1
|
Rivero P, Ivanova V, Barril X, Casampere M, Casas J, Fabriàs G, Díaz Y, Matheu MI. Targeting dihydroceramide desaturase 1 (Des1): Syntheses of ceramide analogues with a rigid scaffold, inhibitory assays, and AlphaFold2-assisted structural insights reveal cyclopropenone PR280 as a potent inhibitor. Bioorg Chem 2024; 145:107233. [PMID: 38422591 DOI: 10.1016/j.bioorg.2024.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Dihydroceramide desaturase 1 (Des1) catalyzes the formation of a CC double bond in dihydroceramide to furnish ceramide. Inhibition of Des1 is related to cell cycle arrest and programmed cell death. The lack of the Des1 crystalline structure, as well as that of a close homologue, hampers the detailed understanding of its inhibition mechanism and difficults the design of new inhibitors, thus making Des1 a strategic target. Based on previous structure-activity studies, different ceramides containing rigid scaffolds were designed. The synthesis and evaluation of these compounds as Des1 inhibitors allowed the identification of PR280 as a better Des 1 inhibitor in vitro (IC50 = 700 nM) than GT11 and XM462, the current reference inhibitors. This cyclopropenone ceramide was obtained in a 6-step synthesis with a 24 % overall yield. The highly confident 3D structure of Des1, recently predicted by AlphaFold2, served as the basis for conducting docking studies of known Des1 inhibitors and the ceramide derivatives synthesized by us in this study. For this purpose, a complete holoprotein structure was previously constructed. This study has allowed a better knowledge of key ligand-enzyme interactions for Des1 inhibitory activity. Furthermore, it sheds some light on the inhibition mechanism of GT11.
Collapse
Affiliation(s)
- Pablo Rivero
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain
| | - Varbina Ivanova
- Universitat de Barcelona, Department of Physical Chemistry, Faculty of Pharmacy, Av. Joan XXIII s/n, Barcelona 08028, Spain
| | - Xavier Barril
- Universitat de Barcelona, Department of Physical Chemistry, Faculty of Pharmacy, Av. Joan XXIII s/n, Barcelona 08028, Spain
| | - Mireia Casampere
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Josefina Casas
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Gemma Fabriàs
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Department of Biological Chemistry, C/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Yolanda Díaz
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain.
| | - M Isabel Matheu
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, C/Marcel.lí Domingo 1, Tarragona 43007, Spain.
| |
Collapse
|
2
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
3
|
Fenizia S, Gaggini M, Vassalle C. The Sphingolipid-Signaling Pathway as a Modulator of Infection by SARS-CoV-2. Curr Issues Mol Biol 2023; 45:7956-7973. [PMID: 37886946 PMCID: PMC10605018 DOI: 10.3390/cimb45100503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Ceramides and other related sphingolipids, important cellular components linked to metabolic homeostasis and cardiometabolic diseases, have been found to be involved in different steps of the SARS-CoV-2 life cycle. Hence, changes in their physiological levels are identified as predictors of COVID-19 severity and prognosis, as well as potential therapeutic targets. In this review, an overview of the SARS-CoV-2 life cycle is given, followed by a description of the sphingolipid metabolism and its role in viral infection, with a particular focus on those steps required to finalize the viral life cycle. Furthermore, the use and development of pharmaceutical strategies to target sphingolipids to prevent and treat severe and long-term symptoms of infectious diseases, particularly COVID-19, are reviewed herein. Finally, research perspectives and current challenges in this research field are highlighted. Although many aspects of sphingolipid metabolism are not fully known, this review aims to highlight how the discovery and use of molecules targeting sphingolipids with reliable and selective properties may offer new therapeutic alternatives to infectious and other diseases, including COVID-19.
Collapse
Affiliation(s)
- Simona Fenizia
- Istituto di Fisiologia Clinica, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Melania Gaggini
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
4
|
Skácel J, Slusher BS, Tsukamoto T. Small Molecule Inhibitors Targeting Biosynthesis of Ceramide, the Central Hub of the Sphingolipid Network. J Med Chem 2021; 64:279-297. [PMID: 33395289 PMCID: PMC8023021 DOI: 10.1021/acs.jmedchem.0c01664] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ceramides are composed of a sphingosine and a single fatty acid connected by an amide linkage. As one of the major classes of biologically active lipids, ceramides and their upstream and downstream metabolites have been implicated in several pathological conditions including cancer, neurodegeneration, diabetes, microbial pathogenesis, obesity, and inflammation. Consequently, tremendous efforts have been devoted to deciphering the dynamics of metabolic pathways involved in ceramide biosynthesis. Given that several distinct enzymes can produce ceramide, different enzyme targets have been pursued depending on the underlying disease mechanism. The main objective of this review is to provide a comprehensive overview of small molecule inhibitors reported to date for each of these ceramide-producing enzymes from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Jan Skácel
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
5
|
Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020; 12:cancers12010111. [PMID: 31906280 PMCID: PMC7017054 DOI: 10.3390/cancers12010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed malignant brain tumor in adults. The prognosis for patients with GBM remains poor and largely unchanged over the last 30 years, due to the limitations of existing therapies. Thus, new therapeutic approaches are desperately required. Sphingolipids are highly enriched in the brain, forming the structural components of cell membranes, and are major lipid constituents of the myelin sheaths of nerve axons, as well as playing critical roles in cell signaling. Indeed, a number of sphingolipids elicit a variety of cellular responses involved in the development and progression of GBM. Here, we discuss the role of sphingolipids in the pathobiology of GBM, and how targeting sphingolipid metabolism has emerged as a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Melinda N. Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
| | - Santosh I. Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
- Adelaide Medical School and School of Biological Sciences, University of Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-8-8302-7832; Fax: +61-8-8302-9246
| |
Collapse
|
6
|
Casasampere M, Ordoñez YF, Pou A, Casas J. Inhibitors of dihydroceramide desaturase 1: Therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology. Chem Phys Lipids 2015; 197:33-44. [PMID: 26248324 DOI: 10.1016/j.chemphyslip.2015.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Dihydroceramide desaturase (Des1) is the last enzyme in the de novo synthesis of ceramides (Cer). It catalyzes the insertion of a double bond into dihydroceramides (dhCer) to convert them to Cer, both of which are further metabolized to more complex (dihydro) sphingolipids. For many years dhCer have received poor attention, mainly due to their supposed lack of biological activity. It was not until about ten years ago that the concept that dhCer might have regulatory roles in biology emerged for the first time. Since then, multiple publications have established that dhCer are implicated in a wide spectrum of biological processes. Physiological and pathophysiological functions of dhCer have been recently reviewed. In this review we will focus on the biochemical features of Des1 and on its inhibition by different compounds with presumably different modes of action.
Collapse
Affiliation(s)
- Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Yadira F Ordoñez
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ana Pou
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
7
|
Abstract
Ceramide serves as a central mediator in sphingolipid metabolism and signaling pathways, regulating many fundamental cellular responses. It is referred to as a 'tumor suppressor lipid', since it powerfully potentiates signaling events that drive apoptosis, cell cycle arrest, and autophagic responses. In the typical cancer cell, ceramide levels and signaling are usually suppressed by overexpression of ceramide-metabolizing enzymes or downregulation of ceramide-generating enzymes. However, chemotherapeutic drugs as well as radiotherapy increase intracellular ceramide levels, while exogenously treating cancer cells with short-chain ceramides leads to anticancer effects. All evidence currently points to the fact that the upregulation of ceramide levels is a promising anticancer strategy. In this review, we exhibit many anticancer ceramide analogs as downstream receptor agonists and ceramide-metabolizing enzyme inhibitors.
Collapse
|
8
|
Ponnapakam AP, Liu J, Bhinge KN, Drew BA, Wang TL, Antoon JW, Nguyen TT, Dupart PS, Wang Y, Zhao M, Liu YY, Foroozesh M, Beckman BS. 3-Ketone-4,6-diene ceramide analogs exclusively induce apoptosis in chemo-resistant cancer cells. Bioorg Med Chem 2014; 22:1412-20. [PMID: 24457089 DOI: 10.1016/j.bmc.2013.12.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/16/2013] [Accepted: 12/26/2013] [Indexed: 02/07/2023]
Abstract
Multidrug-resistance is a major cause of cancer chemotherapy failure in clinical treatment. Evidence shows that multidrug-resistant cancer cells are as sensitive as corresponding regular cancer cells under the exposure to anticancer ceramide analogs. In this work we designed five new ceramide analogs with different backbones, in order to test the hypothesis that extending the conjugated system in ceramide analogs would lead to an increase of their anticancer activity and selectivity towards resistant cancer cells. The analogs with the 3-ketone-4,6-diene backbone show the highest apoptosis-inducing efficacy. The most potent compound, analog 406, possesses higher pro-apoptotic activity in chemo-resistant cell lines MCF-7TN-R and NCI/ADR-RES than the corresponding chemo-sensitive cell lines MCF-7 and OVCAR-8, respectively. However, this compound shows the same potency in inhibiting the growth of another pair of chemo-sensitive and chemo-resistant cancer cells, MCF-7 and MCF-7/Dox. Mechanism investigations indicate that analog 406 can induce apoptosis in chemo-resistant cancer cells through the mitochondrial pathway. Cellular glucosylceramide synthase assay shows that analog 406 does not interrupt glucosylceramide synthase in chemo-resistant cancer cell NCI/ADR-RES. These findings suggest that due to certain intrinsic properties, ceramide analogs' pro-apoptotic activity is not disrupted by the normal drug-resistance mechanisms, leading to their potential use for overcoming cancer multidrug-resistance.
Collapse
Affiliation(s)
- Adharsh P Ponnapakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Kaustubh N Bhinge
- College of Pharmacy Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 1800 Bienville, Monroe, LA 71209, United States
| | - Barbara A Drew
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Tony L Wang
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - James W Antoon
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Thong T Nguyen
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Patrick S Dupart
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Yuji Wang
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Ming Zhao
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yong-Yu Liu
- College of Pharmacy Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 1800 Bienville, Monroe, LA 71209, United States
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States.
| | - Barbara S Beckman
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| |
Collapse
|
9
|
Abstract
Sphingolipid-metabolizing enzymes are becoming targets for chemotherapeutic development with an increasing interest in the recent years. In this chapter we introduce the sphingolipid family of lipids, and the role of individual species in cell homeostasis. We also discuss their roles in several rare diseases and overall, in cancer transformation. We follow the biosynthesis pathway of the sphingolipid tree, focusing on the enzymes in order to understand how using small molecule inhibitors makes it possible to modulate cancer progression. Finally, we describe the most used and historically significant inhibitors employed in cancer research, their relationships to sphingolipid metabolism, and some promising results found in this field.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, University of Stony Brook, Stony Brook, New York 11794
| | - Yusuf A. Hannun
- Health Science Center, Stony Brook University, 100 Nicolls Road, L-4, 178, Stony Brook, NY 11794, USA
| |
Collapse
|
10
|
Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy. Int J Biochem Cell Biol 2012; 44:2135-43. [DOI: 10.1016/j.biocel.2012.08.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/18/2012] [Accepted: 08/29/2012] [Indexed: 12/31/2022]
|