1
|
Nasb M, Li F, Dayoub L, Wu T, Wei M, Chen N. Bridging the gap: Integrating exercise mimicry into chronic disease management through suppressing chronic inflammation. J Adv Res 2024:S2090-1232(24)00176-0. [PMID: 38704088 DOI: 10.1016/j.jare.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Chronic inflammation is a common hallmark of many chronic diseases. Although exercise holds paramount importance in preventing and managing chronic diseases, adherence to exercise programs can be challenging for some patients. Consequently, there is a pressing need to explore alternative strategies to emulate the anti-inflammatory effects of exercise for chronic diseases. AIM OF REVIEW This review explores the emerging role of green tea bioactive components as potential mitigators of chronic inflammation, offering insights into their capacity to mimic the beneficial effects of exercise. We propose that bioactive components in green tea are promising agents for suppressing chronic inflammation, suggesting their unique capability to replicate the health benefits of exercise. KEY SCIENTIFIC CONCEPTS OF REVIEW This review focuses on several key concepts, including chronic inflammation and its role in chronic diseases, the anti-inflammatory effects of regular exercise, and bioactive components in green tea responsible for its health benefits. It elaborates on scientific evidence supporting the anti-inflammatory properties of green tea bioactive components, such as epigallocatechin gallate (EGCG), and theorizes how these bioactive components might replicate the effects of exercise at a molecular level. Through a comprehensive analysis of current research, this review proposes a novel perspective on the application of green tea as a potential intervention strategy to suppress chronic inflammation, thereby extending the benefits akin to those achieved through exercise.
Collapse
Affiliation(s)
- Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Fengxing Li
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Lamis Dayoub
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
2
|
Chaudhuri R, Samanta A, Saha P, Ghosh S, Sinha D. The Potential of Epigallocatechin Gallate in Targeting Cancer Stem Cells: A Comprehensive Review. Curr Med Chem 2024; 31:5255-5280. [PMID: 38243984 DOI: 10.2174/0109298673281666231227053726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
The dreadful scenario of cancer prevails due to the presence of cancer stem cells (CSCs), which contribute to tumor growth, metastasis, invasion, resistance to chemo- and radiotherapy, and recurrence. CSCs are a small subpopulation of cells within the tumor that are characterized by self-renewal capability and have the potential to manifest heterogeneous lineages of cancer cells that constitute the tumor. The major bioactive green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been fruitful in downgrading cancer stemness signaling and CSC biomarkers in cancer progression. EGCG has been evidenced to maneuver extrinsic and intrinsic apoptotic pathways in order to decrease the viability of CSCs. Cancer stemness is intricately related to epithelial-mesenchymal transition (EMT), metastasis and therapy resistance, and EGCG has been evidenced to regress all these CSC-related effects. By inhibiting CSC characteristics EGCG has also been evidenced to sensitize the tumor cells to radiotherapy and chemotherapy. However, the use of EGCG in in vitro and in vivo cancer models raises concern about its bioavailability, stability and efficacy against spheroids raised from parental cells. Therefore, novel nano formulations of EGCG and adjuvant therapy of EGCG with other phytochemicals or drugs or small molecules may have a better prospect in targeting CSCs. However, extensive clinical research is still awaited to elucidate a full proof impact of EGCG in cancer therapy.
Collapse
Affiliation(s)
- Rupa Chaudhuri
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Anurima Samanta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| |
Collapse
|
3
|
Luo M, Mai M, Song W, Yuan Q, Feng X, Xia E, Guo H. The Antiaging Activities of Phytochemicals in Dark-Colored Plant Foods: Involvement of the Autophagy- and Apoptosis-Associated Pathways. Int J Mol Sci 2022; 23:ijms231911038. [PMID: 36232338 PMCID: PMC9569742 DOI: 10.3390/ijms231911038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
In the last two decades, human life expectancy has increased by about 10 years, but this has not been accompanied by a corresponding increase in healthy lifespan. Aging is associated with a wide range of human disorders, including cancer, diabetes, and cardiovascular and neurodegenerative diseases. Delaying the aging of organs or tissues and improving the physiological functions of the elderly can reduce the risk of aging-related diseases. Autophagy and apoptosis are crucial mechanisms for cell survival and tissue homeostasis, and may also be primary aging-regulatory pathways. Recent epidemiological studies have shown that eating more colorful plant foods could increase life expectancy. Several representative phytochemicals in dark-colored plant foods such as quercetin, catechin, curcumin, anthocyanins, and lycopene have apparent antiaging potential. Nevertheless, the antiaging signaling pathways of the phytochemicals from dark-colored plant foods remain elusive. In the present review, we summarized autophagy- and apoptosis-associated targeting pathways of those phytochemicals and discussed the core targets involved in the antiaging effects. Further clinical evaluation and exploitation of phytochemicals as antiaging agents are needed to develop novel antiaging therapeutics for preventing age-related diseases and improving a healthy lifespan.
Collapse
Affiliation(s)
- Mengliu Luo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Meiqing Mai
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Wanhan Song
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qianhua Yuan
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoling Feng
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Enqin Xia
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Correspondence: ; Tel.: +86-769-2289-6576
| |
Collapse
|
4
|
Functional mechanism on stem cells by tea (Camellia sinensis) bioactive compounds. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Uprety B, Abrahamse H. Targeting Breast Cancer and Their Stem Cell Population through AMPK Activation: Novel Insights. Cells 2022; 11:576. [PMID: 35159385 PMCID: PMC8834477 DOI: 10.3390/cells11030576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Despite some significant advancements, breast cancer has become the most prevalent cancer in the world. One of the main reasons for failure in treatment and metastasis has been attributed to the presence of cancer initiating cells-cancer stem cells. Consequently, research is now being focussed on targeting cancer cells along with their stem cell population. Non-oncology drugs are gaining increasing attention for their potent anticancer activities. Metformin, a drug commonly used to treat type 2 diabetes, is the best example in this regard. It exerts its therapeutic action by activating 5' adenosine monophosphate-activated protein kinase (AMPK). Activated AMPK subsequently phosphorylates and targets several cellular pathways involved in cell growth and proliferation and the maintenance of stem-like properties of cancer stem cells. Therefore, AMPK is emerging as a target of choice for developing effective anticancer drugs. Vanadium compounds are well-known PTP inhibitors and AMPK activators. They find extensive applications in treatment of diabetes and obesity via PTP1B inhibition and AMPK-mediated inhibition of adipogenesis. However, their role in targeting cancer stem cells has not been explored yet. This review is an attempt to establish the applications of insulin mimetic vanadium compounds for the treatment of breast cancer by AMPK activation and PTP1B inhibition pathways.
Collapse
Affiliation(s)
- Bhawna Uprety
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa;
| | | |
Collapse
|
6
|
Ke DYJ, El-Sahli S, Wang L. The Potential of Natural Products in the Treatment of Triple-Negative Breast Cancer. Curr Cancer Drug Targets 2021; 22:388-403. [PMID: 34970954 DOI: 10.2174/1568009622666211231140623] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks receptors for targeted therapy. Consequently, chemotherapy is currently the mainstay of systemic treatment options. However, the enrichment of cancer stem cells (CSC, a subpopulation with stem-cell characteristics and tumor-initiating propensity) promotes chemo-resistance and tumorigenesis, resulting in cancer recurrence and relapse. Furthermore, toxic side effects of chemotherapeutics reduce patient wellbeing. Natural products, specifically compounds derived from plants, have the potential to treat TNBC and target CSCs by inhibiting CSC signaling pathways. Literature evidence from six promising compounds were reviewed, including sulforaphane, curcumin, genistein, resveratrol, lycopene, and epigallocatechin-3-gallate. These compounds have been shown to promote cell cycle arrest and apoptosis in TNBC cells. They also could inhibit the epithelial-mesenchymal transition (EMT) that plays an important role in metastasis. In addition, those natural compounds have been found to inhibit pathways important for CSCs, such as NF-κB, PI3K/Akt/mTOR, Notch 1, Wnt/β-catenin, and YAP. Clinicals trials conducted on these compounds have shown varying degrees of effectiveness. Epidemiological case-control studies for the compounds commonly consumed in certain human populations have also been summarized. While in vivo and in vitro data are promising, further basic and clinical investigations are required. Likely, natural products in combination with other drugs may hold great potential to improve TNBC treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Danny Yu Jia Ke
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- The Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
7
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
8
|
Hu Z, Li M, Cao Y, Akan OD, Guo T, Luo F. Targeting AMPK Signaling by Dietary Polyphenols in Cancer Prevention. Mol Nutr Food Res 2021; 66:e2100732. [PMID: 34802178 DOI: 10.1002/mnfr.202100732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a serious public health problem in the world and a major disease affecting human health. Dietary polyphenols have shown good potential in the treatment of various cancers. It is worth noting that cancer cells usually exhibit metabolic abnormalities of high glucose intake and inefficient utilization. AMPK is the key molecule in the regulation of energy metabolism and is closely related with obesity and diabetes. Recent studies indicate that AMPK also plays an important role in cancer prevention and regulating cancer-related genes and pathways, and dietary polyphenols can significantly regulate AMPK activity. In this review, the progress of dietary polyphenols preventing carcinogenesis via AMPK pathway is systemically summarized. From the viewpoint of interfering energy metabolism, the anti-cancer effects of dietary polyphenols are explained. AMPK pathway modulated by different dietary polyphenols affects pathways and target genes are summarized. Dietary polyphenols exert anti-cancer effect through the target molecules regulated by AMPK, which broadens the understanding of polyphenols anti-cancer mechanisms and provides value reference for the investigators of the novel field.
Collapse
Affiliation(s)
- Zuomin Hu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Mengyuan Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yunyun Cao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Otobong Donald Akan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| |
Collapse
|
9
|
Wang Y, Pan H, chen D, Guo D, Wang X. Targeting at cancer energy metabolism and lipid droplet formation as new treatment strategies for epigallocatechin-3-gallate (EGCG) in colorectal cancer cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
10
|
Targeting cancer stem cells by nutraceuticals for cancer therapy. Semin Cancer Biol 2021; 85:234-245. [PMID: 34273521 DOI: 10.1016/j.semcancer.2021.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has demonstrated that cancer stem cells (CSCs) play an essential role in tumor progression and reoccurrence and drug resistance. Multiple signaling pathways have been revealed to be critically participated in CSC development and maintenance. Emerging evidence indicates that numerous chemopreventive compounds, also known as nutraceuticals, could eliminate CSCs in part via regulating several signaling pathways. Therefore, in this review, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3'-diindolylmethane, withaferin A, apigenin, etc. Moreover, we discuss that eliminating CSCs by nutraceuticals might be a promising strategy for treating human cancer via overcoming drug resistance and reducing tumor reoccurrence.
Collapse
|
11
|
Rutherford RN, Ura S, Chan TH, Fukumoto K, Nishioka T, Renzetti A. Dibenzoate esters of cis-tetralin-2,3-diol as analogs of (–)-epigallocatechin gallate: synthesis and crystal structure of anticancer drug candidates. Acta Crystallogr C 2020; 76:1085-1095. [DOI: 10.1107/s2053229620014916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
(−)-Epigallocatechin gallate (EGCG), the main component of green tea extract, displays multiple biological activities. However, it cannot be used as a drug due to its low cellular absorption, instability and metabolic degradation. Therefore, there is a need to provide analogs that can overcome the limitations of EGCG. In this work, six synthetic analogs of EGCG sharing a common tetralindiol dibenzoate core were synthesized and fully characterized by 1H NMR, 13C NMR, HRMS and IR spectroscopies, and X-ray crystallography. These are (2R,3S)-1,2,3,4-tetrahydronaphthalene-2,3-diyl bis[3,4,5-tris(benzyloxy)benzoate], C66H56O10, and the analogous esters bis(3,4,5-trimethoxybenzoate), C30H32O10, bis(3,4,5-trifluorobenzoate), C24H14F6O4, bis[4-(benzyloxy)benzoate], C38H32O6, bis(4-methoxybenzoate), C26H24O6, and bis(2,4,6-trifluorobenzoate), C24H14F6O4. Structural analysis revealed that the molecular shapes of these dibenzoate esters of tetralindiol are significantly different from that of previously reported dimandelate esters or monobenzoate esters, as the acid moieties extend far from the bicyclic system without folding back over the tetralin fragment. Compounds with small fluorine substituents take a V-shape, whereas larger methoxy and benzyloxy groups determine the formation of an L-shape or a cavity. Intermolecular interactions are dominated by π–π stacking and C—H...π interactions involving the arene rings in the benzoate fragment and the arene ring in the tetrahydronaphthalene moiety. All six crystal structures are determined in centrosymmetric space groups (either P-1, P21/n, C2/c or I2/a).
Collapse
|
12
|
Zhang S, Zhu Q, Chen JY, OuYang D, Lu JH. The pharmacological activity of epigallocatechin-3-gallate (EGCG) on Alzheimer's disease animal model: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153316. [PMID: 32942205 DOI: 10.1016/j.phymed.2020.153316] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is currently incurable and there is an urgent need to develop new AD drugs. Many studies have revealed the potential neuroprotective effect of Epigallocatechin-3-O-gallate (EGCG), the main antioxidant in green tea, on animal models of AD. However, a systematic review of these reports is lacking. PURPOSE To assess the effectiveness of EGCG for AD treatment using systematic review and meta-analysis of pre-clinical trials. METHODS We conducted a systematic search of all available randomized controlled trials (RCTs) performed up to November 2019 in the following electronic databases: ScienceDirect, Web of Science, and PubMed. 17 preclinical studies assessing the effect of EGCG on animal AD models have been identified. Meta-analysis and subgroup analysis was performed to evaluate cognition improvement of various types of AD models. The study quality was assessed using the CAMARADES checklist and the criteria of published studies. RESULTS Our analysis shows that the methodological quality ranges from 3 to 5, with a median score of 4. According to meta-analysis of random-effects method, EGCG showed a positive effect in AD with shorter escape latency (SMD= -9.24, 95%CI= -12.05 to -6.42) and decreased Aβ42 level (SD= -25.74,95%CI= -42.36 to -9.11). Regulation of α-, β-, γ-secretase activity, inhibition of tau phosphorylation, anti-oxidation, anti-inflammation, anti-apoptosis, and inhibition of AchE activity are reported as the main neuroprotective mechanisms. Though more than 100 clinical trials have been registered on the ClinicalTrials.gov, only one clinical trial has been conducted to test the therapeutic effects of EGCG on the AD progression and cognitive performance. CONCLUSION Here, we conducted this review to systematically describe the therapeutic potential of EGCG in animal models of AD and hope to provide a more comprehensive assessment of the effects in order to design future clinical trials. Besides, the safety, blood-brain barrier (BBB) penetration and bioavailability issues in conducting clinical trials were also discussed.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Qi Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Jia-Yue Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Defang OuYang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
13
|
|
14
|
Bozorgi A, Khazaei S, Khademi A, Khazaei M. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:970-983. [PMID: 32952942 PMCID: PMC7478260 DOI: 10.22038/ijbms.2020.43745.10270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are known as the major reason for therapy resistance. Recently, natural herbal compounds are suggested to have a significant role in inhibiting the breast cancer stem cells (BCSCs). The aim of this study was to explore the effective natural herbal compounds against BCSCs.This review article was designed based on the BCSCs, mechanisms of therapy resistance and natural herbal compounds effective to inhibit their activity. Therefore, Science direct, PubMed and Scopus databases were explored and related original articles were investigated from 2010 to 2019. BCSCs use different mechanisms including special membrane transporters, anti-apoptotic, pro-survival, and self-renewal- related signaling pathways. Natural herbal compounds could disturb these mechanisms, therefore may inhibit or eradicate the BCSCs. Studies show that a broad range of plants, either as a food or medicine, contain anti-cancer agents that phenolic components and their different derivatives share a large quantity. Natural herbal compounds play a pivotal role in the eradication of BCSCs, through the inhibition of biological activities and induction of apoptosis. Although it is necessary to conduct more clinical investigation.
Collapse
Affiliation(s)
- Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saber Khazaei
- Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Khademi
- Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Kim YJ, Kim KS, Lim D, Yang DJ, Park JI, Kim KW, Jeong JH, Choi HS, Kim DK. Epigallocatechin-3-Gallate (EGCG)-Inducible SMILE Inhibits STAT3-Mediated Hepcidin Gene Expression. Antioxidants (Basel) 2020; 9:antiox9060514. [PMID: 32545266 PMCID: PMC7346121 DOI: 10.3390/antiox9060514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic peptide hormone hepcidin, a key regulator of iron metabolism, is induced by inflammatory cytokine interleukin-6 (IL-6) in the pathogenesis of anemia of inflammation or microbial infections. Small heterodimer partner-interacting leucine zipper protein (SMILE)/CREBZF is a transcriptional corepressor of nuclear receptors that control hepatic glucose and lipid metabolism. Here, we examined the role of SMILE in regulating iron metabolism by inflammatory signals. Overexpression of SMILE significantly decreased activation of the Janus kinase 2-signal transducer and activator of transcription 3 (STAT3)-mediated hepcidin production and secretion that is triggered by the IL-6 signal in human and mouse hepatocytes. Moreover, SMILE co-localized and physically interacted with STAT3 in the nucleus in the presence of IL-6, which significantly suppressed binding of STAT3 to the hepcidin gene promoter. Interestingly, epigallocatechin-3-gallate (EGCG), a major component of green tea, induced SMILE expression through forkhead box protein O1 (FoxO1), as demonstrated in FoxO1 knockout primary hepatocytes. In addition, EGCG inhibited IL-6-induced hepcidin expression, which was reversed by SMILE knockdown. Finally, EGCG significantly suppressed lipopolysaccharide-induced hepcidin secretion and hypoferremia through induction of SMILE expression in mice. These results reveal a previously unrecognized role of EGCG-inducible SMILE in the IL-6-dependent transcriptional regulation of iron metabolism.
Collapse
Affiliation(s)
- Yu-Ji Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Ki-Sun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.-S.K.); (H.-S.C.)
| | - Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Korea; (D.L.); (J.-H.J.)
| | - Dong Ju Yang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul, 03722, Korea; (D.J.Y.); (K.W.K.)
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju 61186, Korea;
| | - Ki Woo Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul, 03722, Korea; (D.J.Y.); (K.W.K.)
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Korea; (D.L.); (J.-H.J.)
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (K.-S.K.); (H.-S.C.)
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: ; Tel.: +82-62-530-2166; Fax: +82-62-530-2160
| |
Collapse
|
16
|
Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochim Biophys Acta Rev Cancer 2020; 1874:188379. [PMID: 32439311 DOI: 10.1016/j.bbcan.2020.188379] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most ubiquitous type of neoplasms among women worldwide. Molecular aberrations associated with breast development and progressions have been extensively investigated in recent years. An AMP-activated kinase (AMPK) initially identified as a cellular energy sensor that plays a crucial role in cellular energy homeostasis. Intensive research over the last decade about the molecular mechanisms of AMPK has demonstrated that AMPK mediated diverse biological functions are achieved through phosphorylation and regulation of multiple downstream signaling molecules in normal tissue. Downregulation of AMPK activity or decreased level involved in the promotion of breast tumorigenesis, and thus activation of AMPK found to oppose tumor progression. In this review, we epitomize the recent advances in exploring the tumor suppressor function of AMPK pathways. Besides, we discuss the developments in the area of AMPK activator and its molecular mechanisms for breast cancer treatment.
Collapse
|
17
|
Suppressive role of Viola odorata extract on malignant characters of mammosphere-derived breast cancer stem cells. Clin Transl Oncol 2020; 22:1619-1634. [DOI: 10.1007/s12094-020-02307-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
|
18
|
Repurposing Antibacterial AM404 as a Potential Anticancer Drug for Targeting Colorectal Cancer Stem-Like Cells. Cancers (Basel) 2019; 12:cancers12010106. [PMID: 31906201 PMCID: PMC7017077 DOI: 10.3390/cancers12010106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour-promoting inflammation is involved in colorectal cancer (CRC) development and therapeutic resistance. However, the antibiotics and antibacterial drugs and signalling that regulate the potency of anticancer treatment upon forced differentiation of cancer stem-like cell (CSC) are not fully defined yet. We screened an NIH-clinical collection of the small-molecule compound library of antibacterial/anti-inflammatory agents that identified potential candidate drugs targeting CRC-SC for differentiation. Selected compounds were validated in both in vitro organoids and ex vivo colon explant models for their differentiation induction, impediment on neoplastic cell growth, and to elucidate the mechanism of their anticancer activity. We initially focused on AM404, an anandamide uptake inhibitor. AM404 is a metabolite of acetaminophen with antibacterial activity, which showed high potential in preventing CRC-SC features, such as stemness/de-differentiation, migration and drug-resistance. Furthermore, AM404 suppressed the expression of FBXL5 E3-ligase, where AM404 sensitivity was mimicked by FBXL5-knockout. This study uncovers a new molecular mechanism for AM404-altering FBXL5 oncogene which mediates chemo-resistance and CRC invasion, thereby proposes to repurpose antibacterial AM404 as an anticancer agent.
Collapse
|
19
|
Lasso P, Llano Murcia M, Sandoval TA, Urueña C, Barreto A, Fiorentino S. Breast Tumor Cells Highly Resistant to Drugs Are Controlled Only by the Immune Response Induced in an Immunocompetent Mouse Model. Integr Cancer Ther 2019; 18:1534735419848047. [PMID: 31056957 PMCID: PMC6505237 DOI: 10.1177/1534735419848047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The tumor cells responsible for metastasis are highly
resistant to chemotherapy and have characteristics of stem cells, with a high
capacity for self-regeneration and the use of detoxifying mechanisms that
participate in drug resistance. In vivo models of highly resistant cells allow
us to evaluate the real impact of the immune response in the control of cancer.
Materials and Methods: A tumor population derived from the 4T1
breast cancer cell line that was stable in vitro and highly aggressive in vivo
was obtained, characterized, and determined to exhibit cancer stem cell (CSC)
phenotypes (CD44+, CD24+, ALDH+,
Oct4+, Nanog+, Sox2+, and high self-renewal
capacity). Orthotopic transplantation of these cells allowed us to evaluate
their in vivo susceptibility to chemo and immune responses induced after
vaccination. Results: The immune response induced after vaccination
with tumor cells treated with doxorubicin decreased the formation of tumors and
macrometastasis in this model, which allowed us to confirm the immune response
relevance in the control of highly chemotherapy-resistant ALDH+ CSCs
in an aggressive tumor model in immunocompetent animals.
Conclusions: The antitumor immune response was the main element
capable of controlling tumor progression as well as metastasis in a highly
chemotherapy-resistant aggressive breast cancer model.
Collapse
Affiliation(s)
- Paola Lasso
- 1 Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
20
|
Reda A, Hosseiny S, El-Sherbiny IM. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine (Lond) 2019; 14:2487-2514. [PMID: 31490100 DOI: 10.2217/nnm-2018-0443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is depicted as the most aggressive malignancy and is one the major causes of death worldwide. It originates from immortal tumor-initiating cells called 'cancer stem cells' (CSCs). This devastating subpopulation exhibit potent self-renewal, proliferation and differentiation characteristics. Dynamic DNA repair mechanisms can sustain the immortality phenotype of cancer to evade all treatment strategies. To date, current conventional chemo- and radio-therapeutic strategies adopted against cancer fail in tackling CSCs. However, new advances in nanotechnology have paved the way for creating next-generation nanotheranostics as multifunctional smart 'all-in-one' nanoparticles. These particles integrate diagnostic, therapeutic and targeting agents into one single biocompatible and biodegradable carrier, opening up new avenues for breakthroughs in early detection, diagnosis and treatment of cancer through efficient targeting of CSCs.
Collapse
Affiliation(s)
- Asmaa Reda
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt.,Molecular & Cellular Biology division, Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Salma Hosseiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| |
Collapse
|
21
|
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E, Strupp BJ, Ginsberg SD. Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. FASEB J 2019; 33:9871-9884. [PMID: 31180719 DOI: 10.1096/fj.201802669rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Choline is critical for normative function of 3 major pathways in the brain, including acetylcholine biosynthesis, being a key mediator of epigenetic regulation, and serving as the primary substrate for the phosphatidylethanolamine N-methyltransferase pathway. Sufficient intake of dietary choline is critical for proper brain function and neurodevelopment. This is especially important for brain development during the perinatal period. Current dietary recommendations for choline intake were undertaken without critical evaluation of maternal choline levels. As such, recommended levels may be insufficient for both mother and fetus. Herein, we examined the impact of perinatal maternal choline supplementation (MCS) in a mouse model of Down syndrome and Alzheimer's disease, the Ts65Dn mouse relative to normal disomic littermates, to examine the effects on gene expression within adult offspring at ∼6 and 11 mo of age. We found MCS produces significant changes in offspring gene expression levels that supersede age-related and genotypic gene expression changes. Alterations due to MCS impact every gene ontology category queried, including GABAergic neurotransmission, the endosomal-lysosomal pathway and autophagy, and neurotrophins, highlighting the importance of proper choline intake during the perinatal period, especially when the fetus is known to have a neurodevelopmental disorder such as trisomy.-Alldred, M. J., Chao, H. M., Lee, S. H., Beilin, J., Powers, B. E., Petkova, E., Strupp, B. J., Ginsberg, S. D. Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, (NYU) Langone Medical Center, New York, New York, USA
| | - Helen M Chao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, (NYU) Langone Medical Center, New York, New York, USA
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, New York, USA.,Department Neuroscience and Physiology, (NYU) Langone Medical Center, New York, New York, USA
| | - Judah Beilin
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA
| | - Brian E Powers
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Eva Petkova
- Child Psychiatry, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Child and Adolescent Psychiatry, (NYU) Langone Medical Center, New York, New York, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.,Department of Psychiatry, (NYU) Langone Medical Center, New York, New York, USA.,Department Neuroscience and Physiology, (NYU) Langone Medical Center, New York, New York, USA.,New York University (NYU) Neuroscience Institute, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
22
|
Abstract
Breast cancer is a common malignancy with poor prognosis. Cancer cells are heterogeneous and cancer stem cells (CSCs) are primarily responsible for tumor relapse, treatment-resistance and metastasis, so for breast cancer stem cells (BCSCs). Diets are known to be associated with carcinogenesis. Food-derived polyphenols are able to attenuate the formation and virulence of BCSCs, implying that these compounds and their analogs might be promising agents for preventing breast cancer. In the present review, we summarized the origin and surface markers of BCSCs and possible mechanisms responsible for the inhibitory effects of polyphenols on BCSCs. The suppressive effects of common dietary polyphenols against BCSCs, such as curcumin, epigallocatechin gallate (EGCG) and related polyphenolic compounds were further discussed.
Collapse
Affiliation(s)
- Hao-Feng Gu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xue-Ying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
23
|
Hermawan A, Putri H. Current report of natural product development against breast cancer stem cells. Int J Biochem Cell Biol 2018; 104:114-132. [DOI: 10.1016/j.biocel.2018.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
|
24
|
Cai ZY, Li XM, Liang JP, Xiang LP, Wang KR, Shi YL, Yang R, Shi M, Ye JH, Lu JL, Zheng XQ, Liang YR. Bioavailability of Tea Catechins and Its Improvement. Molecules 2018; 23:molecules23092346. [PMID: 30217074 PMCID: PMC6225109 DOI: 10.3390/molecules23092346] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Many in vitro studies have shown that tea catechins had vevarious health beneficial effects. However, inconsistent results between in vitro and in vivo studies or between laboratory tests and epidemical studies are observed. Low bioavailability of tea catechins was an important factor leading to these inconsistencies. Research advances in bioavailability studies involving absorption and metabolic biotransformation of tea catechins were reviewed in the present paper. Related techniques for improving their bioavailability such as nanostructure-based drug delivery system, molecular modification, and co-administration of catechins with other bioactives were also discussed.
Collapse
Affiliation(s)
- Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xu-Min Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jin-Pei Liang
- Intellectual Property Office of Lanshan District, Rizhao 543003, China.
| | - Li-Ping Xiang
- National Tea and Tea Product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Kai-Rong Wang
- Ningbo Extension Station of Forestry & Speciality Technology, Ningbo 315012, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Rui Yang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Meng Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Wang H, Chen Y, Ru G, Xu Y, Lu L. EGCG: Potential application as a protective agent against grass carp reovirus in aquaculture. JOURNAL OF FISH DISEASES 2018; 41:1259-1267. [PMID: 29806139 DOI: 10.1111/jfd.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Grass carp reovirus (GCRV) is the primary cause of grass carp haemorrhagic disease. The major catechin in green tea, (-)-epigallocatechin-3-gallate (EGCG), has been found to have anti-GCRV activity in the C. idellus kidney cell line (CIK). The aim of this study was to test the potential application of EGCG as an anti-GCRV agent in aquaculture. Here, we demonstrate that various concentrations (99%, 50% and 35%) of EGCG could inhibit GCRV infectivity. EGCG (50%) + GCRV treatment significantly reduced the number of dead fish at 1-, 2-, 3-, 4 -and 5-day post-challenge compared with the negative control (GCRV challenge without EGCG treatment). The safety of EGCG compound products on cell survival was studied using four fish cell lines; we did not detect a significant change in cell viability within 24 hours of EGCG incubation. We also evaluated toxicity and concentrations of malondialdehyde (MDA), glutathione (GSH) and lysozyme (LZM) in the grass carp, and the results showed that even a high dose of EGCG did not induce toxicity. Following EGCG compound injection, the concentration of MDA decreased and the concentration of GSH and LZM increased compared with the control groups. We also detected EGCG concentration in grass carp plasma and kidney using HPLC with electrochemical detection after intraperitoneal injection at a dose of 150 mg/kg. The concentration of EGCG in the plasma and kidney reached the highest levels (20 μg/ml and 1.5 μg/ml) about 12 hr after injection and then decreased. Overall, EGCG is a safe, effective product that could inhibit GCRV infection and improve immunoactivity in aquaculture.
Collapse
Affiliation(s)
- H Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yq Chen
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Gm Ru
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yq Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lq Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
26
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
27
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: a review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:463-479. [PMID: 29476201 DOI: 10.1007/s00210-018-1479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| |
Collapse
|
28
|
Zhang J, Lei Z, Huang Z, Zhang X, Zhou Y, Luo Z, Zeng W, Su J, Peng C, Chen X. Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity. Oncotarget 2018; 7:79557-79571. [PMID: 27791197 PMCID: PMC5346735 DOI: 10.18632/oncotarget.12836] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 11/30/2022] Open
Abstract
TRAF6 (TNF Receptor-Associated Factor 6) is an E3 ubiquitin ligase that contains a Ring domain, induces K63-linked polyubiquitination, and plays a critical role in signaling transduction. Our previous results demonstrated that TRAF6 is overexpressed in melanoma and that TRAF6 knockdown dramatically attenuates tumor cell growth and metastasis. In this study, we found that EGCG can directly bind to TRAF6, and a computational model of the interaction between EGCG and TRAF6 revealed that EGCG probably interacts with TRAF6 at the residues of Gln54, Gly55, Asp57 ILe72, Cys73 and Lys96. Among these amino acids, mutation of Gln54, Asp57, ILe72 in TRAF6 could destroy EGCG bound to TRAF6, furthermore, our results demonstrated that EGCG significantly attenuates interaction between TRAF6 and UBC13(E2) and suppresses TRAF6 E3 ubiquitin ligase activity in vivo and in vitro. Additionally, the phosphorylation of IκBα, p-TAK1 expression are decreased and the nuclear translocation of p65 and p50 is blocked by treatment with EGCG, leading to inactivation of the NF-κB pathway. Moreover, EGCG significantly inhibits cell growth as well as the migration and invasion of melanoma cells. Taken together, these findings show that EGCG is a novel E3 ubiquitin ligase inhibitor that could be used to target TRAF6 for chemotherapy or the prevention of melanoma.
Collapse
Affiliation(s)
- Jianglin Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhou Lei
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youyou Zhou
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhongling Luo
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqi Zeng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Li Y, Wang S, Xin Y, Zheng M, Xu F, Xi X, Cao H, Cui X, Guo H, Han C. Maca Cosmetics: A Review on Constituents, Therapeutics and Advantages. J Oleo Sci 2018; 67:789-800. [DOI: 10.5650/jos.ess18012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yujuan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Shiyuan Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine
| | - Yizhou Xin
- The Afliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Mengmeng Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Fangxue Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Xiaozhi Xi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Hui Cao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Xiaowei Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Hong Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine
| |
Collapse
|
30
|
Sinha D, Biswas J, Nabavi SM, Bishayee A. Tea phytochemicals for breast cancer prevention and intervention: From bench to bedside and beyond. Semin Cancer Biol 2017; 46:33-54. [DOI: 10.1016/j.semcancer.2017.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/25/2017] [Accepted: 04/01/2017] [Indexed: 02/06/2023]
|
31
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK, Karri VVSR. Nanocarrier based approaches for targeting breast cancer stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:885-898. [PMID: 28826237 DOI: 10.1080/21691401.2017.1366337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer stem cells (BCSCs) are heterogeneous subpopulation of tumour initiating cells within breast tumours. They are spared even after chemotherapy and responsible for tumour relapse. Targeting BCSCs is, therefore, necessary to achieve radical cure in breast cancer. Despite the availability of agents targeting BCSCs, their clinical application is limited due to their off-target effects and bioavailability issues. Nanotechnology based drug carriers (nanocarriers) offer various advantages to deliver anti-BCSCs agents specifically to their target sites by overcoming their bioavailability issues. In this review, we describe various strategies for targeting BCSCs using nanocarriers.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Praveen T Krishnamurthy
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Pavan Kumar Chintamaneni
- a Department of Pharmacology , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| | - Veera Venkata Satyanarayana Reddy Karri
- b Department of Pharmaceutics , JSS College of Pharmacy (A Constituent College of Jagadguru Sri Shivarathreeshwara University) , Ootacamund , Tamil Nadu , India
| |
Collapse
|
32
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017. [DOI: 10.1080/10408398.2016.1231168 pmid: 27645804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Ren-You Gan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhong-Quan Sui
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
33
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017; 58:924-941. [PMID: 27645804 DOI: 10.1080/10408398.2016.1231168] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Ren-You Gan
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| | - Hua-Bin Li
- c Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Zhong-Quan Sui
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China
| | - Harold Corke
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| |
Collapse
|
34
|
Affiliation(s)
- Jairam Vanamala
- Department of Food Science, Pennsylvania State University, University Park, Pennsylvania, USA
- The Penn State Hershey Cancer Institute, Pennsylvania, USA
| |
Collapse
|
35
|
Ahmed M, Chaudhari K, Babaei-Jadidi R, Dekker LV, Shams Nateri A. Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells. Stem Cells 2017; 35:839-850. [DOI: 10.1002/stem.2579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Mehreen Ahmed
- Cancer Genetics & Stem Cell Group; Nottingham United Kingdom
| | | | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group; Nottingham United Kingdom
- Tumor & Vascular Biology Laboratories; Cancer Biology, Division of Cancer and Stem Cells, School of Medicine; Nottingham United Kingdom
| | - Lodewijk V. Dekker
- Division of Medicinal Chemistry and Structural Biology, School of Pharmacy; Centre for Biomolecular Science, University of Nottingham; Nottingham United Kingdom
| | | |
Collapse
|
36
|
Zhao H, Orhan YC, Zha X, Esencan E, Chatterton RT, Bulun SE. AMP-activated protein kinase and energy balance in breast cancer. Am J Transl Res 2017; 9:197-213. [PMID: 28337254 PMCID: PMC5340661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Cancer growth and metastasis depends on the availability of energy. Energy-sensing systems are critical in maintaining a balance between the energy supply and utilization of energy for tumor growth. A central regulator in this process is AMP-activated protein kinase (AMPK). In times of energy deficit, AMPK is allosterically modified by the binding of increased levels of AMP and ADP, making it a target of specific AMPK kinases (AMPKKs). AMPK signaling prompts cells to produce energy at the expense of growth and motility, opposing the actions of insulin and growth factors. Increasing AMPK activity may thus prevent the proliferation and metastasis of tumor cells. Activated AMPK also suppresses aromatase, which lowers estrogen formation and prevents breast cancer growth. Biguanides can be used to activate AMPK, but AMPK activity is modified by many different interacting factors; understanding these factors is important in order to control the abnormal growth processes that lead to breast cancer neoplasia. Fatty acids, estrogens, androgens, adipokines, and another energy sensor, sirtuin-1, alter the phosphorylation and activation of AMPK. Isoforms of AMPK differ among tissues and may serve specific functions. Targeting AMPK regulatory processes at points other than the upstream AMPKKs may provide additional approaches for prevention of breast cancer neoplasia, growth, and metastasis.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Yelda C Orhan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Xiaoming Zha
- Department of Surgery, The First Affiliated Hospital of Nanjing Medical SchoolNanjing, Jiangsu, China
| | - Ecem Esencan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Robert T Chatterton
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| |
Collapse
|
37
|
Subramani R, Lakshmanaswamy R. Complementary and Alternative Medicine and Breast Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:231-274. [DOI: 10.1016/bs.pmbts.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Sandoval TA, Urueña CP, Llano M, Gómez-Cadena A, Hernández JF, Sequeda LG, Loaiza AE, Barreto A, Li S, Fiorentino S. Standardized Extract from Caesalpinia spinosa is Cytotoxic Over Cancer Stem Cells and Enhance Anticancer Activity of Doxorubicin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016. [DOI: 10.1142/s0192415x16500956 pmid: 27852125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cancer stem cells (CSC) are the primary cell type responsible for metastasis and relapse. ABC-transporters are integral membrane proteins involved in the translocation of substrates across membranes protecting CSC from chemotherapeutic agents. A plant extract derived from C. spinosa (P2Et) previously investigated for its antitumor activity has been shown to reduce lung and spleen metastasis in mice that have been transplanted with breast cancer cells, suggesting that P2Et has a significant activity against cancer stem cells (CSC). P2Et extract was thoroughly characterized by HPLC/MS. The cytotoxicity of P2Et extract was evaluated using a MTT assay in human and murine cell lines with different profiles of resistance, by Pgp overexpression or by enrichment in cancer stem cells. The synergistic effect of P2Et with doxorubicin was evaluated in vitro in several cell lines and in vivo in mice transplanted with TS/A cells, a highly resistant cell line and enriched in CD44[Formula: see text]CD24[Formula: see text]CSC. The chromatographic fingerprint of P2Et extract revealed 13 gallotannins. We also found that P2Et extract was cytotoxic to cells regardless of their resistant phenotype. Similarly, complementary activities were observed as drug efflux reversion and antioxidant activity. Short-treatment with P2Et extract, revealed a synergistic effect with doxorubicin in resistant cell lines. In vivo the P2Et increases mice survival in a TS/A breast cancer model associated with augmentation of calreticulin expression. Our results suggest that P2Et treatment could be used as adjuvant along with conventional chemotherapy to treat tumors with a MDR phenotype or with high frequency of CSC.
Collapse
Affiliation(s)
- Tito A. Sandoval
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Claudia P. Urueña
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Mónica Llano
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alejandra Gómez-Cadena
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - John F. Hernández
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Luis Gonzalo Sequeda
- Departament of Chemistry, Pontificia Universidad Javeriana, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alix E. Loaiza
- Departament of Chemistry, Pontificia Universidad Javeriana, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alfonso Barreto
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Shaoping Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, P.R. China
| | - Susana Fiorentino
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| |
Collapse
|
39
|
Sandoval TA, Urueña CP, Llano M, Gómez-Cadena A, Hernández JF, Sequeda LG, Loaiza AE, Barreto A, Li S, Fiorentino S. Standardized Extract from Caesalpinia spinosa is Cytotoxic Over Cancer Stem Cells and Enhance Anticancer Activity of Doxorubicin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1693-1717. [DOI: 10.1142/s0192415x16500956] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSC) are the primary cell type responsible for metastasis and relapse. ABC-transporters are integral membrane proteins involved in the translocation of substrates across membranes protecting CSC from chemotherapeutic agents. A plant extract derived from C. spinosa (P2Et) previously investigated for its antitumor activity has been shown to reduce lung and spleen metastasis in mice that have been transplanted with breast cancer cells, suggesting that P2Et has a significant activity against cancer stem cells (CSC). P2Et extract was thoroughly characterized by HPLC/MS. The cytotoxicity of P2Et extract was evaluated using a MTT assay in human and murine cell lines with different profiles of resistance, by Pgp overexpression or by enrichment in cancer stem cells. The synergistic effect of P2Et with doxorubicin was evaluated in vitro in several cell lines and in vivo in mice transplanted with TS/A cells, a highly resistant cell line and enriched in CD44[Formula: see text]CD24[Formula: see text]CSC. The chromatographic fingerprint of P2Et extract revealed 13 gallotannins. We also found that P2Et extract was cytotoxic to cells regardless of their resistant phenotype. Similarly, complementary activities were observed as drug efflux reversion and antioxidant activity. Short-treatment with P2Et extract, revealed a synergistic effect with doxorubicin in resistant cell lines. In vivo the P2Et increases mice survival in a TS/A breast cancer model associated with augmentation of calreticulin expression. Our results suggest that P2Et treatment could be used as adjuvant along with conventional chemotherapy to treat tumors with a MDR phenotype or with high frequency of CSC.
Collapse
Affiliation(s)
- Tito A. Sandoval
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Claudia P. Urueña
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Mónica Llano
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alejandra Gómez-Cadena
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - John F. Hernández
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Luis Gonzalo Sequeda
- Departament of Chemistry, Pontificia Universidad Javeriana, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alix E. Loaiza
- Departament of Chemistry, Pontificia Universidad Javeriana, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Alfonso Barreto
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| | - Shaoping Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, P.R. China
| | - Susana Fiorentino
- Department of Microbiology, Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Bogotá, Colombia
| |
Collapse
|
40
|
Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neurosci Biobehav Rev 2016; 71:865-877. [DOI: 10.1016/j.neubiorev.2016.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 01/11/2023]
|
41
|
Elmaci İ, Altinoz MA. A Metabolic Inhibitory Cocktail for Grave Cancers: Metformin, Pioglitazone and Lithium Combination in Treatment of Pancreatic Cancer and Glioblastoma Multiforme. Biochem Genet 2016; 54:573-618. [PMID: 27377891 DOI: 10.1007/s10528-016-9754-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) and glioblastoma multiforme (GBM) are among the human cancers with worst prognosis which require an urgent need for efficient therapies. Here, we propose to apply to treat both malignancies with a triple combination of drugs, which are already in use for different indications. Recent studies demonstrated a considerable link between risk of PC and diabetes. In experimental models, anti-diabetogenic agents suppress growth of PC, including metformin (M), pioglitazone (P) and lithium (L). L is used in psychiatric practice, yet also bears anti-diabetic potential and selectively inhibits glycogen synthase kinase-3 beta (GSK-3β). M, a biguanide class anti-diabetic agent shows anticancer activity via activating AMP-activated protein kinase (AMPK). Glitazones bind to PPAR-γ and inhibit NF-κB, triggering cell proliferation, apoptosis resistance and synthesis of inflammatory cytokines in cancer cells. Inhibition of inflammatory cytokines could simultaneously decrease tumor growth and alleviate cancer cachexia, having a major role in PC mortality. Furthermore, mutual synergistic interactions exist between PPAR-γ and GSK-3β, between AMPK and GSK-3β and between AMPK and PPAR-γ. In GBM, M blocks angiogenesis and migration in experimental models. Very noteworthy, among GBM patients with type 2 diabetes, usage of M significantly correlates with better survival while reverse is true for sulfonylureas. In experimental models, P synergies with ligands of RAR, RXR and statins in reducing growth of GBM. Further, usage of P was found to be lesser in anaplastic astrocytoma and GBM patients, indicating a protective effect of P against high-grade gliomas. L is accumulated in GBM cells faster and higher than in neuroblastoma cells, and its levels further increase with chronic exposure. Recent studies revealed anti-invasive potential of L in GBM cell lines. Here, we propose that a triple-agent regime including drugs already in clinical usage may provide a metabolic adjuvant therapy for PC and GBM.
Collapse
Affiliation(s)
- İlhan Elmaci
- Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
- Neuroacademy Group, Istanbul, Turkey
| | - Meric A Altinoz
- Department of Immunology, Experimental Medicine Research Center, Istanbul, Turkey.
| |
Collapse
|
42
|
Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin Cancer Biol 2016; 40-41:192-208. [PMID: 27609747 DOI: 10.1016/j.semcancer.2016.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common form of cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths in the USA. Despite the development of newer diagnostic methods, selective as well as targeted chemotherapies and their combinations, surgery, hormonal therapy, radiotherapy, breast cancer recurrence, metastasis and drug resistance are still the major problems for breast cancer. Emerging evidence suggest the existence of cancer stem cells (CSCs), a population of cells with the capacity to self-renew, differentiate and be capable of initiating and sustaining tumor growth. In addition, CSCs are believed to be responsible for cancer recurrence, anticancer drug resistance, and metastasis. Hence, compounds targeting breast CSCs may be better therapeutic agents for treating breast cancer and control recurrence and metastasis. Naturally occurring compounds, mainly phytochemicals have gained immense attention in recent times because of their wide safety profile, ability to target heterogeneous populations of cancer cells as well as CSCs, and their key signaling pathways. Therefore, in the present review article, we summarize our current understanding of breast CSCs and their signaling pathways, and the phytochemicals that affect these cells including curcumin, resveratrol, tea polyphenols (epigallocatechin-3-gallate, epigallocatechin), sulforaphane, genistein, indole-3-carbinol, 3, 3'-di-indolylmethane, vitamin E, retinoic acid, quercetin, parthenolide, triptolide, 6-shogaol, pterostilbene, isoliquiritigenin, celastrol, and koenimbin. These phytochemicals may serve as novel therapeutic agents for breast cancer treatment and future leads for drug development.
Collapse
Affiliation(s)
- Prasad R Dandawate
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dharmalingam Subramaniam
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
43
|
Small-molecule activators of AMP-activated protein kinase as modulators of energy metabolism. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1036-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Arkwright RT, Deshmukh R, Adapa N, Stevens R, Zonder E, Zhang Z, Farshi P, Ahmed RSI, El-Banna HA, Chan TH, Dou QP. Lessons from Nature: Sources and Strategies for Developing AMPK Activators for Cancer Chemotherapeutics. Anticancer Agents Med Chem 2016; 15:657-71. [PMID: 25511514 DOI: 10.2174/1871520615666141216145417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/17/2014] [Accepted: 11/17/2014] [Indexed: 12/31/2022]
Abstract
Adenosine Monophosphate-Activated Protein Kinase or AMPK is a highly-conserved master-regulator of numerous cellular processes, including: Maintaining cellular-energy homeostasis, modulation of cytoskeletaldynamics, directing cell growth-rates and influencing cell-death pathways. AMPK has recently emerged as a promising molecular target in cancer therapy. In fact, AMPK deficiencies have been shown to enhance cell growth and proliferation, which is consistent with enhancement of tumorigenesis by AMPK-loss. Conversely, activation of AMPK is associated with tumor growth suppression via inhibition of the Mammalian Target of Rapamycin Complex-1 (mTORC1) or the mTOR signal pathway. The scientific communities' recognition that AMPK-activating compounds possess an anti-neoplastic effect has contributed to a rush of discoveries and developments in AMPK-activating compounds as potential anticancer-drugs. One such example is the class of compounds known as Biguanides, which include Metformin and Phenformin. The current review will showcase natural compounds and their derivatives that activate the AMPK-complex and signaling pathway. In addition, the biology and history of AMPK-signaling and AMPK-activating compounds will be overviewed, their anticancer-roles and mechanisms-of-actions will be discussed, and potential strategies for the development of novel, selective AMPK-activators with enhanced efficacy and reduced toxicity will be proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI 48201- 2013.
| |
Collapse
|
45
|
Zhang Y, He Q, Dong J, Jia Z, Hao F, Shan C. Effects of epigallocatechin-3-gallate on proliferation and differentiation of mouse cochlear neural stem cells: Involvement of PI3K/Akt signaling pathway. Eur J Pharm Sci 2016; 88:267-73. [PMID: 27012759 DOI: 10.1016/j.ejps.2016.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
Abstract
Since the majority of hearing impaired patients suffer from the significant loss of sensory hair cells and associated neurons, stem cell-based approaches hold great promise by replacing the damaged tissues in the ears. For instance, stem cells from the spiral ganglion could be isolated and expanded to regenerate neural structures of the inner ear. It is thus necessary to explore the potential procedures that may promote the proliferation and differentiation of such cochlear neural stem cells. In the present study, we study the effects of epigallocatechin-3-gallate (EGCG), a known antioxidant, for potential therapeutic use in NSC regeneration. At a non-toxic concentration, EGCG stimulated both proliferation and neurosphere formation in isolated mouse cochlear neural stem cell (NSC) in vitro. Specifically, the neural differentiation of NSC was promoted by EGCG treatment. The up-regulated neural function by EGCG was also supported by the increased calcium spike frequencies and enhanced neurite complexity in NSC-differentiated neurons. Finally, the induced neuron differentiation and Akt activation of cochlear NSC by EGCG were blocked by PI3 kinase inhibition. These data suggested that EGCG acts through phosphoinositide 3-kinase (PI3K)/Akt signaling in cochlea NSC to promote cell growth and neuron differentiation, which may be exploited for the treatment of hearing loss.
Collapse
Affiliation(s)
- Yubo Zhang
- E.N.T. Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang 50000, China
| | - Qiang He
- E.N.T. Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang 50000, China
| | - Jinhui Dong
- E.N.T. Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang 50000, China
| | - Zhanwei Jia
- E.N.T. Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang 50000, China
| | - Fang Hao
- E.N.T. Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang 50000, China
| | - Chunguang Shan
- E.N.T. Department 1, The Second Hospital of Hebei Medical University, Shijiazhuang 50000, China.
| |
Collapse
|
46
|
The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1093-104. [PMID: 26964795 DOI: 10.1016/j.bbadis.2016.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunctions critically impair nervous system development and are potentially involved in the pathogenesis of various neurodevelopmental disorders, including Down syndrome (DS), the most common genetic cause of intellectual disability. Previous studies from our group demonstrated impaired mitochondrial activity in peripheral cells from DS subjects and the efficacy of epigallocatechin-3-gallate (EGCG) - a natural polyphenol major component of green tea - to counteract the mitochondrial energy deficit. In this study, to gain insight into the possible role of mitochondria in DS intellectual disability, mitochondrial functions were analyzed in neural progenitor cells (NPCs) isolated from the hippocampus of Ts65Dn mice, a widely used model of DS which recapitulates many major brain structural and functional phenotypes of the syndrome, including impaired hippocampal neurogenesis. We found that, during NPC proliferation, mitochondrial bioenergetics and mitochondrial biogenic program were strongly compromised in Ts65Dn cells, but not associated with free radical accumulation. These data point to a central role of mitochondrial dysfunction as an inherent feature of DS and not as a consequence of cell oxidative stress. Further, we disclose that, besides EGCG, also the natural polyphenol resveratrol, which displays a neuroprotective action in various human diseases but never tested in DS, restores oxidative phosphorylation efficiency and mitochondrial biogenesis, and improves proliferation of NPCs. These effects were associated with the activation of PGC-1α/Sirt1/AMPK axis by both polyphenols. This research paves the way for using nutraceuticals as a potential therapeutic tool in preventing or managing some energy deficit-associated DS clinical manifestations.
Collapse
|
47
|
Oktyabri D, Ishimura A, Tange S, Terashima M, Suzuki T. DOT1L histone methyltransferase regulates the expression of BCAT1 and is involved in sphere formation and cell migration of breast cancer cell lines. Biochimie 2016; 123:20-31. [PMID: 26783998 DOI: 10.1016/j.biochi.2016.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
DOT1L is a histone H3 lysine 79 (H3K79) methyltransferase mainly implicated in leukemia. Here we analyzed the function of DOT1L in breast cancer cells. The expression of DOT1L was up-regulated in malignant breast cancer tissues. Over-expression of DOT1L significantly increased the sphere formation and the cell migration activities of MCF7 breast cancer cell line. In contrast, knockdown of DOT1L reduced the cell migration activity of MDA-MB-231 breast cancer cell line. BCAT1, which encodes a branched-chain amino acid transaminase, was identified as one of the target genes controlled by DOT1L through the regulation of H3K79 methylation. Mechanistic investigation revealed that BCAT1 might be an important regulator responsible for DOT1L-mediated sphere formation and cell migration in breast cancer cells.
Collapse
Affiliation(s)
- Dulamsuren Oktyabri
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Akihiko Ishimura
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan; Molecular Therapeutic Target Research Unit, Institute for Frontier Science Initiative (InFIniti), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Shoichiro Tange
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Minoru Terashima
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan; Molecular Therapeutic Target Research Unit, Institute for Frontier Science Initiative (InFIniti), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan.
| |
Collapse
|
48
|
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 2016; 6:1-19. [PMID: 26904394 PMCID: PMC4724661 DOI: 10.1016/j.apsb.2015.06.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signaling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
49
|
Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6475624. [PMID: 26649142 PMCID: PMC4663347 DOI: 10.1155/2016/6475624] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/21/2015] [Indexed: 12/19/2022]
Abstract
Cancer onset and progression have been linked to oxidative stress by increasing DNA mutations or inducing DNA damage, genome instability, and cell proliferation and therefore antioxidant agents could interfere with carcinogenesis. It is well known that conventional radio-/chemotherapies influence tumour outcome through ROS modulation. Since these antitumour treatments have important side effects, the challenge is to develop new anticancer therapeutic strategies more effective and less toxic for patients. To this purpose, many natural polyphenols have emerged as very promising anticancer bioactive compounds. Beside their well-known antioxidant activities, several polyphenols target epigenetic processes involved in cancer development through the modulation of oxidative stress. An alternative strategy to the cytotoxic treatment is an approach leading to cytostasis through the induction of therapy-induced senescence. Many anticancer polyphenols cause cellular growth arrest through the induction of a ROS-dependent premature senescence and are considered promising antitumour therapeutic tools. Furthermore, one of the most innovative and interesting topics is the evaluation of efficacy of prooxidant therapies on cancer stem cells (CSCs). Several ROS inducers-polyphenols can impact CSCs metabolisms and self-renewal related pathways. Natural polyphenol roles, mainly in chemoprevention and cancer therapies, are described and discussed in the light of the current literature data.
Collapse
|
50
|
de Souza VB, Schenka AA. Cancer Stem and Progenitor-Like Cells as Pharmacological Targets in Breast Cancer Treatment. Breast Cancer (Auckl) 2015; 9:45-55. [PMID: 26609237 PMCID: PMC4644141 DOI: 10.4137/bcbcr.s29427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/05/2023] Open
Abstract
The present review is focused on the current role of neoplastic stem and progenitor-like cells as primary targets in the pharmacotherapy of cancer as well as in the development of new anticancer drugs. We begin by summarizing the main characteristics of these tumor-initiating cells and key concepts that support their participation in therapeutic failure. In particular, we discuss the differences between the major carcinogenesis models (ie, clonal evolution vs cancer stem cell (CSC) model) with emphasis on breast cancer (given its importance to the study of CSCs) and their implications for the development of new treatment strategies. In addition, we describe the main ways to target these cells, including the main signaling pathways that are more activated or altered in CSCs. Finally, we provide a comprehensive compilation of the most recently tested drugs.
Collapse
Affiliation(s)
- Valéria B. de Souza
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Anatomic Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - André A. Schenka
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Anatomic Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|