1
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
2
|
Bouissane L, Bailly C. Withania frutescens (L.) Pauquy, a valuable Mediterranean shrub containing bioactive withanolides. Steroids 2024; 207:109439. [PMID: 38740121 DOI: 10.1016/j.steroids.2024.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The bushy plant Withania frutescens (L.) Pauquy is well distributed in the West-Mediterranean area, notably in the south of Spain, Algeria and Morocco where is it is used traditionally for the treatment of various human diseases, including diabetes. Unlike the two major species W. somnifera and W. coagulans extensively studied, the genomically close species W. frutescens has been much less investigated. Nevertheless, this shrub species displays a comparable phytochemical profile and marked antioxidant and anti-inflammatory properties, at the origin of reported pharmacological effects and its traditional uses. Here we have analyzed the diversity of biological effects reported with leaves and root extracts of W. frutescens. Hydroalcoholic extracts prepared from the aerial parts of the plant have revealed antihyperglycemic and cell-protective activities along with antimicrobial and anticorrosive effects. The extracts contained diverse polyphenolic compounds and a few alkaloids (calystegines) but most of the observed effects have been attributed to the presence of withanolides which are modified C28 ergostane-type steroids. Our analysis focused in part on specific withanolides found in W. frutescens, in particular an unusual 3-O-sulfated withanolide considered as a potential pro-drug of the major active compound withaferin A (WA) and a lead compound for the development of a potential drug candidate. The mechanism of action of this sulfated WA analogue is discussed. Altogether, our unprecedented extensive analysis of W. frutescens highlighted the pharmacological potential of this atypical medicinal plant. By analogy with the major cultivated Withania species, the market potential of little-known plant is underlined.
Collapse
Affiliation(s)
- Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco.
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue Du Professeur Laguesse, BP-83, F-59006 Lille, France.
| |
Collapse
|
3
|
Wijeratne EMK, Xu YM, Padumadasa C, Astashkin AV, Gunatilaka AAL. A Homodimer of Withaferin A Formed by Base-Promoted Elimination of Acetic Acid from 27- O-Acetylwithaferin A Followed by a Diels-Alder Reaction. JOURNAL OF NATURAL PRODUCTS 2024; 87:583-590. [PMID: 38414352 DOI: 10.1021/acs.jnatprod.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Treatment of 27-O-acetylwithaferin A (2) with the non-nucleophilic base, 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU), afforded 5β,6β-epoxy-4β-hydroxy-1-oxo-witha-2(3),23(24),25(27)-trienolide (3) and 4, a homodimer of withaferin A resulting from a Diels-Alder [4 + 2] type cycloaddition of the intermediate α,β-dimethylene-δ-lactone (9). Structures of 3 and 4 were elucidated using HRMS and 1D and 2D NMR spectroscopic data. The structure of 4 was also confirmed by single crystal X-ray crystallographic analysis of its bis-4-O-p-nitrobenzoate (8). Formation of withaferin A homodimer (4) as the major product suggests regio- and stereoselectivity of the Diels-Alder [4 + 2] cycloaddition reaction of 9. Acetylation of 2-4 afforded their acetyl derivatives 5-7, respectively. Compounds 2-4 and 6-8 were evaluated for their cytotoxic activities against four prostate cancer (PC) cell lines (LNCaP, 22Rv1, DU-145, and PC-3) and normal human foreskin fibroblast (HFF) cells. Significantly, 4 exhibited improved activity compared to the other compounds for most of the tested cell lines.
Collapse
Affiliation(s)
- E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, University of Arizona, 1064 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, University of Arizona, 1064 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Chayanika Padumadasa
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, University of Arizona, 1064 E. Lowell Street, Tucson, Arizona 85719, United States
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture, Life and Environmental Sciences, University of Arizona, 1064 E. Lowell Street, Tucson, Arizona 85719, United States
| |
Collapse
|
4
|
Shinde S, Balasubramaniam AK, Mulay V, Saste G, Girme A, Hingorani L. Recent Advancements in Extraction Techniques of Ashwagandha ( Withania somnifera) with Insights on Phytochemicals, Structural Significance, Pharmacology, and Current Trends in Food Applications. ACS OMEGA 2023; 8:40982-41003. [PMID: 37970011 PMCID: PMC10633886 DOI: 10.1021/acsomega.3c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/17/2023]
Abstract
Ashwagandha, also known as Withania somnifera (WS), is an ayurvedic botanical plant with numerous applications in dietary supplements and traditional medicines worldwide. Due to the restorative qualities of its roots, WS has potent therapeutic value in traditional Indian (Ayurvedic, Unani, Siddha) and modern medicine recognized as the "Indian ginseng". The presence of phytochemical bioactive compounds such as withanolides, withanosides, alkaloids, flavonoids, and phenolic compounds has an important role in the therapeutic and nutritional properties of WS. Thus, the choice of WS plant part and extraction solvents, with conventional and modern techniques, plays a role in establishing WS as a potential nutraceutical product. WS has recently made its way into food supplements and products, such as baked goods, juices, beverages, sweets, and dairy items. The review aims to cover the key perspectives about WS in terms of plant description, phytochemistry, structural significance, and earlier reported extraction methodologies along with the analytical and pharmacological landscape in the area. It also attempts to iterate the key limitations and further insights into extraction techniques and bioactive standardization with the regulatory framework. It presents a key to the future development of prospective applications in foods such as food supplements or functional foods.
Collapse
Affiliation(s)
- Sunil Shinde
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | | | - Vallabh Mulay
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Ganesh Saste
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand 388430, Gujarat, India
| |
Collapse
|
5
|
Thakral S, Yadav A, Singh V, Kumar M, Kumar P, Narang R, Sudhakar K, Verma A, Khalilullah H, Jaremko M, Emwas AH. Alzheimer's disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res Rev 2023; 88:101960. [PMID: 37224884 DOI: 10.1016/j.arr.2023.101960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD), also called senile dementia, is the most common neurological disorder. Around 50 million people, mostly of advanced age, are suffering from dementia worldwide and this is expected to reach 100-130 million between 2040 and 2050. AD is characterized by impaired glutamatergic and cholinergic neurotransmission, which is associated with clinical and pathological symptoms. AD is characterized clinically by loss of cognition and memory impairment and pathologically by senile plaques formed by Amyloid β deposits or neurofibrillary tangles (NFT) consisting of aggregated tau proteins. Amyloid β deposits are responsible for glutamatergic dysfunction that develops NMDA dependent Ca2+ influx into postsynaptic neurons generating slow excitotoxicity process leading to oxidative stress and finally impaired cognition and neuronal loss. Amyloid decreases acetylcholine release, synthesis and neuronal transport. The decreased levels of neurotransmitter acetylcholine, neuronal loss, tau aggregation, amyloid β plaques, increased oxidative stress, neuroinflammation, bio-metal dyshomeostasis, autophagy, cell cycle dysregulation, mitochondrial dysfunction, and endoplasmic reticulum dysfunction are the factors responsible for the pathogenesis of AD. Acetylcholinesterase, NMDA, Glutamate, BACE1, 5HT6, and RAGE (Receptors for Advanced Glycation End products) are receptors targeted in treatment of AD. The FDA approved acetylcholinesterase inhibitors Donepezil, Galantamine and Rivastigmine and N-methyl-D-aspartate antagonist Memantine provide symptomatic relief. Different therapies such as amyloid β therapies, tau-based therapies, neurotransmitter-based therapies, autophagy-based therapies, multi-target therapeutic strategies, and gene therapy modify the natural course of the disease. Herbal and food intake is also important as preventive strategy and recently focus has also been placed on herbal drugs for treatment. This review focuses on the molecular aspects, pathogenesis and recent studies that signifies the potential of medicinal plants and their extracts or chemical constituents for the treatment of degenerative symptoms related to AD.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Alka Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| | - Manoj Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Zerio CJ, Sivinski J, Wijeratne EMK, Xu YM, Ngo DT, Ambrose AJ, Villa-Celis L, Ghadirian N, Clarkson MW, Zhang DD, Horton NC, Gunatilaka AAL, Fromme R, Chapman E. Physachenolide C is a Potent, Selective BET Inhibitor. J Med Chem 2023; 66:913-933. [PMID: 36577036 DOI: 10.1021/acs.jmedchem.2c01770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A pulldown using a biotinylated natural product of interest in the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), identified the bromodomain and extra-terminal domain (BET) family of proteins (BRD2, BRD3, and BRD4), readers of acetyl-lysine modifications and regulators of gene transcription, as potential cellular targets. BROMOscan bromodomain profiling and biochemical assays support PCC as a BET inhibitor with increased selectivity for bromodomain (BD)-1 of BRD3 and BRD4, and X-ray crystallography and NMR studies uncovered specific contacts that underlie the potency and selectivity of PCC toward BRD3-BD1 over BRD3-BD2. PCC also displays characteristics of a molecular glue, facilitating proteasome-mediated degradation of BRD3 and BRD4. Finally, PCC is more potent than other withanolide analogues and gold-standard pan-BET inhibitor (+)-JQ1 in cytotoxicity assays across five prostate cancer (PC) cell lines regardless of androgen receptor (AR)-signaling status.
Collapse
Affiliation(s)
- Christopher J Zerio
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Jared Sivinski
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - E M Kithsiri Wijeratne
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-Ming Xu
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Duc T Ngo
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Andrew J Ambrose
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Luis Villa-Celis
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Niloofar Ghadirian
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Michael W Clarkson
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Donna D Zhang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - A A Leslie Gunatilaka
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Raimund Fromme
- School of Molecular Sciences, Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Orabi MAA, Alshahrani MM, Sayed AM, Abouelela ME, Shaaban KA, Abdel-Sattar ES. Identification of Potential Leishmania N-Myristoyltransferase Inhibitors from Withania somnifera (L.) Dunal: A Molecular Docking and Molecular Dynamics Investigation. Metabolites 2023; 13:metabo13010093. [PMID: 36677018 PMCID: PMC9861338 DOI: 10.3390/metabo13010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Leishmaniasis is a group of infectious diseases caused by Leishmania protozoa. The ineffectiveness, high toxicity, and/or parasite resistance of the currently available antileishmanial drugs has created an urgent need for safe and effective leishmaniasis treatment. Currently, the molecular-docking technique is used to predict the proper conformations of small-molecule ligands and the strength of the contact between a protein and a ligand, and the majority of research for the development of new drugs is centered on this type of prediction. Leishmania N-myristoyltransferase (NMT) has been shown to be a reliable therapeutic target for investigating new anti-leishmanial molecules through this kind of virtual screening. Natural products provide an incredible source of affordable chemical scaffolds that serve in the development of effective drugs. Withania somnifera leaves, roots, and fruits have been shown to contain withanolide and other phytomolecules that are efficient anti-protozoal agents against Malaria, Trypanosoma, and Leishmania spp. Through a review of previously reported compounds from W. somnifera-afforded 35 alkaloid, phenolic, and steroid compounds and 132 withanolides/derivatives, typical of the Withania genus. These compounds were subjected to molecular docking screening and molecular dynamics against L. major NMT. Calycopteretin-3-rutinoside and withanoside IX showed the highest affinity and binding stability to L. major NMT, implying that these compounds could be used as antileishmanial drugs and/or as a scaffold for the design of related parasite NMT inhibitors with markedly enhanced binding affinity.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia
- Correspondence: or ; Tel.: +966-557398835
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
- Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
8
|
Production and Structural Diversification of Withanolides by Aeroponic Cultivation of Plants of Solanaceae: Cytotoxic and Other Withanolides from Aeroponically Grown Physalis coztomatl. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030909. [PMID: 35164184 PMCID: PMC8838488 DOI: 10.3390/molecules27030909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022]
Abstract
Withanolides constitute one of the most interesting classes of natural products due to their diversity of structures and biological activities. Our recent studies on withanolides obtained from plants of Solanaceae including Withania somnifera and a number of Physalis species grown under environmentally controlled aeroponic conditions suggested that this technique is a convenient, reproducible, and superior method for their production and structural diversification. Investigation of aeroponically grown Physalis coztomatl afforded 29 withanolides compared to a total of 13 obtained previously from the wild-crafted plant and included 12 new withanolides, physacoztolides I−M (9–13), 15α-acetoxy-28-hydroxyphysachenolide C (14), 28-oxophysachenolide C (15), and 28-hydroxyphysachenolide C (16), 5α-chloro-6β-hydroxy-5,6-dihydrophysachenolide D (17), 15α-acetoxy-5α-chloro-6β-hydroxy-5,6-dihydrophysachenolide D (18), 28-hydroxy-5α-chloro-6β-hydroxy-5,6-dihydrophysachenolide D (19), physachenolide A-5-methyl ether (20), and 17 known withanolides 3–5, 8, and 21–33. The structures of 9–20 were elucidated by the analysis of their spectroscopic data and the known withanolides 3–5, 8, and 21–33 were identified by comparison of their spectroscopic data with those reported. Evaluation against a panel of prostate cancer (LNCaP, VCaP, DU-145, and PC-3) and renal carcinoma (ACHN) cell lines, and normal human foreskin fibroblast (WI-38) cells revealed that 8, 13, 15, and 17–19 had potent and selective activity for prostate cancer cell lines. Facile conversion of the 5,6-chlorohydrin 17 to its 5,6-epoxide 8 in cell culture medium used for the bioassay suggested that the cytotoxic activities observed for 17–19 may be due to in situ formation of their corresponding 5β,6β-epoxides, 8, 27, and 28.
Collapse
|
9
|
Recent Advances in the Chemistry and Therapeutic Evaluation of Naturally Occurring and Synthetic Withanolides. Molecules 2022; 27:molecules27030886. [PMID: 35164150 PMCID: PMC8840339 DOI: 10.3390/molecules27030886] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products are a major source of biologically active compounds that make promising lead molecules for developing efficacious drug-like molecules. Natural withanolides are found in many flora and fauna, including plants, algae, and corals, that traditionally have shown multiple health benefits and are known for their anti-cancer, anti-inflammatory, anti-bacterial, anti-leishmaniasis, and many other medicinal properties. Structures of these withanolides possess a few reactive sites that can be exploited to design and synthesize more potent and safe analogs. In this review, we discuss the literature evidence related to the medicinal implications, particularly anticancer properties of natural withanolides and their synthetic analogs, and provide perspectives on the translational potential of these promising compounds.
Collapse
|
10
|
Paul S, Chakraborty S, Anand U, Dey S, Nandy S, Ghorai M, Saha SC, Patil MT, Kandimalla R, Proćków J, Dey A. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021; 143:112175. [PMID: 34649336 DOI: 10.1016/j.biopha.2021.112175] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Withania somnifera (L.) Dunal (Solanaceae) has been used as a traditional Rasayana herb for a long time. Traditional uses of this plant indicate its ameliorative properties against a plethora of human medical conditions, viz. hypertension, stress, diabetes, asthma, cancer etc. This review presents a comprehensive summary of the geographical distribution, traditional use, phytochemistry, and pharmacological activities of W. somnifera and its active constituents. In addition, it presents a detailed account of its presence as an active constituent in many commercial preparations with curative properties and health benefits. Clinical studies and toxicological considerations of its extracts and constituents are also elucidated. Comparative analysis of relevant in-vitro, in-vivo, and clinical investigations indicated potent bioactivity of W. somnifera extracts and phytochemicals as anti-cancer, anti-inflammatory, apoptotic, immunomodulatory, antimicrobial, anti-diabetic, hepatoprotective, hypoglycaemic, hypolipidemic, cardio-protective and spermatogenic agents. W. somnifera was found to be especially active against many neurological and psychological conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, sleep deprivation, amyotrophic lateral sclerosis, attention deficit hyperactivity disorder, bipolar disorder, anxiety, depression, schizophrenia and obsessive-compulsive disorder. The probable mechanism of action that imparts the pharmacological potential has also been explored. However, in-depth studies are needed on the clinical use of W. somnifera against human diseases. Besides, detailed toxicological analysis is also to be performed for its safe and efficacious use in preclinical and clinical studies and as a health-promoting herb.
Collapse
Affiliation(s)
- Subhabrata Paul
- School of Biotechnology, Presidency University (2nd Campus), Kolkata 700156, West Bengal, India
| | - Shreya Chakraborty
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Swarnali Dey
- Department of Botany, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip 741302, West Bengal, India
| | - Manoj Tukaram Patil
- Post Graduate Department of Botany, SNJB's KKHA Arts, SMGL Commerce and SPHJ Science College (Affiliated to Savitribai Phule Pune University), Chandwad, Nashik 423101, Maharashtra, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Department of Biochemistry, Kakatiya Medical College, Warangal-506007, Telangana, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
11
|
Wang J, Zhang H, Kaul A, Li K, Priyandoko D, Kaul SC, Wadhwa R. Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules 2021; 11:biom11101454. [PMID: 34680087 PMCID: PMC8533065 DOI: 10.3390/biom11101454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Withania somnifera (Ashwagandha) is used in Indian traditional medicine, Ayurveda, and is believed to have a variety of health-promoting effects. The molecular mechanisms and pathways underlying these effects have not yet been sufficiently explored. In this study, we investigated the effect of Ashwagandha extracts and their major withanolides (withaferin A and withanone) on muscle cell differentiation using C2C12 myoblasts. We found that withaferin A and withanone and Ashwagandha extracts possessing different ratios of these active ingredients have different effects on the differentiation of C2C12. Withanone and withanone-rich extracts caused stronger differentiation of myoblasts to myotubes, deaggregation of heat- and metal-stress-induced aggregated proteins, and activation of hypoxia and autophagy pathways. Of note, the Parkinson’s disease model of Drosophila that possess a neuromuscular disorder showed improvement in their flight and climbing activity, suggesting the potential of Ashwagandha withanolides for the management of muscle repair and activity.
Collapse
Affiliation(s)
- Jia Wang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Huayue Zhang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Ashish Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Kejuan Li
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- College of Life Science, Sichuan Normal University, Chengdu 610066, China
| | - Didik Priyandoko
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Department of Biology, Universitas Pendidikan Indonesia, Bangdung 40154, Indonesia
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Correspondence:
| |
Collapse
|
12
|
Freitas Misakyan MF, Wijeratne EMK, Issa ME, Xu YM, Monteillier A, Gunatilaka AAL, Cuendet M. Structure-Activity Relationships of Withanolides as Antiproliferative Agents for Multiple Myeloma: Comparison of Activity in 2D Models and a 3D Coculture Model. JOURNAL OF NATURAL PRODUCTS 2021; 84:2321-2335. [PMID: 34445874 DOI: 10.1021/acs.jnatprod.1c00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a hematological cancer in which relapse and resistance are highly frequent. Therefore, alternatives to conventional treatments are necessary. Withaferin A, a withanolide isolated from Withania somnifera, has previously shown promising activity against various MM models. In the present study, structure-activity relationships (SARs) were evaluated using 56 withanolides. The antiproliferative activity was assessed in three MM cell lines and in a 3D MM coculture model to understand the in vitro activity of compounds in models of various complexity. While the results obtained in 2D allowed a quick and simple evaluation of cytotoxicity used for a first selection, the use of the 3D MM coculture model allowed filtering compounds that perform better in a more complex setup. This study shows the importance of the last model as a bridge between 2D and in vivo studies to select the most active compounds and ultimately lead to a reduction of animal use for more sustained in vivo studies. NF-κB inhibition was determined to evaluate if this could be one of the targeted pathways. The most active compounds, withanolide D (2) and 38, should be further evaluated in vivo.
Collapse
Affiliation(s)
- Micaela F Freitas Misakyan
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706, United States
| | - Mark E Issa
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706, United States
| | - Aymeric Monteillier
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706, United States
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Centre in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
13
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
14
|
Singh N, Yadav SS, Rao AS, Nandal A, Kumar S, Ganaie SA, Narasihman B. Review on anticancerous therapeutic potential of Withania somnifera (L.) Dunal. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113704. [PMID: 33359918 DOI: 10.1016/j.jep.2020.113704] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera, commonly known as Ashwagandha, is an important medicinal herb belonging to family Solanaceae. It is widely used in folkloric and Ayurvedic medicines since antiquity. Traditionally, the plant is highly practiced throughout the globe as immunomodulator, anti-inflammatory, anti-stress, anti-parkinson, anti-alzheimer, cardio protective, neural and physical health enhancer, neurodefensive, anti-diabetic, aphrodisiac, memory boosting etc. The plant is also effective in combating various types of cancer and other related problems of colon, mammary, lung, prostate, skin, blood, liver and kidney. AIM OF THIS REVIEW The present review represents the critical assessment of the literature available on the anticancerous role of W. somnifera. The present study throws light on its diverse chemical compounds and the possible mechanisms of action involved. This review also suggests further research strategies to harness the therapeutic potential of this plant. MATERIALS AND METHODS The present review is the outcome of a systematic search of scientific literature about 'Withania somnifera and its role in cancer prevention'. The scientific databases viz. Google Scholar, Science Direct, Pubmed and Web of Science were searched from 2001 to 2019. Textbooks, magazines and newspapers were also consulted. This review summarizes all the published literature about its therapeutic potential for the treatment of different types of cancers. RESULTS W. somnifera has been widely used in traditional and ayurvedic medicines for treatment of numerous problems related to health and vitality. The plant is a reservoir of diverse phytoconstituents like alkaloids, steroids, flavonoids, phenolics, nitrogen containing compounds and trace elements. Withanolides are the major alkaloids which renders its anticancer potential due to its highly oxygenated nature. The plant is highly effective in combating various types of cancers viz. colon, mammary, lung, prostate, skin, blood, liver and kidney. Previous studies depict that this plant is more effective against breast cancer followed by colon, lung, prostate and blood cancer. Furthermore, from different clinical studies it has been observed that the active constituents of the plant like withaferin-A, withanolide-D have least toxic effects. CONCLUSION The present review confirms the various medicinal values of W. somnifera without any significant side effects. Withaferin-A (WA) and Withanolides are its most promising anticancer compounds that play a major role in apoptosis induction. Keeping in mind the anticancerous potential of this plant, it is suggested that this plant may further be investigated and more clinical studies can be performed.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - S S Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India.
| | - Amrender Singh Rao
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Abhishek Nandal
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Sanjiv Kumar
- Department of Pharmaceutical Sciences, Ch. Bansi Lal University, Bhiwani, Haryana, India
| | - S A Ganaie
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - B Narasihman
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| |
Collapse
|
15
|
Tetali SD, Acharya S, Ankari AB, Nanakram V, Raghavendra AS. Metabolomics of Withania somnifera (L.) Dunal: Advances and applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113469. [PMID: 33075439 DOI: 10.1016/j.jep.2020.113469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/30/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera L. (Solanaceae), commonly known as Ashwagandha or Indian ginseng, is used in Ayurveda (Indian system of traditional medicine) for vitality, cardio-protection and treating other ailments, such as neurological disorders, gout, and skin diseases. AIM OF THE REVIEW We present a critical overview of the information on the metabolomics of W. somnifera and highlight the significance of the technique for use in quality control of medicinal products. We have also pointed out the use of metabolomics to distinguish varieties and to identify best methods of cultivation, collection, as well as extraction. MATERIAL AND METHODS The relevant information on medicinal value, phytochemical studies, metabolomics of W. somnifera, and their applications were collected from a rigorous electronic search through scientific databases, including Scopus, PubMed, Web of Science and Google Scholar. Structures of selected metabolites were from the PubChem. RESULTS The pharmacological activities of W. somnifera were well documented. Roots are the most important parts of the plant used in Ayurvedic preparations. Stem and leaves also have a rich content of bioactive phytochemicals like steroidal lactones, alkaloids, and phenolic acids. Metabolomic studies revealed that metabolite profiles of W. somnifera depended on plant parts collected and the developmental stage of the plant, besides the season of sample collection and geographical location. The levels of withanolides were variable, depending on the morpho/chemotypes within the species of W. somnifera. Although studies on W. somnifera were initiated several years ago, the complexity of secondary metabolites was not realized due to the lack of adequate and fool-proof technology for phytochemical fingerprinting. Sophistications in chromatography coupled to mass spectrometry facilitated the discovery of several new metabolites. Mutually complementary techniques like LC-MS, GC-MS, HPTLC, and NMR were employed to obtain a comprehensive metabolomic profile. Subsequent data analyses and searches against spectral databases enabled the annotation of signals and dereplication of metabolites in several numbers without isolating them individually. CONCLUSIONS The present review provides a critical update of metabolomic data and the diverse application of the technique. The identification of parameters for standardization and quality control of herbal products is essential to facilitate mandatory checks for the purity of formulation. Such studies would enable us to identify the best geographical location of plants and the time of collection. We recommend the use of metabolomic analysis of herbal products based on W. somnifera for quality control as well as the discovery of novel bioactive compounds.
Collapse
Affiliation(s)
- Sarada D Tetali
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India.
| | - Satyabrata Acharya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Aditya B Ankari
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Vadthyavath Nanakram
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, Telangana State, India.
| |
Collapse
|
16
|
Xu GB, Xu YM, Wijeratne EMK, Ranjbar F, Liu MX, Gunatilaka AAL. Cytotoxic Physalins from Aeroponically Grown Physalis acutifolia. JOURNAL OF NATURAL PRODUCTS 2021; 84:187-194. [PMID: 33586438 DOI: 10.1021/acs.jnatprod.0c00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aeroponically grown Physalis acutifolia afforded five new and six known withanolides including 10 physalins. The structures of the new withanolides, acutifolactone (1), 5β,6β-epoxyphysalin C (2), 5α-chloro-6β-hydroxyphysalin C (3), and an inseparable mixture of 5β,6β-epoxy-2,3-dihydrophysalin F-3β-O-sulfate (4) and 5β,6β-epoxy-2,3-dihydrophysalin C-3β-O-sulfate (5), were elucidated by analysis of their spectroscopic data and chemical interconversions. The known withanolides were identified as physalins B (6), D (7), F (8), H (9), I (10), and U (11) by comparison of their spectroscopic data with those reported. Evaluation of 1-11 and the derivatives, 13 and 13a, obtained from 4 and 5 against a panel of four human cancer cell lines [NCI-H460 (non-small-cell lung), SF-268 (CNS glioma), PC-3 (prostate adenocarcinoma), and MCF-7 (breast adenocarcinoma)] and normal human lung fibroblast (WI-38) cells revealed that physalins 2, 3, 8, and 9 exhibited selective cytotoxic activity to at least one of the cancer cell lines tested compared to the normal cells and that 7, 10, and 11 were inactive up to a concentration of 10.0 μM. These data provided some preliminary structure-activity relationships and suggested that the mechanism of cytotoxic activity of physalins may differ from other classes of withanolides.
Collapse
Affiliation(s)
- Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, People's Republic of China
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Fatemeh Ranjbar
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Manping X Liu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
17
|
Saleem S, Muhammad G, Hussain MA, Altaf M, Bukhari SNA. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1501-1526. [PMID: 33489024 PMCID: PMC7811807 DOI: 10.22038/ijbms.2020.44254.10378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/21/2020] [Indexed: 12/11/2022]
Abstract
Withania somnifera L. is a multipurpose medicinal plant of family Solanaceae occurring abundantly in sub-tropical regions of the world. The folk healers used the plant to treat several diseases such as fever, cancer, asthma, diabetes, ulcer, hepatitis, eyesores, arthritis, heart problems, and hemorrhoids. The plant is famous for the anti-cancerous activity, low back pain treatment, and muscle strengthening, which may be attributed to the withanolide alkaloids. W. somnifera is also rich in numerous valued secondary metabolites such as steroids, alkaloids, flavonoids, phenolics, saponins, and glycosides. A wide range of preclinical trials such as cardioprotective, anticancer, antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, anti-depressant, and hypoglycemic have been attributed to various parts of the plant. Different parts of the plant have also been evaluated for the clinical trials such as male infertility, obsessive-compulsive disorder, antianxiety, bone and muscle strengthening potential, hypolipidemic, and antidiabetic. This review focuses on folk medicinal uses, phytochemistry, pharmacological, and nutrapharmaceutical potential of the versatile plant.
Collapse
Affiliation(s)
- Sumaira Saleem
- Department of Chemistry, GC University Lahore, Lahore 54000 Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, GC University Lahore, Lahore 54000 Pakistan
| | | | - Muhammad Altaf
- Department of Chemistry, GC University Lahore, Lahore 54000 Pakistan
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka2014, Saudi Arabia
| |
Collapse
|
18
|
Gracilosulfates A-G, Monosulfated Polyoxygenated Steroids from the Marine Sponge Haliclona gracilis. Mar Drugs 2020; 18:md18090454. [PMID: 32872590 PMCID: PMC7551063 DOI: 10.3390/md18090454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Seven new polyoxygenated steroids belonging to a new structural group of sponge steroids, gracilosulfates A-G (1-7), possessing 3β-O-sulfonato, 5β,6β epoxy (or 5(6)-dehydro), and 4β,23-dihydroxy substitution patterns as a common structural motif, were isolated from the marine sponge Haliclona gracilis. Their structures were determined by NMR and MS methods. The compounds 1, 2, 4, 6, and 7 inhibited the expression of prostate-specific antigen (PSA) in 22Rv1 tumor cells.
Collapse
|
19
|
Lacombe J, Cretignier T, Meli L, Wijeratne EMK, Veuthey JL, Cuendet M, Gunatilaka AAL, Zenhausern F. Withanolide D Enhances Radiosensitivity of Human Cancer Cells by Inhibiting DNA Damage Non-homologous End Joining Repair Pathway. Front Oncol 2020; 9:1468. [PMID: 31970089 PMCID: PMC6960174 DOI: 10.3389/fonc.2019.01468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/09/2019] [Indexed: 01/09/2023] Open
Abstract
Along with surgery and chemotherapy, radiation therapy (RT) is an important modality in cancer treatment, and the development of radiosensitizers is a current key challenge in radiobiology to maximize RT efficiency. In this study, the radiosensitizing effect of a natural compound from the withanolide family, withanolide D (WD), was assessed. Clonogenic assays showed that a 1 h WD pretreatment (0.7 μM) before irradiation decreased the surviving fraction of several cancer cell lines. To determine the mechanisms by which WD achieved its radiosensitizing effect, we then assessed whether WD could promote radiation-induced DNA damages and inhibit double-strand breaks (DSBs) repair in SKOV3 cells. Comet and γH2AX/53BP1 foci formation assays confirmed that DSBs were higher between 1 and 24 h after 2 Gy-irradiation in WD-treated cells compared to vehicle-treated cells, suggesting that WD induced the persistence of radiation-induced DNA damages. Immunoblotting was then performed to investigate protein expression involved in DNA repair pathways. Interestingly, DNA-PKc, ATM, and their phosphorylated forms appeared to be inhibited 24 h post-irradiation in WD-treated samples. XRCC4 expression was also down-regulated while RAD51 expression did not change compared to vehicle-treated cells suggesting that only non-homologous end joining (NHEJ) pathways was inhibited by WD. Mitotic catastrophe (MC) was then investigated in SKOV3, a p53-deficient cell line, to assess the consequence of such inhibition. MC was induced after irradiation and was predominant in WD-treated samples as shown by the few numbers of cells pursuing into anaphase and the increased amount of bipolar metaphasic cells. Together, these data demonstrated that WD could be a promising radiosensitizer candidate for RT by inhibiting NHEJ pathway and promoting MC. Additional studies are required to better understand its efficiency and mechanism of action in more relevant clinical models.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States
| | - Titouan Cretignier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Laetitia Meli
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources & the Environment, College of Agriculture & Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources & the Environment, College of Agriculture & Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Profiling withanolide A for therapeutic targets in neurodegenerative diseases. Bioorg Med Chem 2019; 27:2508-2520. [DOI: 10.1016/j.bmc.2019.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/22/2022]
|
22
|
Casero CN, Novillo JNG, García ME, Oberti JC, Nicotra VE, Peñéñory AB, Bisogno FR. Mild Thio-Diversification of Bioactive Natural Products. Withaferin A: A Case study. ChemistrySelect 2017. [DOI: 10.1002/slct.201701870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C. N. Casero
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET); Universidad Nacional de Córdoba; Medina Allende y Haya de la Torre, Edificio de Ciencias 2, Ciudad Universitaria 5000 Córdoba Argentina
| | - J. N. Garay Novillo
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Medina Allende y Haya de la Torre, Edificio de Ciencias 2, Ciudad Universitaria 5000 Córdoba Argentina
| | - M. E. García
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET); Universidad Nacional de Córdoba; Medina Allende y Haya de la Torre, Edificio de Ciencias 2, Ciudad Universitaria 5000 Córdoba Argentina
| | - J. C. Oberti
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET); Universidad Nacional de Córdoba; Medina Allende y Haya de la Torre, Edificio de Ciencias 2, Ciudad Universitaria 5000 Córdoba Argentina
| | - V. E. Nicotra
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET); Universidad Nacional de Córdoba; Medina Allende y Haya de la Torre, Edificio de Ciencias 2, Ciudad Universitaria 5000 Córdoba Argentina
| | - A. B. Peñéñory
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Instituto de Investigaciones en Físico-Química Córdoba (INFIQC-CONICET); Universidad Nacional de Córdoba; Medina Allende y Haya de la Torre, Edificio de Ciencias 2, Ciudad Universitaria 5000 Córdoba Argentina
| | - F. R. Bisogno
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Instituto de Investigaciones en Físico-Química Córdoba (INFIQC-CONICET); Universidad Nacional de Córdoba; Medina Allende y Haya de la Torre, Edificio de Ciencias 2, Ciudad Universitaria 5000 Córdoba Argentina
| |
Collapse
|
23
|
Issa ME, Wijeratne EMK, Gunatilaka AAL, Cuendet M. Withanolide D Exhibits Similar Cytostatic Effect in Drug-Resistant and Drug-Sensitive Multiple Myeloma Cells. Front Pharmacol 2017; 8:610. [PMID: 28943850 PMCID: PMC5596074 DOI: 10.3389/fphar.2017.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/22/2017] [Indexed: 11/13/2022] Open
Abstract
In spite of recent therapeutic advances, multiple myeloma (MM) remains a malignancy with very low curability. This has been partly attributed to the existence of a drug-resistant subpopulation known as cancer stem cells (CSCs). MM-CSCs are equipped with the necessary tools that render them highly resistant to virtually all conventional therapies. In this study, the growth inhibitory effects of withanolide D (WND), a steroidal lactone isolated from Withania somnifera, on drug-sensitive tumoral plasma cells and drug-resistant MM cells have been investigated. In MTT/XTT assays, WND exhibited similar cytostatic effects between drug-resistant and drug-sensitive cell lines in the nM range. WND also induced cell death and apoptosis in MM-CSCs and RPMI 8226 cells, as examined by the calcein/ethidium homodimer and annexin V/propidium iodide stainings, respectively. To determine whether P-glycoprotein (P-gp) efflux affected the cytostatic activity of WND, P-gp was inhibited with verapamil and results indicated that the WND cytostatic effect in MM-CSCs was independent of P-gp efflux. Furthermore, WND did not increase the accumulation of the fluorescent P-gp substrate rhodamine 123 in MM-CSCs, suggesting that WND may not inhibit P-gp at the tested relevant doses. Therefore, the WND-induced cytostatic effect may be independent of P-gp efflux. These findings warrant further investigation of WND in MM-CSC animal models.
Collapse
Affiliation(s)
- Mark E Issa
- School of Pharmaceutical Sciences, University of Geneva, University of LausanneGeneva, Switzerland
| | - E M K Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, TucsonAZ, United States
| | - A A L Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, TucsonAZ, United States
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, University of LausanneGeneva, Switzerland
| |
Collapse
|
24
|
Xu YM, Brooks AD, Wijeratne EMK, Henrich CJ, Tewary P, Sayers TJ, Gunatilaka AAL. 17β-Hydroxywithanolides as Sensitizers of Renal Carcinoma Cells to Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) Mediated Apoptosis: Structure-Activity Relationships. J Med Chem 2017; 60:3039-3051. [PMID: 28257574 DOI: 10.1021/acs.jmedchem.7b00069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Renal cell carcinoma (RCC) is a cancer with poor prognosis, and the 5-year survival rate of patients with metastatic RCC is 5-10%. Consequently, treatment of metastatic RCC represents an unmet clinical need. Screening of a 50 000-member library of natural and synthetic compounds for sensitizers of RCC cells to TRAIL-mediated apoptosis led to identification of the 17β-hydroxywithanolide (17-BHW), withanolide E (1), as a promising lead. To explore structure-activity relationships, we obtained natural and semisynthetic withanolides 1, 2a, 2c, and 3-36 and compared their ability to sensitize TRAIL-mediated apoptosis in a panel of renal carcinoma cells. Our findings revealed that 17-BHWs with a α-oriented side chain are superior to known TRAIL-sensitizing withanolides belonging to withaferin A class with a β-oriented side chain and demonstrated that the 17-BHW scaffold can be modified to enhance sensitization of RCCs to TRAIL-mediated apoptosis, thereby assisting development of natural-product-inspired drugs to treat metastatic RCC.
Collapse
Affiliation(s)
- Ya-Ming Xu
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Alan D Brooks
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States.,Cancer and Inflammation Program, National Cancer Institute-Frederick , Frederick, Maryland 21702, United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Curtis J Henrich
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States.,Molecular Targets Laboratory, National Cancer Institute-Frederick , Frederick, Maryland 21702, United States
| | - Poonam Tewary
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States.,Cancer and Inflammation Program, National Cancer Institute-Frederick , Frederick, Maryland 21702, United States
| | - Thomas J Sayers
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research , Frederick, Maryland 21702, United States.,Cancer and Inflammation Program, National Cancer Institute-Frederick , Frederick, Maryland 21702, United States
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
25
|
Chandran U, Patwardhan B. Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:250-256. [PMID: 27487266 DOI: 10.1016/j.jep.2016.07.080] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 07/23/2016] [Accepted: 07/30/2016] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal (Ashwagandha, WS) is one of the extensively explored Ayurvedic botanicals. Several properties including immunomodulation, anti-cancer and neuro-protection of the botanical have been reported. Even though, in indigenous medicine, WS is well known for its immunomodulatory activity, the molecular mechanism of immunomodulation has not been elucidated. AIM OF THE STUDY This study aimed the evaluation of the immunomodulatory effect of WS using network ethnopharmacology technique to elucidate the in silico molecular mechanism. MATERIALS AND METHODS Databases- DPED, UNPD, PubChem, Binding DB, ChEMBL, KEGG and STRING were used to gather information to develop the networks. The networks were constructed using Cytoscape 3.2.1. Data analysis was performed with the help of Excel pivot table and Cytoscape network analyzer tool. RESULTS Investigation for WS immune modulation mechanism identified five bioactives that are capable of regulating 15 immune system pathways through 16 target proteins by bioactive-target and protein-protein interactions. The study also unveils the potential of withanolide-phytosterol combination to achieve effective immunomodulation and seven novel bioactive-immune target combinations. CONCLUSION The study elucidated an in silico molecular mechanism of immunomodulation of WS. It unveils the potential of withanolide-phytosterol combination to achieve a better immunomodulation. Experimental validation of the network findings would aid in understanding the rationale behind WS immunomodulation as well as aid in bioactive formulation based drug discovery.
Collapse
Affiliation(s)
- Uma Chandran
- Bioprospecting Laboratory, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune 411 007, India
| | - Bhushan Patwardhan
- Bioprospecting Laboratory, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune 411 007, India.
| |
Collapse
|
26
|
Xu YM, Bunting DP, Liu MX, Bandaranayake HA, Gunatilaka AAL. 17β-Hydroxy-18-acetoxywithanolides from Aeroponically Grown Physalis crassifolia and Their Potent and Selective Cytotoxicity for Prostate Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2016; 79:821-830. [PMID: 27071003 DOI: 10.1021/acs.jnatprod.5b00911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When cultivated under aeroponic growth conditions, Physalis crassifolia produced 11 new withanolides (1-11) and seven known withanolides (12-18) including those obtained from the wild-crafted plant. The structures of the new withanolides were elucidated by the application of spectroscopic techniques, and the known withanolides were identified by comparison of their spectroscopic data with those reported. Withanolides 1-11 and 16 were evaluated for their potential anticancer activity using five tumor cell lines. Of these, the 17β-hydroxy-18-acetoxywithanolides 1, 2, 6, 7, and 16 showed potent antiproliferative activity, with some having selectivity for prostate adenocarcinoma (LNCaP and PC-3M) compared to the breast adenocarcinoma (MCF-7), non-small-cell lung cancer (NCI-H460), and CNS glioma (SF-268) cell lines used. The cytotoxicity data obtained for 12-15, 17, and 19 have provided additional structure-activity relationship information for the 17β-hydroxy-18-acetoxywithanolides.
Collapse
Affiliation(s)
- Ya-ming Xu
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Daniel P Bunting
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Manping X Liu
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Hema A Bandaranayake
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 E. Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
27
|
Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell Mol Life Sci 2015; 72:4445-60. [PMID: 26306935 PMCID: PMC11113996 DOI: 10.1007/s00018-015-2012-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Withania somnifera, also called 'Indian ginseng', is an important medicinal plant of the Indian subcontinent. It is widely used, singly or in combination, with other herbs against many ailments in Indian Systems of Medicine since time immemorial. Withania somnifera contains a spectrum of diverse phytochemicals enabling it to have a broad range of biological implications. In preclinical studies, it has shown anti-microbial, anti-inflammatory, anti-tumor, anti-stress, neuroprotective, cardioprotective, and anti-diabetic properties. Additionally, it has demonstrated the ability to reduce reactive oxygen species, modulate mitochondrial function, regulate apoptosis, and reduce inflammation and enhance endothelial function. In view of these pharmacologic properties, W. somnifera is a potential drug candidate to treat various clinical conditions, particularly related to the nervous system. In this review, we summarize the pharmacologic characteristics and discuss the mechanisms of action and potential therapeutic applications of the plant and its active constituents.
Collapse
Affiliation(s)
- Nawab John Dar
- Neuropharmacology Laboratory, Indian Institute of Integrative Medicine-CSIR, Sanat Nagar, Srinagar, 190005, India
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, Jammu and Kashmir, India
| | - Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, Jammu and Kashmir, India
| | - Muzamil Ahmad
- Neuropharmacology Laboratory, Indian Institute of Integrative Medicine-CSIR, Sanat Nagar, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Indian Institute of Integrative Medicine-CSIR, Canal Road, Jammu, 180001, Jammu and Kashmir, India.
| |
Collapse
|
28
|
Xu YM, Liu MX, Grunow N, Wijeratne EMK, Paine-Murrieta G, Felder S, Kris RM, Gunatilaka AAL. Discovery of Potent 17β-Hydroxywithanolides for Castration-Resistant Prostate Cancer by High-Throughput Screening of a Natural Products Library for Androgen-Induced Gene Expression Inhibitors. J Med Chem 2015; 58:6984-93. [PMID: 26305181 DOI: 10.1021/acs.jmedchem.5b00867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prostate cancer (PC) is the second most prevalent cancer among men in Western societies, and those who develop metastatic castration-resistant PC (CRPC) invariably succumb to the disease. The need for effective treatments for CRPC is a pressing concern, especially due to limited durable responses with currently employed therapies. Here, we demonstrate the successful application of a high-throughput gene-expression profiling assay directly targeting genes of the androgen receptor pathway to screen a natural products library leading to the identification of 17β-hydroxywithanolides 1-5, of which physachenolide D (5) exhibited potent and selective in vitro activity against two PC cell lines, LNCaP and PC-3. Epoxidation of 5 afforded physachenolide C (6) with higher potency and stability. Structure-activity relationships for withanolides as potential anti-PC agents are presented together with in vivo efficacy studies on compound 6, suggesting that 17β-hydroxywithanolides are promising candidates for further development as CRPC therapeutics.
Collapse
Affiliation(s)
- Ya-Ming Xu
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Manping X Liu
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Nathan Grunow
- NuvoGen Research LLC , P.O. Box 64326, Tucson, Arizona 85728, United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Gillian Paine-Murrieta
- University of Arizona Cancer Center , 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| | - Stephen Felder
- NuvoGen Research LLC , P.O. Box 64326, Tucson, Arizona 85728, United States
| | - Richard M Kris
- NuvoGen Research LLC , P.O. Box 64326, Tucson, Arizona 85728, United States
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona , 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
29
|
Yoneyama T, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Hedgehog inhibitors from Withania somnifera. Bioorg Med Chem Lett 2015; 25:3541-4. [PMID: 26169123 DOI: 10.1016/j.bmcl.2015.06.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/19/2022]
Abstract
The hedgehog (Hh) signaling pathway performs an important role in embryonic development and in cellular proliferation and differentiation. However, aberrant activation of the Hh signaling pathway is associated with tumorigenesis. Hh signal inhibition was evaluated using a cell-based assay system that targets GLI1-mediated transcription. Activity-guided isolation of the Withania somnifera MeOH extract led to the isolation of six compounds: withaferin A (1) and its derivatives (2-6). Compounds 1 and 2 showed strong inhibition of Hh/GLI1-mediated transcriptional activity with IC50 values of 0.5 and 0.6 μM, respectively. Compounds 1, 2, 3, and 6 were cytotoxic toward human pancreatic (PANC-1), prostate (DU145) and breast (MCF7) cancer cells. Furthermore, 1 also inhibited GLI1-DNA complex formation in EMSA.
Collapse
Affiliation(s)
- Tatsuro Yoneyama
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Samir K Sadhu
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
30
|
Bashyal BP, Wellensiek BP, Ramakrishnan R, Faeth SH, Ahmad N, Gunatilaka AAL. Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorg Med Chem 2014; 22:6112-6. [PMID: 25260957 PMCID: PMC4252765 DOI: 10.1016/j.bmc.2014.08.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/17/2014] [Accepted: 08/27/2014] [Indexed: 12/17/2022]
Abstract
Screening of a small library of natural product extracts derived from endophytic fungi of the Sonoran desert plants in a cell-based anti-HIV assay involving T-cells infected with the HIV-1 virus identified the EtOAc extract of a fermentation broth of Alternaria tenuissima QUE1Se inhabiting the stem tissue of Quercus emoryi as a promising candidate for further investigation. Bioactivity-guided fractionation of this extract led to the isolation and identification of two new metabolites, altertoxins V (1) and VI (2) together with the known compounds, altertoxins I (3), II (4), and III (5). The structures of 1 and 2 were determined by detailed spectroscopic analysis and those of 3-5 were established by comparison with reported data. When tested in our cell-based assay at concentrations insignificantly toxic to T-cells, altertoxins V (1), I (3), II (4), and III (5) completely inhibited replication of the HIV-1 virus at concentrations of 0.50, 2.20, 0.30, and 1.50 μM, respectively. Our findings suggest that the epoxyperylene structural scaffold in altertoxins may be manipulated to produce potent anti-HIV therapeutics.
Collapse
Affiliation(s)
- Bharat P Bashyal
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706, United States
| | - Brian P Wellensiek
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85724, United States; Biomedical Sciences Program, College of Health Sciences, Midwestern University, Glendale, AZ 85308, United States
| | - Rajesh Ramakrishnan
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Stanley H Faeth
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85287, United States; Department of Biology, University of North Carolina-Greensboro, Greensboro, NC 27402, United States
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706, United States.
| |
Collapse
|
31
|
Wijeratne EMK, Espinosa-Artiles P, Gruener R, Gunatilaka AAL. Thielavialides A-E, nor-spiro-azaphilones, and a bis-spiro-azaphilone from Thielavia sp. PA0001, an endophytic fungus isolated from aeroponically grown Physalis alkekengi. JOURNAL OF NATURAL PRODUCTS 2014; 77:1467-1472. [PMID: 24882589 PMCID: PMC4076029 DOI: 10.1021/np500237h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Four new nor-spiro-azaphilones, thielavialides A-D (1- 4), a new bis-spiro-azaphilone, thielavialide E (5), together with pestafolide A (6), were isolated from the endophytic fungal strain, Thielavia sp. PA0001, occurring in the healthy leaf tissue of aeroponically grown Physalis alkekengi. The structures and relative configurations of 1-5 were established on the basis of their MS and NMR data. Possible biosynthetic pathways to thielavialides A-E (1- 5) from pestafolide A (6), some involving a Favorskii-like rearrangement, are proposed.
Collapse
|
32
|
Zhang H, Cao CM, Gallagher RJ, Timmermann BN. Antiproliferative withanolides from several solanaceous species. Nat Prod Res 2014; 28:1941-51. [PMID: 24871278 DOI: 10.1080/14786419.2014.919286] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To date, our work on solanaceous species (Datura wrightii, Jaborosa caulescens, Physalis hispida, Physalis longifolia, Vassobia breviflora and Withania somnifera) has resulted in the isolation of 65 withanolides, 31 of which were new, as well as the semi-synthesis of a further 30 withanolides. Structure identification and MTS assay-based antiproliferative evaluation of these 95 compounds revealed that a Δ(2)-1-oxo functionality in ring A, in conjunction with either a 5β,6β-epoxy or 5α-chloro-6β-hydroxy moiety in ring B, is the minimum structural requirement for withanolides to produce potent cytotoxic activity. Such structure-activity relationship analysis also revealed that oxygenation (the -OH or -OR groups) at C-4, 7, 11 and 12, as well as C-14 to C-28, did not contribute towards the observed antiproliferative activity. Herein, we present a complete overview of our work as it relates to the withanolides reported from 1965 to 2013.
Collapse
Affiliation(s)
- Huaping Zhang
- a Department of Medicinal Chemistry , School of Pharmacy, University of Kansas , Lawrence , KS 66045 , USA
| | | | | | | |
Collapse
|
33
|
Wijeratne EMK, Xu YM, Scherz-Shouval R, Marron MT, Rocha DD, Liu MX, Costa-Lotufo LV, Santagata S, Lindquist S, Whitesell L, Gunatilaka AAL. Structure–Activity Relationships for Withanolides as Inducers of the Cellular Heat-Shock Response. J Med Chem 2014; 57:2851-63. [DOI: 10.1021/jm401279n] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- E. M. Kithsiri Wijeratne
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-Ming Xu
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Ruth Scherz-Shouval
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Marilyn T. Marron
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Danilo D. Rocha
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
- Laboratório
de Oncologia Experimental, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, P.O. Box 3157, Fortaleza, Ceará 60430-270, Brazil
| | - Manping X. Liu
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| | - Leticia V. Costa-Lotufo
- Laboratório
de Oncologia Experimental, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, P.O. Box 3157, Fortaleza, Ceará 60430-270, Brazil
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, United States
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - A. A. Leslie Gunatilaka
- SW
Center for Natural Products Research and Commercialization, School
of Natural Resources and the Environment, College of Agriculture and
Life Sciences, University of Arizona, 250 East Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
34
|
Gu M, Yu Y, Gunaherath GMKB, Leslie Gunatilaka AA, Li D, Sun D. Structure-activity relationship (SAR) of withanolides to inhibit Hsp90 for its activity in pancreatic cancer cells. Invest New Drugs 2014; 32:68-74. [PMID: 23887853 PMCID: PMC3865103 DOI: 10.1007/s10637-013-9987-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/06/2013] [Indexed: 01/15/2023]
Abstract
Withaferin A (WA), a naturally occurring steroidal lactone, directly binds to Hsp90 and leads to the degradation of Hsp90 client protein. The purpose of this study is to investigate the structure activity relationship (SAR) of withanolides for their inhibition of Hsp90 and anti-proliferative activities in pancreatic cancer cells. In pancreatic cancer Panc-1 cells, withaferin A (WA) and its four analogues withanolide E (WE), 4-hydroxywithanolide E (HWE), 3-aziridinylwithaferin A (AzWA) inhibited cell proliferation with IC50 ranged from 1.0 to 2.8 μM. WA, WE, HWE, and AzWA also induced caspase-3 activity by 21-, 6-, 11- and 15-fold, respectively, in Panc-1 cells, while withaperuvin (WP) did not show any activity. Our data showed that WA, WE, HWE, and AzWA, but not WP, all directly bound to Hsp90 and induced Hsp90 aggregation,hence inhibited Hsp90 chaperone activity to induce degradation of Hsp90 client proteins Akt and Cdk4 through proteasome-dependent pathway in pancreatic cancer cells. However, only WA, HWE and AzWA disrupted Hsp90-Cdc37 complexes but not WE and WP. SAR study suggested that the C-5(6)-epoxy functional group contributes considerably for withanolide to bind to Hsp90, inhibit Hsp90 chaperone activity, and result in Hsp90 client protein depletion. Meanwhile, the hydroxyl group at C-4 of ring A may enhance withanolide to inhibit Hsp90 activity and disrupt Hsp90-Cdc37 interaction. These SAR data provide possible mechanisms of anti-proliferative action of withanolides.
Collapse
Affiliation(s)
- Mancang Gu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, ZJ 310013. P.R.China
| | - Yanke Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | - G. M. Kamal B Gunaherath
- SW Center for Natural Products Research & Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E Valencia Road, Tucson, AZ 85706-6800
| | - A. A. Leslie Gunatilaka
- SW Center for Natural Products Research & Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E Valencia Road, Tucson, AZ 85706-6800
| | - Dapeng Li
- Department of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, ZJ 310013. P.R.China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
El Bouzidi L, Mahiou-Leddet V, Bun SS, Larhsini M, Abbad A, Markouk M, Fathi M, Boudon M, Ollivier E, Bekkouche K. Cytotoxic withanolides from the leaves of Moroccan Withania frutescens. PHARMACEUTICAL BIOLOGY 2013; 51:1040-1046. [PMID: 23742647 DOI: 10.3109/13880209.2013.775162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Withania species are a rich source of interesting phytochemical substances (withanolides) which have shown several biological properties. OBJECTIVE To investigate the cytotoxic potential of Withania frutescens (L.) Pauquy (Solanaceae) leaf extracts and isolated active compounds against cultured tumor cell lines. MATERIALS AND METHODS The crude methanol extract of W. frutescens leaves was partitioned with dichloromethane, ethyl acetate and n-butanol. MeOH extract and its fractions were tested for their cytotoxic activity against cancer cell lines (HepG2 and HT29) using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Bioassay-guided fractionation was performed for the active CH₂Cl₂ fraction employing column chromatography and preparative high-performance liquid chromatography. Structural elucidation of the isolated active compounds was carried out mainly by 1D and 2D NMR and mass spectrometry. The compounds were then tested for their cytotoxic activity. RESULTS The CH₂Cl₂ fraction was the most active against HT29 cell line. The fractionation procedure resulted in the isolation of 4β,17α,27-trihydroxy-1-oxo-22-R-witha-2,5,24-trienolide (1), 5β,6β-epoxy-4β,17α,27-trihydroxy-1-oxowitha-2,24-dienolide (2) and 2,3-dihydroxywithaferin A-3β-O-sulfate (3). The latter exhibited the strongest cytotoxic activity against HT29 cancer cell lines (IC₅₀ of 1.78 ± 0.09 µM) which was comparable to that of 5-fluorouracil (5-FU) used as the positive antimitotic control. DISCUSSION AND CONCLUSION Compounds 2 and 3 were isolated from W. frutescens for the first time. Data obtained suggest that the sulfated steroidal lactone (3) can be considered as a compound with potential application in the new anticancer drugs development field.
Collapse
Affiliation(s)
- Laila El Bouzidi
- Laboratory of Biotechnology, Protection and Valorisation of Plant Resources, Phytochemistry and Pharmacology of Aromatic and Medicinal Plant Unit, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Khan S, Rammeloo AW, Heikkila JJ. Withaferin A induces proteasome inhibition, endoplasmic reticulum stress, the heat shock response and acquisition of thermotolerance. PLoS One 2012; 7:e50547. [PMID: 23226310 PMCID: PMC3511540 DOI: 10.1371/journal.pone.0050547] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/25/2012] [Indexed: 01/05/2023] Open
Abstract
In the present study, withaferin A (WA), a steroidal lactone with anti-inflammatory and anti-tumor properties, inhibited proteasome activity and induced endoplasmic reticulum (ER) and cytoplasmic HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Proteasomal inhibition by WA was indicated by an accumulation of ubiquitinated protein and a decrease in chymotrypsin-like activity. Additionally, immunoblot analysis revealed that treatment of cells with WA induced the accumulation of HSPs including ER chaperones, BiP and GRP94, as well as cytoplasmic/nuclear HSPs, HSP70 and HSP30. Furthermore, WA-induced an increase in the relative levels of the protein kinase, Akt, while the levels of actin were unchanged compared to control. Northern blot experiments determined that WA induced an accumulation in bip, hsp70 and hsp30 mRNA but not eIF-1α mRNA. Interestingly, WA acted synergistically with mild heat shock to enhance HSP70 and HSP30 accumulation to a greater extent than the sum of both stressors individually. This latter phenomenon was not observed with BiP or GRP94. Immunocytochemical analysis indicated that WA-induced BiP accumulation occurred mainly in the perinuclear region in a punctate pattern, while HSP30 accumulation occurred primarily in a granular pattern in the cytoplasm with some staining in the nucleus. Prolonged exposure to WA resulted in disorganization of the F-actin cytoskeleton as well as the production of relatively large HSP30 staining structures that co-localized with F-actin. Finally, prior exposure of cells to WA treatment, which induced the accumulation of HSPs conferred a state of thermal protection since it protected the F-actin cytoskeleton against a subsequent cytotoxic thermal challenge.
Collapse
Affiliation(s)
- Saad Khan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ashley W. Rammeloo
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John J. Heikkila
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
37
|
Dai C, Santagata S, Tang Z, Shi J, Cao J, Kwon H, Bronson RT, Whitesell L, Lindquist S. Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest 2012; 122:3742-54. [PMID: 22945628 DOI: 10.1172/jci62727] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/12/2012] [Indexed: 01/25/2023] Open
Abstract
Intrinsic stress response pathways are frequently mobilized within tumor cells. The mediators of these adaptive mechanisms and how they contribute to carcinogenesis remain poorly understood. A striking example is heat shock factor 1 (HSF1), master transcriptional regulator of the heat shock response. Surprisingly, we found that loss of the tumor suppressor gene neurofibromatosis type 1 (Nf1) increased HSF1 levels and triggered its activation in mouse embryonic fibroblasts. As a consequence, Nf1-/- cells acquired tolerance to proteotoxic stress. This activation of HSF1 depended on dysregulated MAPK signaling. HSF1, in turn, supported MAPK signaling. In mice, Hsf1 deficiency impeded NF1-associated carcinogenesis by attenuating oncogenic RAS/MAPK signaling. In cell lines from human malignant peripheral nerve sheath tumors (MPNSTs) driven by NF1 loss, HSF1 was overexpressed and activated, which was required for tumor cell viability. In surgical resections of human MPNSTs, HSF1 was overexpressed, translocated to the nucleus, and phosphorylated. These findings reveal a surprising biological consequence of NF1 deficiency: activation of HSF1 and ensuing addiction to this master regulator of the heat shock response. The loss of NF1 function engages an evolutionarily conserved cellular survival mechanism that ultimately impairs survival of the whole organism by facilitating carcinogenesis.
Collapse
Affiliation(s)
- Chengkai Dai
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Llanos GG, Araujo LM, Jiménez IA, Moujir LM, Bazzocchi IL. Withaferin A-related steroids from Withania aristata exhibit potent antiproliferative activity by inducing apoptosis in human tumor cells. Eur J Med Chem 2012; 54:499-511. [PMID: 22705001 DOI: 10.1016/j.ejmech.2012.05.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 01/08/2023]
Abstract
Six new withanolides (1-6) along with eleven known ones (7-17) were isolated from the leaves of Withania aristata. Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques. Semisynthesis of the minority metabolites 7 and 15 from compounds 6 and 9, respectively, as starting material, was performed. The isolated compounds as well as three derivatives (7a, 9a and 9b) of withaferin A were evaluated for cytotoxicity against HeLa (carcinoma of the cervix), A-549 (lung carcinoma) and MCF-7 (breast adenocarcinoma) human cancer cell lines, and against normal Vero cells (African green monkey kidney). Five compounds from this series (8, 9a, 9b, 11 and 13) exhibited potent antiproliferative effects on the tumor cells, even higher than the well known anticancer agent, withaferin A (9). Phosphatidylserine externalization, chromatin condensation, and caspase-3 activation clearly indicated apoptosis as a mechanism of action. The structure-activity relationship revealed valuable information on the pharmacophore for withanolide-type compounds.
Collapse
Affiliation(s)
- Gabriel G Llanos
- Instituto Universitario de Bio-Orgánica Antonio González and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
39
|
Efferth T, Greten HJ. In Silico Analysis of Microarray-Based Gene Expression Profiles Predicts Tumor Cell Response to Withanolides. MICROARRAYS 2012; 1:44-63. [PMID: 27605335 PMCID: PMC5007710 DOI: 10.3390/microarrays1010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 12/03/2022]
Abstract
Withania somnifera (L.) Dunal (Indian ginseng, winter cherry, Solanaceae) is widely used in traditional medicine. Roots are either chewed or used to prepare beverages (aqueous decocts). The major secondary metabolites of Withania somnifera are the withanolides, which are C-28-steroidal lactone triterpenoids. Withania somnifera extracts exert chemopreventive and anticancer activities in vitro and in vivo. The aims of the present in silico study were, firstly, to investigate whether tumor cells develop cross-resistance between standard anticancer drugs and withanolides and, secondly, to elucidate the molecular determinants of sensitivity and resistance of tumor cells towards withanolides. Using IC50 concentrations of eight different withanolides (withaferin A, withaferin A diacetate, 3-azerininylwithaferin A, withafastuosin D diacetate, 4-B-hydroxy-withanolide E, isowithanololide E, withafastuosin E, and withaperuvin) and 19 established anticancer drugs, we analyzed the cross-resistance profile of 60 tumor cell lines. The cell lines revealed cross-resistance between the eight withanolides. Consistent cross-resistance between withanolides and nitrosoureas (carmustin, lomustin, and semimustin) was also observed. Then, we performed transcriptomic microarray-based COMPARE and hierarchical cluster analyses of mRNA expression to identify mRNA expression profiles predicting sensitivity or resistance towards withanolides. Genes from diverse functional groups were significantly associated with response of tumor cells to withaferin A diacetate, e.g. genes functioning in DNA damage and repair, stress response, cell growth regulation, extracellular matrix components, cell adhesion and cell migration, constituents of the ribosome, cytoskeletal organization and regulation, signal transduction, transcription factors, and others.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| | - Henry Johannes Greten
- Heidelberg School of Chinese Medicine, Karlsruher Straße 12, Heidelberg 69126, Germany.
- Biomedical Sciences Institute Abel Salazar, University of Porto, Porto 4050-313, Portugal.
| |
Collapse
|
40
|
Kithsiri Wijeratne EM, Bashyal BP, Liu MX, Rocha DD, Gunaherath GMKB, U’Ren JM, Gunatilaka MK, Arnold AE, Whitesell L, Gunatilaka AAL. Geopyxins A-E, ent-kaurane diterpenoids from endolichenic fungal strains Geopyxis aff. majalis and Geopyxis sp. AZ0066: structure-activity relationships of geopyxins and their analogues. JOURNAL OF NATURAL PRODUCTS 2012; 75:361-9. [PMID: 22264149 PMCID: PMC3359839 DOI: 10.1021/np200769q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Four new ent-kaurane diterpenoids, geopyxins A-D (1-4), were isolated from Geopyxis aff. majalis, a fungus occurring in the lichen Pseudevernia intensa, whereas Geopyxis sp. AZ0066 inhabiting the same host afforded two new ent-kaurane diterpenoids, geopyxins E and F (5 and 6), together with 1 and 3. The structures of 1-6 were established on the basis of their spectroscopic data, while the absolute configurations were assigned using modified Mosher's ester method. Methylation of 1-3, 5, and 6 gave their corresponding methyl esters 7-11. On acetylation, 1 and 7 yielded their corresponding monoacetates 12 and 14 and diacetates 13 and 15. All compounds were evaluated for their cytotoxic and heat-shock induction activities. Compounds 2, 7-10, 12, 14, and 15 showed cytotoxic activity in the low micromolar range against all five cancer cell lines tested, but only compounds 7-9, 14, and 15 were found to activate the heat-shock response at similar concentrations. From a preliminary structure-activity perspective, the electrophilic α,β-unsaturated ketone carbonyl motif present in all compounds except 6 and 11 was found to be necessary but not sufficient for both cytotoxicity and heat-shock activation.
Collapse
Affiliation(s)
- E. M. Kithsiri Wijeratne
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Bharat P. Bashyal
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Manping X. Liu
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Danilo D. Rocha
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - G. M. Kamal B. Gunaherath
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Jana M. U’Ren
- Division of Plant Pathology and Microbiology, School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Malkanthi K. Gunatilaka
- Division of Plant Pathology and Microbiology, School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - A. Elizabeth Arnold
- Division of Plant Pathology and Microbiology, School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Luke Whitesell
- Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusettes 02142, United States
| | - A. A. Leslie Gunatilaka
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
- Corresponding Author, Tel: 520-621-9932. Fax: 520-621-8378.
| |
Collapse
|
41
|
Santagata S, Xu YM, Wijeratne EMK, Kontnik R, Rooney C, Perley CC, Kwon H, Clardy J, Kesari S, Whitesell L, Lindquist S, Gunatilaka AAL. Using the heat-shock response to discover anticancer compounds that target protein homeostasis. ACS Chem Biol 2012; 7:340-9. [PMID: 22050377 DOI: 10.1021/cb200353m] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Unlike normal tissues, cancers experience profound alterations in protein homeostasis. Powerful innate adaptive mechanisms, especially the transcriptional response regulated by Heat Shock Factor 1 (HSF1), are activated in cancers to enable survival under these stressful conditions. Natural products that further tax these stress responses can overwhelm the ability to cope and could provide leads for the development of new, broadly effective anticancer drugs. To identify compounds that drive the HSF1-dependent stress response, we evaluated over 80,000 natural and synthetic compounds as well as partially purified natural product extracts using a reporter cell line optimized for high-throughput screening. Surprisingly, many of the strongly active compounds identified were natural products representing five diverse chemical classes (limonoids, curvularins, withanolides, celastraloids, and colletofragarones). All of these compounds share the same chemical motif, an α,β-unsaturated carbonyl functionality, with strong potential for thiol-reactivity. Despite the lack of a priori mechanistic requirements in our primary phenotypic screen, this motif was found to be necessary albeit not sufficient, for both heat-shock activation and inhibition of glioma tumor cell growth. Within the withanolide class, a promising therapeutic index for the compound withaferin A was demonstrated in vivo using a stringent orthotopic human glioma xenograft model in mice. Our findings reveal that diverse organisms elaborate structurally complex thiol-reactive metabolites that act on the stress responses of heterologous organisms including humans. From a chemical biology perspective, they define a robust approach for discovering candidate compounds that target the malignant phenotype by disrupting protein homeostasis.
Collapse
Affiliation(s)
- Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115,
United States
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142,
United States
| | - Ya-ming Xu
- SW Center for
Natural Products
Research and Commercialization, School of Natural Resources and the
Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706,
United States
| | - E. M. Kithsiri Wijeratne
- SW Center for
Natural Products
Research and Commercialization, School of Natural Resources and the
Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706,
United States
| | - Renee Kontnik
- Department
of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Christine Rooney
- Department of Medical Oncology, Dana−Farber Cancer Institute, Boston, Massachusetts
02115, United States
| | - Casey C. Perley
- Howard Hughes
Medical Institute, Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Hyoungtae Kwon
- Howard Hughes
Medical Institute, Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Jon Clardy
- Department
of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Santosh Kesari
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California
92093, United States
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142,
United States
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142,
United States
- Howard Hughes
Medical Institute, Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - A. A. Leslie Gunatilaka
- SW Center for
Natural Products
Research and Commercialization, School of Natural Resources and the
Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85706,
United States
| |
Collapse
|
42
|
Zhang H, Samadi AK, Cohen MS, Timmermann BN. Anti-proliferative withanolides from the Solanaceae: a structure-activity study. PURE APPL CHEM 2012; 84:1353-1367. [PMID: 24098060 PMCID: PMC3789375 DOI: 10.1351/pac-con-11-10-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As part of our search for bioactive compounds from plant biodiversity, 29 withanolides (1, 3-6, 9, 12-18, and 20-35) were recently isolated from three members of the Solanaceae: Physalis longifolia, Vassobia breviflora, and Withania somnifera. Six derivatives (2, 7, 8, 10, 11, and 19) were prepared from these naturally occurring withanolides. All compounds (1-35) were evaluated for in vitro anti-proliferative activity against an array of cell lines [melanoma cell lines (B16F10, SKMEL28); human head and neck squamous cell carcinomas (HNSCC) cell lines (JMAR, MDA1986, DR081-1); breast cancer cell line (Hs578T), and non-malignant human cell line (MRC5)]. This led to the discovery of 15 withanolides, with IC50 values in the range of 0.067-17.4 µM, including withaferin A 1, withaferin A 4,27-diacetate 2, 27-O-glucopyranosylwithaferin A 3, withalongolide H 4, withalongolide C 5, withalongolide A 6, withalongolide A 4,27-diacetate 7, withalongolide A 4,19,27-triacetate 8, withalongolide B 9, withalongolide B 4-acetate 10, withalongolide B 4,19-diacetate 11, withalongolide D 16, withalongolide E 17, withalongolide G 21, and 2,3-dihydrowithaferin A 3-O-sulfate 22). In order to update the growing literature on withanolides and their activities, we summarized the distribution, structural types and anti-proliferative activities for all published withanolides to date. The structure-activity relationship analysis (SARA) confirmed the importance of the presence of a Δ2-1-oxo- functionality in ring A, a 5β,6β-epoxy or 5α-chloro-6β-hydroxy groupings in ring B, and nine carbon side chain with a lactone moiety for cytotoxic activity. Conversely, the SARA indicated that the -OH or -OR groups at C-4, 7, 11, 12, 14, 15, 16, 17, 18, 19, 20, 23, 24, 27, 28 were not contributors to the observed anti-proliferative activity within the systems analyzed.
Collapse
Affiliation(s)
- Huaping Zhang
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| | - Abbas K. Samadi
- Department of Surgery, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Mark S. Cohen
- Department of Surgery, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Barbara N. Timmermann
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| |
Collapse
|
43
|
Zhang H, Samadi AK, Gallagher RJ, Araya JJ, Tong X, Day VW, Cohen MS, Kindscher K, Gollapudi R, Timmermann BN. Cytotoxic withanolide constituents of Physalis longifolia. JOURNAL OF NATURAL PRODUCTS 2011; 74:2532-44. [PMID: 22098611 PMCID: PMC3253737 DOI: 10.1021/np200635r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fourteen new withanolides, 1-14, named withalongolides A-N, respectively, were isolated from the aerial parts of Physalis longifolia together with eight known compounds (15-22). The structures of compounds 1-14 were elucidated through spectroscopic techniques and chemical methods. In addition, the structures of withanolides 1, 2, 3, and 6 were confirmed by X-ray crystallographic analysis. Using a MTS viability assay, eight withanolides (1, 2, 3, 7, 8, 15, 16, and 19) and four acetylated derivatives (1a, 1b, 2a, and 2b) showed potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal fibroblast (MRC-5) cells with IC₅₀ values in the range between 0.067 and 9.3 μM.
Collapse
Affiliation(s)
- Huaping Zhang
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| | - Abbas K. Samadi
- Department of Surgery, School of Medicine, University of Kansas, Medical Center, Kansas City, KS 66160, United States
| | - Robert J. Gallagher
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| | - Juan J. Araya
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| | - Xiaoqin Tong
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| | - Victor W. Day
- The Small-Molecule X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS 66047, United States
| | - Mark S. Cohen
- Department of Surgery, School of Medicine, University of Kansas, Medical Center, Kansas City, KS 66160, United States
| | - Kelly Kindscher
- Kansas Biological Survey, University of Kansas, Lawrence, Kansas 66047, United States
| | - Rao Gollapudi
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| | - Barbara N. Timmermann
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| |
Collapse
|
44
|
Liu X, Qi W, Cooke LS, Kithsiri Wijeratne EM, Xu YM, Marron MT, Leslie Gunatilaka AA, Mahadevan D. An Analog of Withaferin A Activates the MAPK and Glutathione “Stress” Pathways and Inhibits Pancreatic Cancer Cell Proliferation. Cancer Invest 2011; 29:668-75. [DOI: 10.3109/07357907.2011.626478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Yousuf SK, Majeed R, Ahmad M, Sangwan PL, Purnima B, Saxsena AK, Suri KA, Mukherjee D, Taneja SC. Ring A structural modified derivatives of withaferin A and the evaluation of their cytotoxic potential. Steroids 2011; 76:1213-22. [PMID: 21669217 DOI: 10.1016/j.steroids.2011.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 02/06/2023]
Abstract
Regio-/stereoselective Michael addition to ring A of withaferin-A was performed using an optimized reaction procedure to synthesise a library of 2,3-dihydro,3-β-substituted withaferin-A derivatives. The analogues thus obtained were evaluated for in vitro cytotoxicity against various human cancer cell lines. 3-Azido analogue exhibited 35-fold increase (IC(50)=0.02-1.9 μM) in cytotoxicity against almost the entire cell lines tested when compared to the parent molecule. However, further modifications of 3-azido analogue with various alkynes under Husigen's cycloaddition conditions generated a variety of triazole derivatives with reduced cytotoxicity.
Collapse
Affiliation(s)
- Syed Khalid Yousuf
- Natural Product Chemistry, Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fasinu P, Pillay V, Ndesendo VMK, du Toit LC, Choonara YE. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm Drug Dispos 2011; 32:185-209. [PMID: 21480294 DOI: 10.1002/bdd.750] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/23/2010] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
In conscious and co-operating patients, oral drug delivery remains the preferable route of drug administration. However, not all drugs possess the desirable physicochemical and pharmacokinetic properties which favor oral administration mainly due to poor bioavailability. This has in some cases led to the choice of other routes of administration, which may compromise the convenience and increase the risk of non-compliance. Poor bioavailability has necessitated the administration of higher than normally required oral doses which often leads to economic wastages, risk of toxicity, erratic and unpredictable responses. The challenge over the years has been to design techniques that will allow oral administration of most drugs, irrespective of their properties, to achieve a therapeutic systemic availability. This will be a worthy achievement since over 90% of therapeutic compounds are known to possess oral bioavailability limitations. In this review, an attempt has been made to explore various approaches that have been used in recent years to improve oral drug bioavailability, including physical and chemical means. This review strives to provide a comprehensive overview of advances made over the past 10 years (2000-2010) in the improvement of the oral bioavailability of drugs. Briefly, the design of prodrugs to bypass metabolism or to enhance solubility as well as modification of formulation techniques such as the use of additives, permeation enhancers, solubilizers, emulsifiers and non-aqueous vehicles have been discussed. Arising approaches, such as formulation modification techniques; novel drug delivery systems, which exploit the gastrointestinal regionality of drugs, and include the pharmaceutical application of nanotechnology as an emerging area in drug delivery; inhibition of efflux pumps; and inhibition of presystemic metabolism have been more extensively addressed. This critical review sought to assess each method aimed at enhancing the oral bioavailability of drugs in terms of the purpose, scientific basis, limitations, commercial application, as well as the areas in which current research efforts are being focused and should be focused in the future.
Collapse
Affiliation(s)
- Pius Fasinu
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
47
|
Xu YM, Gao S, Bunting DP, Gunatilaka AAL. Unusual withanolides from aeroponically grown Withania somnifera. PHYTOCHEMISTRY 2011; 72:518-522. [PMID: 21315384 DOI: 10.1016/j.phytochem.2010.12.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/17/2010] [Accepted: 12/27/2010] [Indexed: 05/30/2023]
Abstract
In an attempt to maximize production and the structural diversity of plant metabolites, the effect of growing the medicinal plant Withania somnifera under soil-less aeroponic conditions on its ability to produce withaferin A and withanolides was investigated. It resulted in the isolation and characterization of two compounds, 3α-(uracil-1-yl)-2,3-dihydrowithaferin A (1) and 3β-(adenin-9-yl)-2,3-dihydrowithaferin A (2), in addition to 10 known withanolides including 2,3-dihydrowithaferin A-3β-O-sulfate. 3β-O-Butyl-2,3-dihydrowithaferin A (3), presumably an artifact formed from withaferin A during the isolation process was also encountered. Reaction of withaferin A with uracil afforded 1 and its epimer, 3β-(uracil-1-yl)-2,3-dihydrowithaferin A (4). The structures of these compounds were elucidated on the basis of their high resolution mass and NMR spectroscopic data.
Collapse
Affiliation(s)
- Ya-ming Xu
- SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706-6800, USA
| | | | | | | |
Collapse
|
48
|
|
49
|
Misico RI, Nicotra VE, Oberti JC, Barboza G, Gil RR, Burton G. Withanolides and related steroids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2011; 94:127-229. [PMID: 21833839 DOI: 10.1007/978-3-7091-0748-5_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rosana I Misico
- Departamento de Química Orgánica and UMYMFOR (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EGA, Argentina.
| | | | | | | | | | | |
Collapse
|
50
|
Widodo N, Priyandoko D, Shah N, Wadhwa R, Kaul SC. Selective killing of cancer cells by Ashwagandha leaf extract and its component Withanone involves ROS signaling. PLoS One 2010; 5:e13536. [PMID: 20975835 PMCID: PMC2958829 DOI: 10.1371/journal.pone.0013536] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/23/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Ashwagandha is a popular Ayurvedic herb used in Indian traditional home medicine. It has been assigned a variety of health-promoting effects of which the mechanisms remain unknown. We previously reported the selective killing of cancer cells by leaf extract of Ashwagandha (i-Extract) and its purified component Withanone. In the present study, we investigated its mechanism by loss-of-function screening (abrogation of i-Extract induced cancer cell killing) of the cellular targets and gene pathways. METHODOLOGY/PRINCIPAL FINDINGS Randomized ribozyme library was introduced into cancer cells prior to the treatment with i-Extract. Ribozymes were recovered from cells that survived the i-Extract treatment. Gene targets of the selected ribozymes (as predicted by database search) were analyzed by bioinformatics and pathway analyses. The targets were validated for their role in i-Extract induced selective killing of cancer cells by biochemical and molecular assays. Fifteen gene-targets were identified and were investigated for their role in specific cancer cell killing activity of i-Extract and its two major components (Withaferin A and Withanone) by undertaking the shRNA-mediated gene silencing approach. Bioinformatics on the selected gene-targets revealed the involvement of p53, apoptosis and insulin/IGF signaling pathways linked to the ROS signaling. We examined the involvement of ROS-signaling components (ROS levels, DNA damage, mitochondrial structure and membrane potential) and demonstrate that the selective killing of cancer cells is mediated by induction of oxidative stress. CONCLUSION Ashwagandha leaf extract and Withanone cause selective killing of cancer cells by induction of ROS-signaling and hence are potential reagents that could be recruited for ROS-mediated cancer chemotherapy.
Collapse
Affiliation(s)
- Nashi Widodo
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Didik Priyandoko
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Navjot Shah
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail: (SCK); (RW)
| | - Sunil C. Kaul
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail: (SCK); (RW)
| |
Collapse
|