1
|
Alfei S, Zuccari G. Last Fifteen Years of Nanotechnology Application with Our Contribute. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:265. [PMID: 39997828 PMCID: PMC11858446 DOI: 10.3390/nano15040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Currently, nanotechnology is the most promising science, engineering, and technology conducted at the nanoscale (nm), which is used in several sectors. Collectively, nanotechnology is causing a new industrial revolution, and nano-based products are becoming increasingly important for the global market and economy. The interest in nanomaterials has been strongly augmented during the last two decades, and this fact can be easily evaluated by considering the number of studies present in the literature. In November 2024, they accounted for 764,279 experimental studies developed in the years 2009-2024. During such a period, our group contributed to the field of applicative nanotechnology with several experimental and review articles, which we hope could have relevantly enhanced the knowledge of the scientific community. In this new publication, an exhaustive overview regarding the main types of developed nanomaterials, the characterization techniques, and their applications has been discussed. Particular attention has been paid to nanomaterials employed for the enhancement of bioavailability and delivery of bioactive molecules and to those used for ameliorating traditional food packaging. Then, we briefly reviewed our experimental studies on the development of nanoparticles (NPs), dendrimers, micelles, and liposomes for biomedical applications by collecting inherent details in a reader-friendly table. A brief excursus about our reviews on the topic has also been provided, followed by the stinging question of nanotoxicology. Indeed, although the application of nanotechnology translates into a great improvement in the properties of non-nanosized pristine materials, there may still be a not totally predictable risk for humans, animals, and the environment associated with an extensive application of NPs. Nanotoxicology is a science in rapid expansion, but several sneaky risks are not yet fully disclosed. So, the final part of this study discusses the pending issue related to the possible toxic effects of NPs and their impact on customers' acceptance in a scenario of limited knowledge.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
2
|
Yu X, Xu M, Gao Z, Guan H, Zhu Q. Advances in antitumor effects of pterostilbene and its derivatives. Future Med Chem 2025; 17:109-124. [PMID: 39655793 DOI: 10.1080/17568919.2024.2435251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
Pterostilbene (PT) is a naturally occurring small molecule stilbenoid that has garnered significant attention due to its potential therapeutic effects in tumor diseases. In this review, we conducted a comprehensive analysis of the antitumor effects of PT and its derivatives on various cancer types, including colon, breast, liver, lung, and pancreatic cancers in recent 20 years. We have succinctly summarized the PT derivatives that exhibit superior anti-tumor efficacy compared to PT. Additionally, we reviewed the potential structure-activity relationship (SAR) rules and clinical application methods to establish a foundation for chemical modification and clinical utilization of stilbene compounds.
Collapse
Affiliation(s)
- Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziye Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haixing Guan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Choudhary MK, Ansari K, Junghare V, Nayak SK, Hazra S, Mula S. A Facile Synthesis of 3-Substituted Coumarins and Investigation of Their 3CLpro Inhibition Activity Against SARS-CoV-2. ChemistryOpen 2024:e202400319. [PMID: 39599934 DOI: 10.1002/open.202400319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
The major threat to public health due to the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has been recognised as a global issue. The increase in morbidity is primarily due to the lack of SARS-CoV-2 specific drugs. One of the major strategies to combat this threat is to deactivate the enzymes responsible for the replication of corona virus. To this end, 3-arylidene/3-hydroxycoumarin induced deactivation of 3-chymotrypsin like protease (3CLpro) enzyme, which takes the pivotal role in the replication and maturation, was investigated. For ready availability of the compounds for the above investigation, we have developed a user-friendly protocol for the synthesis 3-hydroxycoumarin derivatives from cheap and readily available starting materials in two steps; i) Bronsted acid catalysed Friedel-Crafts alkylation of phenols with Morita-Baylis-Hillman adducts followed by intramolecular lactonization to trans-3-arylidenechroman-2-ones in one-pot and ii) ozonolysis in reasonably good yields. Pharmacokinetic assessments of coumarin derivatives revealed drug-like characteristics with moderate or low toxicity values. Notably, these hydroxycoumarins exhibited enhanced binding affinity against the 3CL protease of SARS-CoV-2, fitting well into the binding pocket akin to the previously studied inhibitor N3. Furthermore, a molecular dynamics study elucidated the dynamic behaviour of these small molecules when bound to the protein, showcasing intriguing complexities within the active site. Despite backbone variations and residual fluctuations, compounds 3 d-f and 6 a exhibited a consistent behaviour, instilling confidence in the therapeutic potential of these coumarins for combating SARS-CoV-2.
Collapse
Affiliation(s)
- Manoj K Choudhary
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Khalid Ansari
- Department of Physics, Indian Institute of Technology, Roorkee, 247667, India
| | - Vivek Junghare
- Department of Biosciences and Bioengineering, Centre for Nanotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Sandip K Nayak
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Saugata Hazra
- Department of Biosciences and Bioengineering, Centre for Nanotechnology, Indian Institute of Technology, Roorkee, 247667, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
4
|
Tian C, Li H, Liu T, Xu J, Guo H, Zhang X, Yang J, Ning J, Peng C, Jin P, Cui L, Gao Y. Concise Synthesis and Biological Evaluation of the Pyrrolo[4,3,2- de]quinoline Core of the Lymphostin Family. J Org Chem 2024; 89:16038-16042. [PMID: 39439263 DOI: 10.1021/acs.joc.4c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The efficient synthesis of the pyrrolo[4,3,2-de]quinoline core of the lymphostin family (compound 1) has been accomplished in 7 steps and 18.6% overall yield, providing an efficient method for the total synthesis and structural modification of the lymphostin family. Compound 1 showed potent inhibitory activities against PI3K/mTOR in the nanomolar range and activity against human colorectal cancer cell lines comparable to that of oxaliplatin, which could be recognized as a novel lead compound for cancer therapy.
Collapse
Affiliation(s)
- Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Hongmin Li
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Tingting Liu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiwei Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China
| | - Haojie Guo
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Xinyuan Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Jiaojiao Yang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Jian Ning
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Cheng Peng
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Peng Jin
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Lechao Cui
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Yuqi Gao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
5
|
Zhang SS, He Y, Wei MX. Novel coumarin-piperazine-2(5H)-furanone hybrids as potential anti-lung cancer agents: Synthesis, biological evaluation and molecular docking studies. Fitoterapia 2024; 177:106105. [PMID: 38969273 DOI: 10.1016/j.fitote.2024.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Novel coumarin-piperazine-2(5H)-furanone hybrids 5a-l were efficiently synthesized by introducing a furanone scaffold into coumarin using piperazine as a linker. The cytotoxicity of all hybrids 5a-l were evaluated by MTT assay on human lung cancer A549 cells and normal human lung fibroblast WI-38 cells with cytarabine (CAR) as a positive control. Hybrid 5l (IC50 = 11.28 μM) was the most toxic to A549 cells, 18-fold more toxic than the reference CAR (IC50 = 202.57 μM). Moreover, hybrid 5l (IC50 = 411.93 μM) was less toxic to WI-38 cells, with a much higher selectivity (5l, SI ≈ 37, WI-38/A549) than CAR (SI ≈ 2). Structure-activity relationship analysis showed that both the cytotoxicity against A549 cells and selectivity (WI-38/A549) were greatly improved when the bornyl group was incorporated in the hybrids (5c, 5f, 5i and 5l). Further, hybrid 5l was more toxic and selective against four types of human lung cancer cells (A549, Calu-1, PC-9 and H460; IC50 = 5.72-45.46 μM; SI ≈ 9-72) than three other types of human cancer cells (SK-BR-3, 786-O and SK-OV-3, IC50 = 39.07-130.82 μM; SI ≈ 0-2), showing remarkable specificity. In particular, hybrid 5l (IC50 = 5.72 μM) showed the highest cytotoxicity against H460 cells with the highest selectivity of up to 72 (WI-38/H460). Flow cytometric analysis showed that hybrid 5l induced apoptosis in H460 cells in a concentration-dependent manner. Molecular docking studies revealed a high binding affinity of hybrid 5l with CDK2 protein. Hybrid 5l is expected to be a leading candidate for anti-lung cancer agents.
Collapse
Affiliation(s)
- Si-Si Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu He
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Meng-Xue Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
6
|
Kumar C, Chibber P, Painuli R, Haq SA, Vishwakarma RA, Singh G, Satti NK, Phatake RS. Scoparone chemical modification into semi-synthetic analogues featuring 3-substitution for their anti-inflammatory activity. Mol Divers 2024; 28:2467-2478. [PMID: 37468705 DOI: 10.1007/s11030-023-10687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Natural products (NPs) continue to serve as a structural model for the development of new bioactive molecules and improve the process of identifying novel medicines. The biological effects of coumarins, one of the most researched compounds among NPs, are currently being thoroughly investigated. In the present investigation, we reported the synthesis of nineteen semi-synthetic 3-substituted scoparone analogues, followed by their characterization using analytical methods such as NMR, HPLC, and HRMS. All compounds screened for in vitro and in vivo study for their ability to reduce inflammation. The SAR study worked effectively for this particular scoparone 3-substitution, as compounds 3, 4, 9, 16, 18, and 20 displayed improved in vitro results for TNF-α than the parent molecule. Similarly, compounds 3, and 17 showed a higher percentage of IL-6 inhibition. Compounds 3, 4, and 12 have also been identified by in vivo studies as promising candidates with higher percent inhibition than the parent scoparone molecule. As evident from all in vitro and in vivo studies, compound 3 showed the most potent anti-inflammatory activity among all.
Collapse
Affiliation(s)
- Chetan Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Pankaj Chibber
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ritu Painuli
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Syed Assim Haq
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram A Vishwakarma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurdarshan Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Naresh K Satti
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ravindra S Phatake
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Sepehri S, Khedmati M, Yousef-Nejad F, Mahdavi M. Medicinal chemistry perspective on the structure-activity relationship of stilbene derivatives. RSC Adv 2024; 14:19823-19879. [PMID: 38903666 PMCID: PMC11188052 DOI: 10.1039/d4ra02867h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Stilbenes are a small family of polyphenolic secondary metabolites produced in a variety of closely related plant species. These compounds function as phytoalexins, aiding plant defense against phytopathogens and plants' adaptation to abiotic environmental factors. Structurally, some important phenolic compounds have a 14-carbon skeleton and usually have two isomeric forms, Z and E. Stilbenes contain two benzene rings linked by a molecule of ethanol or ethylene. Some derivatives of natural (poly)phenolic stilbenes such as resveratrol, pterostilbene, and combretastatin A-4 have shown various biological activities, such as anti-microbial, anti-cancer, and anti-inflammatory properties as well as protection against heart disease, Alzheimer's disease, and diabetes. Among stilbenes, resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds have been investigated for their bioactivity. This review focuses on the assessment of synthetic stilbene derivatives in terms of their biological activities and structure-activity relationship. The goal of this study is to consider the structural changes and different substitutions on phenyl rings that can improve the desired medicinal effects of stilbene-based compounds beyond the usual standards and subsequently discover biological activities by identifying effective alternatives of the evaluated compounds.
Collapse
Affiliation(s)
- Saghi Sepehri
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences Ardabil Iran +98-45-33522197 +98-45-33522437-39, ext. 164
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences Ardabil Iran
| | - Mina Khedmati
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences Ardabil Iran
| | - Faeze Yousef-Nejad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
8
|
Ozalp L, Orhan B, Alparslan MM, Meletli F, Çakmakçı E, Danış Ö. Arylcoumarin and novel biscoumarin derivatives as potent inhibitors of human glutathione S-transferase. J Biomol Struct Dyn 2023; 42:11456-11470. [PMID: 37768055 DOI: 10.1080/07391102.2023.2262598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
A series of arylcoumarin derivatives and two novel biscoumarin derivatives were investigated for their human recombinant glutathione S-transferase P1-1 (GSTP1-1) enzyme inhibitory activities for the first time. 4-(3,4-Dihydroxyphenyl)-6,7-dihydroxycoumarin (compound 24) was observed to be the most active coumarin derivative (IC50: 0.14 µM). The inhibition was found to be time-dependent and irreversible. Hypothetical binding modes of the ten most active compounds were calculated by molecular docking. Ligand efficiency indices (LEI) were estimated to better understand the binding performance of the coumarin derivatives. Extensive structure-activity relationship studies showed that hydroxy substitution on both the coumarin and the aryl ring enhanced the biological activity and the position of hydroxy group on the coumarin ring is critical for the binding pose and the activity. Top three ligands were subjected to molecular dynamics simulations and MM/PBSA for further investigation. Binding mode of compound 24 suggested that its high inhibitory activity might be attributed to its position between Tyr7 and the cofactor, glutathione (GS-DNB). Exhibiting favorable druglikeness profiles and pharmacokinetics based on ADME studies, compound 5 and 24 can be considered as potential drug leads in future studies for further development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lalehan Ozalp
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Berk Orhan
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | | | - Furkan Meletli
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Emrah Çakmakçı
- Department of Chemistry, Marmara University, Istanbul, Turkey
| | - Özkan Danış
- Department of Chemistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
9
|
Ibrahim AA, Kospa DA, Hayes OR, Khder AS, El-Hakam SA, Ahmed AI. Cesium salt of tungstophosphoric acid/mesoporous (zirconia-silica) composite for highly efficient synthesis of 7-hydroxy-4-methyl coumarin and removal of methylene blue. RSC Adv 2023; 13:15243-15260. [PMID: 37213348 PMCID: PMC10194047 DOI: 10.1039/d3ra02235h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
The removal of harmful organic dyes from aqueous solutions has drawn the attention of scientists because of the substantial threat they pose to society's worldwide health. Hence, it is crucial to design an adsorbent that is both very effective in removing dyes and has the benefit of being inexpensive. In the present work, Cs salts of tungstophosphoric acid (CPW) supported mesoporous Zr-mSiO2 (mZS) with varying extents of Cs ions have been prepared by a two-step impregnation technique. Accordingly, a lowering in the surface acidity modes was observed after Cs exchanged protons of H3W12O40 and formed salts immobilized on the mZS support. After exchanging the protons with Cs ions, the characterization results revealed that the primary Keggin structure was unaltered. Moreover, the Cs exchanged catalysts had higher surface area than the parent H3W12O40/mZS, suggesting that Cs reacts with H3W12O40 molecules to create new primary particles with smaller sizes possessing inter-crystallite centers with a higher dispersion degree. With an increase in Cs content and thus a decrease in the acid strength and surface acid density, the methylene blue (MB) monolayer adsorption capacities on CPW/mZS catalysts were increased and reached an uptake capacity of 359.9 mg g-1 for Cs3PW12O40/mZS (3.0CPW/mZS). The catalytic formation of 7-hydroxy-4-methyl coumarin was also studied at optimum conditions and it is found that the catalytic activity is influenced by the amount of exchangeable Cs with PW on the mZrS support, which is in turn influenced by the catalyst acidity. The catalyst kept approximately the initial catalytic activity even after the fifth cycle.
Collapse
Affiliation(s)
- Amr Awad Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt +220502390551
| | - Doaa A Kospa
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt +220502390551
| | - O R Hayes
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt +220502390551
| | - A S Khder
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt +220502390551
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - S A El-Hakam
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt +220502390551
| | - Awad I Ahmed
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt +220502390551
| |
Collapse
|
10
|
Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML. Therapeutic Effects of Coumarins with Different Substitution Patterns. Molecules 2023; 28:2413. [PMID: 36903660 PMCID: PMC10005689 DOI: 10.3390/molecules28052413] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The use of derivatives of natural and synthetic origin has gained attention because of their therapeutic effects against human diseases. Coumarins are one of the most common organic molecules and are used in medicine for their pharmacological and biological effects, such as anti-inflammatory, anticoagulant, antihypertensive, anticonvulsant, antioxidant, antimicrobial, and neuroprotective, among others. In addition, coumarin derivates can modulate signaling pathways that impact several cell processes. The objective of this review is to provide a narrative overview of the use of coumarin-derived compounds as potential therapeutic agents, as it has been shown that substituents on the basic core of coumarin have therapeutic effects against several human diseases and types of cancer, including breast, lung, colorectal, liver, and kidney cancer. In published studies, molecular docking has represented a powerful tool to evaluate and explain how these compounds selectively bind to proteins involved in various cellular processes, leading to specific interactions with a beneficial impact on human health. We also included studies that evaluated molecular interactions to identify potential biological targets with beneficial effects against human diseases.
Collapse
Affiliation(s)
- Virginia Flores-Morales
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
| | - Ana P. Villasana-Ruíz
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Samantha González-Delgado
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
11
|
Tian Q, Yin X, Sun R, Wu X, Li Y. The lower the better: Efficient carbonylative reactions under atmospheric pressure of carbon monoxide. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
The Synthesis and Biological Evaluation of Aloe-Emodin-Coumarin Hybrids as Potential Antitumor Agents. Molecules 2022; 27:molecules27196153. [PMID: 36234685 PMCID: PMC9571363 DOI: 10.3390/molecules27196153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
A series of novel aloe-emodin–coumarin hybrids were designed and synthesized. The antitumor activity of these derivatives was evaluated against five human tumor cell lines (A549, SGC-7901, HepG2, MCF-7 and HCT-8). Some of the synthesized compounds exhibited moderate to good activity against one or more cell lines. Particularly, compound 5d exhibited more potent antiproliferative activity than the reference drug etoposide against all tested tumor cell lines, indicating that it had a broad spectrum of antitumor activity and that it may provide a promising lead compound for further development as an antitumor agent by structural modification. Furthermore, the structure–activity relationship study of the synthesized compounds was also performed.
Collapse
|
13
|
Tsivileva OM, Koftin OV, Evseeva NV. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics (Basel) 2022; 11:1156. [PMID: 36139936 PMCID: PMC9495007 DOI: 10.3390/antibiotics11091156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Oleg V. Koftin
- Department of Biochemistry, V.I. Razumovsky Saratov State Medical University, 112 ul. Bol’shaya Kazach’ya, Saratov 410012, Russia
| | - Nina V. Evseeva
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
14
|
Cytotoxic and Antioxidant Activities of Imine Analogs of Trans-Resveratrol towards Murine Neuronal N2a Cells. Molecules 2022; 27:molecules27154713. [PMID: 35897887 PMCID: PMC9332718 DOI: 10.3390/molecules27154713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Trans-resveratrol is a natural polyphenol showing numerous biological properties, especially anti-tumoral and antioxidant activity. Among numerous resveratrol derivatives, aza-stilbenes, which bear an imine bound, show interesting biological activities. In the present study, we synthesized a series of imine analogs of trans-resveratrol (seven aza-stilbenes) following an easy and low-cost procedure of green chemistry. The toxicity of synthesized aza-stilbenes, which is currently unknown, was evaluated on murine neuronal N2a cells, comparatively to trans-resveratrol, by considering: cell density evaluated by staining with sulforhodamine 101; esterase activity, which is a criteria of cell viability, by staining with fluorescein diacetate; and transmembrane mitochondrial potential, which is known to decrease during cell death, by staining with DiOC6(3) using flow cytometry. In addition, the antioxidant activity was quantified with the KRL (Kit Radicaux Libres) assay, the DPPH (2,2′-diphenyl-1-picrylhydrazyl radical) assay and the FRAP (ferric reducing antioxidant power) assay. The PAOT (Pouvoir Antioxidant Total) score was also used. The aza-stilbenes provide different cytotoxic and antioxidant activities, which are either higher or lower than those of trans-resveratrol. Based on their cytotoxic and antioxidant characteristics, all synthesized aza-stilbenes are distinguished from trans-resveratrol.
Collapse
|
15
|
Xu L, Yu J, Jin L, Pan L. Design, Synthesis, and Antifungal Activity of 4-Amino Coumarin Based Derivatives. Molecules 2022; 27:2738. [PMID: 35566096 PMCID: PMC9104767 DOI: 10.3390/molecules27092738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
A series of 30 succinate dehydrogenase inhibitors (SDHIs) of 4-amino coumarin-based derivatives were designed and synthesized. According to the analysis of fungicidal activity in vitro, most of the compounds expressed broad-spectrum antifungal activity against four plant pathogenic fungi (Alternaria alternata, Alternaria solani, Fusarium oxysporum, and Botrytis cinerea) using the mycelium growth inhibition method. The results showed that compounds 3n with the group of 2-ene-3-methyl-butyl and 4e with the group of 2-bromo-1-oxo-hexyl displayed excellent activity against Alternaria alternata and Alternaria solani, with EC50 values of 92~145 μg/mL. Molecular docking showed that the inhibitor 3n was completely locked into the cavity of SDH, forming a conventional hydrogen bond interacting with the amino acid residue TYR58. The present work indicates that these derivatives would serve as novel potential fungicides targeting SDH.
Collapse
Affiliation(s)
| | | | - Lu Jin
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (L.X.); (J.Y.)
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, China; (L.X.); (J.Y.)
| |
Collapse
|
16
|
de Araújo RSA, Carmo JDODS, de Omena Silva SL, Costa da Silva CRA, Souza TPM, de Mélo NB, Bourguignon JJ, Schmitt M, de Aquino TM, Rodarte RS, de Moura RO, Barbosa Filho JM, Barreto E, Mendonça-Junior FJB. Coumarin Derivatives Exert Anti-Lung Cancer Activity by Inhibition of Epithelial–Mesenchymal Transition and Migration in A549 Cells. Pharmaceuticals (Basel) 2022; 15:ph15010104. [PMID: 35056161 PMCID: PMC8782015 DOI: 10.3390/ph15010104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
A series of coumarin derivatives and isosteres were synthesized from the reaction of triflic intermediates with phenylboronic acids, terminal alkynes, and organozinc compounds through palladium-catalyzed cross-coupling reactions. The in vitro cytotoxic effect of the compounds was evaluated against two non-small cell lung carcinoma (NSCLC) cell lines (A-549 and H2170) and a normal cell line (NIH-3T3) using cisplatin as a reference drug. Additionally, the effects of the most promising coumarin derivative (9f) in reversing the epithelial-to-mesenchymal transition (EMT) in IL-1β-stimulated A549 cells and in inhibiting the EMT-associated migratory ability in A549 cells were also evaluated. 9f had the greatest cytotoxic effect (CC50 = 7.1 ± 0.8 and 3.3 ± 0.5 μM, respectively against A549 and H2170 cells) and CC50 value of 25.8 µM for NIH-3T3 cells. 9f inhibited the IL-1β-induced EMT in epithelial cells by inhibiting the F-actin reorganization, attenuating changes in the actin cytoskeleton reorganization, and downregulating vimentin in A549 cells stimulated by IL-1β. Treatment of A549 cells with 9f at 7 µM for 24 h significantly reduced the migration of IL-1β-stimulated cells, which is a phenomenon confirmed by qualitative assessment of the wound closure. Taken together, our findings suggest that coumarin derivatives, especially compound 9f, may become a promising candidate for lung cancer therapy, especially in lung cancer promoted by NSCLC cell lines.
Collapse
Affiliation(s)
- Rodrigo Santos Aquino de Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa 58429-500, PB, Brazil; (R.S.A.d.A.); (N.B.d.M.); (R.O.d.M.)
- Laboratoire d’Innovation Thérapeutique, UMR 7200, Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch, France; (J.-J.B.); (M.S.)
| | - Julianderson de Oliveira dos Santos Carmo
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio 57072-900, AL, Brazil; (J.d.O.d.S.C.); (S.L.d.O.S.); (C.R.A.C.d.S.); (T.P.M.S.); (R.S.R.)
| | - Simone Lara de Omena Silva
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio 57072-900, AL, Brazil; (J.d.O.d.S.C.); (S.L.d.O.S.); (C.R.A.C.d.S.); (T.P.M.S.); (R.S.R.)
| | - Camila Radelley Azevedo Costa da Silva
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio 57072-900, AL, Brazil; (J.d.O.d.S.C.); (S.L.d.O.S.); (C.R.A.C.d.S.); (T.P.M.S.); (R.S.R.)
| | - Tayhana Priscila Medeiros Souza
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio 57072-900, AL, Brazil; (J.d.O.d.S.C.); (S.L.d.O.S.); (C.R.A.C.d.S.); (T.P.M.S.); (R.S.R.)
| | - Natália Barbosa de Mélo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa 58429-500, PB, Brazil; (R.S.A.d.A.); (N.B.d.M.); (R.O.d.M.)
| | - Jean-Jacques Bourguignon
- Laboratoire d’Innovation Thérapeutique, UMR 7200, Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch, France; (J.-J.B.); (M.S.)
| | - Martine Schmitt
- Laboratoire d’Innovation Thérapeutique, UMR 7200, Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch, France; (J.-J.B.); (M.S.)
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies—GPET, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-900, AL, Brazil;
| | - Renato Santos Rodarte
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio 57072-900, AL, Brazil; (J.d.O.d.S.C.); (S.L.d.O.S.); (C.R.A.C.d.S.); (T.P.M.S.); (R.S.R.)
| | - Ricardo Olímpio de Moura
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa 58429-500, PB, Brazil; (R.S.A.d.A.); (N.B.d.M.); (R.O.d.M.)
| | - José Maria Barbosa Filho
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Emiliano Barreto
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio 57072-900, AL, Brazil; (J.d.O.d.S.C.); (S.L.d.O.S.); (C.R.A.C.d.S.); (T.P.M.S.); (R.S.R.)
- Correspondence: (E.B.); (F.J.B.M.-J.)
| | - Francisco Jaime Bezerra Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa 58429-500, PB, Brazil; (R.S.A.d.A.); (N.B.d.M.); (R.O.d.M.)
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
- Correspondence: (E.B.); (F.J.B.M.-J.)
| |
Collapse
|
17
|
Abdel Ghany LMA, El-Dydamony NM, Helwa AA, Abdelraouf SM, Abdelnaby RM. Coumarin-acetohydrazide derivatives as novel antiproliferative agents via VEGFR-2/AKT axis inhibition and apoptosis triggering. NEW J CHEM 2022. [DOI: 10.1039/d2nj02436e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The VEGFR-2/AKT pathway is a crucial axis in tumor survival where it is highly dysregulated in many cancer types.
Collapse
Affiliation(s)
- Lina M. A. Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Nehad M. El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Amira A. Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Sahar M. Abdelraouf
- Biochemistry Department, Faculty of pharmacy, Misr International University, Cairo, Egypt
| | - Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
18
|
Liu N, Zhang J, Wen J, You X, Fang D. Immortal Polymerization of LA: the Influence of Steric Effect, Electron Effect and pKa for Chain Transfer Agents. Polym Chem 2022. [DOI: 10.1039/d2py00081d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The “immortal” ring-opening polymerization (iROP) of L-LA, catalyzed by ligand-free Ca[N(SiMe3)2]2(THF)2 in combination with different chain transfer agents (alcohols, phenols and PhCH2NH2) was systematically investigated for the first time. When...
Collapse
|
19
|
Shadakshari A, Suresha Kumara T, Sowmya H, Ismail, Harish B, Yamuna A. Recyclable Amberlite IR-120 Catalyzed domino reaction: Synthesis, anticancer activity and molecular docking studies of biscoumarins. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Yu Y, Wang J, Huang X. The anti-depressant effects of a novel PDE4 inhibitor derived from resveratrol. PHARMACEUTICAL BIOLOGY 2021; 59:418-423. [PMID: 33847209 PMCID: PMC8049461 DOI: 10.1080/13880209.2021.1907422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 06/01/2023]
Abstract
CONTEXT Resveratrol has shown anti-stress and anti-depressant-like abilities involved in inhibiting phosphodiesterase-4 (PDE4) enzyme. However, its application is limited due to its low efficacy, bioavailability and selectivity. OBJECTIVE This study synthesized a new resveratrol derivative RES003 and evaluated its PDE4 inhibitory and anti-depressant-like activities in vitro and in vivo, respectively. MATERIALS AND METHODS PDEs inhibitory activities were evaluated by radioactive tracer method. Anti-depressant-like activities of novel resveratrol analogue (RES003) at doses of 2.5, 5.0 and 10 mg/kg was investigated by sugar water consumption and forced swimming tests using male ICR mice under chronic unpredictable stress procedure for 10 days. A total of 84 mice were randomly distributed into seven groups (n = 12). Drugs and vehicle were administered (intra-gastric or intra-peritoneal) once a day from the first to the last day. The molecular mechanisms were identified by western blot. RESULTS RES003 showed more potent PDE4 inhibitory activity (half maximal inhibitory concentration (IC50), 0.87 μM) and better selectivity than resveratrol (IC50, 18.8 μM). RES003 could significantly increase the consumption of sugar water (p < 0.01) and immobility time (p < 0.01) compared to vehicle-treated stressed groups at doses of 5 and 10 mg/kg. Furthermore, RES003 could significantly increase the levels of cyclic adenosine monophosphate response element binding protein phosphorylation (10 mg/kg, p < 0.05) and brain-derived neurotrophic factor (BDNF) expression (5 and 10 mg/kg, p < 0.05 and 0.01) in mouse brain. DISCUSSION AND CONCLUSIONS RES003 could ameliorate chronic stress induced depression-like behaviours through inhibition of PDE4 and activation of cAMP-triggered phosphorylation of cAMP response element binding protein/BDNF signalling pathway. Consequently, RES003 is a promising lead compound for the treatment of depression.
Collapse
Affiliation(s)
- Yingcong Yu
- Wenzhou People’s Hospital, Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, PR China
| | - Jinhui Wang
- Wenzhou People’s Hospital, Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, PR China
| | - Xianfeng Huang
- School of Pharmacy & School of Medicine, Changzhou University, Changzhou, PR China
| |
Collapse
|
21
|
Zhang W, Qin R, Fu G, Zheng N. Heterogeneous Isomerization for Stereoselective Alkyne Hydrogenation to trans-Alkene Mediated by Frustrated Hydrogen Atoms. J Am Chem Soc 2021; 143:15882-15890. [PMID: 34533929 DOI: 10.1021/jacs.1c08153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereoselective production of alkenes from the alkyne hydrogenation plays a crucial role in the chemical industry. However, for heterogeneous metal catalysts, the olefins in cis-configuration are usually dominant in the products due to the most important and common Horiuti-Polanyi mechanism involved over the metal surface. In this work, through combined theoretical and experimental investigations, we demonstrate a novel isomerization mechanism mediated by the frustrated hydrogen atoms via the H2 dissociation at the defect on solid surface, which can lead to the switch in selectivity from the cis-configuration to trans-configuration without overhydrogenation. The defective Rh2S3 with exposing facet of (110) exhibits outstanding performance as a heterogeneous metal catalyst for stereoselective production of trans-olefins. With the frustrated hydrogen atoms at spatially separated high-valence Rh sites, the isolated hydrogen mediated cis-to-trans isomerization of olefins can be effectively conducted and the overhydrogenation can be completely inhibited. Furthermore, the bifunctional Rh-S/Pd nanosheets have been synthesized through the surface modification of Pd nanosheets with rhodium and sulfide. With the selective semihydrogenation of alkynes into cis-olefins catalyzed by the small surface PdSx ensembles, the bifunctional Rh-S/Pd nanosheets exhibit excellent activity and stereoselectivity in the one-pot alkyne hydrogenation into trans-olefin, which surpasses the most reported homogeneous and heterogeneous catalysts.
Collapse
Affiliation(s)
- Weijie Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gang Fu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials and National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Khamto N, Chaichuang L, Rithchumpon P, Phupong W, Bhoopong P, Tateing S, Pompimon W, Semakul N, Chomsri NO, Meepowpan P. Synthesis, cytotoxicity evaluation and molecular docking studies on 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone derivatives. RSC Adv 2021; 11:31433-31447. [PMID: 35496846 PMCID: PMC9041536 DOI: 10.1039/d1ra05445g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC, 1) was isolated from seeds of Syzygium nervosum A.Cunn. ex DC. exhibiting intriguing biological activities. Herein, thirty three DMC derivatives including 4′-O-monosubstituted-DMC (2), 7-O-acylated-4-hydroxycoumarin derivatives (3), stilbene–coumarin derivatives (4), 2′,4′-disubstituted-DMC (5), and flavanone derivatives (6), were synthesised through acylation, alkylations, and sulfonylation. These semi-synthetic DMC derivatives were evaluated for in vitro cytotoxicity against six carcinoma cell lines. It was found that most derivatives exhibited higher cytotoxicity than DMC. In particular, 4′-O-caproylated-DMC (2b) and 4′-O-methylated-DMC (2g) displayed the strongest cytotoxicity against SH-SY5Y with IC50 values of 5.20 and 7.52 μM, respectively. Additionally, 4′-O-benzylated-DMC (2h) demonstrated the strongest cytotoxicity against A-549 and FaDu with IC50 values of 9.99 and 13.98 μM, respectively. Our structure–activity relationship (SAR) highlights the importance of 2′-OH and the derivatisation pattern of 4′-OH. Furthermore, molecular docking simulation studies shed further light on how these bioactive compounds interact with cyclin-dependent kinase 2 (CDK2). Semi-synthetic DMC derivatives were synthesised and displayed biological potency against various cancer cell lines. ![]()
Collapse
Affiliation(s)
- Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Graduate School, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Lada Chaichuang
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Graduate School, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Puracheth Rithchumpon
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Graduate School, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Worrapong Phupong
- School of Science, Walailak University 222 Thaiburi Nakhon Si Thammarat 80161 Thailand
| | - Phuangthip Bhoopong
- School of Allied Health Science, Walailak University 222 Thaiburi Nakhon Si Thammarat 80161 Thailand
| | - Suriya Tateing
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Wilart Pompimon
- Laboratory of Natural Products, Centre for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University Lampang 52100 Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Center of Excellence in Materials Science and Technology, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Ni-Orn Chomsri
- Agricultural Technology Research Institute (ATRI), Rajamangala University of Technology Lanna 202 Pichai District Lampang 52100 Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Center of Excellence in Materials Science and Technology, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| |
Collapse
|
23
|
4-(Trifluoromethyl) coumarin-fused pyridines: Regioselective synthesis and photophysics, electrochemical, and antioxidative activity. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Micale N, Molonia MS, Citarella A, Cimino F, Saija A, Cristani M, Speciale A. Natural Product-Based Hybrids as Potential Candidates for the Treatment of Cancer: Focus on Curcumin and Resveratrol. Molecules 2021; 26:4665. [PMID: 34361819 PMCID: PMC8348089 DOI: 10.3390/molecules26154665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the "hybrid strategy", namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term "hybrid" has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Antonina Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.M.); (M.S.M.); (A.C.); (F.C.); (M.C.); (A.S.)
| | | | | |
Collapse
|
25
|
Chen Z, Zeng P, Zhang S, Huang X. Lewis‐Acid‐Mediated One‐Pot Tandem Reactions for Synthesis of Structurally Diverse Furo[3,2‐c]coumarins. ChemistrySelect 2021. [DOI: 10.1002/slct.202101029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Piaopiao Zeng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Shuo Zhang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Xiaoxiao Huang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P.R. China
| |
Collapse
|
26
|
Alharbi W, Hassan I, Khan RA, Parveen S, Alharbi KH, Bin Sharfan II, Alhazza IM, Ebaid H, Alsalme A. Bioactive Tryptophan-Based Copper Complex with Auxiliary β-Carboline Spectacle Potential on Human Breast Cancer Cells: In Vitro and In Vivo Studies. Molecules 2021; 26:1606. [PMID: 33799355 PMCID: PMC8001361 DOI: 10.3390/molecules26061606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Biocompatible tryptophan-derived copper (1) and zinc (2) complexes with norharmane (β-carboline) were designed, synthesized, characterized, and evaluated for the potential anticancer activity in vitro and in vivo. The in vitro cytotoxicity of both complexes 1 and 2 were assessed against two cancerous cells: (human breast cancer) MCF7 and (liver hepatocellular cancer) HepG2 cells with a non-tumorigenic: (human embryonic kidney) HEK293 cells. The results exhibited a potentially decent selectivity of 1 against MCF7 cells with an IC50 value of 7.8 ± 0.4 μM compared to 2 (less active, IC50 ~ 20 μM). Furthermore, we analyzed the level of glutathione, lipid peroxidation, and visualized ROS generation to get an insight into the mechanistic pathway and witnessed oxidative stress. These in vitro results were ascertained by in vivo experiments, which also supported the free radical-mediated oxidative stress. The comet assay confirmed the oxidative stress that leads to DNA damage. The histopathology of the liver also ascertained the low toxicity of 1.
Collapse
Affiliation(s)
- Walaa Alharbi
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.H.); (I.M.A.); (H.E.)
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (A.A.)
| | - Shazia Parveen
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, 46423 Yanbu, Saudi Arabia;
| | - Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21911, Saudi Arabia;
| | - Ibtisam I. Bin Sharfan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (A.A.)
| | - Ibrahim M. Alhazza
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.H.); (I.M.A.); (H.E.)
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.H.); (I.M.A.); (H.E.)
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (A.A.)
| |
Collapse
|
27
|
Rashid F, Saeed A, Iqbal J. In Vitro Anticancer Effects of Stilbene Derivatives: Mechanistic Studies on HeLa and MCF-7 Cells. Anticancer Agents Med Chem 2021; 21:793-802. [PMID: 32781966 DOI: 10.2174/1871520620666200811123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/14/2020] [Accepted: 05/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE The growing prevalence of cancer and the resulting chemoresistance exert a huge burden on healthcare systems and impose a great challenge to public health around the world. In efforts to develop new chemotherapeutic agents for cancer treatment, a class of heterocyclic compounds i.e. triazine-based molecules were investigated as anticancer agents. MATERIALS AND METHODS New triazine hybrids of stilbene were synthesized and evaluated as anticancer agents for cervical (HeLa) and breast (MCF-7) carcinoma cells. The compound (7e), sodium (E)-6,6'-(ethene-1,2- diyl)bis(3-((4-chloro-6-((3-luorophenyl)amino)-1,3,5-triazin-2-yl)amino)benzenesulfonate) was found to be most potent among synthesized derivatives and was explored further for detailed mechanistic studies. RESULTS In a set comprised of twelve derivatives, compound 7e, sodium (E)-6,6'-(ethene-1,2-diyl)bis(3-((4- chloro-6-((3-luorophenyl)amino)-1,3,5-triazin-2-yl)amino)benzenesulfonate) was found most potent inhibitor for HeLa and MCF-7 cells. DISCUSSION The present study has revealed that compound 7e may activate mitochondrial pathway of apoptosis in HeLa and MCF-7 cells which was assessed by DNA binding studies, estimation of the release of Lactate Dehydrogenase (LDH), fluorescence imaging, production of Reactive Oxygen Species (ROS) in cancer cells, analysis of cell cycle by flow cytometry, change in Mitochondrial Membrane Potential (MMP) and activation of caspase-9 and caspase-3. CONCLUSION Compound 7e may serve as a lead in designing new anticancer compounds based on stilbene scaffold.
Collapse
Affiliation(s)
- Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| |
Collapse
|
28
|
Adib M, Ghanbarlou M, Soheilizad M, Bahadorikhalili S, Larijani B, Mahdavi M. Synthesis of novel tetracyclic coumarin-fused furo-pyridone scaffolds via sequential N-arylation and intramolecular amidation reactions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Liao LS, Chen Y, Mo ZY, Hou C, Su GF, Liang H, Chen ZF. Ni(ii), Cu(ii) and Zn(ii) complexes with the 1-trifluoroethoxyl-2,9,10-trimethoxy-7-oxoaporphine ligand simultaneously target microtubules and mitochondria for cancer therapy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01463j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complexes 1–3 display potent anticancer activity against T-24 cell by disrupting mitochondria and microtubules. Furthermore, complex 1 exhibits almost same tumor growth inhibition activity in T-24 xenograft mouse model as cisplatin and paclitaxel.
Collapse
Affiliation(s)
- Lan-Shan Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Yin Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Zu-Yu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| |
Collapse
|
30
|
Farooq S, Mazhar A, Ihsan-Ul-Haq, Ullah N. One-pot multicomponent synthesis of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives and their biological evaluation as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
31
|
Fotopoulos I, Hadjipavlou-Litina D. Hybrids of Coumarin Derivatives as Potent and Multifunctional Bioactive Agents: A Review. Med Chem 2020; 16:272-306. [PMID: 31038071 DOI: 10.2174/1573406415666190416121448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/22/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coumarins exhibit a plethora of biological activities, e.g. antiinflammatory and anti-tumor. Molecular hybridization technique has been implemented in the design of novel coumarin hybrids with several bioactive groups in order to obtain molecules with better pharmacological activity and improved pharmacokinetic profile. OBJECTIVE Therefore, we tried to gather as many as possible biologically active coumarin hybrids referred in the literature till now, to delineate the structural characteristics in relation to the activities and to have a survey that might help the medicinal chemists to design new coumarin hybrids with drug-likeness and varied bioactivities. RESULTS The biological activities of the hybrids in most of the cases were found to be different from the biological activities presented by the parent coumarins. The results showed that the hybrid molecules are more potent compared to the standard drugs used in the evaluation experiments. CONCLUSION Conjugation of coumarin with varied pharmacophore groups/druglike molecules responsible for different biological activities led to many novel hybrid molecules, with a multitarget behavior and improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Ioannis Fotopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
32
|
García S, Mercado-Sánchez I, Bahena L, Alcaraz Y, García-Revilla MA, Robles J, Santos-Martínez N, Ordaz-Rosado D, García-Becerra R, Vazquez MA. Design of Fluorescent Coumarin-Hydroxamic Acid Derivatives as Inhibitors of HDACs: Synthesis, Anti-Proliferative Evaluation and Docking Studies. Molecules 2020; 25:molecules25215134. [PMID: 33158250 PMCID: PMC7662212 DOI: 10.3390/molecules25215134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 01/02/2023] Open
Abstract
Coumarin-hydroxamic acid derivatives 7a-k were herein designed with a dual purpose: as antiproliferative agents and fluorescent probes. The compounds were synthesized in moderate yields (30-87%) through a simple methodology, biological evaluation was carried out on prostate (PC3) and breast cancer (BT-474 and MDA-MB-231) cell lines to determine the effects on cell proliferation and gene expression. For compounds 7c, 7e, 7f, 7i and 7j the inhibition of cancer cell proliferation was similar to that found with the reference compound at a comparable concentration (10 μM), in addition, their molecular docking studies performed on histone deacetylases 1, 6 and 8 showed strong binding to the respective active sites. In most cases, antiproliferative activity was accompanied by greater levels of cyclin-dependent kinase inhibitor p21, downregulation of the p53 tumor suppressor gene, and regulation of cyclin D1 gene expression. We conclude that compounds 7c, 7e, 7f, 7i and 7j may be considered as potential anticancer agents, considering their antiproliferative properties, their effect on the regulation of the genes, as well as their capacity to dock to the active sites. The fluorescent properties of compound 7j and 7k suggest that they can provide further insight into the mechanism of action.
Collapse
Affiliation(s)
- Santiago García
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Itzel Mercado-Sánchez
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Luis Bahena
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Yolanda Alcaraz
- Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (Y.A.); (J.R.)
| | - Marco A. García-Revilla
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
| | - Juvencio Robles
- Departamento de Farmacia, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (Y.A.); (J.R.)
| | - Nancy Santos-Martínez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (N.S.-M.); (D.O.-R.)
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (N.S.-M.); (D.O.-R.)
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Miguel A. Vazquez
- Departamento de Química, Universidad de Guanajuato, Guanajuato, Gto. 36050, Mexico; (S.G.); (I.M.-S.); (L.B.); (M.A.G.-R.)
- Correspondence: ; Tel.: +52-473-732-0006 (ext. 1419)
| |
Collapse
|
33
|
Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 2020; 10:32740-32820. [PMID: 35516511 PMCID: PMC9056690 DOI: 10.1039/d0ra02272a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Heterocycles have been found to be of much importance as several nitrogen- and oxygen-containing heterocycle compounds exist amongst the various USFDA-approved drugs. Because of the advancement of nanotechnology, nanocatalysis has found abundant applications in the synthesis of heterocyclic compounds. Numerous nanoparticles (NPs) have been utilized for several organic transformations, which led us to make dedicated efforts for the complete coverage of applications of metal nanoparticles (MNPs) in the synthesis of heterocyclic scaffolds reported from 2010 to 2019. Our emphasize during the coverage of catalyzed reactions of the various MNPs such as Ag, Au, Co, Cu, Fe, Ni, Pd, Pt, Rh, Ru, Si, Ti, and Zn has not only been on nanoparticles catalyzed synthetic transformations for the synthesis of heterocyclic scaffolds, but also provide an inherent framework for the reader to select a suitable catalytic system of interest for the synthesis of desired heterocyclic scaffold.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Hiren A Donga
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Punit V Vaghela
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Bhoomi G Panchal
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Dipen K Sureja
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Kunjan B Bodiwala
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Mahesh T Chhabria
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| |
Collapse
|
34
|
Rather Z, Banday JA, Chisti H. Spectroscopic, X‐ray Crystal, DFT and In Vitro Analysis of 3‐(2,4‐Dimethoxy‐3‐(3‐methylbut‐2‐en‐1‐yl)phenyl) Acrylic Acid. ChemistrySelect 2020. [DOI: 10.1002/slct.202001491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zubaid‐ul‐khazir Rather
- Department of ChemistryNational Institute of Technology Srinagar Srinagar 190006, J & K India
| | - Javid A. Banday
- Department of ChemistryNational Institute of Technology Srinagar Srinagar 190006, J & K India
| | - Hamida‐Tun‐Nisa Chisti
- Department of ChemistryNational Institute of Technology Srinagar Srinagar 190006, J & K India
| |
Collapse
|
35
|
Ozalp L, Danış Ö, Yuce-Dursun B, Demir S, Gündüz C, Ogan A. Investigation of HMG-CoA reductase inhibitory and antioxidant effects of various hydroxycoumarin derivatives. Arch Pharm (Weinheim) 2020; 353:e1900378. [PMID: 32648617 DOI: 10.1002/ardp.201900378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
Cardiovascular diseases are one of the primary causes of deaths worldwide, and the development of atherosclerosis is closely related to hypercholesterolemia. As the reduction of the low-density lipoprotein cholesterol level is critical for treating these diseases, the inhibition of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase, which is essentially responsible for cholesterol biosynthesis, stands out as a key solution to lower plasma cholesterol levels. In this study, we synthesized several dihydroxycoumarins and investigated their antioxidant and in vitro HMG-CoA reductase inhibitory effects. Furthermore, we carried out in silico studies and examined the quantum-chemical properties of the coumarin derivatives. We also performed molecular docking experiments and analyzed the binding strength of each coumarin derivative. Our results revealed that compound IV displayed the highest HMG-CoA reductase inhibitory activity (IC50 = 42.0 µM) in vitro. Cupric-reducing antioxidant capacity and ferric-reducing antioxidant power assays demonstrated that coumarin derivatives exhibit potent antioxidant activities. Additionally, a close relationship was found between the lowest unoccupied molecular orbital energy levels and the antioxidant activities.
Collapse
Affiliation(s)
- Lalehan Ozalp
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Özkan Danış
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Basak Yuce-Dursun
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Serap Demir
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Cihan Gündüz
- Department of Chemistry & Biochemistry, Manhattan College, White Plains, NY, USA
| | - Ayse Ogan
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
36
|
Synthesis of furocoumarin-stilbene hybrids as potential multifunctional drugs against multiple biochemical targets associated with Alzheimer's disease. Bioorg Chem 2020; 101:103997. [PMID: 32554280 DOI: 10.1016/j.bioorg.2020.103997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
A series of furocoumarin-stilbene hybrids has been synthesized and evaluated in vitro for inhibitory effect against acetylcholinesterase (AChE), butyrylcholinestarase (BChE), β-secretase, cyclooxygenase-2 (COX-2), and lipoxygenase-5 (LOX-5) activities including free radical-scavenging properties. Among these hybrids, 8-(3,5-dimethoxyphenyl)-4-(3,5-dimethoxystyryl)furochromen-2-one 4h exhibited significant anticholinesterase activity and inhibitory effect against β-secretase, COX-2 and LOX-5 activities. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and an in vitro cell-based antioxidant activity assay involving lipopolysaccharide induced reactive oxygen species production revealed that 4h has capability of scavenging free radicals. Molecular docking into AChE, BChE, β-secretase, COX-2 and LOX-5 active sites has also been performed.
Collapse
|
37
|
Irfan A, Rubab L, Rehman MU, Anjum R, Ullah S, Marjana M, Qadeer S, Sana S. Coumarin sulfonamide derivatives: An emerging class of therapeutic agents. HETEROCYCL COMMUN 2020. [DOI: 10.1515/hc-2020-0008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractCoumarin sulfonamide is a heterocyclic pharmacophore and an important structural motif which is a core and integral part of different therapeutic scaffolds and analogues. Coumarin sulfonamides are privileged and pivotal templates which have a broad spectrum of applications in the fields of medicine, pharmacology and pharmaceutics. Coumarin sulfonamide exhibited versatile and myriad biomedical activities such as anti-bacterial, antiviral, antifungal, anti-inflammatory and anti-cancer. This review article focuses on the structural features of coumarin sulfonamide derivatives in the treatment of different lethal diseases on the basis of structure-activity relationships (SAR). The plethora of research cited in this review article summarizes and discusses the various substitutions around the coumarin sulfonamide nucleus which have provided a wide spectrum of biological activities and therapeutic potential that has proved attractive to many researchers looking to exploit the coumarin sulfonamide skeleton for drug discovery and the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Laila Rubab
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Mishbah Ur Rehman
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rukhsana Anjum
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Sami Ullah
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Mahwish Marjana
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Saba Qadeer
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Sadia Sana
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha, Pakistan
| |
Collapse
|
38
|
Xin M, Wei JH, Yang CH, Liang GB, Su D, Ma XL, Zhang Y. Design, synthesis and biological evaluation of 3-nitro-1,8-naphthalimides as potential antitumor agents. Bioorg Med Chem Lett 2020; 30:127051. [PMID: 32111436 DOI: 10.1016/j.bmcl.2020.127051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
A series of 3-nitro-naphthalimides 1(1a-1h) were designed and synthesized as antitumor agents. MTT assay results showed that all these compounds exhibited obvious antiproliferative activity against SKOV3, HepG2, A549, T-24 and SMMC-7721 cancer cell lines, while compound 1a displayed the best antiproliferative activity against HepG2 and T-24 cell lines in comparison with mitonafide, with IC50 of 9.2 ± 1.8 and 4.133 ± 0.9 μM, respectively. In vivo antiproliferative activity assay results showed that compound 1a exhibited good antiproliferative activity in the HepG2 and T-24 models, compared with mitonafide. Action mechanism results showed that compound 1a could induced the damage of DNA and the inhibition topo I, accompanying by inducing the G2-stage arresting and the apoptosis of T-24 cancer cells through up-regulating expression levels of cyclin B1, cdc 2-pTy, Wee1, γH2AX, p21, Bax and cytochrome c and down-regulating expression of Bcl-2.
Collapse
Affiliation(s)
- Mao Xin
- School of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Jian-Hua Wei
- School of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Chen-Hui Yang
- School of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Gui-Bin Liang
- School of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Dan Su
- School of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Xian-Li Ma
- School of Pharmacy, Guilin Medical University, Guilin 541004, China.
| | - Ye Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541004, China; Department of Chemistry & Pharmaceutical Science, Guilin Normal College, Guangxi 541001, China.
| |
Collapse
|
39
|
Aza- and Azo-Stilbenes: Bio-Isosteric Analogs of Resveratrol. Molecules 2020; 25:molecules25030605. [PMID: 32019195 PMCID: PMC7037676 DOI: 10.3390/molecules25030605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Several series of natural polyphenols are described for their biological and therapeutic potential. Natural stilbenoid polyphenols, such as trans-resveratrol, pterostilbene and piceatannol are well-known for their numerous biological activities. However, their moderate bio-availabilities, especially for trans-resveratrol, prompted numerous research groups to investigate innovative and relevant synthetic resveratrol derivatives. This review is focused on isosteric resveratrol analogs aza-stilbenes and azo-stilbenes in which the C=C bond between both aromatic rings was replaced with C=N or N=N bonds, respectively. In each series, synthetic ways will be displayed, and structural sights will be highlighted and compared with those of resveratrol. The biological activities of some of these molecules will be presented as well as their potential therapeutic applications. In some cases, structure-activity relationships will be discussed.
Collapse
|
40
|
Rizzk YW, El-Deen IM, Mohammed FZ, Abdelhamid MS, Khedr AI. In Vitro Antitumor Evaluation of Some Hybrid Molecules Containing Coumarin and Quinolinone Moieties. Anticancer Agents Med Chem 2020; 19:2010-2018. [DOI: 10.2174/1871520619666190930143856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/02/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
Background:
Hybrid molecules furnished by merging two or more pharmacophores is an emerging
concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the
keen attention of researchers to discover their therapeutic capability against cancer.
Objective:
The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules
containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines.
Materials and Methods:
A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c
and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT-
116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T.
Results:
All the synthesized compounds were assessed for their in vitro antiproliferative activity against four
cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds
4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1
phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation
of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a
correlated to its topoisomerase II inhibitory activity.
Conclusion:
Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further
optimization to obtain promising anticancer agents.
Collapse
Affiliation(s)
- Youstina W. Rizzk
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ibrahim M. El-Deen
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Faten Z. Mohammed
- Chemistry Department (Biochemistry Branch), Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Moustafa S. Abdelhamid
- Chemistry Department (Biochemistry Branch), Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Amgad I.M. Khedr
- Pharmacognosy Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| |
Collapse
|
41
|
Francisco CS, Francisco CS, Constantino AF, Neto ÁC, Lacerda V. Synthetic Methods Applied in the Preparation of Coumarin-based Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191121150047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coumarins (2H-chromen-2-ones) are heterocyclic compounds of wide scientific
interest due to their important biological and pharmaceutical properties such as antitumor,
antioxidant, anti-inflammatory and antimicrobial activities as well as enzymatic inhibitors
related to neurodegenerative diseases. Due to their structural variability, this compound
class has been attracting considerable interest in the natural products and synthetic organic
chemistry areas. Coumarins and their derivatives have been prepared by a variety of methods,
including Perkin, Wittig and Reformatsky reactions, Pechmann and Knoevenagel
condensations, and Claisen rearrangement, among others. In the present review we report
the different synthetic methods used in the preparation of coumarin derivatives exploited
in the last ten years (from 2008 to 2018), regarding the research demand for new structural
scaffolds.
Collapse
Affiliation(s)
- Carla S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Cristina S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | | | - Álvaro Cunha Neto
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Valdemar Lacerda
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| |
Collapse
|
42
|
Singh S, Agarwal K, Iqbal H, Yadav P, Yadav D, Chanda D, Tandon S, Khan F, Gupta AK, Gupta A. Synthesis and evaluation of substituted 8,8-dimethyl-8H-pyrano[2,3-f]chromen-2-one derivatives as vasorelaxing agents. Bioorg Med Chem Lett 2020; 30:126759. [DOI: 10.1016/j.bmcl.2019.126759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
|
43
|
Khan I, Khan A, Ahsan Halim S, Saeed A, Mehsud S, Csuk R, Al-Harrasi A, Ibrar A. Exploring biological efficacy of coumarin clubbed thiazolo[3,2–b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach. Int J Biol Macromol 2020; 142:345-354. [DOI: 10.1016/j.ijbiomac.2019.09.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 02/01/2023]
|
44
|
Maleki EH, Bahrami AR, Sadeghian H, Matin MM. Discovering the structure-activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells. Toxicol In Vitro 2019; 63:104745. [PMID: 31830504 DOI: 10.1016/j.tiv.2019.104745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
Cervical cancer remains one of the greatest life threatening diseases for women worldwide. Although chemotherapy is considered as a standard treatment for advanced cervical cancers, there are still some drawbacks in this procedure including side effects and acquired drug resistance, which necessitate further research on development of more effective agents with less side effects. Among natural compounds, coumarin derivatives have shown anticancer properties on various cancerous cells and coumarin ring has proven to have a paramount role in development of anticancer drugs. Here, we aimed to establish the structure-activity relationships of eighteen O-prenylated coumarin derivatives and determined their anticancer properties on HeLa cervical cancer and HDF normal cells by MTT assay. Moreover, the mechanism of cell death induced by these compounds and their effects on cell cycle were studied using flow cytometry. MTT results indicated that twelve O-prenylated coumarin derivatives exhibited selective toxicity on HeLa cells, while they had no significant toxic effects on normal cells. Besides, flow cytometric analyses, showed that the selected compounds induced apoptosis in HeLa cells, and could also result to G1 cell cycle arrest. In conclusion, analyzing structural-activity relationships revealed that a prenylation substitution at position 6 of the coumarin ring greatly improved anticancer properties of these agents. As these derivatives exerted their cytotoxic effects via apoptosis and were not toxic on normal cells, they can be considered as effective anticancer agents for further preclinical experiments.
Collapse
Affiliation(s)
- Ebrahim H Maleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
45
|
Styrylcoumarin 7-SC2 induces apoptosis in SW480 human colon adenocarcinoma cells and inhibits azoxymethane-induced aberrant crypt foci formation in BALB/c mice. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02487-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Discovery and evaluation of inhibitory activity and mechanism of arylcoumarin derivatives on Theileria annulata enolase by in vitro and molecular docking studies. Mol Divers 2019; 24:1149-1164. [PMID: 31754915 DOI: 10.1007/s11030-019-10018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
In this study, the inhibition potential of 3- and 4-arylcoumarin derivatives on Theileria annulata enolase (TaENO) was assessed for the first time in the literature. Firstly, protein stabilization analyses of TaENO were performed and it was found that the enzyme remains stable with the addition of 6 M ethylene glycol at + 4 °C. Inhibitor screening analyses were carried out using 25 coumarin derivatives on highly purified TaENO (> 95%), and four coumarin derivatives [4-(3,4-dimethoxyphenyl)-6,7-dihydroxy-2H-chromen-2-one (C8); 4-(3,4-dihydroxyphenyl)-7,8 dihydroxy-2H-chromen-2-one (C9); 4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-2H-chromen-2 one (C21); and 3-(3,4-dihydroxyphenyl)-7,8-dihydroxy-2H-chromen-2-one (C23)] showed the highest inhibitory effects with the IC50 values of 10.450, 13.170, 8.871 and 10.863 µM, respectively. The kinetic results indicated that these compounds inhibited the enzyme by uncompetitive inhibition. In addition, the successful binding of the most potent inhibitor (C21) into TaENO was confirmed by using MALDI-TOF mass spectrophotometry. Molecular docking analyses have predicted that C8 and C21 coumarin derivatives which showed high inhibitory effects on TaENO were interacted with high affinity to the potential regions out of the active site. Taken together, these coumarin derivatives (C8, C9, C21 and C23) are first known potent, nonsubstrate, uncompetitive inhibitors of TaENO and these results will facilitate further in vitro and in vivo analysis toward structure-based drug design studies.
Collapse
|
47
|
Ashok D, Madhuri EL, Sarasija M. Green Synthesis of Spiropyranone 3-Aryl-4-Methylcoumarin
Derivatives using Carbonyldiimidazole. ACTA ACUST UNITED AC 2019. [DOI: 10.14233/ajchem.2020.22376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of spiropyranone 3-aryl-4-methylcoumarin derivatives have been synthesized from
monospiro-2-hydroxy acetophenone in a novel and efficient green method using imidazolyl
intermediates and inorganic base. Imidazolyl intermediates were in turn generated by grinding the respective phenylacetic acid along with carbonyldiimidazole (CDI). Similarly, monospiro-2-hydroxy acetophenone derivatives were prepared selectively by avoiding formation of bis derivatives following literature procedure. The titled compounds were purified by preparative TLC technique and were characterized by IR, 1H NMR, 13C NMR as well as mass spectral methods
Collapse
Affiliation(s)
- D. Ashok
- Green and Medicinal Chemistry Lab, Department of Chemistry, Osmania University, Hyderabad-500007, India
| | - E.V. L. Madhuri
- Department of Chemistry, Telangana University, Nizamabad-503344, India
| | - M. Sarasija
- Department of Chemistry, Satavahana University, Karimnagar-505001, India
| |
Collapse
|
48
|
Alomari M, Taha M, Imran S, Jamil W, Selvaraj M, Uddin N, Rahim F. Design, synthesis, in vitro evaluation, molecular docking and ADME properties studies of hybrid bis-coumarin with thiadiazole as a new inhibitor of Urease. Bioorg Chem 2019; 92:103235. [DOI: 10.1016/j.bioorg.2019.103235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/24/2022]
|
49
|
Zhang C, Yang K, Yu S, Su J, Yuan S, Han J, Chen Y, Gu J, Zhou T, Bai R, Xie Y. Design, synthesis and biological evaluation of hydroxypyridinone-coumarin hybrids as multimodal monoamine oxidase B inhibitors and iron chelates against Alzheimer's disease. Eur J Med Chem 2019; 180:367-382. [DOI: 10.1016/j.ejmech.2019.07.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
|
50
|
Yang L, Qin X, Liu H, Wei Y, Zhu H, Jiang M. Design, synthesis and biological evaluation of a series of new resveratrol analogues as potential anti-cancer agents. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190125. [PMID: 31598278 PMCID: PMC6774960 DOI: 10.1098/rsos.190125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
A series of novel resveratrol derivatives were designed, synthesized and evaluated as anti-cancer agents. Most of the compounds showed significant anti-proliferative activities against three human cancer cell lines (HepG2, A549 and Hela). Among these compounds, compound r displayed the most potent inhibitory activity and showed low cytotoxic activity. Cell apoptosis and cell cycle assays demonstrated that compound r significantly induced apoptosis (p < 0.001) and arrested cell cycle at S phase. Immunofluorescence microscopy analysis showed compound r disrupted the tubulin network. Docking simulations supported the pharmacological results of compound r. It is believed that this work would be very useful for designing a new series of tubulin inhibitors.
Collapse
Affiliation(s)
- Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Xuemei Qin
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hongcun Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Yanye Wei
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| |
Collapse
|