1
|
Wang S, Gan L, Han L, Deng P, Li Y, He D, Chi H, Zhu L, Li Y, Long R, Gan Z. Design, synthesis, and biological evaluation of naphthalene imidazo[1,2-b]pyridazine hybrid derivatives as VEGFR selective inhibitors. Arch Pharm (Weinheim) 2024; 357:e2400411. [PMID: 39008876 DOI: 10.1002/ardp.202400411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
The vascular endothelial growth factor receptor (VEGFR) is a receptor tyrosine kinase that is regarded as an emerging target for abnormal angiogenesis diseases. In this study, novel naphthalene imidazo[1,2-b]pyridazine hybrids as VEGFR selective inhibitors were designed and synthesized using a scaffold hopping strategy based on ponatinib, a multitarget kinase inhibitor. Among the evaluated compounds, derivative 9k (WS-011) demonstrated the most potent inhibitory potency against VEGFR-2 (IC50 = 8.4 nM) and displayed superior VEGFR selectivity over a panel of 70 kinases compared with ponatinib. Furthermore, 9k possessed good cytotoxic effects on various cancer cell lines, especially the colon cancer HT-29 cells, with an acceptable oral bioavailability. Moreover, 9k significantly inhibited the migration and invasion of human umbilical vein endothelial cells (HUVEC) cells and induced apoptosis through the upregulation of apoptotic proteins in HT-29 cells. 9k also effectively suppressed the activation of VEGFR-2 signaling pathways, which in turn inhibited the growth of HT-29 cells and the tube formation of HUVECs in vitro. All of the findings revealed that 9k could be considered a promising antiangiogenesis lead that merits further investigation.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - LinLing Gan
- Chongqing Engineering Research Center of Pharmaceutical Sciences, School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Lei Han
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ping Deng
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yihao Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Dongxiao He
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Haoze Chi
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Liwei Zhu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuehui Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui Long
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zongjie Gan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Dorababu A. Role of heterocycles in inhibition of VEGFR-2 - a recent update (2019-2022). RSC Med Chem 2024; 15:416-432. [PMID: 38389872 PMCID: PMC10880944 DOI: 10.1039/d3md00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/10/2023] [Indexed: 02/24/2024] Open
Abstract
The literature reveals that oncogenic protein kinase inhibition has been proved to be a successful anticancer approach. The vascular endothelial growth factor receptor (VEGFR) kinase plays an important role in angiogenesis and metastasis. VEGFR-2 has an upper hand in the angiogenesis process. Vascular endothelial growth factor activates VEGFR-2 which initiates tumor angiogenesis. In addition, VEGFRs are associated with numerous other diseases. Hence, inhibition of VEGFRs is an attractive approach for cancer treatment. In view of this, researchers designed and discovered small molecular heterocycle-based VEGFR-2 inhibitors and some of them have been approved by the Food and Drug Administration (FDA). However, these VEGFR-2 inhibitors pose adverse side effects such as cardiovascular problems, diarrhea, and renal function impairment. Research indicates that combination of certain pharmacophores exhibits excellent VEGFR inhibitory activity. In particular, combination of heterocycles paved the way to efficient VEGFR inhibitors. In this review, the research focusing on VEGFR inhibitory activity has been discussed along with the structure-activity relationship. In addition to emphasizing the most potent molecule among the set of designed molecules, structural features responsible for such an activity are described. This review may aid in designing potent VEGFR inhibitors.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College Huvinahadagali 583219 India
| |
Collapse
|
3
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Lysenko V, Portiankin A, Shvydenko T, Shvydenko K, Shishkina S, Kostyuk A. Synthesis and functionalization of 6,7-dihydro-5H-pyrrolo[1,2-c]imidazole. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2188221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Viacheslav Lysenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anton Portiankin
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana Shvydenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Kostiantyn Shvydenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Svitlana Shishkina
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Aleksandr Kostyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
5
|
Agarwal N, Tangen CM, Hussain MH, Gupta S, Plets M, Lara PN, Harzstark AL, Twardowski PW, Paller CJ, Zylla D, Zibelman MR, Levine E, Roth BJ, Goldkorn A, Vaena DA, Kohli M, Crispino T, Vogelzang NJ, Thompson IM, Quinn DI. Orteronel for Metastatic Hormone-Sensitive Prostate Cancer: A Multicenter, Randomized, Open-Label Phase III Trial (SWOG-1216). J Clin Oncol 2022; 40:3301-3309. [PMID: 35446628 PMCID: PMC9553390 DOI: 10.1200/jco.21.02517] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/03/2022] [Accepted: 03/18/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Orteronel (TAK-700) is a nonsteroidal 17,20-lyase inhibitor suppressing androgen synthesis. We evaluated the clinical benefit of orteronel when added to androgen deprivation therapy (ADT) in patients with newly diagnosed metastatic hormone-sensitive prostate cancer. METHODS In this open-label randomized phase III study, patients with metastatic hormone-sensitive prostate cancer were randomly assigned 1:1 to ADT with orteronel (300 mg oral twice daily; experimental arm) or ADT with bicalutamide (50 mg oral once daily; control arm). The primary objective was the comparison of overall survival (OS), targeting a 33% improvement in median survival. A stratified log-rank test with a one-sided P ≤ .022 would indicate statistical significance. Secondary end points were progression-free survival (PFS), prostate-specific antigen (PSA) level at 7 months (≤ 0.2 v 0.2 to ≤ 4 v > 4 ng/mL), and adverse event profile. RESULTS Among 1,279 patients included in the analysis, 638 were randomly assigned to the ADT plus orteronel arm and 641 to the control arm. The median age was 68 years; 49% had extensive disease. After a median follow-up of 4.9 years, there was a significant improvement in PFS (median 47.6 v 23.0 months, hazard ratio 0.58; 95% CI, 0.51 to 0.67; P < .0001) and PSA response at 7 months (P < .0001), but not in OS (median 81.1 v 70.2 months, hazard ratio 0.86; 95% CI, 0.72 to 1.02; P = .040, one-sided). More grade 3/4 adverse events occurred in the experimental versus the control arms (43% v 14%). Postprotocol life-prolonging therapy was received by 77.4% of patients in the control arm and 61.3% of patients in the orteronel arm. CONCLUSION The study did not meet the primary end point of improved OS with orteronel. The lack of correlation of PFS and PSA response with OS raises concerns over assumption of their consistent surrogacy for OS in the context of extensive postprotocol therapy in this setting.
Collapse
Affiliation(s)
- Neeraj Agarwal
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Maha H.A. Hussain
- Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Shilpa Gupta
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Melissa Plets
- SWOG Statistics and Data Management Center, Seattle, WA
| | - Primo N. Lara
- UC Davis Comprehensive Cancer Center, Sacramento, CA
| | | | | | | | - Dylan Zylla
- Metro Minnesota CCRC/Park Nicollet Clinic, St Louis Park, MN
| | | | - Ellis Levine
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Bruce J. Roth
- Washington University School of Medicine, St Louis, MO
| | - Amir Goldkorn
- USC, Norris Comprehensive Cancer Center, Los Angeles, CA
| | - Daniel A. Vaena
- University of Iowa, Iowa City, IA
- West Cancer Center, Germantown, TN
| | - Manish Kohli
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
- Mayo Clinic at Rochester, Rochester, MN
| | - Tony Crispino
- UsTOO Prostate Cancer Support and Education Las Vegas Chapter, Las Vegas, NV
| | | | | | - David I. Quinn
- USC, Norris Comprehensive Cancer Center, Los Angeles, CA
| |
Collapse
|
6
|
Padmakar Darne C, Velaparthi U, Saulnier M, Frennesson D, Liu P, Huang A, Tokarski J, Fura A, Spires T, Newitt J, Spires VM, Obermeier MT, Elzinga PA, Gottardis MM, Jayaraman L, Vite GD, Balog A. The Discovery of BMS-737 as a Potent, CYP17 Lyase-Selective Inhibitor for the Treatment of Castration-Resistant Prostate Cancer. Bioorg Med Chem Lett 2022; 75:128951. [PMID: 36031020 DOI: 10.1016/j.bmcl.2022.128951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
Abstract
We report herein, the discovery of BMS-737 (compound 33) as a potent, non-steroidal, reversible small molecule inhibitor demonstrating 11-fold selectivity for CYP17 lyase over CYP17 hydroxylase, as well as a clean xenobiotic CYP profile for the treatment of castration-resistant prostate cancer (CRPC). Extensive SAR studies on the initial lead 1 at three different regions of the molecule resulted in the identification of BMS-737, which demonstrated a robust 83% lowering of testosterone without any significant perturbation of the mineralocorticoid and glucocorticoid levels in cynomologous monkeys in a 1-day PK/PD study.
Collapse
Affiliation(s)
| | - Upender Velaparthi
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States.
| | - Mark Saulnier
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - David Frennesson
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Peiying Liu
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Audris Huang
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - John Tokarski
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Aberra Fura
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Thomas Spires
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - John Newitt
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Vanessa M Spires
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Mary T Obermeier
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Paul A Elzinga
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Marco M Gottardis
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Lata Jayaraman
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Gregory D Vite
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| | - Aaron Balog
- Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ 08543, United States
| |
Collapse
|
7
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
8
|
Singh H, Kumar R, Mazumder A, Salahuddin, Mazumder R, Abdullah MM. Insights into Interactions of Human Cytochrome P450 17A1: Review. Curr Drug Metab 2022; 23:172-187. [DOI: 10.2174/1389200223666220401093833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/15/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cytochrome P450s are a widespread and vast superfamily of hemeprotein monooxygenases that metabolize physiologically essential chemicals necessary for most species' survival, from protists to plants to humans. They catalyze the synthesis of steroid hormones, cholesterol, bile acids, and arachidonate metabolites and the degradation of endogenous compounds such as steroids, fatty acids, and other catabolizing compounds as an energy source and detoxifying xenobiotics such as drugs, procarcinogens, and carcinogens. The human CYP17A1 is one of the cytochrome P450 genes located at the 10q chromosome. The gene expression occurs in the adrenals and gonads, with minor amounts in the brain, placenta, and heart. This P450c17 cytochrome gene is a critical steroidogenesis regulator which performs two distinct activities: 17 alpha-hydroxylase activity (converting pregnenolone to 17-hydroxypregnenolone and progesterone to 17-hydroxyprogesterone, these precursors are further processed to provide glucocorticoids and sex hormones) and 17, 20-lyase activity (which converts 17-hydroxypregnenolone to DHEA). Dozens of mutations within CYP17A1 are found to cause 17-alpha-hydroxylase and 17, 20-lyase deficiency. This condition affects the function of certain hormone-producing glands, resulting in high blood pressure levels (hypertension), abnormal sexual development, and other deficiency diseases. This review highlights the changes in CYP17A1 associated with gene-gene interaction, drug-gene interaction, chemical-gene interaction, and its biochemical reactions; they have some insights to correlate with the fascinating functional characteristics of this human steroidogenic gene. The findings of our theoretical results will be helpful to further the design of specific inhibitors of CYP17A1.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rupa Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | | |
Collapse
|
9
|
Chen MK, Liang ZJ, Luo DS, Xue KY, Liao DY, Li Z, Yu Y, Chen ZS, Zhao SC. Abiraterone, Orteronel, Enzalutamide and Docetaxel: Sequential or Combined Therapy? Front Pharmacol 2022; 13:843110. [PMID: 35250590 PMCID: PMC8891580 DOI: 10.3389/fphar.2022.843110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Objective: To summarize the current therapeutic status using chemotherapeutic agent docetaxel and endocrine therapeutic agents (ARAT, abiraterone, orteronel or enzalutamide) for the treatment of metastatic castration-resistant prostate cancer (mCRPC), including sequential therapy and combined therapy, to promote the consensus on the optimal regimen for achieving superior treatment efficacy.Methods: Through literature search in PubMed, articles with the following relevant keywords were collected and anlyzed: CRPC, abiraterone, orteronel and enzalutamide, median survival, overall survival, prostate specific antigen (PSA), PSA response rate and median radiologic progression-free survival.Results: Fifty-eight articles were obtained and analyzed in this review. These articles included androgen axis-targeting agents after docetaxel, docetaxel after androgen axis-targeting agents, Triple sequential and combination therapy, covering four current drugs for mCRPC treatment: docetaxel, abiraterone, orteronel, and enzalutamide. It was found that there may be some cross-resistance between androgen axis-targeting agents, which will reduce the efficacy of subsequent drug treatment. Although neither of the studies of using combination therapy showed serious drug toxicity, the efficacy of sequential therapy was not as good as expected. Most adverse reactions after treatment were reported to be level 1–2.Conclusion: Based on the results of the current studies, abiraterone followed by enzalutamide treatment is the best sequential treatment for most docetaxel-naïve patients. This treatment achieves not only good OS, but also PFS and PSA response rates. In addition, for patients who have previously failed docetaxel treatment, enzalutamide is the best choice as the subsequent treatment.
Collapse
Affiliation(s)
- Ming-kun Chen
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, The Third Clinical College of Southern Medical University, Guangzhou, China
| | - Zhi-jian Liang
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, The Third Clinical College of Southern Medical University, Guangzhou, China
| | - Dao-Sheng Luo
- Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Kang-yi Xue
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, The Third Clinical College of Southern Medical University, Guangzhou, China
| | - De-ying Liao
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, The Third Clinical College of Southern Medical University, Guangzhou, China
| | - Zheshen Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Yuzhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- *Correspondence: Zhe-Sheng Chen, ; Shan-Chao Zhao,
| | - Shan-Chao Zhao
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, The Third Clinical College of Southern Medical University, Guangzhou, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhe-Sheng Chen, ; Shan-Chao Zhao,
| |
Collapse
|
10
|
Omoboyowa DA, Balogun TA, Saibu OA, Chukwudozie OS, Alausa A, Olubode SO, Aborode AT, Batiha GE, Bodun DS, Musa SO. Structure-based discovery of selective CYP 17A 1 inhibitors for Castration-resistant prostate cancer treatment. Biol Methods Protoc 2021; 7:bpab026. [PMID: 35146123 PMCID: PMC8824735 DOI: 10.1093/biomethods/bpab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 11/12/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy found in men and the second leading cause of cancer-related death worldwide. Castration-resistant PCa (CRPC) is defined by PCa cells that stop responding to hormone therapy. Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a critical role in the biosynthesis of androgens in humans. Androgen signaling cascade is a principal survival pathway for PCa cells and androgen-deprivation therapy (ADT) remains the key treatment for patients marked with locally advanced and metastatic PCa cells. Available synthetic drugs have been reported for toxicity, drug resistance, and decreasing efficacy. Thus, the design of novel selective inhibitors of CYP17A1 lyase would help circumvent associated side effects and improve pharmacological activities. Therefore, we employed structural bioinformatics techniques via molecular docking; molecular mechanics generalized born surface area (MM-GBSA), molecular dynamics (MD) simulation, and pharmacokinetic study to identify putative CYP17A1 lyase inhibitors. The results of the computational investigation showed that the Prunus dulcis compounds exhibited higher binding energy than the clinically approved abiraterone acetate. The stability of the ligand with the highest binding affinity (quercetin-3-o-rutinoside) was observed during MD simulation for 10 ns. Quercetin-3-o-rutinoside was observed to be stable within the active site of CYP17A1Lyase throughout the simulation period. The result of the pharmacokinetic study revealed that these compounds are promising therapeutic agents. Collectively, this study proposed that bioactive compounds from P. dulcis may be potential selective inhibitors of CYP17A1Lyase in CRPC treatments.
Collapse
Affiliation(s)
| | - Toheeb A Balogun
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Oluwatosin A Saibu
- Department of Environmental Toxicology, University of Duisburg-Essen, North Rhine-Westphalia, Germany
| | - Onyeka S Chukwudozie
- Division of Biological Science, University of California San Diego, CA 92161, USA
| | - Abdullahi Alausa
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Samuel O Olubode
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | | - Gaber E Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City, Egypt
| | - Damilola S Bodun
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Sekinat O Musa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
11
|
Guengerich FP, McCarty KD, Chapman JG, Tateishi Y. Stepwise binding of inhibitors to human cytochrome P450 17A1 and rapid kinetics of inhibition of androgen biosynthesis. J Biol Chem 2021; 297:100969. [PMID: 34273352 PMCID: PMC8350020 DOI: 10.1016/j.jbc.2021.100969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022] Open
Abstract
Cytochrome P450 (P450) 17A1 catalyzes the 17α-hydroxylation of progesterone and pregnenolone as well as the subsequent lyase cleavage of both products to generate androgens. However, the selective inhibition of the lyase reactions, particularly with 17α-hydroxy pregnenolone, remains a challenge for the treatment of prostate cancer. Here, we considered the mechanisms of inhibition of drugs that have been developed to inhibit P450 17A1, including ketoconazole, seviteronel, orteronel, and abiraterone, the only approved inhibitor used for prostate cancer therapy, as well as clotrimazole, known to inhibit P450 17A1. All five compounds bound to P450 17A1 in a multistep process, as observed spectrally, over a period of 10 to 30 s. However, no lags were observed for the onset of inhibition in rapid-quench experiments with any of these five compounds. Furthermore, the addition of substrate to inhibitor–P450 17A1 complexes led to an immediate formation of product, without a lag that could be attributed to conformational changes. Although abiraterone has been previously described as showing slow-onset inhibition (t1/2 = 30 min), we observed rapid and strong inhibition. These results are in contrast to inhibitors of P450 3A4, an enzyme with a larger active site in which complete inhibition is not observed with ketoconazole and clotrimazole until the changes are completed. Overall, our results indicate that both P450 17A1 reactions—17α-hydroxylation and lyase activity—are inhibited by the initial binding of any of these inhibitors, even though subsequent conformational changes occur.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jesse G Chapman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Burris-Hiday SD, Scott EE. Steroidogenic cytochrome P450 17A1 structure and function. Mol Cell Endocrinol 2021; 528:111261. [PMID: 33781841 PMCID: PMC8087655 DOI: 10.1016/j.mce.2021.111261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 17A1 (CYP17A1) is a critical steroidogenic enzyme, essential for producing glucocorticoids and sex hormones. This review discusses the complex activity of CYP17A1, looking at its role in both the classical and backdoor steroidogenic pathways and the complex chemistry it carries out to perform both a hydroxylation reaction and a carbon-carbon cleavage, or lyase reaction. Functional and structural investigations have informed our knowledge of these two reactions. This review focuses on a few specific aspects of this discussion: the identities of reaction intermediates, the coordination of hydroxylation and lyase reactions, the effects of cytochrome b5, and conformational selection. These discussions improve understanding of CYP17A1 in a physiological setting, where CYP17A1 is implicated in a variety of steroidogenic diseases. This information can be used to improve ways in which CYP17A1 can be effectively modulated to treat diseases such as prostate and breast cancer, Cushing's syndrome, and glioblastoma.
Collapse
Affiliation(s)
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
AbdelHaleem A, Mansour AO, AbdelKader M, Arafa RK. Selective VEGFR-2 inhibitors: Synthesis of pyridine derivatives, cytotoxicity and apoptosis induction profiling. Bioorg Chem 2020; 103:104222. [PMID: 32889383 DOI: 10.1016/j.bioorg.2020.104222] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
VEGFR-2 is a key regulator in cancer angiogenesis. This research displays the design and synthesis of novel 3-cyano-6-naphthylpyridine scaffold-based derivatives as selective VEGFR-2 inhibitors and cytotoxic agents. In vitro percent kinase activity inhibition screening against a panel of 23 kinases at a single high dose (30 nM) affirmed that VEGFR-2 was selectively the most responsive to inhibition by the investigated chemotypes. IC50 values determination demonstrated kinase inhibitory activities of the test compounds at the sub-nanomolar level. In vitro testing of the new compounds against two prostate cancer cell lines namely PC3 and DU145 and two breast cancer cell lines namely MCF-7 and MDA-MB435 confirmed their potent cytotoxic activity with IC50s at the nanomolar level. The most active compound against MCF-7 viz.11d was subjected to an in vivo examination against a xenograft mouse model and was found effective. Studying the tissue mRNA expression levels of various cell cycle controlling biomolecules in 11d-treated MCF-7 cells demonstrated (i) upregulation of p53, p21 and p27, (ii) cleavage of PARP protein, (iii) activation of caspase-3, -8 and -9, (iv) downregulation of the anti-apoptotic protein Bcl, (v) upregulation of the pro-apoptotic protein Bax, and (vi) decreased expression of Cdks 2, 4, 6 and cyclin D1. Additionally, 11d affected a cell cycle arrest at the G1 phase in treated MCF-7 cells and an S phase arrest in MCF-7 p53 knockdown cells. Additionally, molecular docking was performed to predict how 11d might bind to its biological target VEGFR-2. Finally, in-silico ADME and drug-likeness profiling of these derivatives demonstrated favorable properties thereof.
Collapse
Affiliation(s)
- Amal AbdelHaleem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Amira O Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, MSA University, Egypt
| | - Marwa AbdelKader
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo 12578, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo 12578, Cairo, Egypt; University of Science and Technology, Zewail City of Science and Technology, Cairo 12578, Cairo, Egypt.
| |
Collapse
|
14
|
Wróbel TM, Rogova O, Andersen KL, Yadav R, Brixius-Anderko S, Scott EE, Olsen L, Jørgensen FS, Björkling F. Discovery of Novel Non-Steroidal Cytochrome P450 17A1 Inhibitors as Potential Prostate Cancer Agents. Int J Mol Sci 2020; 21:ijms21144868. [PMID: 32660148 PMCID: PMC7402352 DOI: 10.3390/ijms21144868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The current study presents the design, synthesis, and evaluation of novel cytochrome P450 17A1 (CYP17A1) ligands. CYP17A1 is a key enzyme in the steroidogenic pathway that produces androgens among other steroids, and it is implicated in prostate cancer. The obtained compounds are potent enzyme inhibitors (sub µM) with antiproliferative activity in prostate cancer cell lines. The binding mode of these compounds is also discussed.
Collapse
Affiliation(s)
- Tomasz M. Wróbel
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Correspondence: ; Tel.: +48-814-487-273
| | - Oksana Rogova
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
| | - Kasper L. Andersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark;
| | - Rahul Yadav
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA; (R.Y.); (S.B.-A.); (E.E.S.)
| | - Simone Brixius-Anderko
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA; (R.Y.); (S.B.-A.); (E.E.S.)
| | - Emily E. Scott
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA; (R.Y.); (S.B.-A.); (E.E.S.)
- Department of Pharmacology, University of Michigan, 428 Church Street, Ann Arbor, MI 48109-1065, USA
| | - Lars Olsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
- Protein Engineering, Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsvaerd, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (L.O.); (F.S.J.); (F.B.)
| |
Collapse
|
15
|
Child SA, Guengerich FP. Multistep Binding of the Non-Steroidal Inhibitors Orteronel and Seviteronel to Human Cytochrome P450 17A1 and Relevance to Inhibition of Enzyme Activity. J Med Chem 2020; 63:6513-6522. [PMID: 32223238 DOI: 10.1021/acs.jmedchem.9b01849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Orteronel (TAK-700) is a substituted imidazole that was developed for the treatment of castration-resistant prostate cancer but was dropped in phase III clinical trials. Both enantiomers of this inhibitor of cytochrome P450 (P450) 17A1 show some selectivity in differentially blocking the 17α-hydroxylation and lyase activities of the enzyme. Although both enantiomers of this compound have sub-micromolar IC50 values and bind to the enzyme with a type II spectral change (indicative of nitrogen-iron bonding) and reported Kd values of 56 and 40 nM (R and S, respectively), the rates of binding to P450 17A1 were relatively slow. We considered the possibility that the drug is a slow, tight-binding inhibitor. Analysis of the kinetics of binding revealed rapid formation of an initial complex, presumably in the substrate binding site, followed by a slower change to the spectrum of a final iron complex. Similar kinetics were observed in the interaction of another inhibitor, the triazole (S)-seviteronel (VT-464), with P450 17A1. Kinetic tests and modeling indicate that the further change to the iron-complexed form of the orteronel- or seviteronel-P450 complex is not a prerequisite for enzyme inhibition. Accordingly, the inclusion of heme-binding heterocyclic nitrogen moieties in P450 17A1 inhibitors may not be necessary to achieve inhibition but may nevertheless augment the process.
Collapse
Affiliation(s)
- Stella A Child
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 638B Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
16
|
Gumede NJ, Nxumalo W, Bisetty K, Escuder Gilabert L, Medina-Hernandez MJ, Sagrado S. Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors. Bioorg Chem 2019; 94:103462. [PMID: 31818479 DOI: 10.1016/j.bioorg.2019.103462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
The development and advancement of prostate cancer (PCa) into stage 4, where it metastasize, is a major problem mostly in elder males. The growth of PCa cells is stirred up by androgens and androgen receptor (AR). Therefore, therapeutic strategies such as blocking androgens synthesis and inhibiting AR binding have been explored in recent years. However, recently approved drugs (or in clinical phase) failed in improving the expected survival rates for this metastatic-castration resistant prostate cancer (mCRPC) patients. The selective CYP17A1 inhibition of 17,20-lyase route has emerged as a novel strategy. Such inhibition blocks the production of androgens everywhere they are found in the body. In this work, a three dimensional-quantitative structure activity relationship (3D-QSAR) pharmacophore model is developed on a diverse set of non-steroidal inhibitors of CYP17A1 enzyme. Highly active compounds are selected to define a six-point pharmacophore hypothesis with a unique geometrical arrangement fitting the following description: two hydrogen bond acceptors (A), two hydrogen bond donors (D) and two aromatic rings (R). The QSAR model showed adequate predictive statistics. The 3D-QSAR model is further used for database virtual screening of potential inhibitory hit structures. Density functional theory (DFT) optimization provides the electronic properties explaining the reactivity of the hits. Docking simulations discovers hydrogen bonding and hydrophobic interactions as responsible for the binding affinities of hits to the CYP17A1 Protein Data Bank structure. 13 hits from the database search (including five derivatives) are then synthesized in the laboratory as different scaffolds. Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in vitro experiments reveals three new chemical entities (NCEs) with half maximal inhibitory concentration (IC50) values against the lyase route at mid-micromolar range with favorable selectivity to the lyase over the hydroxylase route (one of them with null hydroxylase inhibition). Thus, prospective computational design has enabled the design of potential lead lyase-selective inhibitors for further studies.
Collapse
Affiliation(s)
- N J Gumede
- Department of Chemistry, Mangosuthu University of Technology, PO Box 12363, Jacobs 4026, South Africa.
| | - W Nxumalo
- Department of Chemistry, University of Limpopo, Private Bag X 1106, Sovenga 0727, South Africa
| | - K Bisetty
- Department of Chemistry, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - L Escuder Gilabert
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain
| | - M J Medina-Hernandez
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain
| | - S Sagrado
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
17
|
Rodríguez Castaño P, Parween S, Pandey AV. Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway. Int J Mol Sci 2019; 20:ijms20184606. [PMID: 31533365 PMCID: PMC6770025 DOI: 10.3390/ijms20184606] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Turmeric, a popular ingredient in the cuisine of many Asian countries, comes from the roots of the Curcuma longa and is known for its use in Chinese and Ayurvedic medicine. Turmeric is rich in curcuminoids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have potent wound healing, anti-inflammatory, and anti-carcinogenic activities. While curcuminoids have been studied for many years, not much is known about their effects on steroid metabolism. Since many anti-cancer drugs target enzymes from the steroidogenic pathway, we tested the effect of curcuminoids on cytochrome P450 CYP17A1, CYP21A2, and CYP19A1 enzyme activities. When using 10 µg/mL of curcuminoids, both the 17α-hydroxylase as well as 17,20 lyase activities of CYP17A1 were reduced significantly. On the other hand, only a mild reduction in CYP21A2 activity was observed. Furthermore, CYP19A1 activity was also reduced up to ~20% of control when using 1–100 µg/mL of curcuminoids in a dose-dependent manner. Molecular docking studies confirmed that curcumin could dock onto the active sites of CYP17A1, CYP19A1, as well as CYP21A2. In CYP17A1 and CYP19A1, curcumin docked within 2.5 Å of central heme while in CYP21A2 the distance from heme was 3.4 Å, which is still in the same range or lower than distances of bound steroid substrates. These studies suggest that curcuminoids may cause inhibition of steroid metabolism, especially at higher dosages. Also, the recent popularity of turmeric powder as a dilatory supplement needs further evaluation for the effect of curcuminoids on steroid metabolism. The molecular structure of curcuminoids could be modified to generate better lead compounds with inhibitory effects on CYP17A1 and CYP19A1 for potential drugs against prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Patricia Rodríguez Castaño
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, University Children's Hospital Bern, 3010 Bern, Switzerland.
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
18
|
Guengerich FP, Wilkey CJ, Glass SM, Reddish MJ. Conformational selection dominates binding of steroids to human cytochrome P450 17A1. J Biol Chem 2019; 294:10028-10041. [PMID: 31072872 DOI: 10.1074/jbc.ra119.008860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 (P450, CYP) enzymes are the major catalysts involved in the oxidation of steroids as well as many other compounds. Their versatility has been explained in part by flexibility of the proteins and complexity of the binding mechanisms. However, whether these proteins bind their substrates via induced fit or conformational selection is not understood. P450 17A1 has a major role in steroidogenesis, catalyzing the two-step oxidations of progesterone and pregnenolone to androstenedione and dehydroepiandrosterone, respectively, via 17α-hydroxy (OH) intermediates. We examined the interaction of P450 17A1 with its steroid substrates by analyzing progress curves (UV-visible spectroscopy), revealing that the rates of binding of any of these substrates decreased with increasing substrate concentration, a hallmark of conformational selection. Further, when the concentration of 17α-OH pregnenolone was held constant and the P450 concentration increased, the binding rate increased, and such opposite patterns are also diagnostic of conformational selection. Kinetic simulation modeling was also more consistent with conformational selection than with an induced-fit mechanism. Cytochrome b 5 partially enhances P450 17A1 lyase activity by altering the P450 17A1 conformation but did not measurably alter the binding of 17α-OH pregnenolone or 17α-OH progesterone, as judged by the apparent Kd and binding kinetics. The P450 17A1 inhibitor abiraterone also bound to P450 17A1 in a multistep manner, and modeling indicated that the selective inhibition of the two P450 17A1 steps by the drug orteronel can be rationalized only by a multiple-conformation model. In conclusion, P450 17A1 binds its steroid substrates via conformational selection.
Collapse
Affiliation(s)
- F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Clayton J Wilkey
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Sarah M Glass
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Michael J Reddish
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
19
|
Isaacsson Velho P, Carducci MA. Investigational therapies targeting the androgen signaling axis and the androgen receptor and in prostate cancer – recent developments and future directions. Expert Opin Investig Drugs 2018; 27:811-822. [DOI: 10.1080/13543784.2018.1513490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Michael A. Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
- Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
21
|
Malikova J, Brixius-Anderko S, Udhane SS, Parween S, Dick B, Bernhardt R, Pandey AV. CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. J Steroid Biochem Mol Biol 2017; 174:192-200. [PMID: 28893623 DOI: 10.1016/j.jsbmb.2017.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/26/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
Abstract
Abiraterone is an inhibitor of CYP17A1 which is used for the treatment of castration resistant prostate cancer. Abiraterone is known to inhibit several drug metabolizing cytochrome P450 enzymes including CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, but its effects on steroid metabolizing P450 enzymes are not clear. In preliminary results, we had observed inhibition of CYP21A2 by 1μM abiraterone. Here we are reporting the effect of abiraterone on activities of CYP21A2 in human adrenal cells as well as with purified recombinant CYP21A2. Cells were treated with varying concentrations of abiraterone for 24h and CYP21A2 activity was measured using [3H] 17-hydroxyprogesterone as substrate. Whole steroid profile changes were determined by gas chromatography-mass spectrometry. Binding of abiraterone to purified CYP21A2 protein was measured spectroscopically. Computational docking was used to study the binding and interaction of abiraterone with CYP21A2. Abiraterone caused significant reduction in CYP21A2 activity in assays with cells and an inhibition of CYP21A2 activity was also observed in experiments using recombinant purified proteins. Abiraterone binds to CYP21A2 with an estimated Kd of 6.3μM. These inhibitory effects of abiraterone are at clinically used concentrations. A loss of CYP21A2 activity in combination with reduction of CYP17A1 activities by abiraterone could result in lower cortisol levels and may require monitoring for any potential adverse effects.
Collapse
Affiliation(s)
- Jana Malikova
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Simone Brixius-Anderko
- Department of Biochemistry, Faculty of Technical and Natural Sciences, Saarland University, 66123 Saarbrücken, Germany
| | - Sameer S Udhane
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Shaheena Parween
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Bernhard Dick
- Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital of Bern, Bern, Switzerland
| | - Rita Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences, Saarland University, 66123 Saarbrücken, Germany
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Gonzalez E, Guengerich FP. Kinetic processivity of the two-step oxidations of progesterone and pregnenolone to androgens by human cytochrome P450 17A1. J Biol Chem 2017; 292:13168-13185. [PMID: 28684414 DOI: 10.1074/jbc.m117.794917] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/24/2017] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450, CYP) 17A1 plays a critical role in steroid metabolism, catalyzing both the 17α-hydroxylation of pregnenolone and progesterone and the subsequent 17α,20-lyase reactions to form dehydroepiandrosterone (DHEA) and androstenedione (Andro), respectively, critical for generating glucocorticoids and androgens. Human P450 17A1 reaction rates examined are enhanced by the accessory protein cytochrome b5 (b5), but the exact role of b5 in P450 17A1-catalyzed reactions is unclear as are several details of these reactions. Here, we examined in detail the processivity of the 17α-hydroxylation and lyase steps. b5 did not enhance reaction rates by decreasing the koff rates of any of the steroids. Steroid binding to P450 17A1 was more complex than a simple two-state system. Pre-steady-state experiments indicated lag phases for Andro production from progesterone and for DHEA from pregnenolone, indicating a distributive character of the enzyme. However, we observed processivity in pregnenolone/DHEA pulse-chase experiments. (S)-Orteronel was three times more inhibitory toward the conversion of 17α-hydroxypregnenolone to DHEA than toward the 17α-hydroxylation of pregnenolone. IC50 values for (S)-orteronel were identical for blocking DHEA formation from pregnenolone and for 17α-hydroxylation, suggestive of processivity. Global kinetic modeling helped assign sets of rate constants for individual or groups of reactions, indicating that human P450 17A1 is an inherently distributive enzyme but that some processivity is present, i.e. some of the 17α-OH pregnenolone formed from pregnenolone did not dissociate from P450 17A1 before conversion to DHEA. Our results also suggest multiple conformations of P450 17A1, as previously proposed on the basis of NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Eric Gonzalez
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
23
|
Bhatt MR, Khatri Y, Rodgers RJ, Martin LL. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). J Steroid Biochem Mol Biol 2017; 170:2-18. [PMID: 26976652 DOI: 10.1016/j.jsbmb.2016.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the gonads, P450 17A1 catalyzes two different reactions in the steroidogenic pathway; the 17α-hydroxylation and 17,20-lyase, in the endoplasmic reticulum of these respective tissues. The activities of P450 17A1 are regulated by cyt b5 that enhances the 17,20-lyase reaction by promoting the coupling of P450 17A1 and cytochrome P450 reductase (CPR), allosterically. Cyt b5 can also act as an electron donor to enhance the 16-ene-synthase activity of human P450 17A1. In this review, we discuss the many roles of cyt b5 and focus on the modulation of CYP17A1 activities by cyt b5 and the mechanisms involved.
Collapse
Affiliation(s)
- Megh Raj Bhatt
- Everest Biotech Pvt. Ltd., Khumaltar, Lalitpur, P.O. Box 21608, Kathmandu 44600, Nepal
| | - Yogan Khatri
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Raymond J Rodgers
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
24
|
Petrunak EM, Rogers SA, Aubé J, Scott EE. Structural and Functional Evaluation of Clinically Relevant Inhibitors of Steroidogenic Cytochrome P450 17A1. Drug Metab Dispos 2017; 45:635-645. [PMID: 28373265 PMCID: PMC5438109 DOI: 10.1124/dmd.117.075317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/31/2017] [Indexed: 01/05/2023] Open
Abstract
Human steroidogenic cytochrome P450 17A1 (CYP17A1) is a bifunctional enzyme that performs both hydroxylation and lyase reactions, with the latter required to generate androgens that fuel prostate cancer proliferation. The steroid abiraterone, the active form of the only CYP17A1 inhibitor approved by the Food and Drug Administration, binds the catalytic heme iron, nonselectively impeding both reactions and ultimately causing undesirable corticosteroid imbalance. Some nonsteroidal inhibitors reportedly inhibit the lyase reaction more than the preceding hydroxylase reaction, which would be clinically advantageous, but the mechanism is not understood. Thus, the nonsteroidal inhibitors seviteronel and orteronel and the steroidal inhibitors abiraterone and galeterone were compared with respect to their binding modes and hydroxylase versus lyase inhibition. Binding studies and X-ray structures of CYP17A1 with nonsteroidal inhibitors reveal coordination to the heme iron like the steroidal inhibitors. (S)-seviteronel binds similarly to both observed CYP17A1 conformations. However, (S)-orteronel and (R)-orteronel bind to distinct CYP17A1 conformations that differ in a region implicated in ligand entry/exit and the presence of a peripheral ligand. To reconcile these binding modes with enzyme function, side-by-side enzymatic analysis was undertaken and revealed that neither the nonsteroidal seviteronel nor the (S)-orteronel inhibitors demonstrated significant lyase selectivity, but the less potent (R)-orteronel was 8- to 11-fold selective for lyase inhibition. While active-site iron coordination is consistent with competitive inhibition, conformational selection for binding of some inhibitors and the differential presence of a peripheral ligand molecule suggest the possibility of CYP17A1 functional modulation by features outside the active site.
Collapse
Affiliation(s)
- Elyse M Petrunak
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| | - Steven A Rogers
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| | - Jeffrey Aubé
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas
| |
Collapse
|
25
|
Norris JD, Ellison SJ, Baker JG, Stagg DB, Wardell SE, Park S, Alley HM, Baldi RM, Yllanes A, Andreano KJ, Stice JP, Lawrence SA, Eisner JR, Price DK, Moore WR, Figg WD, McDonnell DP. Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer. J Clin Invest 2017; 127:2326-2338. [PMID: 28463227 DOI: 10.1172/jci87328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
The clinical utility of inhibiting cytochrome P450 17A1 (CYP17), a cytochrome p450 enzyme that is required for the production of androgens, has been exemplified by the approval of abiraterone for the treatment of castration-resistant prostate cancer (CRPC). Recently, however, it has been reported that CYP17 inhibitors can interact directly with the androgen receptor (AR). A phase I study recently reported that seviteronel, a CYP17 lyase-selective inhibitor, ædemonstrated a sustained reduction in prostate-specific antigen in a patient with CRPC, and another study showed seviteronel's direct effects on AR function. This suggested that seviteronel may have therapeutically relevant activities in addition to its ability to inhibit androgen production. Here, we have demonstrated that CYP17 inhibitors, with the exception of orteronel, can function as competitive AR antagonists. Conformational profiling revealed that the CYP17 inhibitor-bound AR adopted a conformation that resembled the unliganded AR (apo-AR), precluding nuclear localization and DNA binding. Further, we observed that seviteronel and abiraterone inhibited the growth of tumor xenografts expressing the clinically relevant mutation AR-F876L and that this activity could be attributed entirely to competitive AR antagonism. The results of this study suggest that the ability of CYP17 inhibitors to directly antagonize the AR may contribute to their clinical efficacy in CRPC.
Collapse
Affiliation(s)
- John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stephanie J Ellison
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer G Baker
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David B Stagg
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Holly M Alley
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert M Baldi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alexander Yllanes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kaitlyn J Andreano
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - James P Stice
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Scott A Lawrence
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joel R Eisner
- Innocrin Pharmaceuticals Inc., Durham, North Carolina, USA
| | - Douglas K Price
- Genitourinary Malignancies Branch, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | | - William D Figg
- Genitourinary Malignancies Branch, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
26
|
Discovery of novel 1,2,3,4-tetrahydrobenzo[4, 5]thieno[2, 3-c]pyridine derivatives as potent and selective CYP17 inhibitors. Eur J Med Chem 2017; 132:157-172. [PMID: 28350999 DOI: 10.1016/j.ejmech.2017.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/07/2017] [Accepted: 03/19/2017] [Indexed: 11/21/2022]
Abstract
The inhibition of CYP17 to block androgen biosynthesis is a well validated strategy for the treatment of prostate cancer. Herein we reported the design, synthesis and structure-activity relationship (SAR) study for a series of novel 1,2,3,4- tetrahydrobenzo[4,5]thieno[2,3-c]pyridine derivatives. Some analogs demonstrated a potent inhibition to both rat and human CYP17 protein and reduced testosterone production in human H295R cell line. Some analogs also showed high selectivity against other CYP enzymes such as 3A4, 1A2, 2C9, 2C19 and 2D6, which may limit side effects due to drug-drug interactions. Among these analogs, the most potent compound 9c showed 1.5 fold more potent against rat and human CYP17 protein than that of abiraterone (IC50 = 16 nM and 20 nM vs. 25 nM and 36 nM respectively). In NCI-H295R cells, the inhibitory effect of compound 9c on testosterone production (52± 2%) was also more potent than that of abiraterone (74± 15%) at the concentration of 1 μM. Further, it was shown that 9c reduced plasma testosterone level in a dose-dependent manner in Sprague-Dawley rats. Thus, analog 9c maybe a potential agent used for the treatment of prostate cancer.
Collapse
|
27
|
Guengerich FP. Intersection of the Roles of Cytochrome P450 Enzymes with Xenobiotic and Endogenous Substrates: Relevance to Toxicity and Drug Interactions. Chem Res Toxicol 2017; 30:2-12. [PMID: 27472660 PMCID: PMC5293730 DOI: 10.1021/acs.chemrestox.6b00226] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Today much is known about cytochrome P450 (P450) enzymes and their catalytic specificity, but the range of reactions catalyzed by each still continues to surprise. Historically, P450s had been considered to be involved in either the metabolism of xenobiotics or endogenous chemicals, in the former case playing a generally protective role and in the latter case a defined physiological role. However, the line of demarcation is sometimes blurred. It is difficult to be completely specific in drug design, and some P450s involved in the metabolism of steroids and vitamins can be off-targets. In a number of cases, drugs have been developed that act on some of those P450s as primary targets, e.g., steroid aromatase inhibitors. Several of the P450s involved in the metabolism of endogenous substrates are less specific than once thought and oxidize several related structures. Some of the P450s that primarily oxidize endogenous chemicals have been shown to oxidize xenobiotic chemicals, even in a bioactivation mode.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
28
|
Lim E, Tarulli G, Portman N, Hickey TE, Tilley WD, Palmieri C. Pushing estrogen receptor around in breast cancer. Endocr Relat Cancer 2016; 23:T227-T241. [PMID: 27729416 DOI: 10.1530/erc-16-0427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Abstract
The estrogen receptor-α (herein called ER) is a nuclear sex steroid receptor (SSR) that is expressed in approximately 75% of breast cancers. Therapies that modulate ER action have substantially improved the survival of patients with ER-positive breast cancer, but resistance to treatment still remains a major clinical problem. Treating resistant breast cancer requires co-targeting of ER and alternate signalling pathways that contribute to resistance to improve the efficacy and benefit of currently available treatments. Emerging data have shown that other SSRs may regulate the sites at which ER binds to DNA in ways that can powerfully suppress the oncogenic activity of ER in breast cancer. This includes the progesterone receptor (PR) that was recently shown to reprogram the ER DNA binding landscape towards genes associated with a favourable outcome. Another attractive candidate is the androgen receptor (AR), which is expressed in the majority of breast cancers and inhibits growth of the normal breast and ER-positive tumours when activated by ligand. These findings have led to the initiation of breast cancer clinical trials evaluating therapies that selectively harness the ability of SSRs to 'push' ER towards anti-tumorigenic activity. Our review will focus on the established and emerging clinical evidence for activating PR or AR in ER-positive breast cancer to inhibit the tumour growth-promoting functions of ER.
Collapse
Affiliation(s)
- Elgene Lim
- Garvan Institute of Medical Research and St Vincent's HospitalUniversity of New South Wales, Sydney, New South Wales, Australia
| | - Gerard Tarulli
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Neil Portman
- Garvan Institute of Medical Research and St Vincent's HospitalUniversity of New South Wales, Sydney, New South Wales, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Adelaide Prostate Cancer Research CentreUniversity of Adelaide, Adelaide, South Australia, Australia
| | - Carlo Palmieri
- Institute of Translational MedicineUniversity of Liverpool, Clatterbridge Cancer Centre, NHS Foundation Trust, and Royal Liverpool University Hospital, Liverpool, Merseyside, UK
| |
Collapse
|
29
|
Udhane SS, Dick B, Hu Q, Hartmann RW, Pandey AV. Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis. Biochem Biophys Res Commun 2016; 477:1005-1010. [PMID: 27395338 DOI: 10.1016/j.bbrc.2016.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022]
Abstract
The orteronel, abiraterone and galeterone, which were developed to treat castration resistant prostate cancer, inhibit 17,20 lyase activity but little is known about their effects on adrenal androgen biosynthesis. We studied the effect of several inhibitors and found that orteronel was selective towards 17,20 lyase activity than abiraterone and galeterone. Gene expression analysis showed that galeterone altered the expression of HSD3B2 but orteronel did not change the expression of HSD3B2, CYP17A1 and AKR1C3. The CYP19A1 activity was not inhibited except by compound IV which lowered activity by 23%. Surprisingly abiraterone caused complete blockade of CYP21A2 activity. Analysis of steroid metabolome by gas chromatography - mass spectrometry revealed changes in steroid levels caused by different inhibitors. We can conclude that orteronel is a highly specific inhibitor of 17,20 lyase activity. The discovery of these specific drug actions on steroidogenic enzyme activities would be valuable for understanding the regulation of androgens.
Collapse
Affiliation(s)
- Sameer S Udhane
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Bernhard Dick
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland; Department of Nephrology, Hypertension and Clinical Pharmacology, University Hospital of Bern, Bern, Switzerland
| | - Qingzhong Hu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, Saarbrücken, Germany
| | - Rolf W Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
30
|
Teply BA, Antonarakis ES. Novel mechanism-based therapeutics for androgen axis blockade in castration-resistant prostate cancer. Curr Opin Endocrinol Diabetes Obes 2016; 23:279-90. [PMID: 26978733 PMCID: PMC4896735 DOI: 10.1097/med.0000000000000254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Understanding the mechanisms by which castration-resistant prostate cancer (CRPC) progresses provides an opportunity to identify novel therapeutic strategies to treat this disease. This understanding has led to approaches to attack prostate cancer's androgen axis in unique ways. This review will examine the classes of novel therapies for androgen axis blockade in CRPC, with a particular focus on the unique characteristics of drugs in various stages of clinical development. RECENT FINDINGS The success of abiraterone and enzalutamide has stimulated multiple investigations into novel approaches to attack the androgen-signaling pathway. Drugs under development include cytochrome P17 inhibitors with 17,20-lyase specificity, androgen receptor antagonists that are active against mutated and constitutively active splice variant forms of the protein, androgen receptor degraders, and bromodomain/bromodomain extra-terminal inhibitors that prevent chromatin binding of activated receptors. The clinical development of several of these experimental agents is reviewed. SUMMARY Given the unique mechanisms of action for drugs in development, and the possibility that the novel agents may be active in the setting of common resistance mechanisms, treatment options for patients are likely to expand greatly in the coming years. Future studies should prioritize combinations of agents with unique mechanisms of action to optimize outcomes for patients, and should rely on precision-medicine approaches to target known molecular alterations.
Collapse
Affiliation(s)
| | - Emmanuel S. Antonarakis
- Corresponding author: Emmanuel S. Antonarakis, M.D., Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, CRB1–1M45, Baltimore, MD 21287; tel 443-287-0553; fax 410-614-8397;
| |
Collapse
|
31
|
Galli M, Fletcher CJ, Del Pozo M, Goldup SM. Scalable anti-Markovnikov hydrobromination of aliphatic and aromatic olefins. Org Biomol Chem 2016; 14:5622-6. [PMID: 27185636 DOI: 10.1039/c6ob00692b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To improve access to a key synthetic intermediate we targeted a direct hydrobromination-Negishi route. Unsurprisingly, the anti-Markovnikov addition of HBr to estragole in the presence of AIBN proved successful. However, even in the absence of an added initiator, anti-Markovnikov addition was observed. Re-examination of early reports revealed that selective Markovnikov addition, often simply termed "normal" addition, is not always observed with HBr unless air is excluded, leading to the rediscovery of a reproducible and scalable initiator-free protocol.
Collapse
Affiliation(s)
- Marzia Galli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | | | | | | |
Collapse
|
32
|
Progress in the mechanism and drug development of castration-resistant prostate cancer. Future Med Chem 2016; 8:765-88. [PMID: 27149562 DOI: 10.4155/fmc.16.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although prostate cancer can initially respond to androgen deprivation therapy, it will inevitably relapse and switch to a castration-resistant state. The progress in understanding the mechanism of castration-resistant prostate cancer (CRPC) has led to the evolution of novel agents, including sipuleucel-T as an immunomodulant agent, enzalutamide as an androgen receptor antagonist, docetaxel as a chemotherapeutic agent and radium-223 as a radiopharmaceutical agent. In this review, we discuss the main mechanisms of CRPC and the development of promising agents along with the novel therapies in the clinic. New therapeutic challenges remain, such as the identification of predictive biomarkers and the optimal combinations of agents. Future investigation is still needed for a better understanding of CRPC.
Collapse
|
33
|
Suri A, Pusalkar S, Li Y, Prakash S. Absorption, Distribution, and Excretion of the Investigational Agent Orteronel (TAK-700) in Healthy Male Subjects: A Phase 1, Open-Label, Single-Dose Study. Clin Pharmacol Drug Dev 2016; 5:180-7. [DOI: 10.1002/cpdd.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ajit Suri
- Millennium Pharmaceuticals; Inc; a wholly owned subsidiary of Takeda Pharmaceutical Company Limited; Cambridge MA USA
| | - Sandeepraj Pusalkar
- Millennium Pharmaceuticals; Inc; a wholly owned subsidiary of Takeda Pharmaceutical Company Limited; Cambridge MA USA
| | - Yuexian Li
- Millennium Pharmaceuticals; Inc; a wholly owned subsidiary of Takeda Pharmaceutical Company Limited; Cambridge MA USA
| | - Shimoga Prakash
- Millennium Pharmaceuticals; Inc; a wholly owned subsidiary of Takeda Pharmaceutical Company Limited; Cambridge MA USA
| |
Collapse
|
34
|
Weiss M, Ahrend H, Grossebrummel H, Ziegler P, Brandenburg LO, Walther R, Zimmermann U, Burchardt M, Stope MB. Cytochrome P450 17A1 Inhibitor Abiraterone Acetate Counteracts the Heat Shock Protein 27's Cell Survival Properties in Prostate Cancer Cells. Urol Int 2016; 97:112-7. [PMID: 27007943 DOI: 10.1159/000445251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 03/03/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Martin Weiss
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dellis A, Papatsoris AG. Phase I and II therapies targeting the androgen receptor for the treatment of castration resistant prostate cancer. Expert Opin Investig Drugs 2016; 25:697-707. [PMID: 26954621 DOI: 10.1517/13543784.2016.1162784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Prostate cancer is the most common cancer in elderly males. Regardless of the initial hormonal treatment in metastatic disease, a significant proportion of patients develop castration resistant prostate cancer (CRPC). A better understanding of the molecular mechanisms behind castration resistance has led to the approval of oral medications such as abiraterone acetate and enzalutamide. Relevant research is accelerated with numerous agents being tested for the management of CRPC. AREAS COVERED The authors present Phase I and II studies targeting the androgen receptor for the treatment of CRPC. Three groups of agents are identified according to the mechanism of action. These include the CYP-17 modulators (Orteronel, Galeterone, VT-464 and CFG-920), novel antiandrogens (Apatorsen, ARN-509, ODM-201, EZN-4176, AZD-3514) and bipolar androgen therapy. EXPERT OPINION Further understanding of the mechanisms leading to castration resistance in prostate cancer can reveal potential targets for the development of novel anti-cancer agents. Except for the development of novel antiandrogens and CYP-17 modulators, bipolar androgen therapy is an interesting therapeutic approach. The combinations of the novel agents tested in Phase I and II studies with established agents is another field of interest. The real challenge is to distinguish a novel anti-cancer agent with acceptable tolerability and the best outcome.
Collapse
Affiliation(s)
- Athanasios Dellis
- a University Department of Urology , Sismanoglio Hospital , Athens , Greece
| | - Athanasios G Papatsoris
- a University Department of Urology , Sismanoglio Hospital , Athens , Greece.,b Department of Urology, Addenbrooke's Hospital , Cambridge University Hospitals NHS , Cambridge , UK
| |
Collapse
|
36
|
Roviello G, Sigala S, Danesi R, Re MD, Bonetta A, Cappelletti MR, Zanotti L, Bottini A, Generali D. Incidence and relative risk of adverse events of special interest in patients with castration resistant prostate cancer treated with CYP-17 inhibitors: A meta-analysis of published trials. Crit Rev Oncol Hematol 2016; 101:12-20. [PMID: 26971992 DOI: 10.1016/j.critrevonc.2016.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/02/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022] Open
Abstract
Abiraterone acetate and orteronel are two CYP-17 inhibitors that have been studied in prostate cancer. They have shown relevant toxicities, including fluid retention/oedema, hypokalaemia, hypertension, liver function test abnormalities and cardiac events. The goal of this study was to determine the risk of special adverse events related to CYP- 17 inhibitor in patients with metastatic castration-resistant prostate cancer (CRCP). Summary data from four randomized phase III trials comparing CYP-17 inhibitors and prednisone versus placebo and prednisone in metastatic CRCP patients were meta-analysed. Pooled risk ratios (RRs) for the risk of all-grade and grade 3-4 adverse events of special interest were calculated. Data from 4916 patients (2849 in the AA experimental arm; 2067 in the control arm) were analysed. The incidence of grade 3-4 adverse events was never more than 10% of the patients. However, compared with placebo, the CYP-17 inhibitor significantly increased the all-grade events of hypertension (RR=1.53; 95% CI=1.3-1.8; p<0.00001), hypokalaemia (RR=1.56; 95% CI=1.29-1.89; p<0.00001), cardiac disorders (RR=1.47; 95% CI=1.27-1.7; p<0.00001) liver function test abnormalities (RR=1.93; 95% CI=1.15-3.24; p=0.01) grade≥3 adverse events, hypokalaemia (RR=4.23; 95% CI=1.28-13.99; p=0.02) and cardiac disorders (RR=1.55; 95% CI=1.18-2.05; p=0.002). A lot of adverse events such as hypertension, hypokalaemia, cardiac disorders and liver function test abnormalities are increased during CYP-17 inhibitor based therapy. Strict monitoring of these side effects should be considered during CYP- 17 inhibitor therapy in prostate cancer patients.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Section of pharmacology and University Center DIFF-Drug Innovation Forward Future, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25124 Brescia, Italy; Unit of molecular therapy and pharmacogenomic, AO Azienda Istituti Ospitalieri di Cremona, Viale Concordia 1, 26100 Cremona, Italy.
| | - Sandra Sigala
- Section of pharmacology and University Center DIFF-Drug Innovation Forward Future, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University Hospital, Via Roma 55, 56126 Pisa, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University Hospital, Via Roma 55, 56126 Pisa, Italy
| | - Alberto Bonetta
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129 Trieste, Italy
| | - Maria Rosa Cappelletti
- Unit of molecular therapy and pharmacogenomic, AO Azienda Istituti Ospitalieri di Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Laura Zanotti
- Unit of molecular therapy and pharmacogenomic, AO Azienda Istituti Ospitalieri di Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Alberto Bottini
- Unit of molecular therapy and pharmacogenomic, AO Azienda Istituti Ospitalieri di Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Daniele Generali
- Unit of molecular therapy and pharmacogenomic, AO Azienda Istituti Ospitalieri di Cremona, Viale Concordia 1, 26100 Cremona, Italy; Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
37
|
Qin X, Liu M, Wang X. New insights into the androgen biotransformation in prostate cancer: A regulatory network among androgen, androgen receptors and UGTs. Pharmacol Res 2016; 106:114-122. [PMID: 26926093 DOI: 10.1016/j.phrs.2016.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/15/2023]
Abstract
Androgen, as one kind of steroid hormones, is pivotal in the hormone-sensitive cancer, such as prostate cancer (PCa). The synthesis, elimination, and bioavailability of androgen in prostate cells have been proved to be a main cause of the carcinogenesis, maintenance and deterioration of PCa. This review illustrates the outlines of androgen biotransformation, and further discusses the different enzymes, especially UDP-glucuronyltransferases (UGTs) embedded in both benign and malignant prostate cells, which catalyze the reactions. Although many inhibitors of the enzymes responsible for the synthesis of androgens have been developed into drugs to fight against PCa, the elimination procedures metabolized by the UGTs are less emphasized. Thus the regulatory network among androgen, androgen receptors (AR) and UGTs is carefully reviewed in this article, indicating the determinant effects of UGTs on prostatic androgens and the regulation of AR. Finally, the hypothesis is also put forward that the regulators of UGTs may be developed to accelerate the androgen elimination and benefit PCa therapy.
Collapse
Affiliation(s)
- Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
38
|
Dal Pra A, Locke JA, Borst G, Supiot S, Bristow RG. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer. Front Oncol 2016; 6:24. [PMID: 26909338 PMCID: PMC4754414 DOI: 10.3389/fonc.2016.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa.
Collapse
Affiliation(s)
- Alan Dal Pra
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jennifer A Locke
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gerben Borst
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Stephane Supiot
- Integrated Center of Oncology (ICO) René Gauducheau , Nantes , France
| | - Robert G Bristow
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Wadosky KM, Koochekpour S. Therapeutic Rationales, Progresses, Failures, and Future Directions for Advanced Prostate Cancer. Int J Biol Sci 2016; 12:409-26. [PMID: 27019626 PMCID: PMC4807161 DOI: 10.7150/ijbs.14090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/15/2015] [Indexed: 02/07/2023] Open
Abstract
Patients with localized prostate cancer (PCa) have several therapeutic options with good prognosis. However, survival of patients with high-risk, advanced PCa is significantly less than patients with early-stage, organ-confined disease. Testosterone and other androgens have been directly linked to PCa progression since 1941. In this review, we chronicle the discoveries that led to modern therapeutic strategies for PCa. Specifically highlighted is the biology of androgen receptor (AR), the nuclear receptor transcription factor largely responsible for androgen-stimulated and castrate-recurrent (CR) PCa. Current PCa treatment paradigms can be classified into three distinct but interrelated categories: targeting AR at pre-receptor, receptor, or post-receptor signaling. The continuing challenge of disease relapse as CR and/or metastatic tumors, destined to occur within three years of the initial treatment, is also discussed. We conclude that the success of PCa therapies in the future depends on targeting molecular mechanisms underlying tumor recurrence that still may affect AR at pre-receptor, receptor, and post-receptor levels.
Collapse
Affiliation(s)
| | - Shahriar Koochekpour
- ✉ Corresponding author: Dr. Shahriar Koochekpour, Departments of Cancer Genetics and Urology, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA, Telephone: 716-845-3345; Fax: 716-845-1698;
| |
Collapse
|
40
|
Huang A, Jayaraman L, Fura A, Vite GD, Trainor GL, Gottardis MM, Spires T, Spires VM, Rizzo CA, Obermeier MT, Elzinga PA, Todderud G, Fan Y, Newitt JA, Beyer SM, Zhu Y, Warrack BM, Goodenough AK, Tebben AJ, Doweyko AM, Gold DL, Balog A. Discovery of the Selective CYP17A1 Lyase Inhibitor BMS-351 for the Treatment of Prostate Cancer. ACS Med Chem Lett 2016; 7:40-5. [PMID: 26819663 PMCID: PMC4716597 DOI: 10.1021/acsmedchemlett.5b00310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/02/2015] [Indexed: 11/28/2022] Open
Abstract
Efforts to identify a potent, reversible, nonsteroidal CYP17A1 lyase inhibitor with good selectivity over CYP17A1 hydroxylase and CYPs 11B1 and 21A2 for the treatment of castration-resistant prostate cancer (CRPC) culminated in the discovery of BMS-351 (compound 18), a pyridyl biaryl benzimidazole with an excellent in vivo profile. Biological evaluation of BMS-351 at a dose of 1.5 mg in castrated cynomolgus monkeys revealed a remarkable reduction in testosterone levels with minimal glucocorticoid and mineralcorticoid perturbation. Based on a favorable profile, BMS-351 was selected as a candidate for further preclinical evaluation.
Collapse
Affiliation(s)
- Audris Huang
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Lata Jayaraman
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Aberra Fura
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Gregory D. Vite
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - George L. Trainor
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Marco M. Gottardis
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Thomas
E. Spires
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Vanessa M. Spires
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Cheryl A. Rizzo
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Mary T. Obermeier
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Paul A. Elzinga
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Gordon Todderud
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Yi Fan
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - John A. Newitt
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Sophie M. Beyer
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Yongxin Zhu
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Bethanne M. Warrack
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Angela K. Goodenough
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Andrew J. Tebben
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Arthur M. Doweyko
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - David L. Gold
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| | - Aaron Balog
- Bristol-Myers
Squibb Research
and Development, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
41
|
Suri A, Pham T, MacLean DB. A Phase 1, Randomized, Single-Dose Crossover Pharmacokinetic Study to Investigate the Effect of Food Intake on Absorption of Orteronel (TAK-700) in Healthy Male Subjects. Clin Pharmacol Drug Dev 2016; 5:188-95. [DOI: 10.1002/cpdd.233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/21/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Ajit Suri
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | | | - David B. MacLean
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| |
Collapse
|
42
|
Karamouzis MV, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Targeting Androgen/Estrogen Receptors Crosstalk in Cancer. Trends Cancer 2015; 2:35-48. [PMID: 28741499 DOI: 10.1016/j.trecan.2015.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/04/2023]
Abstract
The actions of estrogens are mediated by estrogen receptors, ERα and ERβ. Recent genomic landscaping of ERα- and ERβ-binding sites has revealed important distinctions regarding their transcriptional activity. ERβ and its isoforms have been correlated with endocrine treatment responsiveness in breast tumors, while post-translational modifications, receptor dimerization patterns, and subcellular localization are increasingly recognized as crucial modulators in prostate carcinogenesis. Androgen receptor (AR) is essential for the development and progression of prostate cancer as well as of certain breast cancer types. The balance between the activity of these two hormone receptors and their molecular interactions in different clinical settings is influenced by several coregulators. This comprises a dynamic regulatory network enhancing or limiting the activity of AR-directed treatments in breast and prostate tumorigenesis. In this review, we discuss the molecular background regarding the therapeutic targeting of androgen/estrogen receptor crosstalk in breast and prostate cancer.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Kostas A Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
43
|
Suri A, Chapel S, Lu C, Venkatakrishnan K. Physiologically based and population PK modeling in optimizing drug development: A predict-learn-confirm analysis. Clin Pharmacol Ther 2015; 98:336-44. [PMID: 26031410 PMCID: PMC5039936 DOI: 10.1002/cpt.155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/13/2015] [Accepted: 05/27/2015] [Indexed: 12/02/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling and classical population pharmacokinetic (PK) model‐based simulations are increasingly used to answer various drug development questions. In this study, we propose a methodology to optimize the development of drugs, primarily cleared by the kidney, using model‐based approaches to determine the need for a dedicated renal impairment (RI) study. First, the impact of RI on drug exposure is simulated via PBPK modeling and then confirmed using classical population PK modeling of phase 2/3 data. This methodology was successfully evaluated and applied to an investigational agent, orteronel (nonsteroidal, reversible, selective 17,20‐lyase inhibitor). A phase 1 RI study confirmed the accuracy of model‐based predictions. Hence, for drugs eliminated primarily via renal clearance, this modeling approach can enable inclusion of patients with RI in phase 3 trials at appropriate doses, which may be an alternative to a dedicated RI study, or suggest that only a reduced‐size study in severe RI may be sufficient.
Collapse
Affiliation(s)
- A Suri
- Clinical PharmacologyMillennium Pharmaceuticals, Inc.CambridgeMassachusettsUSA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - S Chapel
- Ann Arbor Pharmacometrics GroupAnn ArborMichiganUSA
| | - C Lu
- Drug Metabolism and PharmacokineticsMillennium Pharmaceuticals, Inc.CambridgeMassachusettsUSA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| | - K Venkatakrishnan
- Clinical PharmacologyMillennium Pharmaceuticals, Inc.CambridgeMassachusettsUSA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited
| |
Collapse
|
44
|
Wyatt AW, Gleave ME. Targeting the adaptive molecular landscape of castration-resistant prostate cancer. EMBO Mol Med 2015; 7:878-94. [PMID: 25896606 PMCID: PMC4520654 DOI: 10.15252/emmm.201303701] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/12/2015] [Accepted: 03/26/2015] [Indexed: 12/19/2022] Open
Abstract
Castration and androgen receptor (AR) pathway inhibitors induce profound and sustained responses in advanced prostate cancer. However, the inevitable recurrence is associated with reactivation of the AR and progression to a more aggressive phenotype termed castration-resistant prostate cancer (CRPC). AR reactivation can occur directly through genomic modification of the AR gene, or indirectly via co-factor and co-chaperone deregulation. This mechanistic heterogeneity is further complicated by the stress-driven induction of a myriad of overlapping cellular survival pathways. In this review, we describe the heterogeneous and evolvable molecular landscape of CRPC and explore recent successes and failures of therapeutic strategies designed to target AR reactivation and adaptive survival pathways. We also discuss exciting areas of burgeoning anti-tumour research, and their potential to improve the survival and management of patients with CRPC.
Collapse
Affiliation(s)
- Alexander W Wyatt
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
45
|
Ferraldeschi R, Welti J, Luo J, Attard G, de Bono JS. Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene 2015; 34:1745-57. [PMID: 24837363 PMCID: PMC4333106 DOI: 10.1038/onc.2014.115] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Androgen receptor (AR) signaling is a critical pathway for prostate cancer cells, and androgen-deprivation therapy (ADT) remains the principal treatment for patients with locally advanced and metastatic disease. However, over time, most tumors become resistant to ADT. The view of castration-resistant prostate cancer (CRPC) has changed dramatically in the last several years. Progress in understanding the disease biology and mechanisms of castration resistance led to significant advancements and to paradigm shift in the treatment. Accumulating evidence showed that prostate cancers develop adaptive mechanisms for maintaining AR signaling to allow for survival and further evolution. The aim of this review is to summarize molecular mechanisms of castration resistance and provide an update in the development of novel agents and strategies to more effectively target the AR signaling pathway.
Collapse
Affiliation(s)
- R Ferraldeschi
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - J Welti
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - J Luo
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G Attard
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - JS de Bono
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| |
Collapse
|
46
|
Petrylak DP, Gandhi JG, Clark WR, Heath E, Lin J, Oh WK, Agus DB, Carthon B, Moran S, Kong N, Suri A, Bargfrede M, Liu G. Phase 1/2 study of orteronel (TAK-700), an investigational 17,20-lyase inhibitor, with docetaxel-prednisone in metastatic castration-resistant prostate cancer. Invest New Drugs 2015; 33:397-408. [PMID: 25556680 PMCID: PMC4390470 DOI: 10.1007/s10637-014-0199-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/08/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND Docetaxel-prednisone (DP) is an approved therapy for metastatic castration-resistant prostate cancer (mCRPC). Orteronel (TAK-700) is an investigational, selective, non-steroidal inhibitor of 17,20-lyase, a key enzyme in androgenic hormone production. This phase 1/2 study evaluated orteronel plus DP in mCRPC patients. METHODS Adult men with chemotherapy-naïve mCRPC, serum prostate-specific antigen (PSA) ≥5 ng/mL, and serum testosterone <50 ng/dL received oral orteronel 200 or 400 mg twice-daily (BID) in phase 1 to determine the recommended dose for phase 2, plus intravenous docetaxel 75 mg/m(2) every 3 weeks, and oral prednisone 5 mg BID. Phase 2 objectives included safety, pharmacokinetics, and efficacy. RESULTS In phase 1 (n = 6, orteronel 200 mg; n = 8, orteronel 400 mg), there was one dose-limiting toxicity of grade 3 febrile neutropenia at 400 mg BID. This dose was evaluated further in phase 2 (n = 23). After 4 cycles, 68, 59, and 23% of patients achieved ≥30, ≥50, and ≥90% PSA reductions, respectively; median best PSA response was -77%. Seven of 10 (70%) RECIST-evaluable patients achieved objective partial responses. Median time to PSA progression and radiographic disease progression was 6.7 and 12.9 months, respectively. Dehydroepiandrosterone-sulfate (DHEA-S) and testosterone levels were rapidly and durably reduced. Common adverse events were fatigue (78%), alopecia (61%), diarrhea (48%), nausea (43%), dysgeusia (39%), and neutropenia (39%). Orteronel and docetaxel pharmacokinetics were similar alone and in combination. CONCLUSIONS Orteronel plus DP was tolerable, with substantial reductions in PSA, DHEA-S, and testosterone levels, and evidence for measurable disease responses.
Collapse
Affiliation(s)
- Daniel P Petrylak
- Department of Medicine, Smilow Cancer Center, Yale University Medical Center, 333 Cedar Street, PO Box 208032, New Haven, CT, 06520, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The androgen receptor (AR), ligand-induced transcription factor, is expressed in primary prostate cancer and in metastases. AR regulates multiple cellular events, proliferation, apoptosis, migration, invasion, and differentiation. Its expression in prostate cancer cells is regulated by steroid and peptide hormones. AR downregulation by various compounds which are contained in fruits and vegetables is considered a chemopreventive strategy for prostate cancer. There is a bidirectional interaction between the AR and micro-RNA (miRNA) in prostate cancer; androgens may upregulate or downregulate the selected miRNA, whereas the AR itself is a target of miRNA. AR mutations have been discovered in prostate cancer, and their incidence may increase with tumor progression. AR mutations and increased expression of selected coactivators contribute to the acquisition of agonistic properties of anti-androgens. Expression of some of the coactivators is enhanced during androgen ablation. AR activity is regulated by peptides such as cytokines or growth factors which reduce the concentration of androgen required for maximal stimulation of the receptor. In prostate cancer, variant ARs which exhibit constitutive activity were detected. Novel therapies which interfere with intracrine synthesis of androgens or inhibit nuclear translocation of the AR have been introduced in the clinic.
Collapse
Affiliation(s)
- Zoran Culig
- Division of Experimental Urology, Department of Urology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria,
| | | |
Collapse
|
48
|
Mooney D, Paluri R, Mehta A, Goyal J, Sonpavde G. Update in Systemic Therapy of Urologic Malignancies. Postgrad Med 2015; 126:44-54. [DOI: 10.3810/pgm.2014.01.2724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Gomez L, Kovac JR, Lamb DJ. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids 2015; 95:80-7. [PMID: 25560485 PMCID: PMC4323677 DOI: 10.1016/j.steroids.2014.12.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/14/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
The majority of prostate cancer (PCa) cases are diagnosed as a localized disease. Definitive treatment, active surveillance or watchful waiting are employed as therapeutic paradigms. The current standard of care for the treatment of metastatic PCa is either medical or surgical castration. Once PCa progresses in spite of castrate androgen levels it is termed 'castration-resistant prostate cancer' (CRPC). Patients may even exhibit rising PSA levels with possible bone, lymph node or solid organ metastases. In 2010, the only agent approved for the treatment of CRPC was docetaxel, a chemotherapeutic agent. It is now known that cells from patients with CRPC express androgen receptors (AR) and remain continuously influenced by androgens. As such, treatments with novel hormonal agents that specifically target the biochemical conversion of cholesterol to testosterone have come to the forefront. The use of cytochrome P450c17 (CYP17A1) inhibitor underlies one of the most recent advances in the treatment of CRPC. Abiraterone acetate (AA) was the first CYP17A1 inhibitor approved in the United States. This review will discuss CRPC in general with a specific focus on AA and novel CYP17A1 inhibitors. AA clinical trials will be reviewed along with other novel adjunct treatments that may enhance the effectiveness of abiraterone therapy. Furthermore, the most recently identified CYP17A1 inhibitors Orteronel, Galeterone, VT-464, and CFG920 will also be explored.
Collapse
Affiliation(s)
- Lissette Gomez
- Scott Department of Urology and The Center for Reproductive Medicine, and the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Jason R Kovac
- Urology of Indiana, Male Reproductive Endocrinology and Surgery, Carmel, IN, United States
| | - Dolores J Lamb
- Scott Department of Urology and The Center for Reproductive Medicine, and the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
50
|
Njar VCO, Brodie AMH. Discovery and Development of Galeterone (TOK-001 or VN/124-1) for the Treatment of All Stages of Prostate Cancer. J Med Chem 2015; 58:2077-87. [DOI: 10.1021/jm501239f] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Vincent C. O. Njar
- Department of Pharmacology, ‡Center for Biomolecular
Therapeutics, and §Marlene Stewart
Greenebaum Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, Maryland 21201-1559, United States
| | - Angela M. H. Brodie
- Department of Pharmacology, ‡Center for Biomolecular
Therapeutics, and §Marlene Stewart
Greenebaum Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, Maryland 21201-1559, United States
| |
Collapse
|