1
|
Kidd A, Casteriano A, Krockenberger MB, Higgins DP, Wright BR. Koala MHCII association with chlamydia infertility remains equivocal: a need for new research approaches. Sci Rep 2024; 14:31074. [PMID: 39730801 DOI: 10.1038/s41598-024-82217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Chlamydiosis is a common infectious disease impacting koalas and is a major cause of population decline due to resulting mortality and infertility. Polymorphisms of major histocompatibility complex (MHC) genes influence chlamydial disease outcomes in several species but koala studies have produced variable results. We aimed to identify the MHC II DAB and DBB repertoire of koalas from Liverpool Plains, NSW, a population heavily impacted by chlamydiosis. We compared variants between two studies, age cohorts and chlamydial infertility groups. Four DBB and eight DAB alleles were identified. The mean number of DAB alleles per individual increased and allele frequencies differed relative to a previous study, however the mean number of DBB alleles per individual decreased generationally, between age cohorts. DAB allele frequencies differed among fertility groups but contributing alleles could not be identified. While there is a likely role of MHCII in the complex pathogenesis of chlamydiosis, this study suggests that single gene association studies are not appropriate for understanding the impact of host genetics on koala chlamydiosis. A shift to larger multivariate studies is required to yield functional information on complex immunological interactions, and to inform targeted koala conservation across its diverse range and host-pathogen-environment contexts.
Collapse
Affiliation(s)
- Alana Kidd
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrea Casteriano
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Damien P Higgins
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Belinda R Wright
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
2
|
Hernández-Zambrano LJ, Alfonso-González H, Buitrago SP, Castro-Cavadía CJ, Garzón-Ospina D. Exploring the genetic diversity pattern of PvEBP/DBP2: A promising candidate for an effective Plasmodium vivax vaccine. Acta Trop 2024; 255:107231. [PMID: 38685340 DOI: 10.1016/j.actatropica.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Malaria remains a public health challenge. Since many control strategies have proven ineffective in eradicating this disease, new strategies are required, among which the design of a multivalent vaccine stands out. However, the effectiveness of this strategy has been hindered, among other reasons, by the genetic diversity observed in parasite antigens. In Plasmodium vivax, the Erythrocyte Binding Protein (PvEBP, also known as DBP2) is an alternate ligand to Duffy Binding Protein (DBP); given its structural resemblance to DBP, EBP/DBP2 is proposed as a promising antigen for inclusion in vaccine design. However, the extent of genetic diversity within the locus encoding this protein has not been comprehensively assessed. Thus, this study aimed to characterize the genetic diversity of the locus encoding the P. vivax EBP/DBP2 protein and to determine the evolutionary mechanisms modulating this diversity. Several intrapopulation genetic variation parameters were estimated using 36 gene sequences of PvEBP/DBP2 from Colombian P. vivax clinical isolates and 186 sequences available in databases. The study then evaluated the worldwide genetic structure and the evolutionary forces that may influence the observed patterns of genetic variation. It was found that the PvEBP/DBP2 gene exhibits one of the lowest levels of genetic diversity compared to other vaccine-candidate antigens. Four major haplotypes were shared worldwide. Analysis of the protein's 3D structure and epitope prediction identified five regions with potential antigenic properties. The results suggest that the PvEBP/DBP2 protein possesses ideal characteristics to be considered when designing a multivalent effective antimalarial vaccine against P. vivax.
Collapse
Affiliation(s)
- Laura J Hernández-Zambrano
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Heliairis Alfonso-González
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Sindy P Buitrago
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia
| | - Carlos J Castro-Cavadía
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba (GIMBIC), School of Health Sciences, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Diego Garzón-Ospina
- Grupo de Estudios en Genética y Biología Molecular (GEBIMOL), School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia - UPTC, Tunja, Boyacá, Colombia; Population Genetics And Molecular Evolution (PGAME), Fundación Scient, Tunja, Boyacá, Colombia.
| |
Collapse
|
3
|
Cervantes PW, Segelke BW, Lau EY, Robinson BV, Abisoye-Ogunniyan A, Pal S, de la Maza LM, Coleman MA, D’haeseleer P. Sequence, structure prediction, and epitope analysis of the polymorphic membrane protein family in Chlamydia trachomatis. PLoS One 2024; 19:e0304525. [PMID: 38861498 PMCID: PMC11166332 DOI: 10.1371/journal.pone.0304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The polymorphic membrane proteins (Pmps) are a family of autotransporters that play an important role in infection, adhesion and immunity in Chlamydia trachomatis. Here we show that the characteristic GGA(I,L,V) and FxxN tetrapeptide repeats fit into a larger repeat sequence, which correspond to the coils of a large beta-helical domain in high quality structure predictions. Analysis of the protein using structure prediction algorithms provided novel insight to the chlamydial Pmp family of proteins. While the tetrapeptide motifs themselves are predicted to play a structural role in folding and close stacking of the beta-helical backbone of the passenger domain, we found many of the interesting features of Pmps are localized to the side loops jutting out from the beta helix including protease cleavage, host cell adhesion, and B-cell epitopes; while T-cell epitopes are predominantly found in the beta-helix itself. This analysis more accurately defines the Pmp family of Chlamydia and may better inform rational vaccine design and functional studies.
Collapse
Affiliation(s)
- Patrick W. Cervantes
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Brent W. Segelke
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Edmond Y. Lau
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Beverly V. Robinson
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Abisola Abisoye-Ogunniyan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Patrik D’haeseleer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
4
|
Abdulabbas HT, Mohammad Ali AN, Farjadfar A, Arabfard M, Najafipour S, Kouhpayeh A, Ghasemian A, Behmard E. Design of a novel multi-epitope vaccine candidate against Chlamydia trachomatis using structural and nonstructural proteins: an immunoinformatics study. J Biomol Struct Dyn 2024; 42:4356-4369. [PMID: 37288800 DOI: 10.1080/07391102.2023.2220812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Chlamydia trachomatis (C. trachomatis) is an obligate intracellular bacterium which causes eye and sexually transmitted infections. During pregnancy, the bacterium is associated with preterm complications, low weight of neonates, fetal demise and endometritis leading to infertility. The aim of our study was design of a multi-epitope vaccine (MEV) candidate against C. trachomatis. After protein sequence adoption from the NCBI, potential epitopes toxicity, antigenicity, allergenicity, MHC-I and MHC-II binding, cytotoxic T lymphocytes (CTLs), Helper T lymphocytes (HTLs) and interferon-γ (IFN-γ)- induction were predicted. The adopted epitopes were fused together using appropriate linkers. In the next step, the MEV structural mapping and characterization, three-dimensional (3D) structure homology modeling and refinement were also performed. The MEV candidate interaction with the toll-like receptor 4 (TLR4) was also docked. The immune responses simulation was assessed using the C-IMMSIM server. Molecular dynamic (MD) simulation verified the structural stability of the TLR4-MEV complex. The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach demonstrated the MEV high affinity of binding to the TLR4, MHC-I and MHC-II. The MEV construct was also stable and water soluble and had enough antigenicity and lacked allergenicity with stimulation of T cells and B cells and INF-γ release. The immune simulation confirmed acceptable responses of both the humoral and cellular arms. It is proposed that in vitro and in vivo studies are needed to evaluate the findings of this study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Al Muthanna, Iraq
| | | | - Akbar Farjadfar
- Department of medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
5
|
Tanner T, Medhavi FNU, Richardson S, Omosun YO, Eko FO. In silico design and analysis of a multiepitope vaccine against Chlamydia. Pathog Dis 2024; 82:ftae015. [PMID: 38889932 PMCID: PMC11234648 DOI: 10.1093/femspd/ftae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024] Open
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial infection worldwide, potentially leading to severe pathologies including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility if left untreated. Current strategies, including screening and antibiotics, have limited effectiveness due to high rates of asymptomatic cases and logistical challenges. A multiepitope prophylactic vaccine could afford long-term protection against infection. Immunoinformatic analyses were employed to design a multiepitope Chlamydia vaccine antigen. B- and T-cell epitopes from five highly conserved and immunogenic Ct antigens were predicted and selected for the vaccine design. The final construct, adjuvanted with cholera toxin A1 subunit (CTA1), was further screened for immunogenicity. CTA1-MECA (multiepitope Chlamydia trachomatis antigen) was identified as antigenic and nonallergenic. A tertiary structure was predicted, refined, and validated as a good quality model. Molecular docking exhibited strong interactions between the vaccine and toll-like receptor 4 (TLR4). Additionally, immune responses consistent with protection including IFN-γ, IgG + IgM antibodies, and T- and B-cell responses were predicted following vaccination in an immune simulation. Expression of the construct in an Escherichia coli expression vector proved efficient. To further validate the vaccine efficacy, we assessed its immunogenicity in mice. Immunization with CTA1-MECA elicited high levels of Chlamydia-specific antibodies in mucosal and systemic compartments.
Collapse
Affiliation(s)
- Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - F N U Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Yusuf O Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| | - Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine. 720 Westview Drive, Atlanta, GA 30310, United States
| |
Collapse
|
6
|
Gomes LGR, Dutra JCF, Profeta R, Dias MV, García GJY, Rodrigues DLN, Goés Neto A, Aburjaile FF, Tiwari S, Soares SC, Azevedo V, Jaiswal AK. Systematic review of reverse vaccinology and immunoinformatics data for non-viral sexually transmitted infections. AN ACAD BRAS CIENC 2023; 95:e20230617. [PMID: 38055447 DOI: 10.1590/0001-3765202320230617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/27/2023] [Indexed: 12/08/2023] Open
Abstract
Sexually Transmitted Infections (STIs) are a public health burden rising in developed and developing nations. The World Health Organization estimates nearly 374 million new cases of curable STIs yearly. Global efforts to control their spread have been insufficient in fulfilling their objective. As there is no vaccine for many of these infections, these efforts are focused on education and condom distribution. The development of vaccines for STIs is vital for successfully halting their spread. The field of immunoinformatics is a powerful new tool for vaccine development, allowing for the identification of vaccine candidates within a bacterium's genome and allowing for the design of new genome-based vaccine peptides. The goal of this review was to evaluate the usage of immunoinformatics in research focused on non-viral STIs, identifying fields where research efforts are concentrated. Here we describe gaps in applying these techniques, as in the case of Treponema pallidum and Trichomonas vaginalis.
Collapse
Affiliation(s)
- Lucas Gabriel R Gomes
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Joyce C F Dutra
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Microbiologia, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Rodrigo Profeta
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Mariana V Dias
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Glen J Y García
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Bioinformática, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Diego Lucas N Rodrigues
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade Federal de Minas Gerais (UFMG), Escola de Veterinária, Departamento de Medicina Veterinária, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Aristóteles Goés Neto
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Biologia Molecular e Computacional de Fungos, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Flávia F Aburjaile
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade Federal de Minas Gerais (UFMG), Escola de Veterinária, Departamento de Medicina Veterinária, Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade Federal da Bahia, Instituto de Biologia, Rua Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, BA, Brazil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Av. Reitor Miguel Calmon, s/n, Vale do Canela, 40110-902 Salvador, BA, Brazil
| | - Siomar C Soares
- Universidade Federal do Triângulo Mineiro (UFTM), Instituto de Ciências Biológicas e Naturais, Departamento de Microbiologia, Imunologia, e Parasitologia, Rua Vigário Carlos, 100, Abadia, 38025-180 Uberaba, MG, Brazil
| | - Vasco Azevedo
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Arun K Jaiswal
- Programa de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Genética Celular e Molecular (LGCM), Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Kumar N, Bajiya N, Patiyal S, Raghava GPS. Multi-perspectives and challenges in identifying B-cell epitopes. Protein Sci 2023; 32:e4785. [PMID: 37733481 PMCID: PMC10578127 DOI: 10.1002/pro.4785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
The identification of B-cell epitopes (BCEs) in antigens is a crucial step in developing recombinant vaccines or immunotherapies for various diseases. Over the past four decades, numerous in silico methods have been developed for predicting BCEs. However, existing reviews have only covered specific aspects, such as the progress in predicting conformational or linear BCEs. Therefore, in this paper, we have undertaken a systematic approach to provide a comprehensive review covering all aspects associated with the identification of BCEs. First, we have covered the experimental techniques developed over the years for identifying linear and conformational epitopes, including the limitations and challenges associated with these techniques. Second, we have briefly described the historical perspectives and resources that maintain experimentally validated information on BCEs. Third, we have extensively reviewed the computational methods developed for predicting conformational BCEs from the structure of the antigen, as well as the methods for predicting conformational epitopes from the sequence. Fourth, we have systematically reviewed the in silico methods developed in the last four decades for predicting linear or continuous BCEs. Finally, we have discussed the overall challenge of identifying continuous or conformational BCEs. In this review, we only listed major computational resources; a complete list with the URL is available from the BCinfo website (https://webs.iiitd.edu.in/raghava/bcinfo/).
Collapse
Affiliation(s)
- Nishant Kumar
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| | - Nisha Bajiya
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| | - Sumeet Patiyal
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| | - Gajendra P. S. Raghava
- Department of Computational BiologyIndraprastha Institute of Information TechnologyNew DelhiIndia
| |
Collapse
|
8
|
Rahmani F, Imani Fooladi AA, Ajoudanifar H, Soleimani NA. In silico and experimental methods for designing a potent anticancer arazyme-herceptin fusion protein in HER2-positive breast cancer. J Mol Model 2023; 29:160. [PMID: 37103612 DOI: 10.1007/s00894-023-05562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
CONTEXT Breast cancer is the most prevalent type of malignancies among women worldwide and is associated with serious physical and mental consequences. Current chemotherapies may lack successful outcomes; thus, the development of targeted recombinant immunotoxins is plausible. The predicted B cell and T cell epitopes of arazyme of the fusion protein are able to elicit immune response. The results of codon adaptation tool of herceptin-arazyme have improved from 0.4 to 1. The in silico immune simulation results showed significant response for immune cells. In conclusion, our findings show that the known multi-epitope fusion protein may activate humoral and cellular immune responses and maybe a possible candidate for breast cancer treatment. METHODS In this study, the selected monoclonal antibody constituting herceptin and the bacterial metalloprotease, arazyme, was used with different peptide linkers to design a novel fusion protein to predict different B cell and T cell epitopes by the means of the relevant databases. Modeler 10.1 and I-TASSER online server were used to predict and validate the 3D structure and then docked to HER2-receptor using HADDOCK2.4 web server. The molecular dynamics (MD) simulations of the arazyme-linker-herceptin-HER2 complex were performed by GROMACS 2019.6 software. The sequence of arazyme-herceptin was optimized for the expression in prokaryotic host using online servers and cloned into pET-28a plasmid. The recombinant pET28a was transferred into the Escherichia coli BL21DE3. Expression and binding affinity of arazyme-herceptin and arazyme to human breast cancer cell lines (SK-BR-3/HER2 + and MDA-MB-468/HER2 -) were validated by the SDS-PAGE and cell‑ELISA, respectively.
Collapse
Affiliation(s)
- Farideh Rahmani
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hatef Ajoudanifar
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
9
|
Marlais T, Bickford-Smith J, Talavera-López C, Le H, Chowdhury F, Miles MA. A comparative 'omics' approach for prediction of candidate Strongyloides stercoralis diagnostic coproantigens. PLoS Negl Trop Dis 2023; 17:e0010777. [PMID: 37068106 PMCID: PMC10138266 DOI: 10.1371/journal.pntd.0010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/27/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Human infection with the intestinal nematode Strongyloides stercoralis is persistent unless effectively treated, and potentially fatal in immunosuppressed individuals. Epidemiological data are lacking, partially due to inadequate diagnosis. A rapid antigen detection test is a priority for population surveillance, validating cure after treatment, and for screening prior to immunosuppression. We used a targeted analysis of open access 'omics' data sets and used online predictors to identify S. stercoralis proteins that are predicted to be present in infected stool, Strongyloides-specific, and antigenic. Transcriptomic data from gut and non-gut dwelling life cycle stages of S. stercoralis revealed 328 proteins that are differentially expressed. Strongyloides ratti proteomic data for excreted and secreted (E/S) proteins were matched to S. stercoralis, giving 1,057 orthologues. Five parasitism-associated protein families (SCP/TAPS, prolyl oligopeptidase, transthyretin-like, aspartic peptidase, acetylcholinesterase) were compared phylogenetically between S. stercoralis and outgroups, and proteins with least homology to the outgroups were selected. Proteins that overlapped between the transcriptomic and proteomic datasets were analysed by multiple sequence alignment, epitope prediction and 3D structure modelling to reveal S. stercoralis candidate peptide/protein coproantigens. We describe 22 candidates from seven genes, across all five protein families for further investigation as potential S. stercoralis diagnostic coproantigens, identified using open access data and freely-available protein analysis tools. This powerful approach can be applied to many parasitic infections with 'omic' data to accelerate development of specific diagnostic assays for laboratory or point-of-care field application.
Collapse
Affiliation(s)
- Tegwen Marlais
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jack Bickford-Smith
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Talavera-López
- Institute of Computational Biology, Computational Health Centre, Helmholtz Munich, Neuherberg, Germany
| | - Hai Le
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fatima Chowdhury
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Shi D, Chen Y, Chen M, Zhou T, Xu F, Zhang C, Wang C, Li Z. Bioinformatics analysis of Omp19 and Omp25 proteins for designing multi-epitope vaccines against Brucella. Medicine (Baltimore) 2023; 102:e33182. [PMID: 36930131 PMCID: PMC10019172 DOI: 10.1097/md.0000000000033182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
Brucellosis is a zoonotic disease caused by Brucella. There is no effective vaccine against human brucellosis. Omp19 and Omp25 are the outer membrane proteins of Brucella. They are widely expressed and highly conserved in Brucella and have high immunogenicity. Herein, we aim to identify multi-epitope vaccine candidates based on Omp19 and Omp25. We analyzed the physicochemical properties and protein structure of Omp19 and Omp25, and predicted the corresponding B cell and T cell epitopes using bioinformatics analysis. Omp19 and Omp25 were composed of 177 amino acids and 213 amino acids, respectively. They were both stable hydrophilic proteins. The instability indices were 44.8 and 23, respectively. The hydrophilicity was -0.1 and -0.317, respectively. In the secondary structure of Omp19 and Omp25 proteins, the α-helix accounted for 12.43% and 23.94%, the β-sheet was 18.64% and 23.47%, the β-turn was 6.78% and 4.23%, and the random coil was 62.15% and 48.36%. Finally, 5 B cell epitopes, 3 Th-cell epitopes and 5 CTL cell epitopes of Omp19 protein, and 4 B cell epitopes, 3 Th-cell epitopes, and 5 CTL cell epitopes of Omp25 protein were selected as vaccine candidates. In conclusion, we obtained potential B cell and T cell epitopes of the Brucella outer membrane Omp19 and Omp25 proteins. This lays the foundation for the further design of multi-epitope vaccine of Brucella.
Collapse
Affiliation(s)
- Donghao Shi
- Clinical Laboratory Center, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, P.R. China
| | - Yuan Chen
- Clinical Laboratory Center, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| | - Muzhi Chen
- Department of Rheumatology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, P.R. China
| | - Tingting Zhou
- Department of Public Health, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| | - Feili Xu
- Clinical Laboratory Center, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, P.R. China
| | - Chao Zhang
- Urumqi OE Biotech Co., Ltd., Urumqi, Xinjiang, P.R. China
| | - Changmin Wang
- Clinical Laboratory Center, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| | - Zhiwei Li
- Clinical Laboratory Center, People`s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
11
|
Gao W, Li Z, Guan Q, Cui W, Zheng B, Ding Q, Lv G, Xu J, Zhang W. Characterization and analysis of linear epitopes corresponding to SARS-CoV-2 outbreak in Jilin Province, China. J Med Virol 2023; 95:e28323. [PMID: 36401153 DOI: 10.1002/jmv.28323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants have caused hundreds of thousands of deaths and shown serious social influence worldwide. Jilin Province, China, experienced the first wave of the outbreak from December 2020 to February 2021. Here, we analyzed the genomic characteristics of the SARS-CoV-2 outbreak in Jilin province using a phylogeographic tree and found that clinical isolates belonged to the B.1 lineage, which was considered to be the ancestral lineage. Several dominant SARS-CoV-2 specific linear B cell epitopes that reacted with the convalescent sera were also analysed and identified using a peptide microarray composed of S, M, and E proteins. Moreover, the serum of convalescent patients infected with SARS-CoV-2 showed neutralizing activity against four widely spreading SARS-CoV-2 variants; however, significant differences were observed in neutralizing activities against different SARS-CoV-2 variants. These data provide important information on genomic characteristics, linear epitopes, and neutralizing activity of SARS-CoV-2 outbreak in Jilin Province, China, which may aid in understanding disease patterns and regional aspects of the pandemic.
Collapse
Affiliation(s)
- Wenying Gao
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, First Hospital of Jilin University, Changchun, Jilin, China.,Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingtian Guan
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenzhe Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, China
| | - Baishong Zheng
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyan Zhang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, First Hospital of Jilin University, Changchun, Jilin, China.,Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Heterologous prime-boost vaccination based on Polymorphic protein D protects against intravaginal Chlamydia trachomatis infection in mice. Sci Rep 2022; 12:6664. [PMID: 35459778 PMCID: PMC9030682 DOI: 10.1038/s41598-022-10633-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
The control of the worldwide spread of sexually transmitted Chlamydia trachomatis (Ct) infection urgently demands the development of a preventive vaccine. In this work, we designed a vaccine based on a fragment of polymorphic protein D (FPmpD) that proved to be immunogenic enough to generate a robust systemic and mucosal IgG humoral immune response in two strains of mice. We used a heterologous prime-boost strategy, including simultaneous systemic and mucosal administration routes. The high titers of anti-PmpD antibodies elicited by this immunization scheme did not affect murine fertility. We tested the vaccine in a mouse model of Ct intravaginal infection. Anti-PmpD antibodies displayed potent neutralizing activity in vitro and protective effects in uterine tissues in vivo. Notably, the humoral immune response of PmpD-vaccinated mice was faster and stronger than the primary immune response of non-vaccinated mice when exposed to Ct. FPmpD-based vaccine effectively reduced Ct shedding into cervicovaginal fluids, bacterial burden at the genitourinary tract, and overall infectivity. Hence, the FPmpD-based vaccine might constitute an efficient tool to protect against Ct intravaginal infection and decrease the infection spreading.
Collapse
|
13
|
Tarrahimofrad H, Rahimnahal S, Zamani J, Jahangirian E, Aminzadeh S. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Sci Rep 2021; 11:24485. [PMID: 34966175 PMCID: PMC8716528 DOI: 10.1038/s41598-021-03932-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
A new strain of Influenza A Virus (IAV), so-called "H7N9 Avian Influenza", is the first strain of this virus in which a human is infected by transmitting the N9 of influenza virus. Although continuous human-to-human transmission has not been reported, the occurrence of various H7N9-associated epidemics and the lack of production of strong antibodies against H7N9 in humans warn of the potential for H7N9 to become a new pandemic. Therefore, the need for effective vaccination against H7N9 as a life-threatening viral pathogen has become a major concern. The current study reports the design of a multi-epitope vaccine against Hemagglutinin (HA) and Neuraminidase (NA) proteins of H7N9 Influenza A virus by prediction of Cytotoxic T lymphocyte (CTL), Helper T lymphocyte (HTL), IFN-γ and B-cell epitopes. Human β-defensin-3 (HβD-3) and pan HLA DR-binding epitope (PADRE) sequence were considered as adjuvant. EAAAK, AAY, GPGPG, HEYGAEALERAG, KK and RVRR linkers were used as a connector for epitopes. The final construct contained 777 amino acids that are expected to be a recombinant protein of about ~ 86.38 kDa with antigenic and non-allergenic properties after expression. Modeled protein analysis based on the tertiary structure validation, docking studies, and molecular dynamics simulations results like Root-mean-square deviation (RMSD), Gyration, Root-mean-square fluctuation (RMSF) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) showed that this protein has a stable construct and capable of being in interaction with Toll-like receptor 7 (TLR7), TLR8 and m826 antibody. Analysis of the obtained data the demonstrates that suggested vaccine has the potential to induce the immune response by stimulating T and Bcells, and may be utilizable for prevention purposes against Avian Influenza A (H7N9).
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Somayyeh Rahimnahal
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ehsan Jahangirian
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
14
|
González-Candelas F, Shaw MA, Phan T, Kulkarni-Kale U, Paraskevis D, Luciani F, Kimura H, Sironi M. One year into the pandemic: Short-term evolution of SARS-CoV-2 and emergence of new lineages. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 92:104869. [PMID: 33915216 PMCID: PMC8074502 DOI: 10.1016/j.meegid.2021.104869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022]
Abstract
The COVID-19 pandemic was officially declared on March 11th, 2020. Since the very beginning, the spread of the virus has been tracked nearly in real-time by worldwide genome sequencing efforts. As of March 2021, more than 830,000 SARS-CoV-2 genomes have been uploaded in GISAID and this wealth of data allowed researchers to study the evolution of SARS-CoV-2 during this first pandemic year. In parallel, nomenclatures systems, often with poor consistency among each other, have been developed to designate emerging viral lineages. Despite general fears that the virus might mutate to become more virulent or transmissible, SARS-CoV-2 genetic diversity has remained relatively low during the first ~ 8 months of sustained human-to-human transmission. At the end of 2020/beginning of 2021, though, some alarming events started to raise concerns of possible changes in the evolutionary trajectory of the virus. Specifically, three new viral variants associated with extensive transmission have been described as variants of concern (VOC). These variants were first reported in the UK (B.1.1.7), South Africa (B.1.351) and Brazil (P.1). Their designation as VOCs was determined by an increase of local cases and by the high number of amino acid substitutions harboured by these lineages. This latter feature is reminiscent of viral sequences isolated from immunocompromised patients with long-term infection, suggesting a possible causal link. Here we review the events that led to the identification of these lineages, as well as emerging data concerning their possible implications for viral phenotypes, reinfection risk, vaccine efficiency and epidemic potential. Most of the available evidence is, to date, provisional, but still represents a starting point to uncover the potential threat posed by the VOCs. We also stress that genomic surveillance must be strengthened, especially in the wake of the vaccination campaigns.
Collapse
Affiliation(s)
- Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio) and CIBER in Epidemiology and Public Health, Valencia, Spain
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Tung Phan
- Division of Clinical Microbiology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Fabio Luciani
- University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School, Takasaki, Gunma 370-0006, Japan
| | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS E. MEDEA, Bosisio Parini (LC), Italy.
| |
Collapse
|
15
|
Pedraza L, Camargo M, Moreno-Pérez DA, Sánchez R, Del Río-Ospina L, Báez-Murcia IM, Patarroyo ME, Patarroyo MA. Identifying HLA DRB1-DQB1 alleles associated with Chlamydia trachomatis infection and in silico prediction of potentially-related peptides. Sci Rep 2021; 11:12837. [PMID: 34145318 PMCID: PMC8213839 DOI: 10.1038/s41598-021-92294-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
HLA class II (HLA-II) genes' polymorphism influences the immune response to Chlamydia trachomatis (Ct), it is considered a sexually transmitted infection. However, associations between HLA-II alleles and Ct-infection have been little explored in humans; this study was thus aimed at determining HLA-DRB1-DQB1 alleles/haplotypes' effect on Ct-infection outcome in a cohort of Colombian women. Cervical sample DNA was used as template for detecting Ct by PCR and typing HLA-DRB1-DQB1 alleles/haplotypes by Illumina MiSeq sequencing. Survival models were adjusted for identifying the alleles/haplotypes' effect on Ct-outcome; bioinformatics tools were used for predicting secreted bacterial protein T- and B-cell epitopes. Sixteen HLA-DRB1 alleles having a significant effect on Ct-outcome were identified in the 262 women analysed. DRB1*08:02:01G and DRB1*12:01:01G were related to infection-promoting events. Only the DQB1*05:03:01G allele related to clearance/persistence events was found for HLA-DQB1. HLA-DRB1 allele homozygous women were associated with events having a lower probability of clearance and/or early occurrence of persistence. Twenty-seven peptides predicted in silico were associated with protective immunity against Ct; outer membrane and polymorphic membrane protein-derived peptides had regions having dual potential for being T- or B-cell epitopes. This article describes HLA-DRB1-DQB1 alleles/haplotypes related to Ct-infection resolution and the peptides predicted in silico which might probably be involved in host immune response. The data provides base information for developing future studies leading to the development of effective prevention measures against Ct-infection.
Collapse
Affiliation(s)
- Leidy Pedraza
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- MSc Programme in Microbiology, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - Milena Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), 111166, Bogotá D.C., Colombia
| | - Darwin A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), 111166, Bogotá D.C., Colombia
| | - Ricardo Sánchez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - Luisa Del Río-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
| | - Indira M Báez-Murcia
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
| | - Manuel E Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, 110231, Bogotá D.C., Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia.
- Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia.
- Health Sciences Division, Main Campus, Universidad Santo Tomás, 110231, Bogotá D.C., Colombia.
| |
Collapse
|
16
|
Galanis KA, Nastou KC, Papandreou NC, Petichakis GN, Pigis DG, Iconomidou VA. Linear B-Cell Epitope Prediction for In Silico Vaccine Design: A Performance Review of Methods Available via Command-Line Interface. Int J Mol Sci 2021; 22:3210. [PMID: 33809918 PMCID: PMC8004178 DOI: 10.3390/ijms22063210] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Linear B-cell epitope prediction research has received a steadily growing interest ever since the first method was developed in 1981. B-cell epitope identification with the help of an accurate prediction method can lead to an overall faster and cheaper vaccine design process, a crucial necessity in the COVID-19 era. Consequently, several B-cell epitope prediction methods have been developed over the past few decades, but without significant success. In this study, we review the current performance and methodology of some of the most widely used linear B-cell epitope predictors which are available via a command-line interface, namely, BcePred, BepiPred, ABCpred, COBEpro, SVMTriP, LBtope, and LBEEP. Additionally, we attempted to remedy performance issues of the individual methods by developing a consensus classifier, which combines the separate predictions of these methods into a single output, accelerating the epitope-based vaccine design. While the method comparison was performed with some necessary caveats and individual methods might perform much better for specialized datasets, we hope that this update in performance can aid researchers towards the choice of a predictor, for the development of biomedical applications such as designed vaccines, diagnostic kits, immunotherapeutics, immunodiagnostic tests, antibody production, and disease diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.A.G.); (K.C.N.); (N.C.P.); (G.N.P.); (D.G.P.)
| |
Collapse
|
17
|
Alom MW, Shehab MN, Sujon KM, Akter F. Exploring E, NS3, and NS5 proteins to design a novel multi-epitope vaccine candidate against West Nile Virus: An in-silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
18
|
Designing multi-epitope subunit vaccine for ocular trachoma infection using Chlamydia trachomatis polymorphic membrane proteins G. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
19
|
Aruleba RT, Adekiya TA, Molefe PF, Ikwegbue PC, Oyinloye BE, Kappo AP. Insights into functional amino acids of ULBP2 as potential immunogens against cancer. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Sexually transmitted infections among African women: an opportunity for combination sexually transmitted infection/HIV prevention. AIDS 2020; 34:651-658. [PMID: 32167988 DOI: 10.1097/qad.0000000000002472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Li Z, Zhang F, Zhang C, Wang C, Lu P, Zhao X, Hao L, Ding J. Immunoinformatics prediction of OMP2b and BCSP31 for designing multi-epitope vaccine against Brucella. Mol Immunol 2019; 114:651-660. [PMID: 31557626 DOI: 10.1016/j.molimm.2019.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022]
Abstract
Brucella poses a serious threat to human health. High quality vaccines for Brucella are urgently needed to effectively reduce the incidence of brucellosis. OMP2b and BCSP31 are important component proteins of the Brucella outer membrane and are highly immunogenic. Here, we used the bioinformatics software ProtParam, SOPMA, SWISS-MODEL, Rasmol, BepiPred, SYFPEITHI and IEDB to analyze the structure of these two proteins and predict the epitopes of T cells and B cells. Through analysis, we predicted three Th cell epitopes, seven CTL epitopes, eight B cell epitopes, and one T-B combined epitope of OMP2b protein. Subsequently, we also obtained three Th cell epitopes, six CTL epitopes, nine B cell epitopes and one T-B combined epitope of BCSP31 protein. The T-B combined epitopes and CTL epitopes of OMP2b and those of BCSP31 were synthesized to detect their immunogenicity. The IFN-γ ELISPOT assay showed that the T-B combined epitope peptides of OMP2b and BCSP31 activated Th cell immune responses. ELISA analysis detected the specific antibodies against the T-B combined epitope peptide of OMP2b and BCSP31 in the serum of Brucellosis patients. Additionally, CTL epitope peptide of OMP2b and BCSP31 proteins promoted the secretion of soluble perforin and granzyme B in the culture supernatant. In conclusion, our study shows that the T-B combined epitopes and CTL epitopes of OMP2b and BCSP31 have immunogenicity and immunoreactivity. Our results may lay a theoretical foundation for the development of vaccines against Brucella.
Collapse
Affiliation(s)
- Zhiwei Li
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China; Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, Xinjiang, 830001, PR China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China
| | - Chuntao Zhang
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China
| | - Changmin Wang
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, Xinjiang, 830001, PR China
| | - Peipei Lu
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, Xinjiang, 830001, PR China
| | - Xiao Zhao
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China
| | - Lijun Hao
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region Urumqi, Xinjiang, 830001, PR China
| | - Jianbing Ding
- Department of Immunology, Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, 830011, PR China.
| |
Collapse
|
22
|
Walton EL. Saliva biomarkers in neurological disorders: A "spitting image" of brain health? Biomed J 2018; 41:59-62. [PMID: 29866602 PMCID: PMC6138760 DOI: 10.1016/j.bj.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/10/2023] Open
Abstract
In this issue of the Biomedical Journal, we learn how biomarkers in saliva may be able to provide insight into the health of the brain and the central nervous system. We also discover how computational modeling can help to identify potential epitopes for vaccine development against Chlamydia, the world's most common sexually transmitted infection.
Collapse
Affiliation(s)
- Emma Louise Walton
- Staff Writer at the Biomedical Journal, 56 Dronningens gate, 7012 Trondheim, Norway.
| |
Collapse
|