1
|
Cao M, Wang Y, Lu G, Qi H, Li P, Dai X, Lu J. Classical Angiogenic Signaling Pathways and Novel Anti-Angiogenic Strategies for Colorectal Cancer. Curr Issues Mol Biol 2022; 44:4447-4471. [PMID: 36286020 PMCID: PMC9601273 DOI: 10.3390/cimb44100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Although productive progress has been made in colorectal cancer (CRC) researchs, CRC is the second most frequent type of malignancy and the major cause of cancer-related death among gastrointestinal cancers. As angiogenesis constitutes an important point in the control of CRC progression and metastasis, understanding the key signaling pathways that regulate CRC angiogenesis is critical in elucidating ways to inhibit CRC. Herein, we comprehensively summarized the angiogenesis-related pathways of CRC, including vascular endothelial growth factor (VEGF), nuclear factor-kappa B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Wingless and int-1 (Wnt), and Notch signaling pathways. We divided the factors influencing the specific pathway into promoters and inhibitors. Among these, some drugs or natural compounds that have antiangiogenic effects were emphasized. Furthermore, the interactions of these pathways in angiogenesis were discussed. The current review provides a comprehensive overview of the key signaling pathways that are involved in the angiogenesis of CRC and contributes to the new anti-angiogenic strategies for CRC.
Collapse
Affiliation(s)
- Mengyuan Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunmeng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guige Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoran Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peiyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
2
|
Li J, Ye L, Wang Y, Liu Y, Jin X, Li M. 1'-methylspiro[indoline-3,4'-piperidine] Derivatives: Design, Synthesis, Molecular Docking and Anti-tumor Activity Studies. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201117150714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Spirocyclic indoline compounds widely exist in numerous natural products
and synthetic molecules with significant biological activities. In recent years, these kinds of compounds
have attracted extensive attention as potent anti-tumor agents in the fields of pharmacology
and chemistry.
Objective:
In this study, we focused on designing and synthesizing novel 1'-methylspiro[indoline-
3,4'-piperidine] derivatives, which were evaluated by preliminary bioactivity experiment in vitro
and molecular docking.
Methods and Materials:
The key intermediate 1'-methylspiro[indoline-3,4'-piperidine] (B4) reacted
with benzenesulfonyl chloride with different substituents under alkaline condition to obtain its derivatives
(B5-B10). We evaluated their antiproliferative activities against A549, BEL-7402 and HeLa
cell lines by MTT assay. We performed the CDOCKER module in Accelrys Discovery Studio 2.5.5
for molecular docking of compound B5, and investigated the binding modes of compound B5 with
three different target proteins.
Results:
The results indicated that compounds B4-B10 exhibited good antiproliferative activities
against the above three types of cell lines, in which compound B5 with chloride atom as electronwithdrawing
substituent on a phenyl ring showed the highest potency against BEL-7402 cell lines
(IC50=30.03±0.43 μg/mL). The results of molecular docking showed that the binding energies of the
prominent bioactive compound B5 with CDK, c-Met, and EGFR protein crystals are -44.3583
kcal/mol, -38.3292 kcal/mol, -33.3653 kcal/mol, respectively.
Conclusion:
1'-methylspiro[indoline-3,4'-piperidine] and its six derivatives were synthesized and
evaluated against BEL-7402, A 549, and Hela cell lines. Compound B5 showed significant inhibition
on BEL-7402 cell lines. Molecular docking assays revealed that B5 as a ligand showed strong
affinity and appropriate binding pose on the amino acid residues in active sites of the tested targets,
which encourage us to conduct further evaluation such as the kinase experiment.
Collapse
Affiliation(s)
- Junjian Li
- Department of Medicinal Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Lianbao Ye
- Department of Medicinal Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Yuanyuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou,China
| | - Ying Liu
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou,China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou,China
| | - Ming Li
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou,China
| |
Collapse
|
3
|
Roles of T875N somatic mutation in the activity, structural stability of JAK2 and the transformation of OCI-AML3 cells. Int J Biol Macromol 2019; 137:1030-1040. [PMID: 31299252 DOI: 10.1016/j.ijbiomac.2019.07.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/31/2023]
Abstract
Activating mutations in JAK2 have been described in patients with various hematologic malignancies including acute myeloid leukemia (AML) and myeloproliferative neoplasms. However, mechanism of these mutations in JAK2's activity, structural stability and pathology of AML remains poorly understood. The JAK2 T875N somatic mutation has been detected in about 5.2% of AML patients. But the structural basis and mechanism of JAK2 T875N mutation in the pathology of AML is still unclear. Our results suggested that JAK2 T875N mutation disrupted the T875 and D873 interaction which destroyed the compact structure of JH1 domain, forced it into the active conformation, facilitated the entrance of substrate and thus led to JAK2 hyperactivation. Mutations (T875N, T875A, D873A and D873G) disrupted the T875 and D873 interaction enhanced JAK2's activity, decreased its structural stability and JH2 domain's activity which further enhanced JAK2's activity, while mutations (T875R, D873E, T875R/D873E) repaired this interaction displayed opposite results. Moreover, JAK2 T875N mutation enhanced the activity of JAK2-STAT5 pathway, promoted the proliferation and transformation of OCI-AML3 cells. This study provides clues in understanding structural basis of T875N mutation caused JAK2 hyperactivation and its roles in the pathology of AML.
Collapse
|
4
|
Tang G, Sydney Sir Philip JK, Weinberg O, Tam W, Sadigh S, Lake JI, Margolskee EM, Rogers HJ, Miranda RN, Bueso-Ramos C C, Hsi ED, Orazi A, Hasserjian RP, Arber DA, Bagg A, Wang SA. Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study. Mod Pathol 2019; 32:490-498. [PMID: 30401948 DOI: 10.1038/s41379-018-0165-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
The purpose of this study is to examine hematopoietic neoplasms with 9p24/JAK2 rearrangement including neoplasms associated with t(8;9)(p22;p24)/PCM1-JAK2 fusion neoplasm as well as cases with translocations involving 9p24/JAK2 and other partner genes. From seven large medical centers, we identified ten patients with t(8;9)(p22;p24) /PCM1-JAK2 and 3 with t(9p24;v)/JAK2 at diagnosis. Majority of the cases showed myeloproliferative neoplasm (MPN) associated features (n = 7) characterized by variable degrees of eosinophilia, myelofibrosis, frequent proliferations of early erythroblasts in bone marrow and extramedullary sites, and infrequent/absent somatic mutations. Other less common presentations included myelodysplastic syndromes (MDS) or MDS/MPN (one each). Four patients presented with B-lymphoblastic leukemia (B-ALL), and of them, two patients with t(8;9)(p22;p24.1) were proven to be B-lymphoblastic crisis of MPN; and the other two cases with t(9p24;v) both were de novo B-ALL, BCR-ABL1-like (Ph-like). We show that the hematopoietic neoplasms with 9p24/JAK2 rearrangement are extremely rare, and most of them are associated with t(8;9)(p22;p24)/PCM1-JAK2, a recent provisional World Health Organization entity under "myeloid/lymphoid neoplasm with a specific gene rearrangement". Cases of t(8;9)(p22;p24)/PCM1-JAK2, though heterogeneous, do exhibit some common clinicopathological characteristic features. Cases with t(9p24;v)/JAK2 are extremely rare; while such cases with a MPN presentation may resemble t(8;9)(p22;p24.1)/PCM1-JAK2, B-ALL cases presenting de novo B-ALL might belong to Ph-like B-ALL.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Olga Weinberg
- Department of Pathology, Boston Children Hospital, Boston, MA, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sam Sadigh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan I Lake
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth M Margolskee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Carlos Bueso-Ramos C
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Eric D Hsi
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Attilio Orazi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Lin TE, HuangFu WC, Chao MW, Sung TY, Chang CD, Chen YY, Hsieh JH, Tu HJ, Huang HL, Pan SL, Hsu KC. A Novel Selective JAK2 Inhibitor Identified Using Pharmacological Interactions. Front Pharmacol 2018; 9:1379. [PMID: 30564118 PMCID: PMC6288363 DOI: 10.3389/fphar.2018.01379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023] Open
Abstract
The JAK2/STAT signaling pathway mediates cytokine receptor signals that are involved in cell growth, survival and homeostasis. JAK2 is a member of the Janus kinase (JAK) family and aberrant JAK2/STAT is involved with various diseases, making the pathway a therapeutic target. The similarity between the ATP binding site of protein kinases has made development of specific inhibitors difficult. Current JAK2 inhibitors are not selective and produce unwanted side effects. It is thought that increasing selectivity of kinase inhibitors may reduce the side effects seen with current treatment options. Thus, there is a great need for a selective JAK inhibitor. In this study, we identified a JAK2 specific inhibitor. We first identified key pharmacological interactions in the JAK2 binding site by analyzing known JAK2 inhibitors. Then, we performed structure-based virtual screening and filtered compounds based on their pharmacological interactions and identified compound NSC13626 as a potential JAK2 inhibitor. Results of enzymatic assays revealed that against a panel of kinases, compound NSC13626 is a JAK2 inhibitor and has high selectivity toward the JAK2 and JAK3 isozymes. Our cellular assays revealed that compound NSC13626 inhibits colorectal cancer cell (CRC) growth by downregulating phosphorylation of STAT3 and arresting the cell cycle in the S phase. Thus, we believe that compound NSC13626 has potential to be further optimized as a selective JAK2 drug.
Collapse
Affiliation(s)
- Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Min-Wu Chao
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chao-Di Chang
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jui-Hua Hsieh
- Kelly Government Solutions, Research Triangle Park, NC, United States
| | - Huang-Ju Tu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Li Huang
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Wu QY, Ma MM, Fu L, Zhu YY, Liu Y, Cao J, Zhou P, Li ZY, Zeng LY, Li F, Wang XY, Xu KL. Roles of germline JAK2 activation mutation JAK2 V625F in the pathology of myeloproliferative neoplasms. Int J Biol Macromol 2018; 116:1064-1073. [PMID: 29782975 DOI: 10.1016/j.ijbiomac.2018.05.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
Abstract
Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zhou
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou 221002, China.
| | - Xiao-Yun Wang
- College of Life Sciences, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Hu W, Lv J, Han M, Yang Z, Li T, Jiang S, Yang Y. STAT3: The art of multi-tasking of metabolic and immune functions in obesity. Prog Lipid Res 2018; 70:17-28. [DOI: 10.1016/j.plipres.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
|
8
|
How Does the L884P Mutation Confer Resistance to Type-II Inhibitors of JAK2 Kinase: A Comprehensive Molecular Modeling Study. Sci Rep 2017; 7:9088. [PMID: 28831147 PMCID: PMC5567357 DOI: 10.1038/s41598-017-09586-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Janus kinase 2 (JAK2) has been regarded as an essential target for the treatment of myeloproliferative neoplasms (MPNs). BBT594 and CHZ868, Type-II inhibitors of JAK2, illustrate satisfactory efficacy in preclinical MPNs and acute lymphoblastic leukemia (ALL) models. However, the L884P mutation of JAK2 abrogates the suppressive effects of BBT594 and CHZ868. In this study, conventional molecular dynamics (MD) simulations, umbrella sampling (US) simulations and MM/GBSA free energy calculations were employed to explore how the L884P mutation affects the binding of BBT594 and CHZ868 to JAK2 and uncover the resistance mechanism induced by the L884P mutation. The results provided by the US and MD simulations illustrate that the L884P mutation enhances the flexibility of the allosteric pocket and alters their conformations, which amplify the conformational entropy change (−TΔS) and weaken the interactions between the inhibitors and target. Additionally, the structural analyses of BBT594 and CHZ868 in complex with the WT JAK2 illustrate that the drug tail with strong electronegativity and small size located in the allosteric pocket of JAK2 may enhance anti-resistance capability. In summary, our results highlight that both of the changes of the conformational entropies and enthalpies contribute to the L884P-induced resistance in the binding of two Type-II inhibitors into JAK2 kinase.
Collapse
|
9
|
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. Research and progress on ClC‑2 (Review). Mol Med Rep 2017; 16:11-22. [PMID: 28534947 PMCID: PMC5482133 DOI: 10.3892/mmr.2017.6600] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC‑2, including CLCN2, ClC‑2 promoter and the structural properties of ClC‑2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC‑2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC‑2. The review then discusses the diseases associated with ClC‑2, including degeneration of the retina, Sjögren's syndrome, age‑related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC‑2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC‑2 to treat diseases associated with ClC‑2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC‑2.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China
| | - Minghui Xu
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Qingjie Kong
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Fengyun Yan
- Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Wenying Tian
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xin Wang
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
10
|
Michl C, Vivarelli F, Weigl J, De Nicola GR, Canistro D, Paolini M, Iori R, Rascle A. The Chemopreventive Phytochemical Moringin Isolated from Moringa oleifera Seeds Inhibits JAK/STAT Signaling. PLoS One 2016; 11:e0157430. [PMID: 27304884 PMCID: PMC4909285 DOI: 10.1371/journal.pone.0157430] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Sulforaphane (SFN) and moringin (GMG-ITC) are edible isothiocyanates present as glucosinolate precursors in cruciferous vegetables and in the plant Moringa oleifera respectively, and recognized for their chemopreventive and medicinal properties. In contrast to the well-studied SFN, little is known about the molecular pathways targeted by GMG-ITC. We investigated the ability of GMG-ITC to inhibit essential signaling pathways that are frequently upregulated in cancer and immune disorders, such as JAK/STAT and NF-κB. We report for the first time that, similarly to SFN, GMG-ITC in the nanomolar range suppresses IL-3-induced expression of STAT5 target genes. GMG-ITC, like SFN, does not inhibit STAT5 phosphorylation, suggesting a downstream inhibitory event. Interestingly, treatment with GMG-ITC or SFN had a limited inhibitory effect on IFNα-induced STAT1 and STAT2 activity, indicating that both isothiocyanates differentially target JAK/STAT signaling pathways. Furthermore, we showed that GMG-ITC in the micromolar range is a more potent inhibitor of TNF-induced NF-κB activity than SFN. Finally, using a cellular system mimicking constitutive active STAT5-induced cell transformation, we demonstrated that SFN can reverse the survival and growth advantage mediated by oncogenic STAT5 and triggers cell death, therefore providing experimental evidence of a cancer chemopreventive activity of SFN. This work thus identified STAT5, and to a lesser extent STAT1/STAT2, as novel targets of moringin. It also contributes to a better understanding of the biological activities of the dietary isothiocyanates GMG-ITC and SFN and further supports their apparent beneficial role in the prevention of chronic illnesses such as cancer, inflammatory diseases and immune disorders.
Collapse
Affiliation(s)
- Carina Michl
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Fabio Vivarelli
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
- Molecular toxicology unit, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Julia Weigl
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Gina Rosalinda De Nicola
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN), Bologna, Italy
| | - Donatella Canistro
- Molecular toxicology unit, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Moreno Paolini
- Molecular toxicology unit, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN), Bologna, Italy
| | - Anne Rascle
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Therapeutic targeting of IL-7Rα signaling pathways in ALL treatment. Blood 2016; 128:473-8. [PMID: 27268088 DOI: 10.1182/blood-2016-03-679209] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/27/2016] [Indexed: 01/06/2023] Open
Abstract
Increased understanding of pediatric acute lymphoblastic leukemia (ALL) pathobiology has led to dramatic improvements in patient survival. However, there is still a need to develop targeted therapies to enable reduced chemotherapy intensity and to treat relapsed patients. The interleukin-7 receptor α (IL-7Rα) signaling pathways are prime therapeutic targets because these pathways harbor genetic aberrations in both T-cell ALL and B-cell precursor ALL. Therapeutic targeting of the IL-7Rα signaling pathways may lead to improved outcomes in a subset of patients.
Collapse
|
12
|
He R, Greipp PT, Rangan A, Mai M, Chen D, Reichard KK, Nelsen LL, Pardanani A, Hanson CA, Viswanatha DS. BCR-JAK2 fusion in a myeloproliferative neoplasm with associated eosinophilia. Cancer Genet 2016; 209:223-8. [PMID: 27134074 DOI: 10.1016/j.cancergen.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Janus kinase 2 (JAK2) is located on chromosome 9 at band p24 and JAK2V617F is the most common mutation in Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPN). However, rearrangement of JAK2 is a rare event. We report a case of myeloproliferative neoplasm, unclassifiable (MPN-U) with BCR-JAK2 fusion confirmed by molecular studies. Conventional chromosome analysis (CC) revealed t(9;22)(p24;q11.2) and fluorescence in situ hybridization (FISH) showed a JAK2 gene rearrangement in 88% of interphase nuclei. The BCR-JAK2 fusion was confirmed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) and demonstrated two in-frame 5'BCR/3'JAK2 transcripts with BCR exon 1 juxtaposed to JAK2 exon 15 and exon 17, respectively. Our results, together with literature review, reveal BCR-JAK2 fusions as oncogenic genetic alterations that are associated with myeloid or lymphoid neoplasms and are frequently characterized by eosinophilia. Further, patients with BCR-JAK2 are candidates for JAK2 inhibitor therapy. Given the distinct clinical and pathological characteristics, we believe that hematological neoplasms harboring BCR-JAK2 should be included as an additional distinct entity to the current WHO category of "myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR", and testing for a JAK2 fusion should be pursued in neoplasms with a karyotypic 9p24 abnormality.
Collapse
Affiliation(s)
- Rong He
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Patricia T Greipp
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aruna Rangan
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Ming Mai
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kaaren K Reichard
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Laura L Nelsen
- Department of Pathology, Maine General Hospital, Augusta, ME, USA
| | - Animesh Pardanani
- Division of Hematology, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Curtis A Hanson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David S Viswanatha
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
13
|
El Fakih R, Popat U. Janus Kinase Inhibitors and Stem Cell Transplantation in Myelofibrosis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15 Suppl:S34-42. [PMID: 26297276 DOI: 10.1016/j.clml.2015.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Myelofibrosis (MF) is characterized by splenomegaly, blood count abnormalities, particularly cytopenias, and a propensity for transformation to acute leukemia. The current treatment approach is to ameliorate symptoms due to these abnormalities. Treatment with Janus kinase 2 inhibitors reduces spleen size and improves symptoms in patients with MF, but most of the patients eventually have disease progression and stop responding. Allogeneic stem cell transplantation remains the only curative option. However, its efficacy must be balanced against the risk of treatment-related death and long-term sequelae of transplant like chronic graft versus host disease. The challenge is to integrate treatment with Janus kinase inhibitors with allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Riad El Fakih
- Department of Stem Cell Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, TX.
| | - Uday Popat
- Department of Stem Cell Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Systematic Analysis of Endometrial Cancer-Associated Hub Proteins Based on Text Mining. BIOMED RESEARCH INTERNATIONAL 2015; 2015:615825. [PMID: 26366417 PMCID: PMC4561104 DOI: 10.1155/2015/615825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 01/01/2023]
Abstract
Objective. The aim of this study was to systematically characterize the expression of endometrial cancer- (EC-) associated genes and to analysis the functions, pathways, and networks of EC-associated hub proteins. Methods. Gene data for EC were extracted from the PubMed (MEDLINE) database using text mining based on NLP. PPI networks and pathways were integrated and obtained from the KEGG and other databases. Proteins that interacted with at least 10 other proteins were identified as the hub proteins of the EC-related genes network. Results. A total of 489 genes were identified as EC-related with P < 0.05, and 32 pathways were identified as significant (P < 0.05, FDR < 0.05). A network of EC-related proteins that included 271 interactions was constructed. The 17 proteins that interact with 10 or more other proteins (P < 0.05, FDR < 0.05) were identified as the hub proteins of this PPI network of EC-related genes. These 17 proteins are EGFR, MET, PDGFRB, CCND1, JUN, FGFR2, MYC, PIK3CA, PIK3R1, PIK3R2, KRAS, MAPK3, CTNNB1, RELA, JAK2, AKT1, and AKT2. Conclusion. Our data may help to reveal the molecular mechanisms of EC development and provide implications for targeted therapy for EC. However, corrections between certain proteins and EC continue to require additional exploration.
Collapse
|
15
|
Rashid S, Bibi N, Parveen Z, Shafique S. Inhibition of Janus kinases by tyrosine phosphorylation inhibitor, Tyrphostin AG-490. J Biomol Struct Dyn 2015; 33:2368-79. [PMID: 26017266 DOI: 10.1080/07391102.2015.1050696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Janus kinases (JAKs) belong to a crucial family of tyrosine kinases, implicated in the patho-physiology of multiple cancer types, and serve as striking therapeutic targets. To date, many potent, either ATP-competitive (PTK domain) or non-ATP-competitive JAK inhibitors have been identified. Among them, Tyrphostin AG-490 (2-cyano-3-(3,4-dihydroxyphenyl)-N-(phenylmethyl)-2-propenamide) is a well-known ATP-competitive inhibitor. However, its mode of action, details of interacting residues, and induced conformational changes in JAK-specific binding sites remain elusive. Here, through comparative structure analysis, molecular docking, and molecular dynamics simulation assays, we explored comparative binding patterns of AG-490 against JAK1, JAK2, and JAK3. Our results entail noteworthy observations about the binding affinity of AG-490 by illustrating distinctive amino acid residues lying at the conserved ATP-binding domains of JAK family members. By subsequent assessment of their structural homology and conserved structural folds, we highlight intriguing prospects to design more specific and potent inhibitors for selective targeting of JAK family members. Our comparative study provides a platform for the rational design of precise and potent inhibitor for selective targeting of JAK family members.
Collapse
Affiliation(s)
- Sajid Rashid
- a National Center for Bioinformatics , Quaid-i-Azam University , Islamabad , Pakistan
| | - Nousheen Bibi
- a National Center for Bioinformatics , Quaid-i-Azam University , Islamabad , Pakistan
| | - Zahida Parveen
- a National Center for Bioinformatics , Quaid-i-Azam University , Islamabad , Pakistan
| | - Shagufta Shafique
- a National Center for Bioinformatics , Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
16
|
Hosseinzadeh Z, Warsi J, Elvira B, Almilaji A, Shumilina E, Lang F. Up-regulation of Kv1.3 Channels by Janus Kinase 2. J Membr Biol 2015; 248:309-17. [DOI: 10.1007/s00232-015-9772-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023]
|
17
|
Abstract
Myelofibrosis (MF) is a BCR-ABL1-negative myeloproliferative neoplasm characterized by clonal myeloproliferation, dysregulated kinase signaling, and release of abnormal cytokines. In recent years, important progress has been made in the knowledge of the molecular biology and the prognostic assessment of MF. Conventional treatment has limited impact on the patients' survival; it includes a wait-and-see approach for asymptomatic patients, erythropoiesis-stimulating agents, androgens, or immunomodulatory agents for anemia, cytoreductive drugs such as hydroxyurea for the splenomegaly and constitutional symptoms, and splenectomy or radiotherapy in selected patients. The discovery of the Janus kinase (JAK)2 mutation triggered the development of molecular targeted therapy of MF. The JAK inhibitors are effective in both JAK2-positive and JAK2-negative MF; one of them, ruxolitinib, is the current best available therapy for MF splenomegaly and constitutional symptoms. However, although ruxolitinib has changed the therapeutic scenario of MF, there is no clear indication of a disease-modifying effect. Allogeneic stem cell transplantation remains the only curative therapy of MF, but due to its associated morbidity and mortality, it is usually restricted to eligible high- and intermediate-2-risk MF patients. To improve current therapeutic results, the combination of JAK inhibitors with other agents is currently being tested, and newer drugs are being investigated.
Collapse
|
18
|
Cleyrat C, Darehshouri A, Steinkamp MP, Vilaine M, Boassa D, Ellisman MH, Hermouet S, Wilson BS. Mpl traffics to the cell surface through conventional and unconventional routes. Traffic 2014; 15:961-82. [PMID: 24931576 PMCID: PMC4141020 DOI: 10.1111/tra.12185] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/20/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are often characterized by JAK2 or calreticulin (CALR) mutations, indicating aberrant trafficking in pathogenesis. This study focuses on Mpl trafficking and Jak2 association using two model systems: human erythroleukemia cells (HEL; JAK2V617F) and K562 myeloid leukemia cells (JAK2WT). Consistent with a putative chaperone role for Jak2, Mpl and Jak2 associate on both intracellular and plasma membranes (shown by proximity ligation assay) and siRNA-mediated knockdown of Jak2 led to Mpl trapping in the endoplasmic reticulum (ER). Even in Jak2 sufficient cells, Mpl accumulates in punctate structures that partially colocalize with ER-tracker, the ER exit site marker (ERES) Sec31a, the autophagy marker LC3 and LAMP1. Mpl was fused to miniSOG, a genetically encoded tag for correlated light and electron microscopy. Results suggest that a fraction of Mpl is taken up into autophagic structures from the ER and routed to autolyososomes. Surface biotinylation shows that both immature and mature Mpl reach the cell surface; in K562 cells Mpl is also released in exosomes. Both forms rapidly internalize upon ligand addition, while recovery is primarily attributed to immature Mpl. Mpl appears to reach the plasma membrane via both conventional ER-Golgi and autolysosome secretory pathways, as well as recycling.
Collapse
Affiliation(s)
- Cédric Cleyrat
- Department of Pathology & Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131 USA
- INSERM UMR892/CNRS UMR6299, Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), Institut de Recherche Thérapeutique-Université de Nantes, Nantes, France
| | - Anza Darehshouri
- Department of Pathology & Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131 USA
| | - Mara P. Steinkamp
- Department of Pathology & Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131 USA
| | - Mathias Vilaine
- INSERM UMR892/CNRS UMR6299, Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), Institut de Recherche Thérapeutique-Université de Nantes, Nantes, France
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California at San Diego, San Diego CA 92093 USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California at San Diego, San Diego CA 92093 USA
| | - Sylvie Hermouet
- INSERM UMR892/CNRS UMR6299, Centre de Recherche en Cancérologie Nantes-Angers (CRCNA), Institut de Recherche Thérapeutique-Université de Nantes, Nantes, France
| | - Bridget S. Wilson
- Department of Pathology & Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131 USA
| |
Collapse
|
19
|
Pinz S, Unser S, Rascle A. The natural chemopreventive agent sulforaphane inhibits STAT5 activity. PLoS One 2014; 9:e99391. [PMID: 24910998 PMCID: PMC4051870 DOI: 10.1371/journal.pone.0099391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/14/2014] [Indexed: 12/21/2022] Open
Abstract
Signal transducer and activator of transcription STAT5 is an essential mediator of cytokine, growth factor and hormone signaling. While its activity is tightly regulated in normal cells, its constitutive activation directly contributes to oncogenesis and is associated to a number of hematological and solid tumor cancers. We previously showed that deacetylase inhibitors can inhibit STAT5 transcriptional activity. We now investigated whether the dietary chemopreventive agent sulforaphane, known for its activity as deacetylase inhibitor, might also inhibit STAT5 activity and thus could act as a chemopreventive agent in STAT5-associated cancers. We describe here sulforaphane (SFN) as a novel STAT5 inhibitor. We showed that SFN, like the deacetylase inhibitor trichostatin A (TSA), can inhibit expression of STAT5 target genes in the B cell line Ba/F3, as well as in its transformed counterpart Ba/F3-1*6 and in the human leukemic cell line K562 both of which express a constitutively active form of STAT5. Similarly to TSA, SFN does not alter STAT5 initial activation by phosphorylation or binding to the promoter of specific target genes, in favor of a downstream transcriptional inhibitory effect. Chromatin immunoprecipitation assays revealed that, in contrast to TSA however, SFN only partially impaired the recruitment of RNA polymerase II at STAT5 target genes and did not alter histone H3 and H4 acetylation, suggesting an inhibitory mechanism distinct from that of TSA. Altogether, our data revealed that the natural compound sulforaphane can inhibit STAT5 downstream activity, and as such represents an attractive cancer chemoprotective agent targeting the STAT5 signaling pathway.
Collapse
Affiliation(s)
- Sophia Pinz
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Samy Unser
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Anne Rascle
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Hosseinzadeh Z, Almilaji A, Honisch S, Pakladok T, Liu G, Bhavsar SK, Ruth P, Shumilina E, Lang F. Upregulation of the large conductance voltage- and Ca2+-activated K+ channels by Janus kinase 2. Am J Physiol Cell Physiol 2014; 306:C1041-9. [PMID: 24696148 DOI: 10.1152/ajpcell.00209.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The iberiotoxin-sensitive large conductance voltage- and Ca(2+)-activated potassium (BK) channels (maxi-K(+)-channels) hyperpolarize the cell membrane thus supporting Ca(2+) entry through Ca(2+)-release activated Ca(2+) channels. Janus kinase-2 (JAK2) has been identified as novel regulator of ion transport. To explore whether JAK2 participates in the regulation of BK channels, cRNA encoding Ca(2+)-insensitive BK channels (BK(M513I+Δ899-903)) was injected into Xenopus oocytes with or without cRNA encoding wild-type JAK2, gain-of-function (V617F)JAK2, or inactive (K882E)JAK2. K(+) conductance was determined by dual electrode voltage clamp and BK-channel protein abundance by confocal microscopy. In A204 alveolar rhabdomyosarcoma cells, iberiotoxin-sensitive K(+) current was determined utilizing whole cell patch clamp. A204 cells were further transfected with JAK2 and BK-channel transcript, and protein abundance was quantified by RT-PCR and Western blotting, respectively. As a result, the K(+) current in BK(M513I+Δ899-903)-expressing oocytes was significantly increased following coexpression of JAK2 or (V617F)JAK2 but not (K882E)JAK2. Coexpression of the BK channel with (V617F)JAK2 but not (K882E)JAK2 enhanced BK-channel protein abundance in the oocyte cell membrane. Exposure of BK-channel and (V617F)JAK2-expressing oocytes to the JAK2 inhibitor AG490 (40 μM) significantly decreased K(+) current. Inhibition of channel insertion by brefeldin A (5 μM) decreased the K(+) current to a similar extent in oocytes expressing the BK channel alone and in oocytes expressing the BK channel and (V617F)JAK2. The iberiotoxin (50 nM)-sensitive K(+) current in rhabdomyosarcoma cells was significantly decreased by AG490 pretreatment (40 μM, 12 h). Moreover, overexpression of JAK2 in A204 cells significantly enhanced BK channel mRNA and protein abundance. In conclusion, JAK2 upregulates BK channels by increasing channel protein abundance in the cell membrane.
Collapse
Affiliation(s)
| | - Ahmad Almilaji
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - Tatsiana Pakladok
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - GuoXing Liu
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - Shefalee K Bhavsar
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| | - Peter Ruth
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany
| | | | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany; and
| |
Collapse
|
21
|
Li J, Wei Q, Zuo GW, Xia J, You ZM, Li CL, Chen DL. Ginsenoside Rg1 Induces Apoptosis through Inhibition of the EpoR-Mediated JAK2/STAT5 Signalling Pathway in the TF-1/Epo Human Leukemia Cell Line. Asian Pac J Cancer Prev 2014; 15:2453-9. [DOI: 10.7314/apjcp.2014.15.6.2453] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Pinz S, Unser S, Brueggemann S, Besl E, Al-Rifai N, Petkes H, Amslinger S, Rascle A. The synthetic α-bromo-2',3,4,4'-tetramethoxychalcone (α-Br-TMC) inhibits the JAK/STAT signaling pathway. PLoS One 2014; 9:e90275. [PMID: 24595334 PMCID: PMC3940872 DOI: 10.1371/journal.pone.0090275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies.
Collapse
Affiliation(s)
- Sophia Pinz
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Samy Unser
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Susanne Brueggemann
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Elisabeth Besl
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Nafisah Al-Rifai
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Hermina Petkes
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
- * E-mail: (AR); (SA)
| | - Anne Rascle
- Stat5 Signaling Research Group, Institute of Immunology, University of Regensburg, Regensburg, Germany
- * E-mail: (AR); (SA)
| |
Collapse
|
23
|
Hosseinzadeh Z, Luo D, Sopjani M, Bhavsar SK, Lang F. Down-regulation of the epithelial Na⁺ channel ENaC by Janus kinase 2. J Membr Biol 2014; 247:331-8. [PMID: 24562791 DOI: 10.1007/s00232-014-9636-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/29/2014] [Indexed: 11/26/2022]
Abstract
Janus kinase-2 (JAK2), a signaling molecule mediating effects of various hormones including leptin and growth hormone, has previously been shown to modify the activity of several channels and carriers. Leptin is known to inhibit and growth hormone to stimulate epithelial Na(+) transport, effects at least partially involving regulation of the epithelial Na(+) channel ENaC. However, no published evidence is available regarding an influence of JAK2 on the activity of the epithelial Na(+) channel ENaC. In order to test whether JAK2 participates in the regulation of ENaC, cRNA encoding ENaC was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild type JAK2, gain-of-function (V617F)JAK2 or inactive (K882E)JAK2. Moreover, ENaC was expressed with or without the ENaC regulating ubiquitin ligase Nedd4-2 with or without JAK2, (V617F)JAK2 or (K882E)JAK2. ENaC was determined from amiloride (50 μM)-sensitive current (I(amil)) in dual electrode voltage clamp. Moreover, I(amil) was determined in colonic tissue utilizing Ussing chambers. As a result, the I(amil) in ENaC-expressing oocytes was significantly decreased following coexpression of JAK2 or (V617F)JAK2, but not by coexpression of (K882E)JAK2. Coexpression of JAK2 and Nedd4-2 decreased I(amil) in ENaC-expressing oocytes to a larger extent than coexpression of Nedd4-2 alone. Exposure of ENaC- and JAK2-expressing oocytes to JAK2 inhibitor AG490 (40 μM) significantly increased I(amil). In colonic epithelium, I(amil) was significantly enhanced by AG490 pretreatment (40 μM, 1 h). In conclusion, JAK2 is a powerful inhibitor of ENaC.
Collapse
Affiliation(s)
- Zohreh Hosseinzadeh
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
24
|
JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood 2013; 122:2167-75. [PMID: 23926299 DOI: 10.1182/blood-2013-02-485573] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factor signal transducers and activators of transcription 5 (STAT5) has an important and unique role in Breakpoint Cluster Region - Abelson 1 (BCR-ABL1)-driven neoplasias. STAT5 is an essential component in the signaling network that maintains the survival and growth of chronic myeloid leukemia (CML) cells. In contrast, the function of the prototypical upstream kinase of STAT5, the Janus kinase JAK2, in CML is still under debate. Although there is widespread agreement that JAK2 is part of the signaling network downstream of BCR-ABL1, it is unclear whether and under what circumstances JAK2 inhibitors may be beneficial for CML patients. Recent studies in murine models have cast doubt on the importance of JAK2 in CML maintenance. Nevertheless, JAK2 has been proposed to have a central role in the cytokine signaling machinery that allows the survival of CML stem cells in the presence of BCR-ABL1 tyrosine kinase inhibitors. In this review, we summarize the current debate and provide an overview of the arguments on both sides of the fence. We present recent evidence showing that CML stem cells do not depend on BCR-ABL1 kinase activity but require the continuous support of the hematopoietic niche and its distinct cytokine environment and suggest that it has the potential to resolve the dispute.
Collapse
|
25
|
Yang L, Liu D, Liang S, Guo R, Zhang Z, Xu H, Yang C, Zhu Y. Janus kinase 2 polymorphisms are associated with risk in patients with gastric cancer in a Chinese population. PLoS One 2013; 8:e64628. [PMID: 23717640 PMCID: PMC3663844 DOI: 10.1371/journal.pone.0064628] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/17/2013] [Indexed: 12/16/2022] Open
Abstract
AIM To evaluate the impact of the Janus kinase 2 single nucleotide polymorphisms (SNPs) on gastric cancer risk. METHODS In this hospital-based, case-control study, the genotypes were identified by polymerase chain reaction-restriction fragment length polymorphism protocols in 661 individuals (359 gastric cancer patients and 302 age and sex matched cancer-free controls). RESULTS Both the frequency of A allele in rs2230724 and G allele in rs1887427 were more frequent in patients with gastric cancer (P = 0.013 and 0.001, respectively). Compared with the common genotype, subjects with the (AG+AA) genotypes of rs2230724 and the (AG+GG) genotypes of rs1887427 had a 59% and 98% increased risk of developing gastric cancer, respectively (P = 0.010, adjusted OR = 1.59, 95% CI = 1.12-2.27; P<0.001, adjusted OR = 1.98, 95% CI = 1.39-2.81, respectively). Further stratified analysis showed that the association between the risk of gastric cancer and the rare genotypes of rs2230724 were more profound in the subgroups of elder individuals (>56 years), males, nonsmokers and urban subjects, while the association between the risk and the rare genotypes of rs1887427 persisted in subgroups of younger individuals (≤56 years), males, nonsmokers and both of rural and urban subjects. CONCLUSION The JAK2 gene rs2230724 and rs1887427 polymorphisms are associated with an increased risk of gastric cancer in a Chinese Han population.
Collapse
Affiliation(s)
- Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hosseinzadeh Z, Sopjani M, Pakladok T, Bhavsar SK, Lang F. Downregulation of KCNQ4 by Janus kinase 2. J Membr Biol 2013; 246:335-41. [PMID: 23543186 DOI: 10.1007/s00232-013-9537-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/16/2013] [Indexed: 12/19/2022]
Abstract
Janus kinase-2 (JAK2) participates in the signaling of several hormones, growth factors and cytokines. Further stimulators of JAK2 include osmotic cell shrinkage, and the kinase activates the cell volume regulatory Na(+)/H(+) exchanger. The kinase may thus participate in cell volume regulation. Cell shrinkage is known to inhibit K(+) channels. Volume-regulatory K(+) channels include the voltage-gated K(+) channel KCNQ4. The present study explored the effect of JAK2 on KCNQ4 channel activity. KCNQ4 was expressed in Xenopus oocytes with or without wild-type JAK2, constitutively active (V617F)JAK2 or inactive (K882E)JAK2; and cell membrane conductance was determined by dual-electrode voltage clamp. Expression of KCNQ4 was followed by the appearance of voltage-gated K(+) conductance. Coexpression of JAK2 or of (V617F)JAK2, but not of (K882E)JAK2, resulted in a significant decrease in conductance. Treatment of KCNQ4 and JAK2 coexpressing oocytes with the JAK2 inhibitor AG490 (40 μM) was followed by an increase in conductance. Treatment of KCNQ4 expressing oocytes with brefeldin A (5 μM) was followed by a decrease in conductance, which was similar in oocytes expressing KCNQ4 together with JAK2 as in oocytes expressing KCNQ4 alone. Thus, JAK2 apparently does not accelerate channel protein retrieval from the cell membrane. In conclusion, JAK2 downregulates KCNQ4 activity and thus counteracts K(+) exit, an effect which may contribute to cell volume regulation.
Collapse
|
27
|
Cervantes F, Martinez-Trillos A. Myelofibrosis: an update on current pharmacotherapy and future directions. Expert Opin Pharmacother 2013; 14:873-84. [PMID: 23514013 DOI: 10.1517/14656566.2013.783019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by symptoms mainly derived from anemia and splenomegaly and constitutional symptoms and associated with a median survival around 6 years. Allogeneic stem cell transplantation (allo-SCT) remains the only curative therapy of MF but is applicable to a minority of patients. Discovery of the JAK2 mutation has provided the basis for the introduction of a new class of drugs, the JAK inhibitors, in the treatment of MF. AREAS COVERED A literature review on the therapy of MF has been performed through a PubMed search, with special attention being paid to the available data on transplantation, the JAK inhibitors, and other new drugs. EXPERT OPINION Conventional therapy of MF is usually adjusted to the predominant clinical symptoms in each patient, and its impact on survival is limited. Reduced-intensity conditioning regimens have increased the number of patients eligible for allo-SCT, but this procedure is still associated with substantial morbidity and mortality. The JAK inhibitors, such as ruxolitinib, can achieve profound symptomatic relief of the splenomegaly and the constitutional symptoms. However, they often accentuate the anemia and do not reduce the JAK2 allele burden, therefore lacking the potential to modify the natural history of MF.
Collapse
Affiliation(s)
- Francisco Cervantes
- University of Barcelona, Hospital Clínic, Hematology Department, IDIBAPS, Villarroel 170, 08036 Barcelona, Spain.
| | | |
Collapse
|
28
|
Ramos P, Casu C, Gardenghi S, Breda L, Crielaard BJ, Guy E, Marongiu MF, Gupta R, Levine RL, Abdel-Wahab O, Ebert BL, Van Rooijen N, Ghaffari S, Grady RW, Giardina PJ, Rivella S. Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia. Nat Med 2013; 19:437-45. [PMID: 23502961 PMCID: PMC3618568 DOI: 10.1038/nm.3126] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/12/2013] [Indexed: 12/18/2022]
Abstract
Regulation of erythropoiesis is achieved by the integration of distinct signals. Among them, macrophages are emerging as erythropoietin-complementary regulators of erythroid development, particularly under stress conditions. We investigated the contribution of macrophages to physiological and pathological conditions of enhanced erythropoiesis. We used mouse models of induced anemia, polycythemia vera and β-thalassemia in which macrophages were chemically depleted. Our data indicate that macrophages contribute decisively to recovery from induced anemia, as well as the pathological progression of polycythemia vera and β-thalassemia, by modulating erythroid proliferation and differentiation. We validated these observations in primary human cultures, showing a direct impact of macrophages on the proliferation and enucleation of erythroblasts from healthy individuals and patients with polycythemia vera or β-thalassemia. The contribution of macrophages to stress and pathological erythropoiesis, which we have termed stress erythropoiesis macrophage-supporting activity, may have therapeutic implications.
Collapse
Affiliation(s)
- Pedro Ramos
- Department of Pediatrics, Division of Hematology-Oncology, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Derenzini E, Younes A. Targeting the JAK-STAT pathway in lymphoma: a focus on pacritinib. Expert Opin Investig Drugs 2013; 22:775-85. [PMID: 23442043 DOI: 10.1517/13543784.2013.775244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway mediates signaling by cytokine, chemokine and growth factor receptors on cell surface to the nucleus. JAK/STAT pathway is aberrantly activated in a variety of lymphomas, with a dual role of promoting cell survival/proliferation and immune evasion. AREAS COVERED This review describes the preclinical rationale behind the development of JAK inhibitors in lymphoma, some of which are being evaluated in Phase I/II studies, and summarizes the characteristics and clinical results of different JAK inhibitors in clinical development. Available preclinical and clinical data about JAK inhibition in lymphoid malignancies were reviewed using a PubMed access. To date, pacritinib (SB1518), a selective JAK2/FLT3 inhibitor is the first and only JAK inhibitor that has been evaluated in patients with relapsed lymphoma. EXPERT OPINION The preclinical rationale behind the development of pacritinib in lymphoproliferative neoplasms is strong, as the deregulation of the JAK/STAT pathway is involved in the pathogenesis of multiple lymphoma subtypes, although with different mechanisms. Pacritinib demonstrated safety and early clinical efficacy in a variety of lymphoma histologic types, providing the first proof of principle of the potential clinical value of targeting JAK/STAT pathway in lymphoma.
Collapse
Affiliation(s)
- Enrico Derenzini
- University of Bologna, Institute of Hematology and Medical Oncology L.A. Seragnoli, Via Massarenti 9, 40138 Bologna, Italy.
| | | |
Collapse
|
30
|
Shojaiefard M, Hosseinzadeh Z, Pakladok T, Bhavsar SK, Lang F. Stimulation of Na(+) coupled phosphate transporter NaPiIIa by janus kinase JAK2. Biochem Biophys Res Commun 2013; 431:186-91. [PMID: 23313484 DOI: 10.1016/j.bbrc.2012.12.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/27/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND Na(+) coupled phosphate transporter NaPiIIa is the main carrier accomplishing phosphate transport across the apical cell membrane of proximal renal tubules and thus renal tubular phosphate reabsorption. The carrier is regulated by a wide variety of hormones and cellular signaling molecules. Hormones stimulating renal tubular phosphate transport and thus leading to hyperphosphatemia include growth hormone. Signaling of growth hormone involves activation of janus-activated kinase-2 JAK2, which has previously been shown to participate in the regulation of several Na(+) coupled transporters. Experiments exploring the effect of JAK2 on phosphate transport have, however, never been reported. The present study thus addressed the effect of JAK2 on NaPiIIa. METHODS cRNA encoding NaPiIIa was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild type JAK2, the gain of function mutant JAK2(V617F) or inactive JAK2(K882E). Phosphate-induced current (I(NaPi)) reflecting electrogenic phosphate transport was determined by two electrode voltage clamp. Moreover, NaPiIIa protein abundance in the cell membrane was determined by chemiluminescence. RESULTS No appreciable I(NaPi) was observed in water injected oocytes or in oocytes expressing JAK2 alone. In NaPiIIa expressing oocytes I(NaPi) was significantly increased by additional expression of JAK2 or JAK2(V617F), but not by coexpression of JAK2(K882E). In oocytes expressing both, NaPiIIa and JAK2, I(NaPi) was gradually decreased by JAK2 inhibitor AG490 (40 μM). Coexpression of NaPiIIa and JAK2 or JAK2(V617F), but not of JAK2(K882E) increased NaPiIIa protein abundance in the cell membrane. Disruption of carrier protein insertion with Brefeldin A (5 μM) was followed by a decline of I(NaPi) to a similar extent in Xenopus oocytes expressing NaPiIIa with JAK2 and in Xenopus oocytes expressing NaPiIIa alone, suggesting that JAK2 did not affect carrier stability in the cell membrane. CONCLUSION JAK2 contributes to the regulation of phosphate transporter NaPiIIa.
Collapse
Affiliation(s)
- Manzar Shojaiefard
- Department of Physiology 1, University of Tübingen, Gmelinstr. 5, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
Recently, a point mutation in the JAK2 gene, JAK2 (V617F) , was discovered in several myeloid proliferative neoplasms including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Demonstration of the mutation and other similar mutations has now become one of the major criteria in the diagnosis of these neoplasms in the revised World Health Organization Classification of Tumors of Hematopoietic Tissues. In this chapter, we compared the advantages and disadvantages of five commonly used methods for the detection of JAK2 (V617F) . We explained, based on the current literature, why analytic sensitivity of the methodology is of particular importance for the detection of JAK2 (V617F) . A detailed laboratory procedure for the performance of an extensively optimized ARMS-PCR assay was presented. The assay shows distinct patterns for normal, mutant, and mixed genotypes. Diagnostically, it is highly sensitive, highly specific, and simple to perform with no need for any specialized equipment other than thermocyclers.
Collapse
|
32
|
Davoodi-Semiromi A, Wasserfall CH, Hassanzadeh A, Cooper-DeHoff RM, Wabitsch M, Atkinson M. Influence of Tyrphostin AG490 on the expression of diabetes-associated markers in human adipocytes. Immunogenetics 2012; 65:83-90. [PMID: 23081744 DOI: 10.1007/s00251-012-0659-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/08/2012] [Indexed: 11/25/2022]
Abstract
Tyrosine kinase inhibitors (TKi) hold promise as a treatment for a variety of disorders ranging from those in oncology to diseases thought as immune mediated. Tyrphostin AG490 is a potent Jak-Stat TKi shown effective in the prevention of allograft transplant rejection, experimental autoimmune disease, as well as the treatment of cancer. However, given its ability to modulate this important but pleiotropic intracellular pathway, we thought that it is important to examine its effects on glucose metabolism and expression of major transcription factors and adipokines associated with insulin insensitivity and diabetes. We investigated the metabolic effects of AG490 on glucose levels in vivo using an animal model of diabetes, nonobese diabetic (NOD) mice, and transcription factor expression through assessment of human adipocytes. AG490 treatment of young nondiabetic NOD mice significantly reduced blood glucose levels (p = 0.002). In vitro, treatment of adipocytes with rosiglitazone, an insulin sensitizer that binds to peroxisome proliferator-activated receptor (PPAR) receptors and increases the adipocyte response to insulin, significantly increased the expression of the antidiabetic adipokine adiponectin. Importantly, the combination of rosiglitazone plus Tyrphostin AG490 further increased this effect and was specifically associated with significant upregulation of C-enhanced binding protein (C/EBP) (p < 0.0001). In terms of the mechanism underlying this action, regulatory regions of the PPARγ, ADIPOQ, and C/EBP contain the Stat5 DNA-binding sequences and were demonstrated, by gel shift experiments in vitro. These data suggest that blocking Jak-Stat signaling with AG490 reduces blood glucose levels and modulates the expression of transcription factors previously associated with diabetes, thereby supporting its potential as a therapy for this disease.
Collapse
Affiliation(s)
- Abdoreza Davoodi-Semiromi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Dees C, Tomcik M, Palumbo-Zerr K, Distler A, Beyer C, Lang V, Horn A, Zerr P, Zwerina J, Gelse K, Distler O, Schett G, Distler JHW. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis. ACTA ACUST UNITED AC 2012; 64:3006-15. [DOI: 10.1002/art.34500] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Kleppe M, Levine RL. New pieces of a puzzle: the current biological picture of MPN. Biochim Biophys Acta Rev Cancer 2012; 1826:415-22. [PMID: 22824378 DOI: 10.1016/j.bbcan.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Abstract
Over the last years, we have witnessed significant improvement in our ability to elucidate the genetic events, which contribute to the pathogenesis of acute and chronic leukemias, and also in patients with myeloproliferative neoplasms (MPN). However, despite significant insight into the role of specific mutations, including the JAK2V617F mutation, in MPN pathogenesis, the precise mechanisms by which specific disease alleles contribute to leukemic transformation in MPN remain elusive. Here we review recent studies aimed at understanding the role of downstream signaling pathways in MPN initiation and phenotype, and discuss how these studies have begun to lead to novel insights with biologic, clinical, and therapeutic relevance.
Collapse
Affiliation(s)
- Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
35
|
The tyrphostin agent AG490 prevents and reverses type 1 diabetes in NOD mice. PLoS One 2012; 7:e36079. [PMID: 22615750 PMCID: PMC3351395 DOI: 10.1371/journal.pone.0036079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/26/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent studies in the NOD (non-obese diabetic) mouse model of type 1 diabetes (T1D) support the notion that tyrosine kinase inhibitors have the potential for modulating disease development. However, the therapeutic effects of AG490 on the development of T1D are unknown. MATERIALS AND METHODS Female NOD mice were treated with AG490 (i.p, 1 mg/mouse) or DMSO starting at either 4 or 8 week of age, for five consecutive week, then once per week for 5 additional week. Analyses for the development and/or reversal of diabetes, insulitis, adoptive transfer, and other mechanistic studies were performed. RESULTS AG490 significantly inhibited the development of T1D (p = 0.02, p = 0.005; at two different time points). Monotherapy of newly diagnosed diabetic NOD mice with AG490 markedly resulted in disease remission in treated animals (n = 23) in comparision to the absolute inability (0%; 0/10, p = 0.003, Log-rank test) of DMSO and sustained eugluycemia was maintained for several months following drug withdrawal. Interestingly, adoptive transfer of splenocytes from AG490 treated NOD mice failed to transfer diabetes to recipient NOD.Scid mice. CD4 T-cells as well as bone marrow derived dendritic cells (BMDCs) from AG490 treated mice, showed higher expression of Foxp3 (p<0.004) and lower expression of co-stimulatory molecules, respectively. Screening of the mouse immune response gene arrary indicates that expression of costimulaotry molecule Ctla4 was upregulated in CD4+ T-cell in NOD mice treated with AG490, suggesting that AG490 is not a negative regulator of the immune system. CONCLUSION The use of such agents, given their extensive safety profiles, provides a strong foundation for their translation to humans with or at increased risk for the disease.
Collapse
|
36
|
The Jak2 inhibitor, G6, alleviates Jak2-V617F-mediated myeloproliferative neoplasia by providing significant therapeutic efficacy to the bone marrow. Neoplasia 2012; 13:1058-68. [PMID: 22131881 DOI: 10.1593/neo.111112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 12/31/2022] Open
Abstract
We recently developed a Janus kinase 2 (Jak2) small-molecule inhibitor called G6 and found that it inhibits Jak2-V617F-mediated pathologic cell growth in vitro, ex vivo, and in vivo. However, its ability to inhibit Jak2-V617F-mediated myeloproliferative neoplasia, with particular emphasis in the bone marrow, has not previously been examined. Here, we investigated the efficacy of G6 in a transgenic mouse model of Jak2-V617F-mediated myeloproliferative neoplasia. We found that G6 provided therapeutic benefit to the peripheral blood as determined by elimination of leukocytosis, thrombocytosis, and erythrocytosis. G6 normalized the pathologically high plasma concentrations of interleukin 6 (IL-6). In the liver, G6 eliminated Jak2-V617F-driven extramedullary hematopoiesis. With respect to the spleen, G6 significantly reduced both the splenomegaly and megakaryocytic hyperplasia. In the critically important bone marrow, G6 normalized the pathologically high levels of phospho-Jak2 and phospho-signal transducer and activator of transcription 5 (STAT5). It significantly reduced the megakaryocytic hyperplasia in the marrow and completely normalized the M/E ratio. Most importantly, G6 selectively reduced the mutant Jak2 burden by 67%on average, with virtual elimination of mutant Jak2 cells in one third of all treated mice. Lastly, clonogenic assays using marrow stem cells from the myeloproliferative neoplasm mice revealed a time-dependent elimination of the clonogenic growth potential of these cells by G6. Collectively, these data indicate that G6 exhibits exceptional efficacy in the peripheral blood, liver, spleen, and, most importantly, in the bone marrow, thereby raising the possibility that this compound may alter the natural history of Jak2-V617F-mediated myeloproliferative neoplasia.
Collapse
|
37
|
Downregulation of the Creatine Transporter SLC6A8 by JAK2. J Membr Biol 2012; 245:157-63. [DOI: 10.1007/s00232-012-9424-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/16/2012] [Indexed: 12/20/2022]
|
38
|
Yamada O, Ozaki K, Akiyama M, Kawauchi K. JAK–STAT and JAK–PI3K–mTORC1 Pathways Regulate Telomerase Transcriptionally and Posttranslationally in ATL Cells. Mol Cancer Ther 2012; 11:1112-21. [DOI: 10.1158/1535-7163.mct-11-0850] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
William AD, Lee ACH, Poulsen A, Goh KC, Madan B, Hart S, Tan E, Wang H, Nagaraj H, Chen D, Lee CP, Sun ET, Jayaraman R, Pasha MK, Ethirajulu K, Wood JM, Dymock BW. Discovery of the macrocycle (9E)-15-(2-(pyrrolidin-1-yl)ethoxy)-7,12,25-trioxa-19,21,24-triaza-tetracyclo[18.3.1.1(2,5).1(14,18)]hexacosa-1(24),2,4,9,14(26),15,17,20,22-nonaene (SB1578), a potent inhibitor of janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) for the treatment of rheumatoid arthritis. J Med Chem 2012; 55:2623-40. [PMID: 22339472 DOI: 10.1021/jm201454n] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein, we describe the synthesis and SAR of a series of small molecule macrocycles that selectively inhibit JAK2 kinase within the JAK family and FLT3 kinase. Following a multiparameter optimization of a key aryl ring of the previously described SB1518 (pacritinib), the highly soluble 14l was selected as the optimal compound. Oral efficacy in the murine collagen-induced arthritis (CIA) model for rheumatoid arthritis (RA) supported 14l as a potential treatment for autoimmune diseases and inflammatory disorders such as psoriasis and RA. Compound 14l (SB1578) was progressed into development and is currently undergoing phase 1 clinical trials in healthy volunteers.
Collapse
Affiliation(s)
- Anthony D William
- S BIO Pte. Ltd., 1 Science Park Road, #05-09 The Capricorn, Singapore Science Park II, Singapore 117528.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu H, Huang M, Cao P, Wang T, Shu Y, Liu P. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation. Cancer Biol Ther 2012; 13:281-8. [PMID: 22310976 DOI: 10.4161/cbt.18943] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of tumor suppressors and cell cycle factors in gastric carcinogenesis are well understood; however, the post-transcriptional changes that affect gene expression in gastric cancer are poorly characterized. MiR-135a has been shown to play a role in Hodgkin lymphoma. The aim of this study was to investigate the expression and role of miR-135a in gastric cancer. Quantitative real-time PCR demonstrated that miR-135a expression is downregulated in the majority of human primary gastric cancer tissues (8/11; 73%), compared with pair-matched adjacent non-tumor tissues. Furthermore, compared with the nonmalignant gastric cell line, GES-1, miR-135a expression was substantially downregulated in gastric cancer cell lines of various degrees of differentiation. Target analysis indicated miR-135a directly regulates Janus kinase 2 (JAK2), a cytoplasmic tyrosine kinase involved in cytokine receptor signaling pathways. Overexpression of miR-135a significantly downregulated the expression of JAK2 protein and also reduced gastric cancer cell proliferation and colony formation in vitro. MiR-135a-mediated JAK2 downregulation also reduced p-STAT3 activation and cyclin D1 and Bcl-xL protein expression. This study suggests that miR-135a may function as a tumor suppressor via targeting JAK to repress p-STAT3 activation, reduce cyclin D1 and Bcl-xL expression and inhibit gastric cancer cell proliferation. These results imply that novel treatment approaches targeting miR-135a may potentially benefit patients with gastric cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
41
|
Hosseinzadeh Z, Shojaiefard M, Bhavsar SK, Lang F. Up-regulation of the betaine/GABA transporter BGT1 by JAK2. Biochem Biophys Res Commun 2012; 420:172-7. [DOI: 10.1016/j.bbrc.2012.02.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 02/24/2012] [Indexed: 11/17/2022]
|
42
|
Hosseinzadeh Z, Bhavsar SK, Lang F. Down-Regulation of the Myoinositol Transporter SMIT by JAK2. Cell Physiol Biochem 2012. [DOI: 10.1159/000343335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Zificsak CA, Gingrich DE, Breslin HJ, Dunn DD, Milkiewicz KL, Theroff JP, Thieu TV, Underiner TL, Weinberg LR, Aimone LD, Albom MS, Mason JL, Saville L, Husten J, Angeles TS, Finn JP, Jan M, O'Kane TM, Dobrzanski P, Dorsey BD. Optimization of a novel kinase inhibitor scaffold for the dual inhibition of JAK2 and FAK kinases. Bioorg Med Chem Lett 2011; 22:133-7. [PMID: 22169263 DOI: 10.1016/j.bmcl.2011.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 11/16/2022]
Abstract
The elaboration of a novel scaffold for the inhibition of JAK2 and FAK kinases was targeted in order to provide a dual inhibitor that could target divergent pathways for tumor cell progression.
Collapse
Affiliation(s)
- Craig A Zificsak
- Worldwide Discovery Research, Cephalon, Inc., 145 Brandywine Parkway, West Chester, PA 19380, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hart S, Goh KC, Novotny-Diermayr V, Tan YC, Madan B, Amalini C, Ong LC, Kheng B, Cheong A, Zhou J, Chng WJ, Wood JM. Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid leukemia. Blood Cancer J 2011; 1:e44. [PMID: 22829080 PMCID: PMC3256753 DOI: 10.1038/bcj.2011.43] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is the most commonly mutated gene found in acute myeloid leukemia (AML) patients and its activating mutations have been proven to be a negative prognostic marker for clinical outcome. Pacritinib (SB1518) is a tyrosine kinase inhibitor (TKI) with equipotent activity against FLT3 (IC50=22 n) and Janus kinase 2 (JAK2, IC50=23 n). Pacritinib inhibits FLT3 phosphorylation and downstream STAT, MAPK and PI3 K signaling in FLT3-internal-tandem duplication (ITD), FLT3-wt cells and primary AML blast cells. Oral administration of pacritinib in murine models of FLT3-ITD-driven AML led to significant inhibition of primary tumor growth and lung metastasis. Upregulation of JAK2 in FLT3-TKI-resistant AML cells was identified as a potential mechanism of resistance to selective FLT3 inhibition. This resistance could be overcome by the combined FLT3 and JAK2 activities of pacritinib in this cellular model. Our findings provide a rationale for the clinical evaluation of pacritinib in AML including patients resistant to FLT3-TKI therapy.
Collapse
|
45
|
|
46
|
Mitchell D, Cole KP, Pollock PM, Coppert DM, Burkholder TP, Clayton JR. Development and a Practical Synthesis of the JAK2 Inhibitor LY2784544. Org Process Res Dev 2011. [DOI: 10.1021/op200229j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Mitchell
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Kevin P. Cole
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Patrick M. Pollock
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David M. Coppert
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Timothy P. Burkholder
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Joshua R. Clayton
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
47
|
The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 2011; 18:971-6. [PMID: 21841788 DOI: 10.1038/nsmb.2099] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased JAK2 activity, contributing to myeloproliferative neoplasms (MPNs). Here we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2: Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling. Notably, different MPN mutations abrogated JH2 activity in cells, and in MPN (V617F) patient cells phosphorylation of Tyr570 was reduced, suggesting that loss of JH2 activity contributes to the pathogenesis of MPNs. These results identify the catalytic activity of JH2 as a previously unrecognized mechanism to control basal activity and signaling of JAK2.
Collapse
|
48
|
Lopes da Silva R, Ribeiro P, Lourenço A, Santos SC, Santos M, Costa I, de Sousa AB. What is the role of JAK2(V617F) mutation in leukemic transformation of myeloproliferative neoplasms? ACTA ACUST UNITED AC 2011; 17:12-6. [PMID: 21421540 DOI: 10.1532/lh96.10018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVES The role of the Janus kinase 2 V617F (JAK2(V617F)) mutation in the pathogenesis of the various BCR-ABL1-negative myeloproliferative neoplasms (MPNs) remains unclear. Its significance in leukemic transformation is a matter of even greater controversy. The aim of this study was to evaluate both the JAK2(V617F) mutational status of the rare cases in which blast crisis occurred in our institution and the response after intensive treatment. MATERIALS AND METHODS Between 1999 and 2009, 778 patients received diagnoses of BCR-ABL1-negative MPNs in our center (395 polycythemia vera, 329 essential thrombocythemia, and 45 primary myelofibrosis cases, as well as 9 MPN cases not otherwise classifiable). Of these patients, 7 developed leukemic transformation. The genotyping of the JAK2(V617F) mutation was performed by the amplification-refractory mutation system. RESULTS Six of the 7 patients were tested for JAK2(V617F) in the chronic phase of their disease, and 3 of these patients were positive for JAK2(V617F). These patients, 2 with polycythemia vera and 1 with essential thrombocythemia, also harbored JAK2(V617F) in the heterozygous state during blast crisis and even after intensive treatment in one of these patients. The other cases that evolved to blast crisis did not harbor the JAK2(V617F) mutation before and after transformation. All 7 patients died despite conventional or supportive treatment. CONCLUSIONS The transformation of MPNs into acute leukemia is by itself a very rare phenomenon, and so is the persistence of the JAK2(V617F) mutation after blast crisis. In our series, all JAK2(V617F)-positive patients remained positive for this mutation after leukemic transformation, although in the heterozygous state, suggesting that JAK2(V617F) is not essential for transformation in these cases. The fact that all JAK2(V617F)-negative cases remained negative after blast crisis reinforces the theory that other molecular event(s) may play a role in the clonal heterogeneity of MPNs. Owing to the poor outcome of acute myeloid leukemia secondary to MPN, patients should be included in clinical trials of the novel JAK2 inhibitors.
Collapse
|
49
|
Increase in circulating CD4⁺CD25⁺Foxp3⁺ T cells in patients with Philadelphia-negative chronic myeloproliferative neoplasms during treatment with IFN-α. Blood 2011; 118:2170-3. [PMID: 21708889 DOI: 10.1182/blood-2011-03-340992] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent reports have described complete or major molecular remission in patients with polycythemia vera after long-term treatment with the immunomodulatory agent IFN-α2. Accordingly, there are reasons to believe that the immune system is a key player in eradicating the JAK2 mutated clone in these patients. Foxp3(+) regulatory T cells play a pivotal role in maintaining immune homeostasis and, importantly, preventing immune reactivity to self-antigens; however, their suppressive activity can compromise an effective antitumor immune response, and high frequencies of regulatory T cells in peripheral blood have been reported in both hematologic and solid cancers. We have analyzed the number, phenotype, and function of circulating CD4(+)CD25(+)Foxp3(+) T cells in patients with chronic myeloproliferative neoplasms. Surprisingly, we found a marked expansion of this subset of lymphocytes in patients treated with IFN-α2 (13.0%; 95% confidence interval [CI] 10.8% to 15.2%) compared with healthy donors (6.1%; 95% CI 4.9% to 7.2%), patients with untreated chronic myeloproliferative neoplasms (6.9%; 95% CI 5.8% to 7.4%), or patients treated with hydroxyurea (5.8%; 95% CI 4.3% to 7.4%; P < .0001).
Collapse
|
50
|
William AD, Lee ACH, Blanchard S, Poulsen A, Teo EL, Nagaraj H, Tan E, Chen D, Williams M, Sun ET, Goh KC, Ong WC, Goh SK, Hart S, Jayaraman R, Pasha MK, Ethirajulu K, Wood JM, Dymock BW. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma. J Med Chem 2011; 54:4638-58. [PMID: 21604762 DOI: 10.1021/jm200326p] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Discovery of the activating mutation V617F in Janus Kinase 2 (JAK2(V617F)), a tyrosine kinase critically involved in receptor signaling, recently ignited interest in JAK2 inhibitor therapy as a treatment for myelofibrosis (MF). Herein, we describe the design and synthesis of a series of small molecule 4-aryl-2-aminopyrimidine macrocycles and their biological evaluation against the JAK family of kinase enzymes and FLT3. The most promising leads were assessed for their in vitro ADME properties culminating in the discovery of 21c, a potent JAK2 (IC(50) = 23 and 19 nM for JAK2(WT) and JAK2(V617F), respectively) and FLT3 (IC(50) = 22 nM) inhibitor with selectivity against JAK1 and JAK3 (IC(50) = 1280 and 520 nM, respectively). Further profiling of 21c in preclinical species and mouse xenograft and allograft models is described. Compound 21c (SB1518) was selected as a development candidate and progressed into clinical trials where it is currently in phase 2 for MF and lymphoma.
Collapse
Affiliation(s)
- Anthony D William
- S*BIO Pte. Ltd., The Capricorn, Singapore Science Park II, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|