1
|
De P, Roy K. Computational modeling of PET imaging agents for vesicular acetylcholine transporter (VAChT) protein binding affinity: application of 2D-QSAR modeling and molecular docking techniques. In Silico Pharmacol 2023; 11:9. [PMID: 37035236 PMCID: PMC10073372 DOI: 10.1007/s40203-023-00146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The neurotransmitter acetylcholine (ACh) plays a ubiquitous role in cognitive functions including learning and memory with widespread innervation in the cortex, subcortical structures, and the cerebellum. Cholinergic receptors, transporters, or enzymes associated with many neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are potential imaging targets. In the present study, we have developed 2D-quantitative structure-activity relationship (2D-QSAR) models for 19 positron emission tomography (PET) imaging agents targeted against presynaptic vesicular acetylcholine transporter (VAChT). VAChT assists in the transport of ACh into the presynaptic storage vesicles, and it becomes one of the main targets for the diagnosis of various neurodegenerative diseases. In our work, we aimed to understand the important structural features of the PET imaging agents required for their binding with VAChT. This was done by feature selection using a Genetic Algorithm followed by the Best Subset Selection method and developing a Partial Least Squares- based 2D-QSAR model using the best feature combination. The developed QSAR model showed significant statistical performance and reliability. Using the features selected in the 2D-QSAR analysis, we have also performed similarity-based chemical read-across predictions and obtained encouraging external validation statistics. Further, we have also performed molecular docking analysis to understand the molecular interactions occurring between the PET imaging agents and the VAChT receptor. The molecular docking results were correlated with the QSAR features for a better understanding of the molecular interactions. This research serves to fulfill the experimental data gap, highlighting the applicability of computational methods in the PET imaging agents' binding affinity prediction. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00146-4.
Collapse
Affiliation(s)
- Priyanka De
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| |
Collapse
|
2
|
Hsieh CJ, Giannakoulias S, Petersson EJ, Mach RH. Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development. Pharmaceuticals (Basel) 2023; 16:317. [PMID: 37259459 PMCID: PMC9964981 DOI: 10.3390/ph16020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 11/19/2023] Open
Abstract
The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted throughout this review. First, we discuss the use of virtual screening for hit identification at the beginning of drug discovery programs. This is followed by an analysis of how the hits derived from virtual screening can be filtered and culled to highly probable candidates to test in in vitro assays. We then illustrate how CADD can be used to optimize the potency of experimentally validated hit compounds from virtual screening for use in positron emission tomography (PET). Finally, we conclude with a survey of the newest techniques in CADD employing machine learning (ML).
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Vercouillie J, Buron F, Sérrière S, Rodrigues N, Gulhan Z, Chartier A, Chicheri G, Marzag H, Oury A, Percina N, Bodard S, Ben Othman R, Busson J, Suzenet F, Guilloteau D, Marchivie M, Emond P, Routier S, Chalon S. Development and preclinical evaluation of [18F]FBVM as a new potent PET tracer for vesicular acetylcholine transporter. Eur J Med Chem 2022; 244:114794. [DOI: 10.1016/j.ejmech.2022.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
|
4
|
Bonner A, Loftus A, Padgham AC, Baumann M. Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Org Biomol Chem 2021; 19:7737-7753. [PMID: 34549240 DOI: 10.1039/d1ob01452h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Continuous flow technology has played an undeniable role in enabling modern chemical synthesis, whereby a myriad of reactions can now be performed with greater efficiency, safety and control. As flow chemistry furthermore delivers more sustainable and readily scalable routes to important target structures a growing number of industrial applications are being reported. In this review we highlight the impact of flow chemistry on revitalising important chemical reactions that were either forgotten soon after their initial report as necessary improvements were not realised due to a lack of available technology, or forbidden due to unacceptable safety concerns relating to the experimental procedure. In both cases flow processing in combination with further reaction optimisation has rendered a powerful set of tools that make such transformations not only highly efficient but moreover very desirable due to a more streamlined construction of desired scaffolds. This short review highlights important contributions from academic and industrial laboratories predominantly from the last 5 years allowing the reader to gain an appreciation of the impact of flow chemistry.
Collapse
Affiliation(s)
- Arlene Bonner
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Aisling Loftus
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Alex C Padgham
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| |
Collapse
|
5
|
Saint-Georges Z, Zayed VK, Dinelle K, Cassidy C, Soucy JP, Massarweh G, Rotstein B, Nery PB, Guimond S, deKemp R, Tuominen L. First-in-human imaging and kinetic analysis of vesicular acetylcholine transporter density in the heart using [ 18F]FEOBV PET. J Nucl Cardiol 2021; 28:50-54. [PMID: 32909238 PMCID: PMC7921026 DOI: 10.1007/s12350-020-02323-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/09/2022]
Abstract
In contrast to cardiac sympathetic activity which can be assessed with established PET tracers, there are currently no suitable radioligands to measure cardiac parasympathetic (cholinergic) activity. A radioligand able to measure cardiac cholinergic activity would be an invaluable clinical and research tool since cholinergic dysfunction has been associated with a wide array of pathologies (e.g., chronic heart failure, myocardial infarction, arrythmias). [18F]Fluoroethoxybenzovesamicol (FEOBV) is a cholinergic radiotracer that has been extensively validated in the brain. Whether FEOBV PET can be used to assess cholinergic activity in the heart is not known. Hence, this study aimed to evaluate the properties of FEOBV for cardiac PET imaging and cholinergic activity mapping. PET data were collected for 40 minutes after injection of 230 ± 50 MBq of FEOBV in four healthy participants (1 female; Age: 37 ± 10; BMI: 25 ± 2). Dynamic LV time activity curves were fitted with Logan graphical, 1-tissue compartment, and 2-tissue compartment models, yielding similar distribution volume estimates for each participant. Our initial data show that FEOBV PET has favorable tracer kinetics for quantification of cholinergic activity and is a promising new method for assessing parasympathetic function in the heart.
Collapse
Affiliation(s)
- Zacharie Saint-Georges
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Vanessa K Zayed
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Katie Dinelle
- Brain Imaging Centre, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Clifford Cassidy
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Benjamin Rotstein
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Pablo B Nery
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Synthia Guimond
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Robert deKemp
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Lauri Tuominen
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Cacabelos R. Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Metab Toxicol 2020; 16:673-701. [PMID: 32520597 DOI: 10.1080/17425255.2020.1779700] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cholinergic dysfunction, demonstrated in the late 1970s and early 1980s, led to the introduction of acetylcholinesterase inhibitors (AChEIs) in 1993 (Tacrine) to enhance cholinergic neurotransmission as the first line of treatment against Alzheimer's disease (AD). The new generation of AChEIs, represented by Donepezil (1996), Galantamine (2001) and Rivastigmine (2002), is the only treatment for AD to date, together with Memantine (2003). AChEIs are not devoid of side-effects and their cost-effectiveness is limited. An option to optimize the correct use of AChEIs is the implementation of pharmacogenetics (PGx) in the clinical practice. AREAS COVERED (i) The cholinergic system in AD, (ii) principles of AD PGx, (iii) PGx of Donepezil, Galantamine, Rivastigmine, Huperzine and other treatments, and (iv) practical recommendations. EXPERT OPINION The most relevant genes influencing AChEI efficacy and safety are APOE and CYPs. APOE-4 carriers are the worst responders to AChEIs. With the exception of Rivastigmine (UGT2B7, BCHE-K), the other AChEIs are primarily metabolized via CYP2D6, CYP3A4, and UGT enzymes, with involvement of ABC transporters and cholinergic genes (CHAT, ACHE, BCHE, SLC5A7, SLC18A3, CHRNA7) in most ethnic groups. Defective variants may affect the clinical response to AChEIs. PGx geno-phenotyping is highly recommended prior to treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine , Bergondo, Corunna, Spain
| |
Collapse
|
7
|
Miwa D, Kitamura Y, Kozaka T, Shigeno T, Ogawa K, Taki J, Kinuya S, Shiba K. (-)-o-[ 11 C]methyl-trans-decalinvesamicol ((-)-[ 11 C]OMDV) as a PET ligand for the vesicular acetylcholine transporter. Synapse 2020; 74:e22176. [PMID: 32500935 DOI: 10.1002/syn.22176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 11/10/2022]
Abstract
To develop a PET imaging agent to visualize brain cholinergic neurons and synaptic changes caused by Alzheimer's disease, (-)- and (+)-o-[11 C]methyl-trans-decalinvesamicol ([11 C]OMDV) were isolated and investigated for differences in not only their binding affinity and selectivity to vesicular acetylcholine transporter (VAChT), but also their in vivo activities. [11 C]OMDV has a high binding affinity for VAChT both in vitro and in vivo. Racemic OMDV and o-trimethylstannyl-trans-decalinvesamicol (OTDV), which are precursors for synthesis of [11 C]OMDV, were separated into (-)-optical isomers ((-)-OMDV and (-)-OTDV) and (+)-optical isomers ((+)-OMDV and (+)-OTDV) by HPLC. In the in vitro binding assay, (-)-OMDV(7.2 nM) showed eight times higher binding affinity (Ki) to VAChT than that of (+)-OMDV(57.5 nM). In the biodistribution study, the blood-brain barrier permeability of both enantiomers ((-)-[11 C]OMDV and (+)-[11 C]OMDV) was similarly high (about 1.0%ID/g) at 2 min post-injection. However, (+)-[11 C]OMDV clearance from the brain was faster than (-)-[11 C]OMDV. In the in vivo blocking study, accumulation of (-)-[11 C]OMDV in the cortex was markedly decreased (approximately 30% of control) by coadministration of vesamicol, and brain uptake of (-)-[11 C]OMDV was not significantly altered by coadministration of (+)-pentazocine or (+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP). PET-CT imaging revealed inhibition of the rat brain uptake of (-)-[11 C]OMDV by coadministration of vesamicol. In conclusion, (-)-[11 C]OMDV, which is an enantiomer of OMDV, selectively binds to VAChT with high affinity in the rat brain in vivo. (-)-[11 C]OMDV may be utilized as a potential PET ligand for studying presynaptic cholinergic neurons in the brain.
Collapse
Affiliation(s)
- Daisuke Miwa
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Yoji Kitamura
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Takashi Kozaka
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Taiki Shigeno
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kazuma Ogawa
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Junichi Taki
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Seigo Kinuya
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Schildt A, de Vries EFJ, Willemsen ATM, Giacobbo BL, Moraga-Amaro R, Sijbesma JWA, van Waarde A, Sossi V, Dierckx RAJO, Doorduin J. Effect of Dopamine D 2 Receptor Antagonists on [ 18F]-FEOBV Binding. Mol Pharm 2020; 17:865-872. [PMID: 32011892 PMCID: PMC7054895 DOI: 10.1021/acs.molpharmaceut.9b01129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
interaction of dopaminergic and cholinergic neurotransmission
in, e.g., Parkinson’s disease has been well established. Here,
D2 receptor antagonists were used to assess changes in
[18F]-FEOBV binding to the vesicular acetylcholine transporter
(VAChT) in rodents using positron emission tomography (PET). After
pretreatment with either 10 mg/kg haloperidol, 1 mg/kg raclopride,
or vehicle, 90 min dynamic PET scans were performed with arterial
blood sampling. The net influx rate (Ki) was obtained from Patlak graphical analysis, using a metabolite-corrected
plasma input function and dynamic PET data. [18F]-FEOBV
concentration in whole-blood or plasma and the metabolite-corrected
plasma input function were not significantly changed by the pretreatments
(adjusted p > 0.07, Cohen’s d 0.28–1.89) while the area-under-the-curve (AUC) of the parent
fraction of [18F]-FEOBV was significantly higher after
haloperidol treatment (adjusted p = 0.022, Cohen’s d = 2.51) than in controls. Compared to controls, the AUC
of [18F]-FEOBV, normalized for injected dose and body weight,
was nonsignificantly increased in the striatum after haloperidol (adjusted p = 0.4, Cohen’s d = 1.77) and raclopride
(adjusted p = 0.052, Cohen’s d = 1.49) treatment, respectively. No changes in the AUC of [18F]-FEOBV were found in the cerebellum (Cohen’s d 0.63–0.74). Raclopride treatment nonsignificantly
increased Ki in the striatum 1.3-fold
compared to control rats (adjusted p = 0.1, Cohen’s d = 1.1) while it reduced Ki in the cerebellum by 28% (adjusted p = 0.0004,
Cohen’s d = 2.2) compared to control rats.
Pretreatment with haloperidol led to a nonsignificant reduction in Ki in the striatum (10%, adjusted p = 1, Cohen’s d = 0.44) and a 40–50%
lower Ki than controls in all other brain
regions (adjusted p < 0.0005, Cohen’s d = 3.3–4.7). The changes in Ki induced by the selective D2 receptor antagonist
raclopride can in part be quantified using [18F]-FEOBV
PET imaging. Haloperidol, a nonselective D2/σ receptor
antagonist, either paradoxically decreased cholinergic activity or
blocked off-target [18F]-FEOBV binding to σ receptors.
Hence, further studies evaluating the binding of [18F]-FEOBV
to σ receptors using selective σ receptor ligands are
necessary.
Collapse
Affiliation(s)
- Anna Schildt
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands.,Department of Physics and Astronomy, University of British Columbia, 143-2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Antoon T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Jürgen W A Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, 143-2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| |
Collapse
|
9
|
Luo Z, Liu H, Jin H, Gu J, Yu Y, Kaneshige K, Perlmutter JS, Parsons SM, Tu Z. Exploration of Sulfur-Containing Analogues for Imaging Vesicular Acetylcholine Transporter in the Brain. ChemMedChem 2018; 13:1978-1987. [PMID: 30071131 PMCID: PMC6422167 DOI: 10.1002/cmdc.201800411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/29/2018] [Indexed: 11/09/2022]
Abstract
Sixteen new sulfur-containing compounds targeting the vesicular acetylcholine transporter (VAChT) were synthesized and assessed for in vitro binding affinities. Enantiomers (-)-(1-(3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)(4-(methylthio)phenyl)methanone [(-)-8] and (-)-(4-((2-fluoroethyl)thio)phenyl)(1-(3-hydroxy-1,2,3,4-tetrahydronaph-thalen-2-yl)piperidin-4-yl)methanone [(-)-14 a] displayed high binding affinities, with respective Ki values of 1.4 and 2.2 nm for human VAChT, moderate and high selectivity for human VAChT over σ1 (≈13-fold) and σ2 receptors (>420-fold). Radiosyntheses of (-)-[11 C]8 and (-)-[18 F]14 a were achieved using conventional methods. Ex vivo autoradiography and biodistribution studies in Sprague-Dawley rats indicated that both radiotracers have the capacity to penetrate the blood-brain barrier, with high initial brain uptake at 5 min and rapid washout. The striatal region had the highest accumulation for both radiotracers. Pretreating the rats with the VAChT ligand (-)-vesamicol decreased brain uptake for both radiotracers. Pretreating the rats with the σ1 ligand YUN-122 (N-(4-benzylcyclohexyl)-2-(2-fluorophenyl)acetamide) also decreased brain uptake, suggesting these two radiotracers also bind to the σ1 receptor in vivo. The microPET study of (-)-[11 C]8 in the brain of a non-human primate showed high striatal accumulation that peaked quickly and washed out rapidly. Although preliminary results indicated these two sulfur-containing radiotracers have high binding affinities for VAChT with rapid washout kinetics from the striatum, their σ1 receptor binding properties limit their potential as radiotracers for quantifying VAChT in vivo.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hongjun Jin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kota Kaneshige
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stanley M Parsons
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
10
|
In Vivo and In Vitro Characteristics of Radiolabeled Vesamicol Analogs as the Vesicular Acetylcholine Transporter Imaging Agents. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4535476. [PMID: 30008624 PMCID: PMC6020543 DOI: 10.1155/2018/4535476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
Abstract
The vesicular acetylcholine transporter (VAChT), a presynaptic cholinergic neuron marker, is a potential internal molecular target for the development of an imaging agent for early diagnosis of neurodegenerative disorders with cognitive decline such as Alzheimer's disease (AD). Since vesamicol has been reported to bind to VAChT with high affinity, many vesamicol analogs have been studied as VAChT imaging agents for the diagnosis of cholinergic neurodeficit disorder. However, because many vesamicol analogs, as well as vesamicol, bound to sigma receptors (σ1 and σ2) besides VAChT, almost all the vesamicol analogs have been shown to be unsuitable for clinical trials. In this report, the relationships between the chemical structure and the biological characteristics of these developed vesamicol analogs were investigated, especially the in vitro binding profile and the in vivo regional brain accumulation.
Collapse
|
11
|
Roslin S, De Rosa M, Deuther-Conrad W, Eriksson J, Odell LR, Antoni G, Brust P, Larhed M. Synthesis and in vitro evaluation of 5-substituted benzovesamicol analogs containing N-substituted amides as potential positron emission tomography tracers for the vesicular acetylcholine transporter. Bioorg Med Chem 2017; 25:5095-5106. [PMID: 28185725 DOI: 10.1016/j.bmc.2017.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
Herein, new ligands for the vesicular acetylcholine transporter (VAChT), based on a benzovesamicol scaffold, are presented. VAChT is acknowledged as a marker for cholinergic neurons and a positron emission tomography tracer for VAChT could serve as a tool for quantitative analysis of cholinergic neuronal density. With an easily accessible triflate precursor, aminocarbonylations were utilized to evaluate the chemical space around the C5 position on the tetrahydronaphthol ring. Synthesized ligands were evaluated for their affinity and selectivity for VAChT. Small, preferably aromatic, N-substituents proved to be more potent than larger substituents. Of the fifteen compounds synthesized, benzyl derivatives (±)-7i and (±)-7l had the highest affinities for VAChT. Compound (±)-7i was chosen to investigate the importance of stereochemistry for binding to VAChT and selectivity toward the σ1 and σ2 receptors. Enantiomeric resolution gave (+)-7i and (-)-7i, and the eutomer showed seven times better affinity. Although racemate (±)-7i was initially promising, the affinity of (-)-7i for VAChT was not better than 56.7nM which precludes further preclinical evaluation. However, the nanomolar binding together with the ready synthesis of [11C]-(±)-7i shows that (-)-7i can serve as a scaffold for future optimizations to provide improved 11C-labelled VAChT PET tracers.
Collapse
Affiliation(s)
- Sara Roslin
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Maria De Rosa
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318 Leipzig, Germany
| | - Jonas Eriksson
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Luke R Odell
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Gunnar Antoni
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden
| | - Peter Brust
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318 Leipzig, Germany
| | - Mats Larhed
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
12
|
Park NH, Senter TJ, Buchwald SL. Rapid Synthesis of Aryl Fluorides in Continuous Flow through the Balz-Schiemann Reaction. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nathaniel H. Park
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Timothy J. Senter
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
13
|
Park NH, Senter TJ, Buchwald SL. Rapid Synthesis of Aryl Fluorides in Continuous Flow through the Balz-Schiemann Reaction. Angew Chem Int Ed Engl 2016; 55:11907-11. [DOI: 10.1002/anie.201606601] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Nathaniel H. Park
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Timothy J. Senter
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
14
|
Barthel C, Sorger D, Deuther-Conrad W, Scheunemann M, Schweiger S, Jäckel P, Roghani A, Steinbach J, Schüürmann G, Sabri O, Brust P, Wenzel B. New systematically modified vesamicol analogs and their affinity and selectivity for the vesicular acetylcholine transporter – A critical examination of the lead structure. Eur J Med Chem 2015; 100:50-67. [DOI: 10.1016/j.ejmech.2015.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
|
15
|
Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull 2014; 30:777-811. [PMID: 25172118 DOI: 10.1007/s12264-014-1460-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the brain provides images of transport, metabolic, and neurotransmission processes on the molecular level. After a short introduction into the principles of PET, this review mainly focuses on the strategy of radiotracer development bridging from basic science to biomedical application. Successful radiotracer design as described here provides molecular probes which not only are useful for imaging of human brain diseases, but also allow molecular neuroreceptor imaging studies in various small-animal models of disease, including genetically-engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of pre-clinical drug development to identify new drug targets, to investigate pathophysiology, to discover potential drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.
Collapse
|
16
|
Kilbourn MR. PET radioligands for the vesicular transporters for monoamines and acetylcholine. J Labelled Comp Radiopharm 2014; 56:167-71. [PMID: 24285322 DOI: 10.1002/jlcr.2998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/15/2012] [Accepted: 11/06/2012] [Indexed: 11/09/2022]
Abstract
The vesicular transporters for the monoamine and acetylcholine have been successfully targeted for the development of radioligands for human brain imaging. The vesicular monoamine transporter type 2 ligands are based on the structure of tetrabenazine, a known clinically used drug. In contrast, the radioligands for vesicular acetylcholine transporter are based on vesamicol, a toxic xenobiotic. The similarities and differences in the development of these two classes of radioligands are discussed.
Collapse
Affiliation(s)
- Michael R Kilbourn
- Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Ambure P, Roy K. Advances in quantitative structure–activity relationship models of anti-Alzheimer’s agents. Expert Opin Drug Discov 2014; 9:697-723. [DOI: 10.1517/17460441.2014.909404] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Aromatic fluoro-de-triazenation with boron trifluoride diethyl etherate under non-protic acid conditions. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Abstract
The autonomic nervous system is the primary extrinsic control of cardiac performance, and altered autonomic activity has been recognized as an important factor in the progression of various cardiac pathologies. Molecular imaging techniques have been developed for global and regional interrogation of pre- and postsynaptic targets of the cardiac autonomic nervous system. Building on established work with the guanethidine analogue ¹²³I-metaiodobenzylguanidine (MIBG) for single-photon emission tomography (SPECT), development of radiotracers and protocols for positron emission tomography (PET) investigation of autonomic signaling has expanded. PET is limited in availability and requires specialized centers for radiosynthesis and interpretation, but the higher resolution allows for improved regional analysis and kinetic modeling provides more true quantification than is possible with SPECT. A wider array of radiolabeled catecholamines, analogues of catecholamines, and receptor ligands have been characterized and evaluated. Sympathetic neuronal PET tracers have shown promise in the identification of several cardiac pathologies. In particular, recent studies have elucidated a mechanistic role for heterogeneous sympathetic innervation in the development of lethal ventricular arrhythmias. Evaluation of cardiomyocyte adrenergic receptor expression and the parasympathetic nervous system has been slower to develop, with clinical studies beginning to emerge. This review summarizes the clinical and the experimental PET tracers currently available for autonomic imaging and discusses their application in health and cardiovascular disease, with particular emphasis on the major findings of the last decade.
Collapse
Affiliation(s)
- James T Thackeray
- Klinik für Nuklearmedizin, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
20
|
Kozaka T, Uno I, Kitamura Y, Miwa D, Ogawa K, Shiba K. Syntheses and in vitro evaluation of decalinvesamicol analogues as potential imaging probes for vesicular acetylcholine transporter (VAChT). Bioorg Med Chem 2012; 20:4936-41. [PMID: 22831799 DOI: 10.1016/j.bmc.2012.06.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 02/02/2023]
Abstract
A series of vesamicol analogues, o-iodo-trans-decalinvesamicol (OIDV) or o-bromo-trans-decalinvesamicol (OBDV), were synthesized and their affinities to vesicular acetylcholine transporter (VAChT) and σ receptors (σ-1, σ-2) were evaluated by in vitro binding assays using rat cerebral or liver membranes. OIDV and OBDV showed greater binding affinity to VAChT (K(i) = 20.5 ± 5.6 and 13.8 ± 1.2 nM, respectively) than did vesamicol (K(i) = 33.9 ± 18.1 nM) with low affinity to σ receptors. A saturation binding assay in rat cerebral membranes revealed that [(125)I]OIDV had a single high affinity binding site with a K(d) value of 1.73 nM and a B(max) value of 164.4 fmol/mg protein. [(125)I]OIDV revealed little competition with inhibitors, which possessed specific affinity to each σ (σ-1 and σ-2), serotonin (5-HT(1A) and 5-HT(2A)), noradrenaline, and muscarinic acetylcholine receptors. In addition, BBB penetration of [(125)I]OIDV was verified in in vivo. The results of the binding studies indicated that OIDV and OBDV had great potential to be VAChT imaging probes with high affinity and selectivity.
Collapse
Affiliation(s)
- Takashi Kozaka
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
QSAR study and synthesis of new phenyltropanes as ligands of the dopamine transporter (DAT). Bioorg Med Chem 2012; 20:1388-95. [PMID: 22300887 DOI: 10.1016/j.bmc.2012.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
The dopamine transporter (DAT) plays a pivotal role in the regulation of dopamine neurotransmission, and is involved in a number of physiological functions and brain disorders. Furthermore the DAT analysis by molecular imaging techniques is a useful tool for the diagnosis and follow up treatment of diseases involving the DAT. In order to predict the affinity of new derivatives for the DAT, different QSAR molecular modeling models based on cocaine were compared. We have evaluated in these models tropane derivatives synthesized with original synthons which coupled properties of both fluorine and iodine atoms. One compound showed a high in vitro affinity and selectivity for the DAT (K(i)=0.87±0.04 nM). This compound should be radiolabeled with radioiodine for further investigations by SPECT.
Collapse
|