1
|
Hong D, Lee K. Polymorphic structures of 3-phenyl-1 H-1,3-benzo-diazol-2(3 H)-one. Acta Crystallogr E Crystallogr Commun 2023; 79:534-537. [PMID: 37288468 PMCID: PMC10242737 DOI: 10.1107/s2056989023003961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
The polymorphic structures (I and II) of 3-phenyl-1H-1,3-benzo-diazol-2(3H)-one, C13H10N2O, acquired from pentane diffusion into the solution in THF, are reported. The structures show negligible differences in bond distances and angles, but the C-N-C-C torsion angles between the backbone and the phenyl substituent, 123.02 (15)° for I and 137.18 (11)° for II, are different. Compound I features a stronger C=O⋯H-N hydrogen bond than that in II, while the structure of II exhibits a stronger π-π inter-action than in I, as confirmed by the shorter inter-centroid distance [3.3257 (8) Å in II in comparison to 3.6862 (7) Å in I]. Overall, the supra-molecular inter-actions of I and II are distinct, presumably originating from the variation in the dihedral angle.
Collapse
Affiliation(s)
- Dabeen Hong
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
| | - Kyounghoon Lee
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
| |
Collapse
|
2
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
3
|
Kim JH, Marton J, Ametamey SM, Cumming P. A Review of Molecular Imaging of Glutamate Receptors. Molecules 2020; 25:molecules25204749. [PMID: 33081223 PMCID: PMC7587586 DOI: 10.3390/molecules25204749] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) is a well-established and important in vivo technique to evaluate fundamental biological processes and unravel the role of neurotransmitter receptors in various neuropsychiatric disorders. Specific ligands are available for PET/SPECT studies of dopamine, serotonin, and opiate receptors, but corresponding development of radiotracers for receptors of glutamate, the main excitatory neurotransmitter in mammalian brain, has lagged behind. This state of affairs has persisted despite the central importance of glutamate neurotransmission in brain physiology and in disorders such as stroke, epilepsy, schizophrenia, and neurodegenerative diseases. Recent years have seen extensive efforts to develop useful ligands for molecular imaging of subtypes of the ionotropic (N-methyl-D-aspartate (NMDA), kainate, and AMPA/quisqualate receptors) and metabotropic glutamate receptors (types I, II, and III mGluRs). We now review the state of development of radioligands for glutamate receptor imaging, placing main emphasis on the suitability of available ligands for reliable in vivo applications. We give a brief account of the radiosynthetic approach for selected molecules. In general, with the exception of ligands for the GluN2B subunit of NMDA receptors, there has been little success in developing radiotracers for imaging ionotropic glutamate receptors; failure of ligands for the PCP/MK801 binding site in vivo doubtless relates their dependence on the open, unblocked state of the ion channel. Many AMPA and kainite receptor ligands with good binding properties in vitro have failed to give measurable specific binding in the living brain. This may reflect the challenge of developing brain-penetrating ligands for amino acid receptors, compounded by conformational differences in vivo. The situation is better with respect to mGluR imaging, particularly for the mGluR5 subtype. Several successful PET ligands serve for investigations of mGluRs in conditions such as schizophrenia, depression, substance abuse and aging. Considering the centrality and diversity of glutamatergic signaling in brain function, we have relatively few selective and sensitive tools for molecular imaging of ionotropic and metabotropic glutamate receptors. Further radiopharmaceutical research targeting specific subtypes and subunits of the glutamate receptors may yet open up new investigational vistas with broad applications in basic and clinical research.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Gachon Advanced Institute for Health Science and Technology, Graduate School, Incheon 21565, Korea
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| | - János Marton
- ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-1454 Radeberg, Germany;
| | - Simon Mensah Ametamey
- Centre for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland;
| | - Paul Cumming
- Department of Nuclear Medicine, University of Bern, Inselspital, Freiburgstrasse 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane QLD 4059, Australia
- Correspondence: (J.-H.K.); (P.C.); Tel.: +41-31-664-0498 (P.C.); Fax: +41-31-632-7663 (P.C.)
| |
Collapse
|
4
|
The chemistry of labeling heterocycles with carbon-11 or fluorine-18 for biomedical imaging. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Jakobsson J, Gourni E, Khanapur S, Brito B, Riss PJ. Synthesis and Characterization in Rodent Brain of the Subtype-Selective NR2B NMDA Receptor Ligand [ 11C]Ro04-5595 as a Potential Radiotracer for Positron Emission Tomography. ACS OMEGA 2019; 4:9925-9931. [PMID: 31460083 PMCID: PMC6648642 DOI: 10.1021/acsomega.9b00357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/22/2019] [Indexed: 06/10/2023]
Abstract
The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor has been implicated in controlling synaptic plasticity, memory, and learning. Herein, we describe an 11C-labeled PET radiotracer based on 1-(4-chlorophenethyl)-6-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-7-ol, Ro04-5595. The radiotracer was evaluated in rats using PET. The PET study showed a good pharmacokinetic profile with rapid uptake and washout over 90 min. Complementary high-resolution autoradiographic images using [3H]Ro04-5595 demonstrated strong binding in NR2B receptor-rich regions and low binding in cerebellum where NR2B concentration is low. We conclude to have developed a selective NR2B receptor radioligand suitable for quantitative and qualitative imaging of a NR2B receptor distribution in vitro and in vivo.
Collapse
Affiliation(s)
- Jimmy
E. Jakobsson
- Realomics
SRI, Kjemisk Institutt, Universitetet i
Oslo, Sem Sælands vei 26, Kjemibygningen, 0371 Oslo, Norway
| | - Eleni Gourni
- Realomics
SRI, Kjemisk Institutt, Universitetet i
Oslo, Sem Sælands vei 26, Kjemibygningen, 0371 Oslo, Norway
| | - Shivashankar Khanapur
- Realomics
SRI, Kjemisk Institutt, Universitetet i
Oslo, Sem Sælands vei 26, Kjemibygningen, 0371 Oslo, Norway
| | - Beatriz Brito
- Realomics
SRI, Kjemisk Institutt, Universitetet i
Oslo, Sem Sælands vei 26, Kjemibygningen, 0371 Oslo, Norway
| | - Patrick J. Riss
- Realomics
SRI, Kjemisk Institutt, Universitetet i
Oslo, Sem Sælands vei 26, Kjemibygningen, 0371 Oslo, Norway
- Klinik
for Kirurgi og Nevrofag, Oslo Universitets
Sykehus HF-Rikshospitalet, Postboks 4950
Nydalen, 0424 Oslo, Norway
- Norsk
Medisinsk Syklotronsenter AS, Gaustad, Postboks 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
6
|
Fu H, Chen Z, Josephson L, Li Z, Liang SH. Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N-Methyl-d-aspartate (NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA), and Kainate Receptors. J Med Chem 2019; 62:403-419. [PMID: 30110164 PMCID: PMC6393217 DOI: 10.1021/acs.jmedchem.8b00714] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission within the mammalian central nervous system. iGluRs exist as three main groups: N-methyl-d-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and kainate receptors. The past decades have witnessed a remarkable development of PET tracers targeting different iGluRs including NMDARs and AMPARs, and several of the tracers have advanced to clinical imaging studies. Here, we assess the recent development of iGluR PET probes, focusing on tracer design, brain kinetics, and performance in PET imaging studies. Furthermore, this review will not only present challenges in the tracer development but also provide novel approaches in conjunction with most recent drug discovery efforts on these iGluRs, including subtype-selective NMDAR and transmembrane AMPAR regulatory protein modulators and positive allosteric modulators (PAMs) of AMPARs. These approaches, if successful as PET tracers, may provide fundamental knowledge to understand the roles of iGluR receptors under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology, Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| |
Collapse
|
7
|
Chen Z, Mori W, Zhang X, Yamasaki T, Dunn PJ, Zhang G, Fu H, Shao T, Zhang Y, Hatori A, Ma L, Fujinaga M, Xie L, Deng X, Li H, Yu Q, Rong J, Josephson L, Ma JA, Shao Y, Tomita S, Zhang MR, Liang SH. Synthesis, pharmacology and preclinical evaluation of 11C-labeled 1,3-dihydro-2H-benzo[d]imidazole-2-ones for imaging γ8-dependent transmembrane AMPA receptor regulatory protein. Eur J Med Chem 2018; 157:898-908. [PMID: 30145376 DOI: 10.1016/j.ejmech.2018.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022]
Abstract
a-Amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are implicated in the pathology of neurological diseases such as epilepsy and schizophrenia. As pan antagonists for this target are often accompanied with undesired effects at high doses, one of the recent drug discovery approaches has shifted to subtype-selective AMPA receptor (AMPAR) antagonists, specifically, via modulating transmembrane AMPAR regulatory proteins (TARPs). The quantification of AMPARs by positron emission tomography (PET) would help obtain insights into disease conditions in the living brain and advance the translational development of AMPAR antagonists. Herein we report the design, synthesis and preclinical evaluation of a series of TARP γ-8 antagonists, amenable for radiolabeling, for the development of subtype-selective AMPAR PET imaging agents. Based on the pharmacology evaluation, molecular docking studies and physiochemical properties, we have identified several promising lead compounds 3, 17-19 and 21 for in vivo PET studies. All candidate compounds were labeled with [11C]COCl2 in high radiochemical yields (13-31% RCY) and high molar activities (35-196 GBq/μmol). While tracers 30 ([11C]17) &32 ([11C]21) crossed the blood-brain barrier and showed heterogeneous distribution in PET studies, consistent with TARP γ-8 expression, high nonspecific binding prevented further evaluation. To our delight, tracer 31 ([11C]3) showed good in vitro specific binding and characteristic high uptake in the hippocampus in rat brain tissues, which provides the guideline for further development of a new generation subtype selective TARP γ-8 dependent AMPAR tracers.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA; Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wakana Mori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Patrick J Dunn
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yiding Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Longle Ma
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Masayuki Fujinaga
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hua Li
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jun-An Ma
- Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
8
|
Krämer SD, Betzel T, Mu L, Haider A, Herde AM, Boninsegni AK, Keller C, Szermerski M, Schibli R, Wünsch B, Ametamey SM. Evaluation of 11C-Me-NB1 as a Potential PET Radioligand for Measuring GluN2B-Containing NMDA Receptors, Drug Occupancy, and Receptor Cross Talk. J Nucl Med 2017; 59:698-703. [DOI: 10.2967/jnumed.117.200451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023] Open
|
9
|
Rotstein BH, Liang SH, Placzek MS, Hooker JM, Gee AD, Dollé F, Wilson AA, Vasdev N. (11)C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals. Chem Soc Rev 2016; 45:4708-26. [PMID: 27276357 PMCID: PMC5000859 DOI: 10.1039/c6cs00310a] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry.
Collapse
Affiliation(s)
| | - Steven H Liang
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA and McLean Hospital, Belmont, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA
| | | | - Frédéric Dollé
- CEA - Institut d'imagerie biomédicale, Service hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Neil Vasdev
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
10
|
Development of PET and SPECT probes for glutamate receptors. ScientificWorldJournal 2015; 2015:716514. [PMID: 25874256 PMCID: PMC4385697 DOI: 10.1155/2015/716514] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/29/2014] [Indexed: 01/16/2023] Open
Abstract
l-Glutamate and its receptors (GluRs) play a key role in excitatory neurotransmission within the mammalian central nervous system (CNS). Impaired regulation of GluRs has also been implicated in various neurological disorders. GluRs are classified into two major groups: ionotropic GluRs (iGluRs), which are ligand-gated ion channels, and metabotropic GluRs (mGluRs), which are coupled to heterotrimeric guanosine nucleotide binding proteins (G-proteins). Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of GluRs could provide a novel view of CNS function and of a range of brain disorders, potentially leading to the development of new drug therapies. Although no satisfactory imaging agents have yet been developed for iGluRs, several PET ligands for mGluRs have been successfully employed in clinical studies. This paper reviews current progress towards the development of PET and SPECT probes for GluRs.
Collapse
|
11
|
Mamedov VA, Zhukova NA, Zamaletdinova AI, Beschastnova TN, Kadyrova MS, Rizvanov IK, Syakaev VV, Latypov SK. Reaction for the synthesis of benzimidazol-2-ones, imidazo[5,4-b]-, and imidazo[4,5-c]pyridin-2-ones via the rearrangement of quinoxalin-2-ones and their aza analogues when exposed to enamines. J Org Chem 2014; 79:9161-9. [PMID: 25203611 DOI: 10.1021/jo501526a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A synthetically useful protocol has been developed for the preparation of highly functionalized N-pyrrolylbenzimidazol-2-ones. The reaction of variously substituted 3-aroyl- and 3-alkanoylquinoxalin-2(1H)-ones with commercially available enamines in acetic acid results in a rapid rearrangement and formation of N-pyrrolylbenzimidazol-2-ones in modest to excellent yields. The key step of the rearrangement involves the novel ring contraction of 3-aroyl- and 3-alkanoylquinoxalin-2(1H)-ones with enamines. In this case, the atom of carbon which is displaced from the pyrazine ring of quinoxalin-2(1H)-one becomes the fourth carbon atom of the newly formed pyrrole ring. The method is applicable for the aza analogues of quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of the Russian Academy of Sciences , Arbuzov str. 8, Kazan 420088, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ernst JB, Tay NES, Jui NT, Buchwald SL. Regioselective synthesis of benzimidazolones via cascade C-N coupling of monosubstituted ureas. Org Lett 2014; 16:3844-6. [PMID: 24971635 PMCID: PMC4216194 DOI: 10.1021/ol501531q] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
A direct
method for the regioselective construction of benzimidazolones
is reported wherein a single palladium catalyst is employed to couple
monosubstituted urea substrates with differentially substituted 1,2-dihaloaromatic
systems. In this method, the catalyst is able to promote a cascade
of two discrete chemoselective C–N bond-forming processes that
allows the highly selective and predictable formation of complex heterocycles
from simple, readily available starting materials.
Collapse
Affiliation(s)
- Johannes B Ernst
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
13
|
Beyer A, Reucher CMM, Bolm C. Potassium hydroxide/dimethyl sulfoxide promoted intramolecular cyclization for the synthesis of benzimidazol-2-ones. Org Lett 2011; 13:2876-9. [PMID: 21534616 DOI: 10.1021/ol2008878] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new protocol for intramolecular N-arylations of ureas to form benzimidazol-2-ones has been developed. The cyclization reaction occurs in the presence of KOH and DMSO at close to ambient temperature. Under these conditions the yields are high and a wide range of functional groups are tolerated.
Collapse
Affiliation(s)
- Astrid Beyer
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
14
|
Fuchigami T, Yamaguchi H, Ogawa M, Biao L, Nakayama M, Haratake M, Magata Y. Synthesis and biological evaluation of radio-iodinated benzimidazoles as SPECT imaging agents for NR2B subtype of NMDA receptor. Bioorg Med Chem 2010; 18:7497-506. [DOI: 10.1016/j.bmc.2010.08.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/27/2010] [Accepted: 08/28/2010] [Indexed: 10/19/2022]
|
15
|
Li Z, Conti PS. Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliv Rev 2010; 62:1031-51. [PMID: 20854860 DOI: 10.1016/j.addr.2010.09.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/11/2010] [Accepted: 09/13/2010] [Indexed: 12/13/2022]
Abstract
Molecular imaging is an emerging technology that allows the visualization of interactions between molecular probes and biological targets. Molecules that either direct or are subject to homeostatic controls in biological systems could be labeled with the appropriate radioisotopes for the quantitative measurement of selected molecular interactions during normal tissue homeostasis and again after perturbations of the normal state. In particular, positron emission tomography (PET) offers picomolar sensitivity and is a fully translational technique that requires specific probes radiolabeled with a usually short-lived positron-emitting radionuclide. PET has provided the capability of measuring biological processes at the molecular and metabolic levels in vivo by the detection of the gamma rays formed as a result of the annihilation of the positrons emitted. Despite the great wealth of information that such probes can provide, the potential of PET strongly depends on the availability of suitable PET radiotracers. However, the development of new imaging probes for PET is far from trivial and radiochemistry is a major limiting factor for the field of PET. In this review, we provided an overview of the most common chemical approaches for the synthesis of PET-labeled molecules and highlighted the most recent developments and trends. The discussed PET radionuclides include ¹¹C (t₁(/)₂=20.4min), ¹³N (t₁(/)₂=9.9min), ¹⁵O (t₁(/)₂=2min), ⁶⁸Ga (t₁(/)₂=68min), ¹⁸F (t₁(/)₂=109.8min), ⁶⁴Cu (t₁(/)₂=12.7h), and ¹²⁴I (t₁(/)₂=4.12d).
Collapse
|
16
|
|
17
|
Labas R, Sobrio F, Bramoullé Y, Hérard AS, Guillermier M, Hantraye P, Dollé F, Barré L. Radiosynthesis of N-[4-(4-fluorobenzyl)piperidin-1-yl]-Nâ²-(2-[11C]oxo-1,3-dihydrobenzimidazol-5-yl)oxamide, a NR2B-selective NMDA receptor antagonist. J Labelled Comp Radiopharm 2009. [DOI: 10.1002/jlcr.1702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Bramoullé Y, Puech F, Saba W, Valette H, Bottlaender M, George P, Dollé F. Radiosynthesis of (S)-5-methoxymethyl-3-[6-(4,4,4-trifluorobutoxy)benzo[d]isoxazol-3-yl] oxazolidin-2-[11C]one ([11C]SL25.1188), a novel radioligand for imaging monoamine oxidase-B with PET. J Labelled Comp Radiopharm 2008. [DOI: 10.1002/jlcr.1492] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Roeda D, Kuhnast B, Hammadi A, Dollé F. The Service Hospitalier Frédéric Joliot – contributions to PET chemistry over the years. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Thominiaux C, de Bruin B, Bramoullé Y, Hinnen F, Demphel S, Valette H, Bottlaender M, Besret L, Kassiou M, Dollé F. Radiosynthesis of (E)-N-(2-[11C]methoxybenzyl)-3-phenyl-acrylamidine, a novel subnanomolar NR2B subtype-selective NMDA receptor antagonist. Appl Radiat Isot 2006; 64:348-54. [PMID: 16307887 DOI: 10.1016/j.apradiso.2005.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 08/26/2005] [Indexed: 11/18/2022]
Abstract
Recently, a novel series of amidines has been described, exhibiting high NR2B-subtype selective N-methyl-D-aspartate (NMDA) antagonist activity with nanomolar or subnanomolar affinity. Within the styrylamidine subclass, (E)-N-(2-methoxybenzyl)-3-phenyl-acrylamidine (1), displayed the highest affinity (Ki=0.7 nM versus [(3)H]ifenprodil) and was considered an appropriate candidate for isotopic labelling with carbon-11 (T(1/2): 20.38 min) at its methoxy group for imaging of NMDA receptors with PET. Derivative 1 has been labelled from the corresponding nor-analogue using [(11)C]methyl triflate and the following experimental conditions : (1) trapping at -10 degrees C of [(11)C]methyl triflate in 300 microL of acetone containing 0.6-0.8 mg of precursor 5 (2.4-3.2 micromol) and 5 microL of a 3M solution of NaOH in water (about 5 eq.); (2) concentration to dryness of the reaction mixture (at 110 degrees C, using a helium stream for 1-2 min); (3) taking up the residue with 0.5 mL of the HPLC mobile phase and (4) purification using semi-preparative HPLC (SymmetryPrep) C-18, Waters, 300 x 7.8 mm). Typically, starting from a 1.5 Ci (55.5 GBq) [(11)C]CO(2) production batch, 120-240 m Ci (4.44-8.88 GBq) of [(11)C]-1 (20-40% decay-corrected radiochemical yield, n=5) was obtained within a total synthesis time of 25-30 min. Specific radioactivities ranged from 0.8 to 1.2 Ci/micromol (29.6-44.4 GBq/micromol) at the end of radiosynthesis. No attempts were made to further optimise these reactions, as sufficient material was obtained to allow for preliminary pharmacological characterisation.
Collapse
Affiliation(s)
- Cyrille Thominiaux
- Service Hospitalier Frédéric Joliot, Département de Recherche Médicale, CEA/DSV, 4 place du Général Leclerc, F-91401 Orsay, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hamill TG, McCauley JA, Burns HD. The synthesis of a benzamidine-containing NR2B-selective NMDA receptor ligand labelled with tritium or fluorine-18. J Labelled Comp Radiopharm 2005. [DOI: 10.1002/jlcr.871] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Dollé F, Martarello L, Bramoullé Y, Bottlaender M, Gee A. Radiosynthesis of carbon-11-labelled GI181771, a new selective CCK-A agonist. J Labelled Comp Radiopharm 2005. [DOI: 10.1002/jlcr.947] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Dollé F, Valette H, Demphel S, Coulon C, Ottaviani M, Bottlaender M, Kassiou M. Radiosynthesis andin vivoevaluation of [11C]Ro-647312: a novel NR1/2B subtype selective NMDA receptor radioligand. J Labelled Comp Radiopharm 2004. [DOI: 10.1002/jlcr.877] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Roger G, Dollé F, De Bruin B, Liu X, Besret L, Bramoullé Y, Coulon C, Ottaviani M, Bottlaender M, Valette H, Kassiou M. Radiosynthesis and pharmacological evaluation of [11C]EMD-95885: a high affinity ligand for NR2B-containing NMDA receptors. Bioorg Med Chem 2004; 12:3229-37. [PMID: 15158791 DOI: 10.1016/j.bmc.2004.03.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 03/29/2004] [Accepted: 03/30/2004] [Indexed: 11/19/2022]
Abstract
EMD-95885, 6-[3-[4-(4-fluorobenzyl)piperidino]propionyl]-3H-benzoxazol-2-one (1) has been described as a selective antagonist for the NMDA receptors containing NR2B subunits, displaying an IC50 of 3.9 nM for this subtype. EMD-95885 (1) has been synthesized in good overall yield and labelled with carbon-11 ( T1/2 : 20.4 min) at its benzoxazolinone moiety using [11C]phosgene. The pharmacological profile of [11C]EMD-95885 ([11C]-1) was evaluated in vivo in rats with biodistribution studies and brain radioactivity monitored with intracerebral radiosensitive beta-microprobes. The brain uptake of [11C]-1 was homogeneous (0.4-0.6%ID/mL) across the different brain structures studied. This in vivo brain regional distribution of [11C]-1 was not consistent with the known distribution of NR2B subunits. Also as a measure of specificity the hippocampus/cerebellum ratio reached 0.8 throughout the time course of the experiment supporting the lack of specificity. Competition studies with the NR2B prototypic ligand ifenprodil and EMD-95885 (1), 30 min before the radioligand injection, displayed homogeneous reduction of [11C]-1 uptake of 40-60%. Pre-treatment of rats with DTG (sigma ligand), MDL105519 (glycine site antagonist) and MK801 (ion channel blocker) had no inhibitory effect on [11C]-1 uptake. Use of haloperidol as a blocking drug also resulted in a homogeneous inhibition of [11C]-1 uptake by 66-60%, which does not reflect binding to dopamine or sigma receptors. Due to the homogeneous radioligand uptake and inhibition and no measure of cerebral blood flow effects during these blocking studies it is uncertain whether any specific binding is observed. In view of these results, [11C]EMD-95885 ([11C]-1) does not have the required properties for imaging NR2B containing NMDA receptors using positron emission tomography.
Collapse
Affiliation(s)
- G Roger
- Service Hospitalier Frédéric Joliot, Département de Recherche Médicale, CEA/DSV, 4 Place du Général Leclerc, F-91401 Orsay, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|