1
|
Fabiani M, Castro EF, Battini L, Rosas RA, Gärtner B, Bollini M, Cavallaro LV. Two thiosemicarbazones derived from 1-indanone as potent non-nucleoside inhibitors of bovine viral diarrhea virus of different genotypes and biotypes. Virology 2024; 598:110189. [PMID: 39089051 DOI: 10.1016/j.virol.2024.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
Bovine viral diarrhea virus (BVDV) is a widespread pathogen of cattle and other mammals that causes major economic losses in the livestock industry. N4-TSC and 6NO2-TSC are two thiosemicarbazones derived from 1-indanone that exhibit anti-BVDV activity in vitro. These compounds selectively inhibit BVDV and are effective against both cytopathic and non-cytopathic BVDV-1 and BVDV-2 strains. We confirmed that N4-TSC acts at the onset of viral RNA synthesis, as previously reported for 6NO2-TSC. Moreover, resistance selection and characterization showed that N4-TSCR mutants were highly resistant to N4-TSC but remained susceptible to 6NO2-TSC. In contrast, 6NO2-TSCR mutants were resistant to both compounds. Additionally, mutations N264D and A392E were found in the viral RNA-dependent RNA polymerase (RdRp) of N4-TSCR mutants, whereas I261 M was found in 6NO2-TSCR mutants. These mutations lay in a hydrophobic pocket within the fingertips region of BVDV RdRp that has been described as a "hot spot" for BVDV non-nucleoside inhibitors.
Collapse
Affiliation(s)
- Matías Fabiani
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Eliana F Castro
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rocío A Rosas
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Benjamin Gärtner
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía V Cavallaro
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Kunamneni A, Montera MA, Durvasula R, Alles SRA, Goyal S, Westlund KN. Rapid Generation and Molecular Docking Analysis of Single-Chain Fragment Variable (scFv) Antibody Selected by Ribosome Display Targeting Cholecystokinin B Receptor (CCK-BR) for Reduction of Chronic Neuropathic Pain. Int J Mol Sci 2023; 24:11035. [PMID: 37446213 DOI: 10.3390/ijms241311035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble expression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could be purified from bacterial cells in large quantities. Octet measurements further revealed that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10-8 M. Molecular modeling and docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2 antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months. The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors.
Collapse
Affiliation(s)
- Adinarayana Kunamneni
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224-1865, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153-3328, USA
| | - Marena A Montera
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Ravi Durvasula
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224-1865, USA
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153-3328, USA
| | - Sascha R A Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Sachin Goyal
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Karin N Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA Health Care System, Albuquerque, NM 87108-5153, USA
| |
Collapse
|
3
|
Template Entrance Channel as Possible Allosteric Inhibition and Resistance Site for Quinolines Tricyclic Derivatives in RNA Dependent RNA Polymerase of Bovine Viral Diarrhea Virus. Pharmaceuticals (Basel) 2023; 16:ph16030376. [PMID: 36986476 PMCID: PMC10058290 DOI: 10.3390/ph16030376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The development of potent non-nucleoside inhibitors (NNIs) could be an alternate strategy to combating infectious bovine viral diarrhea virus (BVDV), other than the traditional vaccination. RNA-dependent RNA polymerase (RdRp) is an essential enzyme for viral replication; therefore, it is one of the primary targets for countermeasures against infectious diseases. The reported NNIs, belonging to the classes of quinolines (2h: imidazo[4,5-g]quinolines and 5m: pyrido[2,3-g] quinoxalines), displayed activity in cell-based and enzyme-based assays. Nevertheless, the RdRp binding site and microscopic mechanistic action are still elusive, and can be explored at a molecular level. Here, we employed a varied computational arsenal, including conventional and accelerated methods, to identify quinoline compounds’ most likely binding sites. Our study revealed A392 and I261 as the mutations that can render RdRp resistant against quinoline compounds. In particular, for ligand 2h, mutation of A392E is the most probable mutation. The loop L1 and linker of the fingertip is recognized as a pivotal structural determinant for the stability and escape of quinoline compounds. Overall, this work demonstrates that the quinoline inhibitors bind at the template entrance channel, which is governed by conformational dynamics of interactions with loops and linker residues, and reveals structural and mechanistic insights into inhibition phenomena, for the discovery of improved antivirals.
Collapse
|
4
|
Newcomer BW. 75 years of bovine viral diarrhea virus: Current status and future applications of the use of directed antivirals. Antiviral Res 2021; 196:105205. [PMID: 34742739 DOI: 10.1016/j.antiviral.2021.105205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023]
Abstract
Bovine viral diarrhea virus (BVDV) was first reported 75 years ago and remains a source of major financial and production losses in the North American cattle industry. Currently, control methods in North America primarily center around biosecurity and vaccination programs; however, despite high levels of vaccination, the virus persists in the cattle herd due at least in part to the often-insidious nature of disease and the constant viremia and viral shedding of persistently infected animals which act as a reservoir for the virus. Continued development of targeted antivirals represents an additional tool for the prevention of BVDV-associated losses. Currently, in vivo studies of BVDV antivirals are relatively limited and have primarily been directed at the RNA-dependent RNA polymerase which represents the viral target with the highest potential for commercial development. Additional live animal studies have explored the potential of exogenous interferon treatment. Future research of commercial antivirals must focus on the establishment and validation of in vivo efficacy for compounds with demonstrated antiviral potential. The areas which provide the most viable economic justification for the research and development of antivirals drugs are the fed cattle sector, outbreak control, and wildlife or animals of high genetic value. With further development, targeted antivirals represent an additional tool for the management and control of BVDV in North American cattle herds.
Collapse
Affiliation(s)
- Benjamin W Newcomer
- Veterinary Education, Research, & Outreach Program, Texas A&M and West Texas A&M Universities, Canyon, TX, 79016, USA.
| |
Collapse
|
5
|
Fernández GA, Castro EF, Rosas RA, Fidalgo DM, Adler NS, Battini L, España de Marco MJ, Fabiani M, Bruno AM, Bollini M, Cavallaro LV. Design and Optimization of Quinazoline Derivatives: New Non-nucleoside Inhibitors of Bovine Viral Diarrhea Virus. Front Chem 2020; 8:590235. [PMID: 33425849 PMCID: PMC7793975 DOI: 10.3389/fchem.2020.590235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 01/30/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the Pestivirus genus (Flaviviridae). In spite of the availability of vaccines, the virus is still causing substantial financial losses to the livestock industry. In this context, the use of antiviral agents could be an alternative strategy to control and reduce viral infections. The viral RNA-dependent RNA polymerase (RdRp) is essential for the replication of the viral genome and constitutes an attractive target for the identification of antiviral compounds. In a previous work, we have identified potential molecules that dock into an allosteric binding pocket of BVDV RdRp via a structure-based virtual screening approach. One of them, N-(2-morpholinoethyl)-2-phenylquinazolin-4-amine [1, 50% effective concentration (EC50) = 9.7 ± 0.5 μM], was selected to perform different chemical modifications. Among 24 derivatives synthesized, eight of them showed considerable antiviral activity. Molecular modeling of the most active compounds showed that they bind to a pocket located in the fingers and thumb domains in BVDV RdRp, which is different from that identified for other non-nucleoside inhibitors (NNIs) such as thiosemicarbazone (TSC). We selected compound 2-[4-(2-phenylquinazolin-4-yl)piperazin-1-yl]ethanol (1.9; EC50 = 1.7 ± 0.4 μM) for further analysis. Compound 1.9 was found to inhibit the in vitro replication of TSC-resistant BVDV variants, which carry the N264D mutation in the RdRp. In addition, 1.9 presented adequate solubility in different media and a high-stability profile in murine and bovine plasma.
Collapse
Affiliation(s)
- Gabriela A Fernández
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eliana F Castro
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío A Rosas
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniela M Fidalgo
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia S Adler
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria J España de Marco
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matias Fabiani
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana M Bruno
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucia V Cavallaro
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Marson D, Posel Z, Posocco P. Molecular Features for Probing Small Amphiphilic Molecules with Self-Assembled Monolayer-Protected Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5671-5679. [PMID: 32348150 PMCID: PMC8007095 DOI: 10.1021/acs.langmuir.9b03686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The sensing of small molecules poses the challenge of developing devices able to discriminate between compounds that may be structurally very similar. Here, attention has been paid to the use of self-assembled monolayer (SAM)-protected gold nanoparticles since they enable a modular approach to tune single-molecule affinity and selectivity simply by changing functional moieties (i.e., covering ligands), along with multivalent molecular recognition. To date, the discovery of monolayers suitable for a specific molecular target has relied on trial-and-error approaches, with ligand chemistry being the main criterion used to modulate selectivity and sensitivity. By using molecular dynamics, we showcase that either individual molecular characteristics and/or collective features such as ligand flexibility, monolayer organization, ligand local ordering, and interfacial solvent properties can also be exploited conveniently. The knowledge of the molecular mechanisms that drive the recognition of small molecules on SAM-covered nanoparticles will critically expand our ability to manipulate and control such supramolecular systems.
Collapse
Affiliation(s)
- Domenico Marson
- Department
of Engineering and Architecture, University
of Trieste, 34127 Trieste, Italy
| | - Zbyšek Posel
- Department
of Engineering and Architecture, University
of Trieste, 34127 Trieste, Italy
- Department
of Informatics, Jan Evangelista Purkyně
University, 40096 Ústí nad Labem, Czech Republic
| | - Paola Posocco
- Department
of Engineering and Architecture, University
of Trieste, 34127 Trieste, Italy
| |
Collapse
|
7
|
Musiu S, Castillo YP, Muigg A, Pürstinger G, Leyssen P, Froeyen M, Neyts J, Paeshuyse J. Quinolinecarboxamides Inhibit the Replication of the Bovine Viral Diarrhea Virus by Targeting a Hot Spot for the Inhibition of Pestivirus Replication in the RNA-Dependent RNA Polymerase. Molecules 2020; 25:molecules25061283. [PMID: 32178258 PMCID: PMC7144022 DOI: 10.3390/molecules25061283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
The bovine viral diarrhea virus (BVDV), a pestivirus from the family of Flaviviridae is ubiquitous and causes a range of clinical manifestations in livestock, mainly cattle. Two quinolinecarboxamide analogues were identified in a CPE-based screening effort, as selective inhibitors of the in vitro bovine viral diarrhea virus (BVDV) replication, i.e., TO505-6180/CSFCI (average EC50 = 0.07 µM, SD = 0.02 µM, CC50 > 100 µM) and TO502-2403/CSFCII (average EC50 = 0.2 µM, SD = 0.06 µM, CC50 > 100 µM). The initial antiviral activity observed for both hits against BVDV was corroborated by measuring the inhibitory effect on viral RNA synthesis and the production of infectious virus. Modification of the substituents on the quinolinecarboxamide scaffold resulted in analogues that proved about 7-fold more potent (average EC50 = 0.03 with a SD = 0.01 µM) and that were devoid of cellular toxicity, for the concentration range tested (SI = 3333). CSFCII resistant BVDV variants were selected and were found to carry the F224P mutation in the viral RNA-dependent RNA polymerase (RdRp), whereas CSFCI resistant BVDV carried two mutations in the same region of the RdRp, i.e., N264D and F224Y. Likewise, molecular modeling revealed that F224P/Y and N264D are located in a small cavity near the fingertip domain of the pestivirus polymerase. CSFC-resistant BVDV proved to be cross-resistant to earlier reported pestivirus inhibitors (BPIP, AG110, LZ37, and BBP) that are known to target the same region of the RdRp. CSFC analogues did not inhibit the in vitro activity of recombinant BVDV RdRp but inhibited the activity of BVDV replication complexes (RCs). CSFC analogues likely interact with the fingertip of the pestivirus RdRp at the same position as BPIP, AG110, LZ37, and BBP. This indicates that this region is a “hot spot” for the inhibition of pestivirus replication.
Collapse
Affiliation(s)
- Simone Musiu
- KU Leuven University, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Yunierkis Perez Castillo
- Bio-Cheminformatics Research Group and Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Americas, 170150 Quito, Ecuador
| | - Alexandra Muigg
- Institut für Pharmazie, Abteilung Pharmazeutische Chemie, Universität Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Gerhard Pürstinger
- Institut für Pharmazie, Abteilung Pharmazeutische Chemie, Universität Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Pieter Leyssen
- KU Leuven University, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Mathy Froeyen
- KU Leuven University, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven University, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan Paeshuyse
- KU Leuven, Division Animal and Human Health Engineering, Laboratory for host pathogen interactions, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| |
Collapse
|
8
|
Molecular Docking and Molecular Dynamics (MD) Simulation of Human Anti-Complement Factor H (CFH) Antibody Ab42 and CFH Polypeptide. Int J Mol Sci 2019; 20:ijms20102568. [PMID: 31130605 PMCID: PMC6566401 DOI: 10.3390/ijms20102568] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
An understanding of the interaction between the antibody and its targeted antigen and knowing of the epitopes are critical for the development of monoclonal antibody drugs. Complement factor H (CFH) is implied to play a role in tumor growth and metastasis. An autoantibody to CHF is associated with anti-tumor cell activity. The interaction of a human monoclonal antibody Ab42 that was isolated from a cancer patient with CFH polypeptide (pCFH) antigen was analyzed by molecular docking, molecular dynamics (MD) simulation, free energy calculation, and computational alanine scanning (CAS). Experimental alanine scanning (EAS) was then carried out to verify the results of the theoretical calculation. Our results demonstrated that the Ab42 antibody interacts with pCFH by hydrogen bonds through the Tyr315, Ser100, Gly33, and Tyr53 residues on the complementarity-determining regions (CDRs), respectively, with the amino acid residues of Pro441, Ile442, Asp443, Asn444, Ile447, and Thr448 on the pCFH antigen. In conclusion, this study has explored the mechanism of interaction between Ab42 antibody and its targeted antigen by both theoretical and experimental analysis. Our results have important theoretical significance for the design and development of relevant antibody drugs.
Collapse
|
9
|
Cevik UA, Saglik BN, Ozkay Y, Canturk Z, Bueno J, Demirci F, Koparal AS. Synthesis of New Fluoro-Benzimidazole Derivatives as an Approach towards the Discovery of Novel Intestinal Antiseptic Drug Candidates. Curr Pharm Des 2018; 23:2276-2286. [PMID: 27908268 PMCID: PMC5543573 DOI: 10.2174/1381612822666161201150131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/10/2016] [Indexed: 11/22/2022]
Abstract
In the present study, nineteen new fluoro-benzimidazole derivatives, including nifuroxazide analogs, were synthesized by microwave-supported reactions and tested against a panel of pathogenic microorganisms consisting of resistant strains. The synthesized compounds were characterized and identified by FT-IR, 1H- and 13C-NMR, mass spectroscopy, and elemental analyses, respectively. In vitro antimicrobial and cytotoxic effects of the synthesized compounds were determined by microdilution and by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. The compound 4-[5(6)-fluoro-1H-benzimidazol-2-yl)-N'-(2-methylbenzylidene)]benzohydrazide (18) showed particularly high inhibitory activity against the gastro-intestinal pathogens, such as Escherichia coli O157:H7, Escherichiacoli ATCC 8739, Escherichia coli ATCC 35218 and Salmonella typhimurium ATCC 13311 standard strains, with minimum inhibitory concentrations (MIC90) ranging from 0.49–0.98 µg/mL. The microbial panel contained a total of ten pathogens including Klebsiella sp., Mycobacterium sp., MRSA, etc., for which the level of inhibitory activity measured was higher than that exhibited by the tested concentrations (MIC > 1000 µg/mL). In vitro cytotoxicity results revealed that the inhibitory concentration (IC50) value (210.23 µg/mL) of compound 18 against CCD 841 CoN cells (human intestinal epithelial cell line) is about 430 times higher than its MIC90 value against the tested Escherichia coli strains. Furthermore, the docking study of compound 18 suggested that its structure is very compatible with the active site pocket of the phosphofructokinase-2 enzyme.
Collapse
Affiliation(s)
- Ulviye Acar Cevik
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskisehir, Turkey
| | - Begum Nurpelin Saglik
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470, Eskisehir, Turkey
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, P.O. Box: 26470, Eskisehir, Turkey
| | - Zerrin Canturk
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology 26470, Eskisehir, Turkey
| | - Juan Bueno
- Bioprospecting Development and Consulting, Bogota, Colombia
| | - Fatih Demirci
- Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470, Eskisehir, Turkey
| | - Ali Savas Koparal
- Anadolu University, Faculty of Engineering, Department of Environmental Engineering, Eskisehir, Turkey
| |
Collapse
|
10
|
9-Aminoacridine-based agents impair the bovine viral diarrhea virus (BVDV) replication targeting the RNA-dependent RNA polymerase (RdRp). Bioorg Med Chem 2018; 26:855-868. [PMID: 29325885 DOI: 10.1016/j.bmc.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022]
Abstract
Bovine viral diarrhea virus (BVDV) infection is still a plague that causes important livestock pandemics. Despite the availability of vaccines against BVDV, and the implementation of massive eradication or control programs, this virus still constitutes a serious agronomic burden. Therefore, the alternative approach to combat Pestivirus infections, based on the development of antiviral agents that specifically inhibit the replication of these viruses, is of preeminent actuality and importance. Capitalizing from a long-standing experience in antiviral drug design and development, in this work we present and characterize a series of small molecules based on the 9-aminoacridine scaffold that exhibit potent anti-BVDV activity coupled with low cytotoxicity. The relevant viral protein target - the RNA-dependent RNA polymerase - the binding mode, and the mechanism of action of these new antivirals have been determined by a combination of in vitro (i.e., enzymatic inhibition, isothermal titration calorimetry and site-directed mutagenesis assays) and computational experiments. The overall results obtained confirm that these acridine-based derivatives are promising compounds in the treatment of BVDV infections and, based on the reported structure-activity relationship, can be selected as a starting point for the design of a new generation of improved, safe and selective anti-BVDV agents.
Collapse
|
11
|
Soraires Santacruz MC, Fabiani M, Castro EF, Cavallaro LV, Finkielsztein LM. Synthesis, antiviral evaluation and molecular docking studies of N 4-aryl substituted/unsubstituted thiosemicarbazones derived from 1-indanones as potent anti-bovine viral diarrhea virus agents. Bioorg Med Chem 2017; 25:4055-4063. [PMID: 28600079 DOI: 10.1016/j.bmc.2017.05.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022]
Abstract
A series of N4-arylsubstituted thiosemicarbazones derived from 1-indanones and a set of compounds lacking such substitution in the N4 position of the thiosemicarbazone moiety were synthesized and evaluated for their anti-bovine viral diarrhea virus (BVDV) activity. Among these, derivatives 2 and 15 displayed high activity (EC50=2.7±0.4 and 0.7±0.1µM, respectively) as inhibitors of BVDV replication. Novel key structural features related to the anti-BVDV activity were identified by structure-activity relationship (SAR) analysis. In a previous study, the thiosemicarbazone of 5,6-dimethoxy-1-indanone (5,6-TSC) was characterized as a non-nucleoside inhibitor (NNI) of the BVDV RNA-dependent RNA polymerase. In the present work, cross-resistance assays were performed with the most active compounds. Such studies were carried out on 5,6-TSC resistant BVDV (BVDV-TSCr T1) carrying mutations in the viral polymerase. This BVDV mutant was also resistant to compound 15. Molecular docking studies and MM/PBSA calculations were performed to assess the most active derivatives at the 5,6-TSC viral polymerase binding site. The differences in the interaction pattern and the binding affinity of derivative 15 either to the wild type or BVDV-TSCr T1 polymerase were key factors to define the mode of action of this compound.
Collapse
Affiliation(s)
- María C Soraires Santacruz
- Cátedra de Química Medicinal, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Fabiani
- Cátedra de Virología, Departamento de Microbiología, Inmunología y Biotecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Eliana F Castro
- Cátedra de Virología, Departamento de Microbiología, Inmunología y Biotecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía V Cavallaro
- Cátedra de Virología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.
| | - Liliana M Finkielsztein
- Cátedra de Química Medicinal, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
12
|
New Benzimidazole-1,2,4-Triazole Hybrid Compounds: Synthesis, Anticandidal Activity and Cytotoxicity Evaluation. Molecules 2017; 22:molecules22040507. [PMID: 28346364 PMCID: PMC6154534 DOI: 10.3390/molecules22040507] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/17/2022] Open
Abstract
Owing to the growing need for antifungal agents, we synthesized a new series 2-((5-(4-(5-substituted-1H-benzimidazol-2-yl)phenyl)-4-substituted-4H-1,2,4-triazol-3-yl)thio)-1-(substitutedphenyl)ethan-1-one derivatives, which were tested against Candida species. The synthesized compounds were characterized and elucidated by FT-IR, 1H-NMR, 13C-NMR and HR-MS spectroscopies. The synthesized compounds were screened in vitro anticandidal activity against Candida species by broth microdiluation methods. In vitro cytotoxic effects of the final compounds were determined by MTT assay. Microbiological studies revealed that compounds 5m, 5o, 5r, 5t, 5y, 5ab, and 5ad possess a good antifungal profile. Compounds 5w was the most active derivative and showed comparable antifungal activity to those of reference drugs ketoconazole and fluconazole. Cytotoxicity evaluation of compounds 5m, 5o, 5r, 5w, 5y, 5ab and 5ad showed that compounds 5w and 5ad were the least cytotoxic agents. Effects of these two compounds against ergosterol biosynthesis were observed by LC-MS-MS method, which is based on quantification of ergosterol level in C. albicans. Compounds 5w and 5d inhibited ergosterol biosynthesis concentration dependently. A fluorescence microscopy study was performed to visualize effect of compound 5w against C. albicans at cellular level. It was determined that compound 5w has a membrane damaging effect, which may be related with inhibition of biosynthesis of ergosterol.
Collapse
|
13
|
Wang J, Yang Y, Li Y, Wang Y. Computational Study Exploring the Interaction Mechanism of Benzimidazole Derivatives as Potent Cattle Bovine Viral Diarrhea Virus Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5941-5950. [PMID: 27355875 DOI: 10.1021/acs.jafc.6b01067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bovine viral diarrhea virus (BVDV) infections are prevailing in cattle populations on a worldwide scale. The BVDV RNA-dependent RNA polymerase (RdRp), as a promising target for new anti-BVDV drug development, has attracted increasing attention. To explore the interaction mechanism of 65 benzimidazole scaffold-based derivatives as BVDV inhibitors, presently, a computational study was performed based on a combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations. The resultant optimum CoMFA and CoMSIA models present proper reliabilities and strong predictive abilities (with Q(2) = 0. 64, R(2)ncv = 0.93, R(2)pred = 0.80 and Q(2) = 0. 65, R(2)ncv = 0.98, R(2)pred = 0.86, respectively). In addition, there was good concordance between these models, molecular docking, and MD results. Moreover, the MM-PBSA energy analysis reveals that the major driving force for ligand binding is the polar solvation contribution term. Hopefully, these models and the obtained findings could offer better understanding of the interaction mechanism of BVDV inhibitors as well as benefit the new discovery of more potent BVDV inhibitors.
Collapse
Affiliation(s)
- Jinghui Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Ministry of Education, Shihezi University , Shihezi 832002, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology , Dalian, Liaoning 116024, P. R. China
| | - Yinfeng Yang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Ministry of Education, Shihezi University , Shihezi 832002, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology , Dalian, Liaoning 116024, P. R. China
| | - Yan Li
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Ministry of Education, Shihezi University , Shihezi 832002, China
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology , Dalian, Liaoning 116024, P. R. China
| | - Yonghua Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Ministry of Education, Shihezi University , Shihezi 832002, China
| |
Collapse
|
14
|
Musiu S, Leyssen P, Froeyen M, Chezal JM, Neyts J, Paeshuyse J. 3-(imidazo[1,2-a:5,4-b']dipyridin-2-yl)aniline inhibits pestivirus replication by targeting a hot spot drug binding pocket in the RNA-dependent RNA polymerase. Antiviral Res 2016; 129:99-103. [PMID: 26970496 DOI: 10.1016/j.antiviral.2016.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/07/2016] [Indexed: 02/05/2023]
Abstract
The compound 3-(imidazo[1,2-a:5,4-b']dipyridin-2-yl)aniline (CF02334) was identified as a selective inhibitor of the cytopathic effect (CPE) caused by bovine viral diarrhea virus (BVDV) in a virus-cell-based assay. The EC50-values for inhibition of CPE, viral RNA synthesis and the production of infectious virus progeny were 13.0 ± 0.6 μM, 2.6 ± 0.9 μM and 17.8 ± 0.6 μM, respectively. CF02334 was found to be inactive in the hepatitis C subgenomic replicon system. CF02334-resistant BVDV was obtained and was found to carry the N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). Molecular modeling revealed that N264D is located in a small cavity near the fingertip domain of the pestivirus polymerase. CF02334-resistant BVDV was proven to be cross-resistant to BPIP, AG110 and LZ37, inhibitors that have previously been described to target the same region of the BVDV RdRp. CF02334 did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of BVDV replication complexes. Taken together, these observations indicate that CF02334 likely interacts with the fingertip of the pestivirus RdRp at the same position as BPIP, AG110 and LZ37, which marks this region of the viral polymerase as a "hot spot" for inhibition of pestivirus replication.
Collapse
Affiliation(s)
- Simone Musiu
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Mathy Froeyen
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, B-3000, Leuven, Belgium
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Université d'Auvergne, IMTV, BP 10448, F-63000, Clermont-Ferrand, France; Inserm, UMR 990, IMTV, F-63005, Clermont-Ferrand, France
| | - Johan Neyts
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium.
| | - Jan Paeshuyse
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium; KU Leuven, Division Animal and Human Health Engineering, Laboratory for Host Pathogen Interactions, Kasteelpark Arenberg 30, 3001, Leuven, Belgium
| |
Collapse
|
15
|
Briguglio I, Loddo R, Laurini E, Fermeglia M, Piras S, Corona P, Giunchedi P, Gavini E, Sanna G, Giliberti G, Ibba C, Farci P, La Colla P, Pricl S, Carta A. Synthesis, cytotoxicity and antiviral evaluation of new series of imidazo[4,5-g]quinoline and pyrido[2,3-g]quinoxalinone derivatives. Eur J Med Chem 2015; 105:63-79. [DOI: 10.1016/j.ejmech.2015.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/01/2015] [Accepted: 10/03/2015] [Indexed: 10/23/2022]
|
16
|
Castro EF, Campos RH, Cavallaro LV. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus. PLoS One 2014; 9:e100528. [PMID: 24950191 PMCID: PMC4065067 DOI: 10.1371/journal.pone.0100528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 12/03/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1–5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1–5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1–5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.
Collapse
Affiliation(s)
- Eliana F. Castro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rodolfo H. Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía V. Cavallaro
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
17
|
Potential applications for antiviral therapy and prophylaxis in bovine medicine. Anim Health Res Rev 2014; 15:102-17. [PMID: 24810855 DOI: 10.1017/s1466252314000048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viral disease is one of the major causes of financial loss and animal suffering in today's cattle industry. Increases in global commerce and average herd size, urbanization, vertical integration within the industry and alterations in global climate patterns have allowed the spread of pathogenic viruses, or the introduction of new viral species, into regions previously free of such pathogens, creating the potential for widespread morbidity and mortality in naïve cattle populations. Despite this, no antiviral products are currently commercially licensed for use in bovine medicine, although significant progress has been made in the development of antivirals for use against bovine viral diarrhea virus (BVDV), foot and mouth disease virus (FMDV) and bovine herpesvirus (BHV). BVDV is extensively studied as a model virus for human antiviral studies. Consequently, many compounds with efficacy have been identified and a few have been successfully used to prevent infection in vivo although commercial development is still lacking. FMDV is also the subject of extensive antiviral testing due to the importance of outbreak containment for maintenance of export markets. Thirdly, BHV presents an attractive target for antiviral development due to its worldwide presence. Antiviral studies for other bovine viral pathogens are largely limited to preliminary studies. This review summarizes the current state of knowledge of antiviral compounds against several key bovine pathogens and the potential for commercial antiviral applications in the prevention and control of several selected bovine diseases.
Collapse
|
18
|
Weber F, Brune S, Korpis K, Bednarski PJ, Laurini E, Dal Col V, Pricl S, Schepmann D, Wünsch B. Synthesis, Pharmacological Evaluation, and σ1 Receptor Interaction Analysis of Hydroxyethyl Substituted Piperazines. J Med Chem 2014; 57:2884-94. [DOI: 10.1021/jm401707t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Frauke Weber
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Stefanie Brune
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Katharina Korpis
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, F.-L.-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Patrick J. Bednarski
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, University of Greifswald, F.-L.-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Erik Laurini
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Valentina Dal Col
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular
Simulations Engineering (MOSE) Laboratory, Department of Engineering
and Architecture (DEA), University of Trieste, Via Valerio 6, 34127 Trieste, Italy
- National
Interuniversity Consortium for Material Science and Technology (INSTM),
Research Unit MOSE-DEA, University of Trieste, Via Valerio 6, 32127 Trieste, Italy
| | - Dirk Schepmann
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
19
|
Chemical Feature-Based Molecular Modeling of Urotensin-II Receptor Antagonists: Generation of Predictive Pharmacophore Model for Early Drug Discovery. J CHEM-NY 2014. [DOI: 10.1155/2014/921863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For a series of 35 piperazino-phthalimide and piperazino-isoindolinone based urotensin-II receptor (UT) antagonists, a thoroughly validated 3D pharmacophore model has been developed, consisting of four chemical features: one hydrogen bond acceptor lipid (HBA_L), one hydrophobe (HY), and two ring aromatic (RA). Multiple validation techniques like CatScramble, test set prediction, and mapping analysis of advanced known antagonists have been employed to check the predictive power and robustness of the developed model. The results demonstrate that the best model, Hypo 1, shows a correlation (r) of 0.902, a root mean square deviation (RMSD) of 0.886, and the cost difference of 39.69 bits. The model obtained is highly predictive with good correlation values for both internal (r2=0.707) as well as external (r2=0.614) test set compounds. Moreover, the pharmacophore model has been used as a 3D query for virtual screening which served to detect prospective new lead compounds which can be further optimized as UT antagonists with potential for treatment of cardiovascular diseases.
Collapse
|
20
|
Newcomer BW, Givens MD. Approved and experimental countermeasures against pestiviral diseases: Bovine viral diarrhea, classical swine fever and border disease. Antiviral Res 2013; 100:133-50. [DOI: 10.1016/j.antiviral.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/01/2013] [Accepted: 07/27/2013] [Indexed: 01/13/2023]
|
21
|
Rossi D, Pedrali A, Gaggeri R, Marra A, Pignataro L, Laurini E, Dal Col V, Fermeglia M, Pricl S, Schepmann D, Wünsch B, Peviani M, Curti D, Collina S. Chemical, Pharmacological, and in vitro Metabolic Stability Studies on Enantiomerically Pure RC‐33 Compounds: Promising Neuroprotective Agents Acting as σ
1
Receptor Agonists. ChemMedChem 2013; 8:1514-27. [DOI: 10.1002/cmdc.201300218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| | - Alice Pedrali
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| | - Raffaella Gaggeri
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| | - Annamaria Marra
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Istituto di Scienze e Tecnologie Molecolari (ISTM) del CNR, Via Golgi 19, 20133 Milan (Italy)
| | - Erik Laurini
- MOSE‐DEA, University of Trieste, Via Valerio 10, 34127 Trieste (Italy)
| | - Valentina Dal Col
- MOSE‐DEA, University of Trieste, Via Valerio 10, 34127 Trieste (Italy)
| | | | - Sabrina Pricl
- MOSE‐DEA, University of Trieste, Via Valerio 10, 34127 Trieste (Italy)
- National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE‐DEA, University of Trieste, Trieste (Italy)
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Correnstrasse 48, 48149 Münster (Germany)
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Correnstrasse 48, 48149 Münster (Germany)
| | - Marco Peviani
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cellular and Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, 27100 Pavia (Italy)
| | - Daniela Curti
- Department of Biology and Biotechnology “L. Spallanzani”, Laboratory of Cellular and Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, 27100 Pavia (Italy)
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy)
| |
Collapse
|
22
|
Rossi D, Marra A, Picconi P, Serra M, Catenacci L, Sorrenti M, Laurini E, Fermeglia M, Pricl S, Brambilla S, Almirante N, Peviani M, Curti D, Collina S. Identification of RC-33 as a potent and selective σ1 receptor agonist potentiating NGF-induced neurite outgrowth in PC12 cells. Part 2: g-scale synthesis, physicochemical characterization and in vitro metabolic stability. Bioorg Med Chem 2013; 21:2577-86. [PMID: 23498917 DOI: 10.1016/j.bmc.2013.02.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/14/2013] [Indexed: 11/18/2022]
Abstract
Strong pharmacological evidences indicate that σ1 receptors are implicated in the pathophysiology of all major CNS disorders. In the last years our research group has conducted extensive studies aimed at discovering novel σ1 ligands and we recently selected (R/S)-RC-33 as a novel potent and selective σ1 receptor agonist. As continuation of our work in this field, here we report our efforts in the development of this new σ1 receptor agonist. Initially, we investigated the binding of (R) and (S) enantiomers of RC-33 to the σ1 receptor by in silico experiments. The close values of the predicted affinity of (R)-RC-33 and (S)-RC-33 for the protein evidenced the non-stereoselective binding of RC-33 to the σ1 receptor; this, in turn, supported further development and characterization of RC-33 in its racemic form. Subsequently, we set-up a scaled-up, optimized synthesis of (R/S)-RC-33 along with some compound characterization data (e.g., solubility in different media and solid state characterization by thermal analysis techniques). Finally, metabolic studies of RC-33 in different biological matrices (e.g., plasma, blood, and hepatic S9 fraction) of different species (e.g., rat, mouse, dog, and human) were performed. (R/S)-RC-33 is generally stable in all examined biological matrices, with the only exception of rat and human liver S9 fractions in the presence of NADPH. In such conditions, the compound is subjected to a relevant oxidative metabolism, with a degradation of approximately 65% in rat and 69% in human. Taken together, our results demonstrated that (R/S)-RC-33 is a highly potent, selective, metabolically stable σ1 agonist, a promising novel neuroprotective drug candidate.
Collapse
Affiliation(s)
- Daniela Rossi
- Medicinal Chemistry Laboratory, Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section (MCPTS), University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Amadio M, Pascale A, Govoni S, Laurini E, Pricl S, Gaggeri R, Rossi D, Collina S. Identification of Peptides with ELAV-like mRNA-Stabilizing Effect: An IntegratedIn Vitro/In SilicoApproach. Chem Biol Drug Des 2013; 81:707-14. [DOI: 10.1111/cbdd.12117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/10/2012] [Accepted: 01/29/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Marialaura Amadio
- Pharmacology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Alessia Pascale
- Pharmacology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Stefano Govoni
- Pharmacology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology; University of Trieste; Via A. Valerio 10; Trieste; 34127; Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Industrial Engineering and Information Technology; University of Trieste; Via A. Valerio 10; Trieste; 34127; Italy
| | - Raffaella Gaggeri
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Daniela Rossi
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| | - Simona Collina
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences; University of Pavia; Viale Taramelli 12; Pavia; 27100; Italy
| |
Collapse
|
24
|
Laurini E, Da Col V, Wünsch B, Pricl S. Analysis of the molecular interactions of the potent analgesic S1RA with the σ1 receptor. Bioorg Med Chem Lett 2013; 23:2868-71. [PMID: 23582276 DOI: 10.1016/j.bmcl.2013.03.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
The highly selective σ1 receptor antagonist S1RA is endowed with a surprisingly high affinity for its target protein given a missing fundamental hydrophobic pharmacophoric requirement. Here we show that, with respect to other potent σ1 ligands, S1RA is able to compensate this loss by fulfilling all other pharmacophoric requirements and by gaining in solvation energy.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory - DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | | | | | | |
Collapse
|
25
|
Newcomer BW, Neill JD, Marley MS, Ridpath JF, Givens MD. Mutations induced in the NS5B gene of bovine viral diarrhea virus by antiviral treatment convey resistance to the compound. Virus Res 2013; 174:95-100. [PMID: 23524138 DOI: 10.1016/j.virusres.2013.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 11/25/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is a widespread bovine pathogen for which there is no specific therapeutic agent. A previous study using 2-(2-benzimidazolyl)-5-[4-(2-imidazolino)phenyl]furan dihydrochloride (DB772) to treat calves persistently infected with BVDV resulted in a decrease in the viral load of infected calves but treatment resulted in the rapid selection of drug-resistant mutant isolates. In this article we describe three mutations found in the mutant isolates associated with in vivo and in vitro resistance to DB772. All three mutations are found in the NS5B which functions as the RNA-dependent-RNA-polymerase during viral replication. Growth curves for the mutant isolates were not largely different from those of wild-type isolates when cultured in the absence of DB772. Thus, DB772 appears to act by binding to the specified domain but binding is disrupted or inhibited by the described mutation.
Collapse
Affiliation(s)
- Benjamin W Newcomer
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, 1500 Wire Road, AL 36849-5522, USA.
| | | | | | | | | |
Collapse
|
26
|
Chai HH, Lim D, Chai HY, Jung E. Molecular Modeling of Small Molecules as BVDV RNA-Dependent RNA Polymerase Allosteric Inhibitors. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.3.837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Upadhyay K, Manvar A, Loddo R, Colla PL, Virsodiya V, Trivedi J, Chaniyara R, Shah A. Syntheses and in vitro biological screening of 1-aryl-10H-[1,2,4]triazolo[3′,4′:3,4][1,2,4]triazino[5,6-b]indoles. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0342-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Laurini E, Marson D, Dal Col V, Fermeglia M, Mamolo MG, Zampieri D, Vio L, Pricl S. Another brick in the wall. Validation of the σ1 receptor 3D model by computer-assisted design, synthesis, and activity of new σ1 ligands. Mol Pharm 2012; 9:3107-26. [PMID: 23020867 DOI: 10.1021/mp300233y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Originally considered an enigmatic polypeptide, the σ(1) receptor has recently been identified as a unique ligand-regulated protein. Many studies have shown the potential of σ(1) receptor ligands for the treatment of various diseases of the central nervous system (CNS); nevertheless, almost no information about the 3D structure of the receptor and/or the possible modes of interaction of the σ(1) protein with its ligands have been unveiled so far. With the present work we validated our σ(1) 3D homology model and assessed its reliability as a platform for σ(1) ligand structure-based drug design. To this purpose, the 3D σ(1) model was exploited in the design of 33 new σ(1) ligands and in their ranking for receptor affinity by extensive molecular dynamics simulation-based free energy calculations. Also, the main interactions involved in receptor/ligand binding were analyzed by applying a per residue free energy deconvolution and in silico alanine scanning mutagenesis calculations. Subsequently, all compounds were synthesized in our laboratory and tested for σ(1) binding activity in vitro. The agreement between in silico and in vitro results confirms the reliability of the proposed σ(1) 3D model in the a priori prediction of the affinity of new σ(1) ligands. Moreover, it also supports and corroborates the currently available biochemical data concerning the σ(1) protein residues considered essential for σ(1) ligand binding and activity.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Simulation Engineering Laboratory, Department of Industrial Engineering and Information Technology, University of Trieste, Via Valerio 10, 34127 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Meyer C, Schepmann D, Yanagisawa S, Yamaguchi J, Dal Col V, Laurini E, Itami K, Pricl S, Wünsch B. Pd-catalyzed direct C-H bond functionalization of spirocyclic σ1 ligands: generation of a pharmacophore model and analysis of the reverse binding mode by docking into a 3D homology model of the σ1 receptor. J Med Chem 2012; 55:8047-65. [PMID: 22913577 DOI: 10.1021/jm300894h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To explore the hydrophobic binding region of the σ(1) receptor protein, regioisomeric spirocyclic thiophenes 9-11 were developed as versatile building blocks. Regioselective α- and β-arylation using the catalyst systems PdCl(2)/bipy/Ag(2)CO(3) and PdCl(2)/P[OCH(CF(3))(2)](3)/Ag(2)CO(3) allowed the introduction of various aryl moieties at different positions in the last step of the synthesis. The increasing σ(1) affinity in the order 4 < 5/6 < 7/8 indicates that the positions of the additional aryl moiety and the S atom in the spirocyclic thiophene systems control the σ(1) affinity. The main features of the pharmacophore model developed for this class of σ(1) ligands are a positive ionizable group, a H-bond acceptor group, two hydrophobic moieties, and one hydrophobic aromatic group. Docking of the ligands into a σ(1) 3D homology model via molecular mechanics/Poisson-Boltzmann surface area calculations led to a very good correlation between the experimentally determined and estimated free energy of receptor binding. These calculations support the hypothesis of a reverse binding mode of ligands bearing the aryl moiety at the "top" (compounds 2, 3, 7, and 8) and "left" (compounds 4, 5, and 6) positions, respectively.
Collapse
Affiliation(s)
- Christina Meyer
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Hittorfstrasse 58-62, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen Y, Fang L, Peng S, Liao H, Lehmann J, Zhang Y. Discovery of a novel acetylcholinesterase inhibitor by structure-based virtual screening techniques. Bioorg Med Chem Lett 2012; 22:3181-7. [DOI: 10.1016/j.bmcl.2012.03.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 10/28/2022]
|
31
|
Newcomer BW, Marley MS, Galik PK, Walz PH, Zhang Y, Riddell KP, Dykstra CC, Boykin DW, Kumar A, Cruz-Espindola C, Boothe DM, Joiner KS, Givens MD. Antiviral treatment of calves persistently infected with bovine viral diarrhoea virus. Antivir Chem Chemother 2012; 22:171-9. [PMID: 22182713 DOI: 10.3851/imp1903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Animals persistently infected (PI) with bovine viral diarrhoea virus (BVDV) are a key source of viral propagation within and among herds. Currently, no specific therapy exists to treat PI animals. The purpose of this research was to initiate evaluation of the pharmacokinetic and safety data of a novel antiviral agent in BVDV-free calves and to assess the antiviral efficacy of the same agent in PI calves. METHODS One BVDV-free calf was treated with 2-(2-benzimidazolyl)-5-[4-(2-imidazolino)phenyl]furan dihydrochloride (DB772) once at a dose of 1.6 mg/kg intravenously and one BVDV-free calf was treated three times a day for 6 days at 9.5 mg/kg intravenously. Subsequently, four PI calves were treated intravenously with 12 mg/kg DB772 three times a day for 6 days and two PI control calves were treated with an equivalent volume of diluent only. RESULTS Prior to antiviral treatment, the virus isolated from each calf was susceptible to DB772 in vitro. The antiviral treatment effectively inhibited virus for 14 days in one calf and at least 3 days in three calves. Subsequent virus isolated from the three calves was resistant to DB772 in vitro. No adverse effects of DB772 administration were detected. CONCLUSIONS Results demonstrate that DB772 administration is safe and exhibits antiviral properties in PI calves while facilitating the rapid development of viral resistance to this novel therapeutic agent.
Collapse
Affiliation(s)
- Benjamin W Newcomer
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li Y, Tan C, Gao C, Zhang C, Luan X, Chen X, Liu H, Chen Y, Jiang Y. Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors. Bioorg Med Chem 2011; 19:4529-35. [PMID: 21724404 DOI: 10.1016/j.bmc.2011.06.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 02/07/2023]
Abstract
Multi-target EGFR, VEGFR-2 and PDGFR inhibitors are highly useful anticancer agents with improved therapeutic efficacies. In this work, we used two virtual screening methods, support vector machines (SVM) and molecular docking, to identify a novel series of benzimidazole derivatives, 2-aryl benzimidazole compounds, as multi-target EGFR, VEGFR-2 and PDGFR inhibitors. 2-Aryl benzimidazole compounds were synthesized and their biological activities against a tumor cell line HepG-2 and specific kinases were evaluated. Among these compounds, compounds 5a and 5e exhibited high cytotoxicity against HepG-2 cells with IC₅₀ values at ∼2 μM. Further kinase assay study showed that compound 5a have good EGFR inhibitory activity and moderate VEGFR-2 and PDGFR inhibitory activities, while 5e have moderate EGFR inhibitory activity and slightly weaker VEGFR-2 and PDGFR inhibitory activities. Molecular docking analysis suggested that compound 5a more tightly interacts with EGFR and PDGFR than compound 5e. Our study discovered a novel series of benzimidazole derivatives as multi-target EGFR, VEGFR-2 and PDGFR kinases inhibitors.
Collapse
Affiliation(s)
- Yunqi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Guangdong Provincial Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Inhibition of bovine viral diarrhea virus RNA synthesis by thiosemicarbazone derived from 5,6-dimethoxy-1-indanone. J Virol 2011; 85:5436-45. [PMID: 21430053 DOI: 10.1128/jvi.00859-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV).
Collapse
|
34
|
Giliberti G, Ibba C, Marongiu E, Loddo R, Tonelli M, Boido V, Laurini E, Posocco P, Fermeglia M, Pricl S. Synergistic experimental/computational studies on arylazoenamine derivatives that target the bovine viral diarrhea virus RNA-dependent RNA polymerase. Bioorg Med Chem 2010; 18:6055-68. [PMID: 20638852 DOI: 10.1016/j.bmc.2010.06.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 06/17/2010] [Accepted: 06/20/2010] [Indexed: 10/19/2022]
Abstract
Starting from a series of arylazoenamine derivatives, shown to be selectively and potently active against the bovine viral diarrhea virus (BVDV), we developed a hierarchical combined experimental/molecular modeling strategy to explore the drug leads for the BVDV RNA-dependent RNA polymerase. Accordingly, BVDV mutants resistant to lead compounds in our series were isolated, and the mutant residues on the viral molecular target, the RNA-dependent RNA polymerase, were identified. Docking procedures upon previously identified pharmacophoric constraints and actual mutational data were carried out, and the binding affinity of all active compounds for the RdRp was estimated. Given the excellent agreement between in silico and in vitro data, this procedure is currently being employed in the design a new series of more selective and potent BVDV inhibitors.
Collapse
Affiliation(s)
- Gabriele Giliberti
- Department of Biomedical Science and Technology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato (Cagliari), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives. Bioorg Med Chem 2010; 18:2937-53. [DOI: 10.1016/j.bmc.2010.02.037] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/17/2010] [Accepted: 02/21/2010] [Indexed: 01/13/2023]
|