1
|
Yang Q, Ran Y, Guo Y, Zeng J, Song Y, Qiao D, Xu H, Cao Y. Enhancement of lipid synthesis by the transcription factor Asg1 in Saitozyma podzolica zwy-2-3 under dissolved oxygen stress. BIORESOURCE TECHNOLOGY 2024; 411:131312. [PMID: 39168414 DOI: 10.1016/j.biortech.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Microbial oils have been of considerable interest as food additives and biofuel resources due to high lipid contents, but lipid accumulation of oleaginous microorganisms can be induced by environmental stresses, such as dissolved oxygen (DO), which limit large-scale lipid production. Here, DO stress gave rise to the endogenous nitric oxide (NO) level to mediate S-nitrosylation of SpAsg1, regulating the lipid accumulation in Saitozyma podzolica zwy-2-3. Notably, qRT-PCR, yeast one-hybrid, dual-luciferase reporter assays, and metabolomics analysis exhibited that overexpression of SpAsg1 promoted lipid synthesis by directly regulation of glucose metabolism, enhancing glucose uptake, ATP and NADPH contents under DO stress. Meanwhile, SpAsg1 improved the antioxidant capacity to reduce the intracellular reactive oxygen species (ROS) and NO levels. Overall, we systematically investigated the regulation of SpAsg1 on lipid metabolism of S. podzolica zwy-2-3 under DO stress, which sheds light on further studies for alleviating oxygen limitation of lipid production in microbial industry.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yihan Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Yin MQ, Xu K, Luan T, Kang XL, Yang XY, Li HX, Hou YH, Zhao JZ, Bao XM. Metabolic engineering for compartmentalized biosynthesis of the valuable compounds in Saccharomyces cerevisiae. Microbiol Res 2024; 286:127815. [PMID: 38944943 DOI: 10.1016/j.micres.2024.127815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Saccharomyces cerevisiae is commonly used as a microbial cell factory to produce high-value compounds or bulk chemicals due to its genetic operability and suitable intracellular physiological environment. The current biosynthesis pathway for targeted products is primarily rewired in the cytosolic compartment. However, the related precursors, enzymes, and cofactors are frequently distributed in various subcellular compartments, which may limit targeted compounds biosynthesis. To overcome above mentioned limitations, the biosynthesis pathways are localized in different subcellular organelles for product biosynthesis. Subcellular compartmentalization in the production of targeted compounds offers several advantages, mainly relieving competition for precursors from side pathways, improving biosynthesis efficiency in confined spaces, and alleviating the cytotoxicity of certain hydrophobic products. In recent years, subcellular compartmentalization in targeted compound biosynthesis has received extensive attention and has met satisfactory expectations. In this review, we summarize the recent advances in the compartmentalized biosynthesis of the valuable compounds in S. cerevisiae, including terpenoids, sterols, alkaloids, organic acids, and fatty alcohols, etc. Additionally, we describe the characteristics and suitability of different organelles for specific compounds, based on the optimization of pathway reconstruction, cofactor supplementation, and the synthesis of key precursors (metabolites). Finally, we discuss the current challenges and strategies in the field of compartmentalized biosynthesis through subcellular engineering, which will facilitate the production of the complex valuable compounds and offer potential solutions to improve product specificity and productivity in industrial processes.
Collapse
Affiliation(s)
- Meng-Qi Yin
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tao Luan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiu-Long Kang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiao-Yu Yang
- Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hong-Xing Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yun-Hua Hou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian-Zhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; A State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, China.
| | - Xiao-Ming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Fontana J, Sparkman-Yager D, Faulkner I, Cardiff R, Kiattisewee C, Walls A, Primo TG, Kinnunen PC, Garcia Martin H, Zalatan JG, Carothers JM. Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling. Nat Commun 2024; 15:6341. [PMID: 39068154 PMCID: PMC11283517 DOI: 10.1038/s41467-024-50528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
Engineering metabolism to efficiently produce chemicals from multi-step pathways requires optimizing multi-gene expression programs to achieve enzyme balance. CRISPR-Cas transcriptional control systems are emerging as important tools for programming multi-gene expression, but poor predictability of guide RNA folding can disrupt expression control. Here, we correlate efficacy of modified guide RNAs (scRNAs) for CRISPR activation (CRISPRa) in E. coli with a computational kinetic parameter describing scRNA folding rate into the active structure (rS = 0.8). This parameter also enables forward design of scRNAs, allowing us to design a system of three synthetic CRISPRa promoters that can orthogonally activate (>35-fold) expression of chosen outputs. Through combinatorial activation tuning, we profile a three-dimensional design space expressing two different biosynthetic pathways, demonstrating variable production of pteridine and human milk oligosaccharide products. This RNA design approach aids combinatorial optimization of metabolic pathways and may accelerate routine design of effective multi-gene regulation programs in bacterial hosts.
Collapse
Affiliation(s)
- Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - David Sparkman-Yager
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ian Faulkner
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Ryan Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Aria Walls
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Tommy G Primo
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Patrick C Kinnunen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Hector Garcia Martin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Biofuels and Bioproducts Division, DOE Joint BioEnergy Institute, Emeryville, CA, USA
- DOE Agile BioFoundry, Emeryville, CA, USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, USA.
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Li Y, Liu M, Yang C, Fu H, Wang J. Engineering microbial metabolic homeostasis for chemicals production. Crit Rev Biotechnol 2024:1-20. [PMID: 39004513 DOI: 10.1080/07388551.2024.2371465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
Microbial-based bio-refining promotes the development of a biotechnology revolution to encounter and tackle the enormous challenges in petroleum-based chemical production by biomanufacturing, biocomputing, and biosensing. Nevertheless, microbial metabolic homeostasis is often incompatible with the efficient synthesis of bioproducts mainly due to: inefficient metabolic flow, robust central metabolism, sophisticated metabolic network, and inevitable environmental perturbation. Therefore, this review systematically summarizes how to optimize microbial metabolic homeostasis by strengthening metabolic flux for improving biotransformation turnover, redirecting metabolic direction for rewiring bypass pathway, and reprogramming metabolic network for boosting substrate utilization. Future directions are also proposed for providing constructive guidance on the development of industrial biotechnology.
Collapse
Affiliation(s)
- Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingxiong Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changyang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Jung YJ, Park KH, Jang TY, Yoo SM. Gene expression regulation by modulating Hfq expression in coordination with tailor-made sRNA-based knockdown in Escherichia coli. J Biotechnol 2024; 388:1-10. [PMID: 38616040 DOI: 10.1016/j.jbiotec.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The tailor-made synthetic sRNA-based gene expression knockdown system has demonstrated its efficacy in achieving pathway balancing in microbes, facilitating precise target gene repression and fine-tuned control of gene expression. This system operates under a competitive mode of gene regulation, wherein the tailor-made synthetic sRNA shares the intrinsic intracellular Hfq protein with other RNAs. The limited intracellular Hfq amount has the potential to become a constraining factor in the post-transcription regulation of sRNAs. To enhance the efficiency of the tailor-made sRNA gene expression regulation platform, we introduced an Hfq expression level modulation-coordinated sRNA-based gene knockdown system. This system comprises tailor-made sRNA expression cassettes that produce varying Hfq expression levels using different strength promoters. Modulating the expression levels of Hfq significantly improved the repressing capacity of sRNA, as evidenced by evaluations with four fluorescence proteins. In order to validate the practical application of this system, we applied the Hfq-modulated sRNA-based gene knockdown cassette to Escherichia coli strains producing 5-aminolevulinic acid and L-tyrosine. Diversifying the expression levels of metabolic enzymes through this cassette resulted in substantial increases of 74.6% in 5-aminolevulinic acid and 144% in L-tyrosine production. Tailor-made synthetic sRNA-based gene expression knockdown system, coupled with Hfq copy modulation, exhibits potential for optimizing metabolic fluxes through biosynthetic pathways, thereby enhancing the production yields of bioproducts.
Collapse
Affiliation(s)
- Yu Jung Jung
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Keun Ha Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae Yeong Jang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
6
|
Zhao XQ, Liu CG, Bai FW. Making the biochemical conversion of lignocellulose more robust. Trends Biotechnol 2024; 42:418-430. [PMID: 37858385 DOI: 10.1016/j.tibtech.2023.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Lignocellulose is an alternative to fossil resources, but its biochemical conversion is not economically competitive. While decentralized processing can reduce logistical cost for this feedstock, sugar platforms need to be developed with energy-saving pretreatment technologies and cost-effective cellulases, and products must be selected correctly. Anaerobic fermentation with less energy consumption and lower contamination risk is preferred, particularly for producing biofuels. Great effort has been devoted to producing cellulosic ethanol, but CO2 released with large quantities during ethanol fermentation must be utilized in situ for credit. Unless titer and yield are improved substantially, butanol cannot be produced as an advanced biofuel. Microbial lipids produced through aerobic fermentation with low yield and intensive energy consumption are not affordable as feedstocks for biodiesel production.
Collapse
Affiliation(s)
- Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Gasanov V, Vorotelyak E, Vasiliev A. Expression of the Antimicrobial Peptide SE-33-A2P, a Modified Analog of Cathelicidin, and an Analysis of Its Properties. Antibiotics (Basel) 2024; 13:190. [PMID: 38391576 PMCID: PMC10886013 DOI: 10.3390/antibiotics13020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we developed a method for the expression of the antimicrobial peptide SE-33-A2P in E. coli bacterial cells. The SE-33-A2P peptide consists of A2P and SE-33 peptides and is a retro analog of cathelicidin possessing antimicrobial activity against both Gram-positive and Gram-negative bacteria. Furthermore, the A2P peptide is a self-cleaving peptide. For an efficient expression of the SE-33-A2P peptide, a gene encoding several repetitive sequences of the SE-33 peptide separated by A2P sequences was created. The gene was cloned into a plasmid, with which E. coli cells were transformed. An induction of the product expression was carried out by IPTG after the cell culture gained high density. The inducible expression product, due to the properties of the A2P peptide, was cleaved in the cell into SE-33-A2P peptides. As the next step, the SE-33-A2P peptide was purified using filtration and chromatography. Its activity against both Gram-positive and Gram-negative bacteria, including antibiotic-resistant bacteria, was proved. The developed approach for obtaining a prokaryotic system for the expression of a highly active antimicrobial peptide expands the opportunities for producing antimicrobial peptides via industrial methods.
Collapse
Affiliation(s)
- Vagif Gasanov
- Laboratory of Cell Biology, N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilov Str. 26, 119334 Moscow, Russia
| | - Ekaterina Vorotelyak
- Laboratory of Cell Biology, N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilov Str. 26, 119334 Moscow, Russia
| | - Andrey Vasiliev
- Laboratory of Cell Biology, N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilov Str. 26, 119334 Moscow, Russia
| |
Collapse
|
8
|
Wang L, Wang P, Liu Y, Qi Z, Wang P, Xu S. The HpSGNi system: A compact approach for genetic suppression without sequence limitation in Escherichia coli. J Biotechnol 2024; 379:18-24. [PMID: 38000712 DOI: 10.1016/j.jbiotec.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Targeted gene regulation is indispensable for exploring gene functions in microbes and the development of microbial cell factories. While most loci can be regulated by CRISPRi, it cannot be used for targets lacking protospacer adjacent motifs (PAM) or protospacer flanking sequences (PFS). Here, we characterized a genetic suppression approach named the hpDNA-assisted structure-guided nuclease mediating interference system (HpSGNi). It was composed of a flap endonuclease 1 (FEN1) and mis-hairpin DNA probes (mis-hpDNA) to suppress the expression of target genes simply and efficiently in microbe without sequence restrictions. By inhibiting the initiation and elongation of the transcription, HpSGNi successfully silenced the transcription of exogenous fluorescent protein genes, ampicillin resistance gene and endogenous folP/sulA genes in Escherichia coli BL21(DE3) and K-12 MG1655. Meanwhile, aiming at optimizing the mis-hpDNA, we displayed the characteristics by detecting the tolerance to the single base mismatch and length of the guide sequence. This DNA-guided recognition platform provides a simple approach for selectively inhibiting gene expression.
Collapse
Affiliation(s)
- Liang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peiliang Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Liu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Qi
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, China
| | - Pei Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Pharmaceutical Animal Experimental Center, China Pharmaceutical University, Nanjing 211198, China.
| | - Shu Xu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Mueller A, Xu L, Heine C, Flach T, Mäkelä MR, de Vries RP. Genome Mining Reveals a Surprising Number of Sugar Reductases in Aspergillus niger. J Fungi (Basel) 2023; 9:1138. [PMID: 38132739 PMCID: PMC10744612 DOI: 10.3390/jof9121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic engineering of filamentous fungi has received increasing attention in recent years, especially in the context of creating better industrial fungal cell factories to produce a wide range of valuable enzymes and metabolites from plant biomass. Recent studies into the pentose catabolic pathway (PCP) in Aspergillus niger have revealed functional redundancy in most of the pathway steps. In this study, a closer examination of the A. niger genome revealed five additional paralogs for the three original pentose reductases (LarA, XyrA, XyrB). Analysis of these genes using phylogeny, in vitro and in vivo functional analysis of the enzymes, and gene expression revealed that all can functionally replace LarA, XyrA, and XyrB. However, they are also active on several other sugars, suggesting a role for them in other pathways. This study therefore reveals the diversity of primary carbon metabolism in fungi, suggesting an intricate evolutionary process that distinguishes different species. In addition, through this study, the metabolic toolkit for synthetic biology and metabolic engineering of A. niger and other fungal cell factories has been expanded.
Collapse
Affiliation(s)
- Astrid Mueller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| | - Li Xu
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| | - Claudia Heine
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| | - Tila Flach
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland;
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.M.); (L.X.); (C.H.); (T.F.)
| |
Collapse
|
10
|
Sun BY, Wang FQ, Zhao J, Tao XY, Liu M, Wei DZ. Engineering Escherichia coli for l-homoserine production. J Basic Microbiol 2023; 63:168-178. [PMID: 36284486 DOI: 10.1002/jobm.202200488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 02/03/2023]
Abstract
l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.
Collapse
Affiliation(s)
- Bing-Yao Sun
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xin-Yi Tao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Min Liu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Liu X, Luo H, Yu D, Tan J, Yuan J, Li H. Synthetic biology promotes the capture of CO2 to produce fatty acid derivatives in microbial cell factories. BIORESOUR BIOPROCESS 2022; 9:124. [PMID: 38647643 PMCID: PMC10992411 DOI: 10.1186/s40643-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/27/2022] [Indexed: 12/07/2022] Open
Abstract
Environmental problems such as greenhouse effect, the consumption of fossil energy, and the increase of human demand for energy are becoming more and more serious, which force researcher to turn their attention to the reduction of CO2 and the development of renewable energy. Unsafety, easy to lead to secondary environmental pollution, cost inefficiency, and other problems limit the development of conventional CO2 capture technology. In recent years, many microorganisms have attracted much attention to capture CO2 and synthesize valuable products directly. Fatty acid derivatives (e.g., fatty acid esters, fatty alcohols, and aliphatic hydrocarbons), which can be used as a kind of environmentally friendly and renewable biofuels, are sustainable substitutes for fossil energy. In this review, conventional CO2 capture techniques pathways, microbial CO2 concentration mechanisms and fixation pathways were introduced. Then, the metabolic pathway and progress of direct production of fatty acid derivatives from CO2 in microbial cell factories were discussed. The synthetic biology means used to design engineering microorganisms and optimize their metabolic pathways were depicted, with final discussion on the potential of optoelectronic-microbial integrated capture and production systems.
Collapse
Affiliation(s)
- Xiaofang Liu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China.
| | - Hangyu Luo
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Dayong Yu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou, China
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Junfa Yuan
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
12
|
Development of a Glycerol-Inducible Expression System for High-Yield Heterologous Protein Production in Bacillus subtilis. Microbiol Spectr 2022; 10:e0132222. [PMID: 36036634 PMCID: PMC9604022 DOI: 10.1128/spectrum.01322-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of efficient, low-cost, and robust expression systems is important for the mass production of proteins and natural products in large amounts using cell factories. Glycerol is an ideal carbon source for large-scale fermentation due to its low cost and favorable maintenance of the fermentation process. Here, we used the antiterminator protein GlpP and its target promoter PglpD to construct a highly efficient glycerol-inducible expression system (GIES) in Bacillus subtilis. This system was able to express heterologous genes in an autoinducible manner based on the sequential utilization of glucose and glycerol under the regulation of carbon catabolite repression. In such a system, the concentration of glycerol regulated the strength of gene expression, and the concentration of glucose affected both the timing of induction and the strength of gene expression. By enhancing GlpP, the GIES was further strengthened for high-level intracellular expression of aspartase and secretory expression of nattokinase. High yields of nattokinase in a 5-L fermenter through batch and fed-batch fermentation demonstrated the potential to apply the GIES for large-scale enzyme production. Through the evolution of the -10 box of PglpD, mutants with gradient activities were obtained. In addition, hybrid glycerol-inducible promoters were successfully constructed by combining the constitutive promoters and the 5' untranslated region of PglpD. Collectively, this study developed a GIES to obtain high-value products from inexpensive glycerol. More importantly, the great potential of the pair of inherent terminator and antiterminator protein as a portable biological tool for various purposes in synthetic biology is proposed. IMPORTANCE In this study, a GIES was constructed in B. subtilis by employing the antiterminator protein GlpP and the GlpP-regulated promoter PglpD. Based on the sequential utilization of glucose and glycerol by B. subtilis, the GIES was able to express genes in an autoinducible manner. The amounts and ratio of glucose and glycerol can regulate the gene induction timing and expression strength. The GIES was further applied for high yields of nattokinase, and its robustness in production scale-up was confirmed in a 5-L fermenter. The high-level expression of heterologous proteins demonstrated the huge application potential of the GIES. Furthermore, mutants of PglpD with gradient activities and hybrid glycerol-inducible promoters were obtained through the evolution of the -10 box of PglpD and the combination of the constitutive promoters and the 5' untranslated region of PglpD, respectively. These results demonstrated the use of the antiterminator protein as a regulator for various purposes in synthetic biology.
Collapse
|
13
|
Pandey N, Davison SA, Krishnamurthy M, Trettel DS, Lo CC, Starkenburg S, Wozniak KL, Kern TL, Reardon SD, Unkefer CJ, Hennelly SP, Dale T. Precise Genomic Riboregulator Control of Metabolic Flux in Microbial Systems. ACS Synth Biol 2022; 11:3216-3227. [PMID: 36130255 PMCID: PMC9594778 DOI: 10.1021/acssynbio.1c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Engineered microbes can be used for producing value-added chemicals from renewable feedstocks, relieving the dependency on nonrenewable resources such as petroleum. These microbes often are composed of synthetic metabolic pathways; however, one major problem in establishing a synthetic pathway is the challenge of precisely controlling competing metabolic routes, some of which could be crucial for fitness and survival. While traditional gene deletion and/or coarse overexpression approaches do not provide precise regulation, cis-repressors (CRs) are RNA-based regulatory elements that can control the production levels of a particular protein in a tunable manner. Here, we describe a protocol for a generally applicable fluorescence-activated cell sorting technique used to isolate eight subpopulations of CRs from a semidegenerate library in Escherichia coli, followed by deep sequencing that permitted the identification of 15 individual CRs with a broad range of protein production profiles. Using these new CRs, we demonstrated a change in production levels of a fluorescent reporter by over two orders of magnitude and further showed that these CRs are easily ported from E. coli to Pseudomonas putida. We next used four CRs to tune the production of the enzyme PpsA, involved in pyruvate to phosphoenolpyruvate (PEP) conversion, to alter the pool of PEP that feeds into the shikimate pathway. In an engineered P. putida strain, where carbon flux in the shikimate pathway is diverted to the synthesis of the commodity chemical cis,cis-muconate, we found that tuning PpsA translation levels increased the overall titer of muconate. Therefore, CRs provide an approach to precisely tune protein levels in metabolic pathways and will be an important tool for other metabolic engineering efforts.
Collapse
Affiliation(s)
- Naresh Pandey
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Steffi A. Davison
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Malathy Krishnamurthy
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Daniel S. Trettel
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chien-Chi Lo
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shawn Starkenburg
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Katherine L. Wozniak
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Theresa L. Kern
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sean D. Reardon
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Clifford J. Unkefer
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott P. Hennelly
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taraka Dale
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States,
| |
Collapse
|
14
|
Yilmaz S, Nyerges A, van der Oost J, Church GM, Claassens NJ. Towards next-generation cell factories by rational genome-scale engineering. Nat Catal 2022. [DOI: 10.1038/s41929-022-00836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Duan Q, Hu T, Zhu Q, Jin X, Chi F, Chen X. How far are the new wave of mRNA drugs from us? mRNA product current perspective and future development. Front Immunol 2022; 13:974433. [PMID: 36172353 PMCID: PMC9510989 DOI: 10.3389/fimmu.2022.974433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
mRNA products are therapies that are regulated from the post-transcriptional, pre-translational stage of a gene and act upstream of protein synthesis. Compared with traditional small molecule drugs and antibody drugs, mRNA drugs had the advantages of simple design, short development cycle, strong target specificity, wide therapeutic field, and long-lasting effect. mRNA drugs were now widely used in the treatment of genetic diseases, tumors, and viral infections, and are expected to become the third major class of drugs after small molecule drugs and antibody drugs. The delivery system technology was the key to ensuring the efficacy and safety of mRNA drugs, which plays an important role in protecting RNA structure, enhancing targeting ability, reducing the dose of drug delivery, and reducing toxic side effects. Lipid nanoparticles (LNP) were the most common delivery system for mRNA drugs. In recent years, mRNA drugs have seen rapid development, with the number of drugs on the market increasing each year. The success of commercializing mRNA vaccines has driven a wave of nucleic acid drug development. mRNA drugs were clinically used in genetic diseases, oncology, and infectious diseases worldwide, while domestic mRNA clinical development was focused on COVID-19 vaccines, with more scope for future indication expansion.
Collapse
|
16
|
Liu YX, Zhuo XZ, Li SY. The transcription activator AtxA from Bacillus anthracis was employed for developing a tight-control, high-level, modulable and stationary-phase-specific transcription activity in Escherichia coli. Synth Biol (Oxf) 2022; 7:ysac014. [PMID: 36046151 PMCID: PMC9424709 DOI: 10.1093/synbio/ysac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The strong transcriptional activity of the virulent gene pagA in Bacillus anthracis has been proven to be anthrax toxin activator (AtxA)-regulated. However, the obscure pagA transcription mechanism hinders practical applications of this strong promoter. In this study, a 509-bp DNA fragment [termed 509sequence, (-508)-(+1) relative to the P2 transcription start site] was cloned upstream of rbs-GFPuv as pTOL02B to elucidate the AtxA-regulated transcription. The 509sequence was dissected into the -10 sequence, -35 sequence, ATrich tract, SLI/SLII and upstream site. In conjunction with the heterologous co-expression of AtxA (under the control of the T7 promoter), the -10 sequence (TATACT) was sufficient for the AtxA-regulated transcription. Integration of pTOL02F + pTOLAtxA as pTOL03F showed that the AtxA-regulated transcription exhibited a strong specific fluorescence intensity/common analytical chemistry term (OD600) of 40 597 ± 446 and an induction/repression ratio of 122. An improved induction/repression ratio of 276 was achieved by cultivating Escherichia coli/pTOL03F in M9 minimal medium. The newly developed promoter system termed PAtxA consists of AtxA, the -10 sequence and Escherichia RNA polymerase. These three elements synergistically and cooperatively formed a previously undiscovered transcription system, which exhibited a tight-control, high-level, modulable and stationary-phase-specific transcription. The PAtxA was used for phaCAB expression for the stationary-phase polyhydroxybutyrate production, and the results showed that a PHB yield, content and titer of 0.20 ± 0.27 g/g-glucose, 68 ± 11% and 1.5 ± 0.4 g/l can be obtained. The positive inducible PAtxA, in contrast to negative inducible, should be a useful tool to diversify the gene information flow in synthetic biology. Graphical Abstract.
Collapse
Affiliation(s)
- Ying-Xing Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Xiao-Zhen Zhuo
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
17
|
Copeland CE, Kim J, Copeland PL, Heitmeier CJ, Kwon YC. Characterizing a New Fluorescent Protein for a Low Limit of Detection Sensing in the Cell-Free System. ACS Synth Biol 2022; 11:2800-2810. [PMID: 35850511 PMCID: PMC9396652 DOI: 10.1021/acssynbio.2c00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-free protein synthesis-based biosensors have been developed as highly accurate, low-cost biosensors. However, since most biomarkers exist at low concentrations in various types of biopsies, the biosensor's dynamic range must be increased in the system to achieve low limits of detection necessary while deciphering from higher background signals. Many attempts to increase the dynamic range have relied on amplifying the input signal from the analyte, which can lead to complications of false positives. In this study, we aimed to increase the protein synthesis capability of the cell-free protein synthesis system and the output signal of the reporter protein to achieve a lower limit of detection. We utilized a new fluorescent protein, mNeonGreen, which produces a higher output than those commonly used in cell-free biosensors. Optimizations of DNA sequence and the subsequent cell-free protein synthesis reaction conditions allowed characterizing protein expression variability by given DNA template types, reaction environment, and storage additives that cause the greatest time constraint on designing the cell-free biosensor. Finally, we characterized the fluorescence kinetics of mNeonGreen compared to the commonly used reporter protein, superfolder green fluorescent protein. We expect that this finely tuned cell-free protein synthesis platform with the new reporter protein can be used with sophisticated synthetic gene circuitry networks to increase the dynamic range of a cell-free biosensor to reach lower detection limits and reduce the false-positive proportion.
Collapse
Affiliation(s)
- Caroline E Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeehye Kim
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Pearce L Copeland
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Chloe J Heitmeier
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
18
|
Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria. J Mol Biol 2022; 434:167689. [PMID: 35717997 DOI: 10.1016/j.jmb.2022.167689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 01/24/2023]
Abstract
RNA switches are versatile tools in synthetic biology for sensing and regulation applications. The discoveries of RNA-mediated translational and transcriptional control have facilitated the development of complexde novodesigns of RNA switches. Specifically, RNA toehold-mediated switches, in which binding to the toehold sensing domain controls the transition between switch states via strand displacement, have been extensively adapted for coupling systems responses to specifictrans-RNA inputs. This review highlights some of the challenges associated with applying these switches for native RNA detectionin vivo, including transferability between organisms. The applicability and design considerations of toehold-mediated switches are discussed by highlighting twelve recently developed switch designs. This review finishes with future perspectives to address current gaps in the field, particularly regarding the power of structural prediction algorithms for improved in vivo functionality of RNA switches.
Collapse
|
19
|
Zhu X, Meng C, Sun F, Wei Z, Chen L, Chen W, Tong S, Du H, Gao J, Ren J, Li D, Gao Z. Sustainable production of astaxanthin in microorganisms: the past, present, and future. Crit Rev Food Sci Nutr 2022; 63:10239-10255. [PMID: 35694786 DOI: 10.1080/10408398.2022.2080176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astaxanthin (3,3'-dihydroxy-4,4'-diketo-β-carotene) is a type of C40 carotenoid with remarkable antioxidant characteristics, showing significant application prospects in many fields. Traditionally, the astaxanthin is mainly obtained from chemical synthesis and natural acquisition, with both approaches having many limitations and not capable of meeting the growing market demand. In order to cope with these challenges, novel techniques, e.g., the innovative cell engineering strategies, have been developed to increase the astaxanthin production. In this review, we first elaborated the biosynthetic pathway of astaxanthin, with the key enzymes and their functions discussed in the metabolic process. Then, we summarized the conventional, non-genetic strategies to promote the production of astaxanthin, including the methods of exogenous additives, mutagenesis, and adaptive evolution. Lastly, we reviewed comprehensively the latest studies on the synthesis of astaxanthin in various recombinant microorganisms based on the concept of microbial cell factory. Furthermore, we have proposed several novel technologies for improving the astaxanthin accumulation in several model species of microorganisms.
Collapse
Affiliation(s)
- Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Zuoxi Wei
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Sheng Tong
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Huanmin Du
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jinshan Gao
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jiali Ren
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Life Sciences and medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
20
|
Optogenetic tools for microbial synthetic biology. Biotechnol Adv 2022; 59:107953. [DOI: 10.1016/j.biotechadv.2022.107953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
|
21
|
Yeom J, Park JS, Jeon YM, Song BS, Yoo SM. Synthetic fused sRNA for the simultaneous repression of multiple genes. Appl Microbiol Biotechnol 2022; 106:2517-2527. [PMID: 35291022 DOI: 10.1007/s00253-022-11867-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/02/2022]
Abstract
Efficient control over multiple gene expression still presents a major challenge. Synthetic sRNA enables targeted gene expression control in trans without directly modifying the chromosome, but its use to simultaneously target multiple genes can often cause cell growth defects because of the need for additional energy for transcription and lowering of their repression efficiency by limiting the amount of Hfq protein. To address these limitations, we present fusion sRNA (fsRNA) that simultaneously regulates the translation of multiple genes efficiently. It is constructed by linking the mRNA-binding modules for multiple targeted genes in one sRNA scaffold via one-pot generation using overlap extension PCR. The repression capacity of fsRNA was demonstrated by the construction of sRNAs to target four endogenous genes: caiF, hybG, ytfR and minD in Escherichia coli. Their cross-reactivity and the effect on cell growth were also investigated. As practical applications, we applied fsRNA to violacein- and protocatechuic acid-producing strains, resulting in increases of 13% violacein and 81% protocatechuic acid, respectively. The developed fsRNA-mediated multiple gene expression regulation system thus enables rapid and efficient development of optimised cell factories for valuable chemicals without cell growth defects and limiting cellular resources.Key points• Synthetic fusion sRNA (fsRNA)-based system was constructed for the repression of multiple target genes.• fsRNA repressed multiple genes by only expressing a single sRNA while minimising the cellular burden.• The application of fsRNA showed the increased production titers of violacein (13%) and protocatechuic acid (81%).
Collapse
Affiliation(s)
- Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yong Min Jeon
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Beom Seop Song
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
22
|
Le PG, Kim MI. Research Progress and Prospects of Nanozyme-Based Glucose Biofuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2116. [PMID: 34443946 PMCID: PMC8402078 DOI: 10.3390/nano11082116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
The appearance and evolution of biofuel cells can be categorized into three groups: microbial biofuel cells (MBFCs), enzymatic biofuel cells (EBFCs), and enzyme-like nanomaterial (nanozyme)-based biofuel cells (NBFCs). MBFCs can produce electricity from waste; however, they have significantly low power output as well as difficulty in controlling electron transfer and microbial growth. EBFCs are more productive in generating electricity with the assistance of natural enzymes, but their vulnerability under diverse environmental conditions has critically hindered practical applications. In contrast, because of the intrinsic advantages of nanozymes, such as high stability and robustness even in harsh conditions, low synthesis cost through facile scale-up, and tunable catalytic activity, NBFCs have attracted attention, particularly for developing wearable and implantable devices to generate electricity from glucose in the physiological fluids of plants, animals, and humans. In this review, recent studies on NBFCs, including the synthetic strategies and catalytic activities of metal and metal oxide-based nanozymes, the mechanism of electricity generation from glucose, and representative studies are reviewed and discussed. Current challenges and prospects for the utilization of nanozymes in glucose biofuel cells are also discussed.
Collapse
Affiliation(s)
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|