified as condiment, vegetable, fruit, tea and related products, beverage, etc. Based on the above discussion, these 20 MFH plants could be used as daily food supplements for the prevention and treatment against osteoporosis.
Collapse
|
15
|
Antioxidative and Anti-Inflammatory Activities of Chrysin and Naringenin in a Drug-Induced Bone Loss Model in Rats. Int J Mol Sci 2022; 23:ijms23052872. [PMID: 35270014 PMCID: PMC8911302 DOI: 10.3390/ijms23052872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress (OS) mediators, together with the inflammatory processes, are considered as threatening factors for bone health. The aim of this study was to investigate effects of flavonoids naringenin and chrysin on OS, inflammation, and bone degradation in retinoic acid (13cRA)-induced secondary osteoporosis (OP) in rats. We analysed changes in body and uterine weight, biochemical bone parameters (bone mineral density (BMD), bone mineral content (BMC), markers of bone turnover), bone geometry parameters, bone histology, OS parameters, biochemical and haematological parameters, and levels of inflammatory cytokines. Osteoporotic rats had reduced bone Ca and P levels, BMD, BMC, and expression of markers of bone turnover, and increased values of serum enzymes alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Malondialdehyde (MDA) production in liver, kidney, and ovary was increased, while the glutathione (GSH) content and activities of antioxidant enzymes were reduced and accompanied with the enhanced release of inflammatory mediators TNF-α, IL-1β, IL-6, and RANTES chemokine (regulated on activation normal T cell expressed and secreted) in serum. Treatment with chrysin or naringenin improved bone quality, reduced bone resorption, and bone mineral deposition, although with a lower efficacy compared with alendronate. However, flavonoids exhibited more pronounced antioxidative, anti-inflammatory and phytoestrogenic activities, indicating their great potential in attenuating bone loss and prevention of OP.
Collapse
|
16
|
Zhou X, Yuan W, Xiong X, Zhang Z, Liu J, Zheng Y, Wang J, Liu J. HO-1 in Bone Biology: Potential Therapeutic Strategies for Osteoporosis. Front Cell Dev Biol 2021; 9:791585. [PMID: 34917622 PMCID: PMC8669958 DOI: 10.3389/fcell.2021.791585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is a prevalent bone disorder characterized by bone mass reduction and deterioration of bone microarchitecture leading to bone fragility and fracture risk. In recent decades, knowledge regarding the etiological mechanisms emphasizes that inflammation, oxidative stress and senescence of bone cells contribute to the development of osteoporosis. Studies have demonstrated that heme oxygenase 1 (HO-1), an inducible enzyme catalyzing heme degradation, exhibits anti-inflammatory, anti-oxidative stress and anti-apoptosis properties. Emerging evidence has revealed that HO-1 is critical in the maintenance of bone homeostasis, making HO-1 a potential target for osteoporosis treatment. In this Review, we aim to provide an introduction to current knowledge of HO-1 biology and its regulation, focusing specifically on its roles in bone homeostasis and osteoporosis. We also examine the potential of HO-1-based pharmacological therapeutics for osteoporosis and issues faced during clinical translation.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenxiu Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Liu
- Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Yadav AM, Bagade MM, Ghumnani S, Raman S, Saha B, Kubatzky KF, Ashma R. The phytochemical plumbagin reciprocally modulates osteoblasts and osteoclasts. Biol Chem 2021; 403:211-229. [PMID: 34882360 DOI: 10.1515/hsz-2021-0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022]
Abstract
Bone metabolism is essential for maintaining bone mineral density and bone strength through a balance between bone formation and bone resorption. Bone formation is associated with osteoblast activity whereas bone resorption is linked to osteoclast differentiation. Osteoblast progenitors give rise to the formation of mature osteoblasts whereas monocytes are the precursors for multi-nucleated osteoclasts. Chronic inflammation, auto-inflammation, hormonal changes or adiposity have the potential to disturb the balance between bone formation and bone loss. Several plant-derived components are described to modulate bone metabolism and alleviate osteoporosis by enhancing bone formation and inhibiting bone resorption. The plant-derived naphthoquinone plumbagin is a bioactive compound that can be isolated from the roots of the Plumbago genus. It has been used as traditional medicine for treating infectious diseases, rheumatoid arthritis and dermatological diseases. Reportedly, plumbagin exerts its biological activities primarily through induction of reactive oxygen species and triggers osteoblast-mediated bone formation. It is plausible that plumbagin's reciprocal actions - inhibiting or inducing death in osteoclasts but promoting survival or growth of osteoblasts - are a function of the synergy with bone-metabolizing hormones calcitonin, Parathormone and vitamin D. Herein, we develop a framework for plausible molecular modus operandi of plumbagin in bone metabolism.
Collapse
Affiliation(s)
- Avinash M Yadav
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Manali M Bagade
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Soni Ghumnani
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Sujatha Raman
- Center for Complementary and Integrative Health (CCIH), Interdisciplinary School of Health Sciences (ISHS), Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Bhaskar Saha
- National Center for Cell Science, Pune-411007, Maharashtra, India
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | - Richa Ashma
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| |
Collapse
|
18
|
Dal-Fabbro R, Cosme-Silva L, Rezende Silva Martins de Oliveira F, Capalbo LC, Plazza FA, Ervolino E, Cintra LTA, Gomes-Filho JE. Effect of red wine or its polyphenols on induced apical periodontitis in rats. Int Endod J 2021; 54:2276-2289. [PMID: 34534374 DOI: 10.1111/iej.13633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023]
Abstract
AIM To evaluate the effect of red wine consumption or its polyphenols on the inflammation/resorption processes associated with apical periodontitis in rats. METHODOLOGY Thirty-two three-month-old Wistar rats had apical periodontitis induced in four first molars and were then arranged into four groups: control (C)-rats with apical periodontitis; wine (W)-rats with apical periodontitis receiving 4.28 ml/kg of red wine; resveratrol+quercetin (R+Q)-rats with apical periodontitis receiving 4.28 ml/kg of a solution containing 1.00 mg/L of quercetin and 0.86 mg/L of resveratrol and alcohol (ALC)-rats with apical periodontitis receiving the alcoholic dose contained in the wine. The oral gavage treatments were administered daily, from day 0 to day 45. On the 15th day, apical periodontitis was induced, and on the 45th day, the animals were euthanized. Histological, immunohistochemical (RANKL, OPG, TRAP, IL-10, TNF-⍺ and IL-1β) and micro-computed tomography for bone resorption analysis were performed in the jaws. The Kruskal-Wallis with Dunn's test was performed for nonparametric data, and the anova with Tukey's test for parametric data, p < .05. RESULTS The median score of the inflammatory process was significantly lower in the R+Q group (1) compared to the C (2) (p = .0305) and ALC (3) (p = .0003) groups, and not different from the W (1.5) group. The immunolabeling for OPG was significantly higher in the R+Q group (p = .0054) compared to all groups; the same was observed for IL-10 (p = .0185), different from groups C and ALC. The R+Q group had the lowest TRAP cell count (p < .0001), followed by the W group, both inferior to C and ALC groups. The lowest bone resorption value was in the R+Q group (0.50mm3 ± 0.21mm3 ), significantly lower (p = .0292) than the C group (0.88mm3 ± 0.10mm3 ). The W group (0.60 mm3 ± 0.25 mm3 ) and R+Q group had less bone resorption compared to the ALC group (0.97 mm3 ± 0.22 mm3 ), p = .0297 and p = .0042, respectively. CONCLUSION Red wine administration to rats for 15 days before induction of apical periodontitis decreased inflammation, TRAP marking and periapical bone resorption compared to alcohol. Resveratrol-quercetin administration reduced the inflammatory process in apical periodontitis, periapical bone resorption, and altered the OPG, IL-10 and TRAP expression compared to C and ALC groups.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, Ann Arbor, Michigan, USA
| | - Leopoldo Cosme-Silva
- Department of Restorative Dentistry, School of Dentistry, Federal University of Alagoas (UFAL), Alagoas, Brazil
| | | | - Letícia Cabrera Capalbo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Flávia Alfredo Plazza
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - João Eduardo Gomes-Filho
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
19
|
Anand BG, Prajapati KP, Purohit S, Ansari M, Panigrahi A, Kaushik B, Behera RK, Kar K. Evidence of Anti-amyloid Characteristics of Plumbagin via Inhibition of Protein Aggregation and Disassembly of Protein Fibrils. Biomacromolecules 2021; 22:3692-3703. [PMID: 34375099 DOI: 10.1021/acs.biomac.1c00344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological consequences associated with the conversion of soluble proteins into insoluble toxic amyloids are not only limited to the onset of neurodegenerative diseases but also to the potential health risks associated with supplements of protein therapeutic agents as well. Hence, finding inhibitors against amyloid formation is important, and natural product-based anti-amyloid compounds have gained much interest because of their higher efficacy and biocompatibility. Plumbagin has been identified as a potential natural product with multiple medical benefits; however, it remains largely unclear whether plumbagin can act against amyloid formation of proteins. Here, we show that plumbagin can effectively inhibit the temperature-induced amyloid aggregation of important proteins (insulin and serum albumin). Both experimental and computational data revealed that the presence of plumbagin in protein solutions, under aggregating conditions, promotes a direct protein-plumbagin interaction, which is predominantly stabilized by stronger H-bonds and hydrophobic interactions. Plumbagin-mediated retention of the native structures of proteins appears to play a crucial role in preventing their conversion into insoluble β-sheet-rich amyloid aggregates. More importantly, the addition of plumbagin into a suspension of protein fibrils triggered their spontaneous disassembly, promoting the release of soluble proteins. The results highlight that a possible synergistic effect via both the stabilization of protein structures and the restriction of the monomer recruitment at the fibril growth sites could be important for the mechanism of plumbagin's anti-aggregation effect. These findings may inspire the development of plumbagin-based formulations to benefit both the prevention and treatment of amyloid-related health complications.
Collapse
Affiliation(s)
- Bibin G Anand
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash P Prajapati
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sampreeta Purohit
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayoushna Panigrahi
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bharti Kaushik
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Kumar Behera
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
20
|
Mukherjee S, Yun JW. Novel regulatory roles of UCP1 in osteoblasts. Life Sci 2021; 276:119427. [PMID: 33785331 DOI: 10.1016/j.lfs.2021.119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
AIMS The bone-adipose axis requires complex homeostasis in energy and global metabolism. The bioenergetics of bone establishes the necessary energy balance to coordinate endocrine functions that are affected by various factors and is not limited to matrix proteins only. UCP1 is an uncoupling protein of adipocytes, commonly known for its unique feature of promoting thermogenesis, mainly in brown fat; however, the effects of UCP1 in other cell types remain unreported. MAIN METHODS In the current study, we determined the roles of UCP1 in osteoblasts by silencing the Ucp1 gene in MC-3T3-E1 cells, as well as C3H10T1/2 mesenchymal stem cells, and explored its functional activities. KEY FINDINGS Our results demonstrate for the first time the presence of UCP1 in osteoblast cells. We identified that UCP1 regulates ATP and oxidative phosphorylation in MC-3T3-E1 cells. In addition, our data reveal that the lack of Ucp1 results in reduced expressions of regulatory proteins involved in scavenging of ROS by enhancing an autophagic event to balance osteogenic differentiation. SIGNIFICANCE In conclusion, this study highlights a novel perspective on the importance of UCP1 in bone cells.
Collapse
Affiliation(s)
- Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
21
|
Schwarz I, Houck DA, Shah V, Jolly AJ, Lindsay A, Bravman JT, Frank RM. Bone and body characteristics of freestyle and nonfreestyle skiers. J Sports Med Phys Fitness 2021; 62:74-80. [PMID: 33555668 DOI: 10.23736/s0022-4707.21.12055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Freestyle skiers must optimize their aerial performance by maintaining the strength and coordination to propel themselves in the air and adapt to landings and take-offs on uneven surfaces. The purpose of this study is to investigate the differences in areal bone mineral density (aBMD) and body composition in freestyle skiers and nonfreestyle skiing controls. HYPOTHESIS We hypothesized that the unique demands and summation of forces experienced by freestyle athletes would manifest as greater femoral neck aBMD, lower percent body fat, and lower BMI than nonfreestyle skiing controls. LEVEL OF EVIDENCE Level 3, Retrospective Cohort Study. METHODS 18 freestyle skiers (14M 4F, [27.56 ± 5.22 years]) and 15 controls (7M 8F, [26.93 ± 3.54 years]) were measured with dual energy X-ray absorptiometry (DXA) to determine total body composition, hip and lumbar spine aBMD, and bone mineral composition (BMC). Height and weight were measured with an in-office stadiometer and scale. Questionnaires were used to determine physical activity and pertinent medical history. Between-group variations were analyzed with an analysis of variance (ANOVA) and stratified by sex. RESULTS Percent body fat, hip and lumbar spine aBMD, BMC, and area were all similar between freeski and nonfreeski athletes (p<0.05 for all). BMI was significantly lower in male freeski athletes (23.97kg/m2, 95% CI [22.75-25.18]) compared to nonfreestyle skiing controls (26.64kg/m2, 95% CI [24.43-28.86]) (p=0.03). CONCLUSIONS Freestyle skiers have a lower BMI than nonfreestyle skiers. All skiers in this study has similar percent body fat, aBMD, and BMC. This pilot study supports that there are unique musculoskeletal adaptations based on type of skiing. CLINICAL RELEVANCE Skiers endure a variety of intense physical forces yet remain understudied despite high orthopedic injury rates. This study serves to broaden the current sports health literature and explore the physical demands and subsequent physiology of freestyle skiers.
Collapse
Affiliation(s)
- Ilona Schwarz
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA -
| | - Darby A Houck
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Viral Shah
- Barbara Davis Center for Diabetes, University of Colorado, Denver, CO, USA
| | - Austin J Jolly
- Division of Renal Diseases and Hypertension, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Adam Lindsay
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jonathan T Bravman
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rachel M Frank
- Division of Sports Medicine and Shoulder Surgery, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
22
|
Nutritional Orthopedics and Space Nutrition as Two Sides of the Same Coin: A Scoping Review. Nutrients 2021; 13:nu13020483. [PMID: 33535596 PMCID: PMC7912880 DOI: 10.3390/nu13020483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/19/2023] Open
Abstract
Since the Moon landing, nutritional research has been charged with the task of guaranteeing human health in space. In addition, nutrition applied to Orthopedics has developed in recent years, driven by the need to improve the efficiency of the treatment path by enhancing the recovery after surgery. As a result, nutritional sciences have specialized into two distinct fields of research: Nutritional Orthopedics and Space Nutrition. The former primarily deals with the nutritional requirements of old patients in hospitals, whereas the latter focuses on the varied food challenges of space travelers heading to deep space. Although they may seem disconnected, they both investigate similar nutritional issues. This scoping review shows what these two disciplines have in common, highlighting the mutual features between (1) pre-operative vs. pre-launch nutritional programs, (2) hospital-based vs. space station nutritional issues, and (3) post-discharge vs. deep space nutritional resilience. PubMed and Google Scholar were used to collect documents published from 1950 to 2020, from which 44 references were selected on Nutritional Orthopedics and 44 on Space Nutrition. Both the orthopedic patient and the astronaut were found to suffer from food insecurity, malnutrition, musculoskeletal involution, flavor/pleasure issues, fluid shifts, metabolic stresses, and isolation/confinement. Both fields of research aid the planning of demand-driven food systems and advanced nutritional approaches, like tailored diets with nutrients of interest (e.g., vitamin D and calcium). The nutritional features of orthopedic patients on Earth and of astronauts in space are undeniably related. Consequently, it is important to initiate close collaborations between orthopedic nutritionists and space experts, with the musculoskeletal-related dedications playing as common fuel.
Collapse
|
23
|
Guan F, Wang Q, Bao Y, Chao Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Adv 2021; 11:7280-7293. [PMID: 35423269 PMCID: PMC8695102 DOI: 10.1039/d0ra08817j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Quercetin is a potential anti-rheumatoid drug. Nano formulation strategies could improve its solubility and efficacy.
Collapse
Affiliation(s)
- Feng Guan
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- P. R. China
| | - Qi Wang
- Norwich Medical School
- University of East Anglia
- Norwich NR4 7UQ
- UK
| | - Yongping Bao
- Norwich Medical School
- University of East Anglia
- Norwich NR4 7UQ
- UK
| | - Yimin Chao
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| |
Collapse
|
24
|
Zhang J, Zhao R, Xing D, Cao J, Guo Y, Li L, Sun Y, Tian L, Liu M. Magnesium Isoglycyrrhizinate Induces an Inhibitory Effect on Progression and Epithelial-Mesenchymal Transition of Laryngeal Cancer via the NF-κB/Twist Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5633-5644. [PMID: 33376307 PMCID: PMC7765753 DOI: 10.2147/dddt.s272323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Background Magnesium isoglycyrrhizinate (MI) was extracted from roots of the plant Glycyrrhiza glabra, which displays multiple pharmacological activities such as anti-inflammation, anti-apoptosis, and anti-tumor. Here, we aimed to investigate the effect of MI on the progression and epithelial–mesenchymal transition (EMT) of laryngeal cancer. Methods Forty laryngeal cancer clinical samples were used. The role of MI in the proliferation of laryngeal cancer cells was assessed by MTT assay, Edu assay and colony formation assay. The function of MI in the migration and invasion of laryngeal cancer cells was tested by transwell assays. The effect of MI on apoptosis of laryngeal cancer cells was determined by cell apoptosis assay. The impact of MI on tumor growth in vivo was analyzed by tumorigenicity analysis using Balb/c nude mice. qPCR and Western blot analysis were performed to measure the expression levels of gene and protein, respectively. Results We identified that EMT-related transcription factor Twist was significantly elevated in the laryngeal cancer tissues. The expression of Twist was also enhanced in the human laryngeal carcinoma HEP-2 cells compared with that in the primary laryngeal epithelial cells. The high expression of Twist was remarkably correlated with poor overall survival of patients with laryngeal cancer. Meanwhile, our data revealed that MI reduced cell proliferation, migration and invasion and enhanced apoptosis of laryngeal cancer cells in vitro. Moreover, MI decreased transcriptional activation and the expression levels of NF-κB and Twist, and alleviated EMT in vitro and in vivo. MI remarkably inhibited tumor growth and EMT of laryngeal cancer cells in vivo. Conclusion MI restrains the progression of laryngeal cancer and induces an inhibitory effect on EMT in laryngeal cancer by modulating the NF-κB/Twist signaling. Our finding provides new insights into the mechanism by which MI inhibits laryngeal carcinoma development, enriching the understanding of the anti-tumor function of MI.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Rui Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Dongliang Xing
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yan Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Liang Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| |
Collapse
|
25
|
Kim SI, Kim YH, Kang BG, Kang MK, Lee EJ, Kim DY, Oh H, Oh SY, Na W, Lim SS, Kang YH. Linarin and its aglycone acacetin abrogate actin ring formation and focal contact to bone matrix of bone-resorbing osteoclasts through inhibition of αvβ3 integrin and core-linked CD44. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153351. [PMID: 32987362 DOI: 10.1016/j.phymed.2020.153351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Since enhanced bone resorption due to osteoclast differentiation and activation cause skeletal diseases, there is a growing need in therapeutics for combating bone-resorbing osteoclasts. Botanical antioxidants are being increasingly investigated for their health-promoting effects on bone. Edible Cirsium setidens contains various polyphenols of linarin, pectolinarin, and apigenin with antioxidant and hepatoprotective effects. PURPOSE This study aimed to determine whether linarin present in Cirsium setidens water extracts (CSE) and its aglycone acacetin inhibited osteoclastogenesis of RANKL-exposed RAW 264.7 murine macrophages for 5 days. METHODS This study assessed the osteoprotective effects of CSE, linarin and acacetin on RANKL-induced differentiation and activation of osteoclasts by using MTT assay, TRAP staining, Western blot analysis, bone resorption assay actin ring staining, adhesion assay and immunocytochemical assay. This study explored the underlying mechanisms of their osteoprotection, and identified major components present in CSE by HPLC analysis. RESULTS Linarin and pectolinarin were identified as major components of CSE. Nontoxic linarin and acacetin as well as CSE, but not pectolinarin attenuated the RANKL-induced macrophage differentiation into multinucleated osteoclasts, and curtailed osteoclastic bone resorption through reducing lacunar acidification and bone matrix degradation in the osteoclast-bone interface. Linarin and acacetin in CSE reduced the transmigration and focal contact of osteoclasts to bone matrix-mimicking RGD peptide. Such reduction was accomplished by inhibiting the induction of integrins, integrin-associated proteins of paxillin and gelsolin, cdc42 and CD44 involved in the formation of actin rings. The inhibition of integrin-mediated actin ring formation by linarin and acacetin entailed the disruption of TRAF6-c-Src-PI3K signaling of bone-resorbing osteoclasts. The functional inhibition of c-Src was involved in the loss of F-actin-enriched podosome core protein cortactin-mediated actin assembly due to linarin and acacetin. CONCLUSION These observations demonstrate that CSE, linarin and acacetin were effective in retarding osteoclast function of focal adhesion to bone matrix and active bone resorption via inhibition of diffuse cloud-associated αvβ3 integrin and core-linked CD44.
Collapse
Affiliation(s)
- Soo-Il Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Beom Goo Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Su Yeon Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Woojin Na
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea.
| |
Collapse
|
26
|
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Curcumin: A therapeutic potential in ageing-related disorders. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Wu GJ, Chen JT, Cherng YG, Chang CC, Liu SH, Chen RM. Genistein Improves Bone Healing via Triggering Estrogen Receptor Alpha-Mediated Expressions of Osteogenesis-Associated Genes and Consequent Maturation of Osteoblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10639-10650. [PMID: 32897066 DOI: 10.1021/acs.jafc.0c02830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Osteoporosis-associated fractures may cause higher morbidity and mortality. Our previous study showed the effects of genistein, a phytoestrogen, on the induction of estrogen receptor alpha (ERα) gene expression and stimulation of osteoblast mineralization. In this study, rat calvarial osteoblasts and an animal bone defect model were used to investigate the effects of genistein on bone healing. Treatment with genistein caused a time-dependent increase in alkaline phosphatase (ALP) activity in rat osteoblasts. Levels of cytosolic and nuclear ERα significantly augmented following exposure to genistein. Subsequently, genistein elevated levels of ALP mRNA and protein in rat osteoblasts. Moreover, genistein induced other osteogenesis-associated osteocalcin and Runx2 mRNA and protein expressions. Knocking-down ERα using RNA interference concurrently inhibited genistein-induced Runx2, osteocalcin, and ALP mRNA expression. Attractively, administration of ICR mice suffering bone defects with genistein caused significant increases in the callus width, chondrocyte proliferation, and ALP synthesis. Results of microcomputed tomography revealed that administration of genistein increased trabecular bone numbers and improved the bone thickness and volume. This study showed that genistein can improve bone healing via triggering ERα-mediated osteogenesis-associated gene expressions and subsequent osteoblast maturation.
Collapse
Affiliation(s)
- Gong-Jhe Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yih-Giun Cherng
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chuen-Chau Chang
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ruei-Ming Chen
- Anesthesiology and Health Policy Research Center, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
28
|
Potential Role of Lycopene in the Prevention of Postmenopausal Bone Loss: Evidence from Molecular to Clinical Studies. Int J Mol Sci 2020; 21:ijms21197119. [PMID: 32992481 PMCID: PMC7582596 DOI: 10.3390/ijms21197119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by reduced bone mineral density, which affects the quality of life of the aging population. Furthermore, disruption of bone microarchitecture and the alteration of non-collagenous protein in bones lead to higher fracture risk. This is most common in postmenopausal women. Certain medications are being used for the treatment of osteoporosis; however, these may be accompanied by undesirable side effects. Phytochemicals from fruits and vegetables are a source of micronutrients for the maintenance of bone health. Among them, lycopene has recently been shown to have a potential protective effect against bone loss. Lycopene is a lipid-soluble carotenoid that exists in both all-trans and cis-configurations in nature. Tomato and tomato products are rich sources of lycopene. Several human epidemiological studies, supplemented by in vivo and in vitro studies, have shown decreased bone loss following the consumption of lycopene/tomato. However, there are still limited studies that have evaluated the effect of lycopene on the prevention of bone loss in postmenopausal women. Therefore, the aim of this review is to summarize the relevant literature on the potential impact of lycopene on postmenopausal bone loss with molecular and clinical evidence, including an overview of bone biology and the pathophysiology of osteoporosis.
Collapse
|
29
|
Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188381. [PMID: 32492470 DOI: 10.1016/j.bbcan.2020.188381] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
The United States Food and Drug Administration has permitted number of therapeutic agents for cancer treatment. Most of them are expensive and have some degree of systemic toxicity which makes overbearing in clinical settings. Although advanced research continuously applied in cancer therapeutics, but drug resistance, metastasis, and recurrence remain unanswerable. These accounts to an urgent clinical need to discover natural compounds with precisely safe and highly efficient for the cancer prevention and cancer therapy. Gambogic acid (GA) is the principle bioactive and caged xanthone component, a brownish gamboge resin secreted from the of Garcinia hanburyi tree. This molecule showed a spectrum of biological and clinical benefits against various cancers. In this review, we document distinct biological characteristics of GA as a novel anti-cancer agent. This review also delineates specific molecular mechanism(s) of GA that are involved in anti-cancer, anti-metastasis, anti-angiogenesis, and chemo-/radiation sensitizer activities. Furthermore, recent evidence, development, and implementation of various nanoformulations of gambogic acid (nanomedicine) have been described.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
30
|
Ritter S, Zadik-Weiss L, Almogi-Hazan O, Or R. Cannabis, One Health, and Veterinary Medicine: Cannabinoids' Role in Public Health, Food Safety, and Translational Medicine. Rambam Maimonides Med J 2020; 11:RMMJ.10388. [PMID: 32017686 PMCID: PMC7000163 DOI: 10.5041/rmmj.10388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Public health is connected to cannabis with regard to food, animal feed (feed), and pharmaceuticals. Therefore, the use of phytocannabinoids should be examined from a One Health perspective. Current knowledge on medical cannabis treatment (MCT) does not address sufficiently diseases which are of epidemiological and of zoonotic concern. The use of cannabinoids in veterinary medicine is illegal in most countries, mostly due to lack of evidence-based medicine. To answer the growing need of scientific evidence-based applicable medicine in both human and veterinary medicine, a new approach for the investigation of the therapeutic potential of cannabinoids must be adopted. A model that offers direct study of a specific disease in human and veterinary patients may facilitate development of novel therapies. Therefore, we urge the regulatory authorities-the ministries of health and agriculture (in Israel and worldwide)-to publish guidelines for veterinary use due to its importance to public health, as well as to promote One Health-related preclinical translational medicine studies for the general public health.
Collapse
Affiliation(s)
| | | | - Osnat Almogi-Hazan
- Laboratory of Immunotherapy and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Reuven Or
- Laboratory of Immunotherapy and Bone Marrow Transplantation, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
31
|
Pandit AP, Omase SB, Mute VM. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis. Drug Deliv Transl Res 2020; 10:1495-1506. [PMID: 31942700 DOI: 10.1007/s13346-020-00708-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Osteoporosis, due to its prevalence worldwide, is a serious health problem. Topical administration of quercetin, a phytoestrogen, in the form of deformable transfersomes, could be used to treat osteoporosis to overcome its low oral solubility and bioavailability. Formulation process of transfersomes was screened by fractional factorial design and further optimized using full factorial design. Transfersomes showed good characteristics such as entrapment efficiency, particle size, zeta potential, and polydispersity index (83.0 ± 2.2%, 75.95 ± 2 nm, - 13.6 ± 6 mv and 0.333, respectively). Transfersomes were further loaded into chitosan film and showed good permeation through rat skin. Further, glucocorticoid-induced osteoporosis rat model showed induction of osteoporosis after day 30. On day 45, treatment with chitosan film containing quercetin-loaded transfersomes showed remarkable rise in femur thickness, length, density as well as in serum biochemical parameters such as calcium, phosphorous, alkaline phosphatase, and tartrate-resistant alkaline phosphatase compared to positive control group. Tensile strength of osteoporotic femur bone was also found to be increased and was comparable with normal group. Histomicrographic analysis of femur bone exhibited less disruptive and lytic changes. Thus, all the above findings indicated the beneficial effects of quercetin-loaded transfersome chitosan film, due to decline in osteoclastogenesis and osteoblast apoptosis, which further favored increase in osteoblast numbers and mineralization of bones. Thus, chitosan film containing quercetin-loaded transfersomes was found to be good alternative to oral administration of quercetin to treat osteoporosis, while easy applicability of film in the form of wrist band anytime, anywhere, and even at work achieve patient compliance. Graphical abstract.
Collapse
Affiliation(s)
- Ashlesha P Pandit
- Department of Pharmaceutics, JSPM's Rajarshi Shahu College of Pharmacy and Research, Tathawade, Pune, Maharashtra, 411 033, India.
| | - Sachin B Omase
- Department of Pharmaceutics, JSPM's Rajarshi Shahu College of Pharmacy and Research, Tathawade, Pune, Maharashtra, 411 033, India
| | - Vaishali M Mute
- Department of Pharmacology, JSPM's Rajarshi Shahu College of Pharmacy and Research, Tathawade, Pune, Maharashtra, 411 033, India
| |
Collapse
|
32
|
Sagar T, Kasonga A, Baschant U, Rauner M, Moosa S, Marais S, Kruger M, Coetzee M. Aspalathin from Aspalathus linearis (rooibos) reduces osteoclast activity and increases osteoblast activity in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
33
|
Jiang C, Wang Q, Song M, Wang M, Zhao L, Huang Y. Coronarin D affects TNF-α induced proliferation and osteogenic differentiation of human periodontal ligament stem cells. Arch Oral Biol 2019; 108:104519. [DOI: 10.1016/j.archoralbio.2019.104519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
|
34
|
Lushchak O, Strilbytska O, Koliada A, Zayachkivska A, Burdyliuk N, Yurkevych I, Storey KB, Vaiserman A. Nanodelivery of phytobioactive compounds for treating aging-associated disorders. GeroScience 2019; 42:117-139. [PMID: 31686375 DOI: 10.1007/s11357-019-00116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine.
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine
| | - Alina Zayachkivska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine.
| |
Collapse
|
35
|
Zhu Q, Liu M, He Y, Yang B. Quercetin protect cigarette smoke extracts induced inflammation and apoptosis in RPE cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2010-2015. [PMID: 31122072 DOI: 10.1080/21691401.2019.1608217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly population in the developed world. Dysfunction of retinal pigment epithelium (RPE) likely triggers early AMD stages. The effect of Quercetin on the early AMD in-vitro model remained unclear. Methods: The effect of Quercetin in the cell viability was detected with CCK8 methods in control, CSE treated, and CSE with Quercetin treatment group. The apoptotic status in each group was detected with tunnel assay. The oxidative and inflammation biomarkers were detected by ELISA. The expression levels of Keap1/Nrf2/ARE in RPE cells were measured by western blot after pretreatment of Quercetin followed by CSE treatment. Results: It was found that Quercetin could improve the cell viability and decrease cellular apoptotic rate in the CSE treated RPE group. The expressions of inflammatory and apoptotic biomarkers were significantly decreased in Quercetin treatment group. Furthermore, Quercetin exerts protective effects via activation Keap1/Nrf2/ARE pathway in CSE treated RPE cells. Conclusions: Quercetin demonstrated significant protective effects in an in-vitro model of early AMD and it might be a new therapeutic strategy for the management of early AMD.
Collapse
Affiliation(s)
- Qi Zhu
- a Department of Ophthalmology, The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Mingxi Liu
- b Department of Orthopedic Traumatology, First Hospital of Jilin University , Changchun , Jilin , People's Republic of China, China
| | - Yuxi He
- a Department of Ophthalmology, The Second Hospital of Jilin University , Changchun , People's Republic of China
| | - Bo Yang
- a Department of Ophthalmology, The Second Hospital of Jilin University , Changchun , People's Republic of China
| |
Collapse
|
36
|
High loading contents, distribution and stability of β-carotene encapsulated in high internal phase emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Kunnumakkara AB, Harsha C, Banik K, Vikkurthi R, Sailo BL, Bordoloi D, Gupta SC, Aggarwal BB. Is curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opin Drug Metab Toxicol 2019; 15:705-733. [DOI: 10.1080/17425255.2019.1650914] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Bethsebie L. Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
38
|
Kim HS, Sohn C, Kwon M, Na W, Shivappa N, Hébert JR, Kim MK. Positive Association between Dietary Inflammatory Index and the Risk of Osteoporosis: Results from the KoGES_Health Examinee (HEXA) Cohort Study. Nutrients 2018; 10:nu10121999. [PMID: 30563032 PMCID: PMC6316268 DOI: 10.3390/nu10121999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Previous studies have found that diet’s inflammatory potential is related to various diseases. However, little is known about its relationship with osteoporosis. The aim of this study was to investigate the association between the dietary inflammatory index (DII®) and osteoporosis risk in a large-scale prospective cohort study in Korea. This prospective cohort study included 159,846 participants (men 57,740; women 102,106) from South Korea with a mean follow-up of 7.9 years. The DII was calculated through a validated semi-quantitative FFQ (SQFFQ), and information on osteoporosis was self-reported by the participants. Analyses were performed by using a multivariable Cox proportional hazard model. Higher DII scores were associated with higher osteoporosis risk (HR 1.33; 95% CI 1.12–1.58). In women, a higher DII score indicated a higher risk of osteoporosis (HR 1.33; 95% CI 1.11–1.59). However, a hazards ratio of similar magnitude in men was not significant (HR 1.32; 95% CI 0.64–2.71). Post-menopausal women had higher risks of osteoporosis for higher DII scores (HR 1.33; 95% CI 1.09–1.63), whereas among pre-menopausal women, the relationship was not statistically significant (HR 1.39; 95% CI 0.87–2.21). Also, there was an increase in osteoporosis risk when the DII increased among women participants with irregular physical activity (HR 1.53; 95% CI 1.17–2.01); however, there was no statistically significant increase in osteoporosis risk among women participants with regular physical activity (HR 1.19; 95% CI 0.93–1.52). A more pro-inflammatory diet was significantly associated with higher osteoporosis risk in women. Given the similar magnitude of the hazards ratio, studies with sufficient numbers of men are warranted.
Collapse
Affiliation(s)
- Hye Sun Kim
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 10408 Goyang, Gyeonggi do, Korea.
| | - Cheongmin Sohn
- Department of Food and Nutrition, Wonkwang University, 54538 Iksan, Korea.
| | - Minji Kwon
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 10408 Goyang, Gyeonggi do, Korea.
| | - Woori Na
- Department of Food and Nutrition, Wonkwang University, 54538 Iksan, Korea.
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA.
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
- Connecting Health Innovations LLC, Columbia, SC 29201, USA.
| | - James R Hébert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208, USA.
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
- Connecting Health Innovations LLC, Columbia, SC 29201, USA.
| | - Mi Kyung Kim
- Cancer Epidemiology Branch, Division of Cancer Epidemiology and Prevention, National Cancer Center, 10408 Goyang, Gyeonggi do, Korea.
| |
Collapse
|
39
|
Atanasov AG, Yeung AWK, Banach M. Natural products for targeted therapy in precision medicine. Biotechnol Adv 2018; 36:1559-1562. [PMID: 30081176 DOI: 10.1016/j.biotechadv.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|