1
|
Li Y, Zhong S, Huang S, Zhong W, Zheng B, Guo Q, Liu J, Guo X, Su R. Application of metabolomics in the classification of traditional Chinese medicine syndromes in rheumatoid arthritis. Clin Rheumatol 2025:10.1007/s10067-025-07373-4. [PMID: 40011356 DOI: 10.1007/s10067-025-07373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/01/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is frequently treated with traditional Chinese medicine (TCM), where patients are classified into distinct syndromes, such as heat-dampness syndrome (HD) and kidney-liver deficiency syndrome (KLD). However, an objective and systematic approach to differentiate these TCM syndromes remains lacking. This study is aimed at analyzing serum metabolomics to identify differential metabolites and pathways associated with HD and GS syndromes in RA patients and at evaluating their potential as diagnostic biomarkers. METHODS Serum samples from RA patients classified into HD and KLD groups were analyzed using metabolomics. Partial least squares discriminant analysis was employed to identify significant metabolites, while pathway analysis was conducted using the Kyoto Encyclopedia of Genes and Genomes database. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic potential of key metabolites. RESULTS Fifteen differential metabolites and two perturbed pathways-sphingolipid and D-amino acid metabolism-were identified between the KLD and HD groups. Notably, several metabolites, including C17-sphinganine and leucyl-alanine, demonstrated high diagnostic efficacy, with area under the curve (AUC) values exceeding 0.90. Correlation analysis revealed significant associations between certain metabolites and clinical indices, further substantiating their role in syndrome differentiation. CONCLUSION This study presents a comprehensive analysis of serum metabolites in RA patients under different TCM syndromes. The identified metabolites hold potential as biomarkers for distinguishing HD and KLD groups, paving the way for more objective and evidence-based diagnostic approaches in TCM. Key Points • Differential metabolites were identified in the serum of RA patients with heat-dampness syndrome and kidney-liver deficiency syndrome, with their metabolic pathways primarily involving sphingolipid metabolism and D-amino acid metabolism. • Serum metabolites demonstrate high efficacy in distinguishing RA patients with different TCM syndromes. • Significant correlations were observed between serum differential metabolites and clinical indicators in RA patients with varying TCM syndromes.
Collapse
Affiliation(s)
- Yao Li
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
- Foshan Engineering and Technology Research Center for Innovative and Precise Inspection Technology, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Shuqi Zhong
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Shengchun Huang
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Wanying Zhong
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Baolin Zheng
- Nephrology and Rheumatology Department, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Qihong Guo
- Nephrology and Rheumatology Department, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Jihong Liu
- Prevention and Treatment Center, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Xueyan Guo
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
- Foshan Engineering and Technology Research Center for Innovative and Precise Inspection Technology, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Rong Su
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China.
- Foshan Engineering and Technology Research Center for Innovative and Precise Inspection Technology, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China.
| |
Collapse
|
2
|
Wang F, Liu J. The dual anti-inflammatory and anticoagulant effects of Jianpi Huashi Tongluo prescription on Rheumatoid Arthritis through inhibiting the activation of the PI3K/AKT signaling pathway. Front Pharmacol 2025; 16:1541314. [PMID: 40012623 PMCID: PMC11860884 DOI: 10.3389/fphar.2025.1541314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
Background Rheumatoid arthritis (RA) is often accompanied by abnormal changes in inflammatory responses and coagulation-fibrinolysis indicators. Jianpi Huashi Tongluo Prescription - Xinfeng Capsule (XFC), a traditional Chinese medicine formulation comprising multiple herbal ingredients, is widely used clinically for the treatment of RA. It exhibits dual anti-inflammatory and anticoagulant effects. However, the specific mechanisms underlying its actions remain to be further investigated. Objective This study aims to elucidate the anti-inflammatory and anticoagulant mechanisms of XFC in the treatment of RA. Methods A multidimensional methodological framework was employed. Firstly, through retrospective clinical data mining, combined with the Apriori algorithm and random walk models, an in-depth analysis was conducted to explore the potential associations between XFC treatment and improvements in clinical inflammatory and coagulation markers among RA patients. Secondly, an adjuvant-induced arthritis rat model was established to directly observe the anti-inflammatory and anticoagulant effects of XFC in vivo. Furthermore, bioinformatics and network pharmacology techniques were applied to decipher the major active components and their targets of XFC. Lastly, a co-culture system of RA patient-derived peripheral blood mononuclear cells (RA-PBMCs) and vascular endothelial cells (VECs) was established to mimic the in vivo microenvironment, and the anti-inflammatory and anticoagulant mechanisms of XFC were validated in vitro. Results Data mining analysis revealed abnormally elevated levels of inflammatory and coagulation markers such as fibrinogen (FBG), erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (Hs-CRP), and rheumatoid factor (RF) in RA patients (p < 0.001), and emphasized the close correlation between XFC treatment and the improvement of these markers including Hs-CRP, ESR, and RF (confidence >60% and lift >1). Animal experimental data indicated that XFC effectively reduced the levels of inflammatory and coagulant markers (IL-6, D-D, FBG, PAF, VEGF, and TF) in adjuvant-induced arthritis (AA) rats while enhancing the expression of anti-inflammatory factors (IL-10) (p < 0.05). Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results suggested that the pharmacodynamic mechanism of XFC may be closely related to the regulation of the PI3K/AKT signaling pathway. Additionally, network pharmacology and molecular docking results show that the main active components of XFC, namely, calycosin-7-O-beta-D-glucoside, calycosin, and formononetin, exhibit excellent docking with the core targets HIF1A, PTGS2, and MMP9. In vitro co-culture model showed that XFC inhibited RA-related inflammatory responses and hypercoagulable states by suppressing the activation of the PI3K/AKT signaling pathway. Conclusion This study demonstrates that XFC exerts its dual anti-inflammatory and anticoagulant effects, at least in part, by inhibiting the activation of the PI3K/AKT signaling pathway, providing potential insights into targeted therapy for RA.
Collapse
Affiliation(s)
- Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
3
|
Yasir M, Park J, Han ET, Han JH, Park WS, Hassan M, Kloczkowski A, Chun W. Discovery of novel TACE inhibitors using graph convolutional network, molecular docking, molecular dynamics simulation, and Biological evaluation. PLoS One 2024; 19:e0315245. [PMID: 39729480 DOI: 10.1371/journal.pone.0315245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis. Reference datasets containing active and decoy compounds specific to TACE were obtained from the DUD-E database. Using RDKit, a cheminformatics toolkit, we extracted molecular features from these compounds. We applied the GraphConvMol model within the DeepChem framework, which utilizes graph convolutional networks, to build a predictive model based on the DUD-E datasets. Our trained model was subsequently used to predict the TACE inhibitory potential of FDA-approved drugs. From these predictions, Vorinostat was identified as a potential TACE inhibitor. Moreover, molecular docking and molecular dynamics simulation were conducted to validate these findings, using BMS-561392 as a reference TACE inhibitor. Vorinostat, originally an FDA-approved drug for cancer treatment, exhibited strong binding interactions with key TACE residues, suggesting its repurposing potential. Biological evaluation with RAW 264.7 cell confirmed the computational results, demonstrating that Vorinostat exhibited comparable inhibitory activity against TACE. In conclusion, our study highlights the capability of deep learning models to enhance virtual screening efforts in drug discovery, efficiently identifying potential candidates for specific targets such as TACE. Vorinostat, as a newly identified TACE inhibitor, holds promise for further exploration and investigation in the treatment of inflammatory diseases like rheumatoid arthritis.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
4
|
T SR, Jeyabalan S, Dhanasekaran S, Sekar M, Subramaniyan V, Wong LS. Anti-inflammatory and anti-arthritic activities of ethanolic extract of Myxopyrum serratulum A.W. Hill. Lab Anim Res 2024; 40:33. [PMID: 39327635 PMCID: PMC11425995 DOI: 10.1186/s42826-024-00220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a debilitating inflammatory disorder characterized by an overactive immune system targeting joints, leading to inflammation and intense pain. While current RA therapies effectively alleviate symptoms, they are often associated with significant side effects. This study aimed to assess the anti-inflammatory and anti-arthritic properties of an Ethanolic Extract of Myxopyrum serratulum A.W. Hill (EEMS) using animal models. RESULTS The acute toxicity study with EEMS (2000 mg/kg, p.o.) on rats showed no toxicity or mortality up to the highest dose. Inflammation was induced using carrageenan, and rats were treated with varying doses of EEMS (100, 200, and 400 mg/kg, p.o.) and diclofenac to assess anti-inflammatory effects. Anti-arthritic efficacy was evaluated using Complete Freund's adjuvant (CFA)-induced inflammation, comparing EEMS to methotrexate. The results revealed dose-dependent anti-inflammatory effects of EEMS and a reversal of arthritic-induced weight loss in treated groups. Paw volume reduction was significant in both EEMS and methotrexate groups. Biochemical analyses showed elevated markers in the arthritic control group, which were normalized by EEMS and methotrexate. Notably, EEMS (400 mg/kg) significantly reduced cathepsin-D levels compared to the positive control. EEMS administration also lowered hepatic lipid peroxidation and increased endogenous antioxidants (SOD, GSH, and GPX). The 200 and 400 mg/kg doses reduced the iNOS/GADPH ratio, while the 400 mg/kg dose restored cellular and joint structure and significantly decreased IL1 levels. CONCLUSIONS In conclusion, EEMS demonstrated substantial protective effects, mitigating health risks associated with chronic inflammation such as arthritis. These findings underscore the ethnomedical potential of Myxopyrum serratulum as a promising anti-inflammatory and anti-arthritis agent. The study suggests that EEMS could be a viable alternative or complementary therapy for RA, offering therapeutic benefits with potentially fewer side effects than current treatments.
Collapse
Affiliation(s)
- Sheela Rani T
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India.
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
- Department of Medical Sciences, Sunway University, Bandar Sunway, Subang Jaya, 47500, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| |
Collapse
|
5
|
Han P, Liu X, He J, Han L, Li J. Overview of mechanisms and novel therapies on rheumatoid arthritis from a cellular perspective. Front Immunol 2024; 15:1461756. [PMID: 39376556 PMCID: PMC11456432 DOI: 10.3389/fimmu.2024.1461756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation of joints in response to autoimmune disorders. Once triggered, many factors were involved in the development of RA, including both cellular factors like osteoclasts, synovial fibroblasts, T cells, B cells, and soluble factors like interleukin-1 (IL-1), IL-6, IL-17 and tumor necrosis factor-α (TNF-α), etc. The complex interplay of those factors results in such pathological abnormality as synovial hyperplasia, bone injury and multi-joint inflammation. To treat this chronic life-affecting disease, the primary drugs used in easing the patient's symptoms are disease-modifying antirheumatic drugs (DMARDs). However, these traditional drugs could cause serious side effects, such as high blood pressure and stomach ulcers. Interestingly, recent discoveries on the pathogenesis of RA have led to various new kinds of drugs or therapeutic strategies. Therefore, we present a timely review of the latest development in this field, focusing on the cellular aspects of RA pathogenesis and new therapeutic methods in clinical application. Hopefully it can provide translational guide to the pre-clinical research and treatment for the autoimmune joint disease.
Collapse
Affiliation(s)
- Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Luyang Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
6
|
Pourhabibi-Zarandi F, Rafraf M, Zayeni H, Asghari-Jafarabadi M, Ebrahimi AA. The efficacy of curcumin supplementation on serum total antioxidant capacity, malondialdehyde, and disease activity in women with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Phytother Res 2024; 38:3552-3563. [PMID: 38699839 DOI: 10.1002/ptr.8225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 03/22/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Oxidative stress plays a crucial role in the physiopathology of rheumatoid arthritis (RA), which is associated with impaired antioxidant defenses. This study aimed to investigate the effects of curcumin supplementation on serum levels of total antioxidant capacity (TAC), malondialdehyde (MDA), and disease activity in women with RA. In this clinical trial, 48 women with RA were treated with one capsule of curcumin (500 mg daily) or placebo for 8 weeks. Anthropometric measurements and fasting blood samples were collected at baseline and end of the study. Finally, we assessed the Disease Activity Score in 28 joints (DAS-28), dietary intake, and physical activity levels. While curcumin supplementation for 8 weeks significantly increased the serum levels of TAC (p < 0.05), it decreased tender joint counts, swollen joint counts, visual analog scale (VAS) for pain, and DAS-28 compared to the placebo at the end of the study (p < 0.001 for all). MDA levels significantly decreased in the curcumin group (p < 0.05). However, changes in MDA concentration were not significant between groups at the end of the trial (p = 0.145). Curcumin supplementation had a beneficial effect on increasing the serum levels of TAC and decreased DAS-28 in women with RA.
Collapse
Affiliation(s)
- Fatemeh Pourhabibi-Zarandi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zayeni
- Guilan Rheumatology Research Center, Department of Rheumatology, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Asghari-Jafarabadi
- Cabrini Research, Cabrini Health, Malvern, Victoria, Australia
- School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Asghar Ebrahimi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Internal Medicine Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Sharma S, Kishen A. Bioarchitectural Design of Bioactive Biopolymers: Structure-Function Paradigm for Diabetic Wound Healing. Biomimetics (Basel) 2024; 9:275. [PMID: 38786486 PMCID: PMC11117869 DOI: 10.3390/biomimetics9050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic wounds such as diabetic ulcers are a major complication in diabetes caused by hyperglycemia, prolonged inflammation, high oxidative stress, and bacterial bioburden. Bioactive biopolymers have been found to have a biological response in wound tissue microenvironments and are used for developing advanced tissue engineering strategies to enhance wound healing. These biopolymers possess innate bioactivity and are biodegradable, with favourable mechanical properties. However, their bioactivity is highly dependent on their structural properties, which need to be carefully considered while developing wound healing strategies. Biopolymers such as alginate, chitosan, hyaluronic acid, and collagen have previously been used in wound healing solutions but the modulation of structural/physico-chemical properties for differential bioactivity have not been the prime focus. Factors such as molecular weight, degree of polymerization, amino acid sequences, and hierarchical structures can have a spectrum of immunomodulatory, anti-bacterial, and anti-oxidant properties that could determine the fate of the wound. The current narrative review addresses the structure-function relationship in bioactive biopolymers for promoting healing in chronic wounds with emphasis on diabetic ulcers. This review highlights the need for characterization of the biopolymers under research while designing biomaterials to maximize the inherent bioactive potency for better tissue regeneration outcomes, especially in the context of diabetic ulcers.
Collapse
Affiliation(s)
- Shivam Sharma
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
8
|
Zhen J, Wan T, Sun G, Chen X, Zhang S. A ROS-responsive microsphere capsule encapsulated with NADPH oxidase 4 inhibitor ameliorates macrophage inflammation and ferroptosis. Heliyon 2024; 10:e23589. [PMID: 38187270 PMCID: PMC10770568 DOI: 10.1016/j.heliyon.2023.e23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammatory macrophages within the synovium play a pivotal role in the progression of arthritis inflammation. Effective drug therapy targeting inflammatory macrophages has long been a goal for clinicians and researchers. The standard approach for treating osteoarthritis (OA) involves systemic treatment and local injection. However, the high incidence of side effects associated with long-term drug administration increases the risk of complications in patients. Additionally, the rapid clearance of the joint cavity poses a biological barrier to the therapeutic effect. NADPH oxidase 4 (NOX4) is an enzyme protein regulating the cellular redox state by generating reactive oxygen species (ROS) within the cell. In this study, we designed and fabricated a hydrogel microsphere consisting of methyl methacrylate (MMA) and polyvinyl acetate (PVA) as the outer layer structure. We then loaded GLX351322 (GLX), a novel selective NOX4 inhibitor, into hydrogel microspheres through self-assembly with the compound polyethylene glycol ketone mercaptan (mPEG-TK) containing a disulfide bond, forming nanoparticles (mPEG-TK-GLX), thus creating a two-layer drug-loaded microspheres capsule with ROS-responsive and slow-releasing capabilities. Our results demonstrate that mPEG-TK-GLX@PVA-MMA effectively suppressed TBHP-induced inflammation, ROS production, and ferroptosis, indicating a promising curative strategy for OA and other inflammatory diseases in the future.
Collapse
Affiliation(s)
- Jinze Zhen
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Tianhao Wan
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangxin Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, Shenyang, 110000, China
| | - Xinwei Chen
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Shanyong Zhang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
9
|
Alkahtani HM, Almehizia AA, Al-Omar MA, Obaidullah AJ, Zen AA, Hassan AS, Aboulthana WM. In Vitro Evaluation and Bioinformatics Analysis of Schiff Bases Bearing Pyrazole Scaffold as Bioactive Agents: Antioxidant, Anti-Diabetic, Anti-Alzheimer, and Anti-Arthritic. Molecules 2023; 28:7125. [PMID: 37894604 PMCID: PMC10609138 DOI: 10.3390/molecules28207125] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In continuation of our research programs for the discovery, production, and development of the pharmacological activities of molecules for various disease treatments, Schiff bases and pyrazole scaffold have a broad spectrum of activities in biological applications. In this context, this manuscript aims to evaluate and study Schiff base-pyrazole molecules as a new class of antioxidant (total antioxidant capacity, iron-reducing power, scavenging activity against DPPH, and ABTS radicals), anti-diabetic (α-amylase% inhibition), anti-Alzheimer's (acetylcholinesterase% inhibition), and anti-arthritic (protein denaturation% and proteinase enzyme% inhibitions) therapeutics. Therefore, the Schiff bases bearing pyrazole scaffold (22a, b and 23a, b) were designed and synthesized for evaluation of their antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic properties. The results for compound 22b demonstrated significant antioxidant, anti-diabetic (α-amylase% inhibition), and anti-Alzheimer's (ACE%) activities, while compound 23a demonstrated significant anti-arthritic activity. Prediction of in silico bioinformatics analysis (physicochemical properties, bioavailability radar, drug-likeness, and medicinal chemistry) of the target derivatives (22a, b and 23a, b) was performed. The molecular lipophilicity potential (MLP) of the derivatives 22a, b and 23a, b was measured to determine which parts of the surface are hydrophobic and which are hydrophilic. In addition, the molecular polar surface area (PSA) was measured to determine the polar surface area and the non-polar surface area of the derivatives 22a, b and 23a, b. This study could be useful to help pharmaceutical researchers discover a new series of potent agents that may act as an antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic.
Collapse
Affiliation(s)
- Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Mohamed A. Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.); (M.A.A.-O.); (A.J.O.)
| | - Amer A. Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham Ng11 8NS, UK;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo 12622, Egypt
| | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
10
|
Shen Q, Du Y. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis. Int J Pharm 2023; 635:122698. [PMID: 36754181 DOI: 10.1016/j.ijpharm.2023.122698] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Rheumatoid arthritis (RA), a chronic autoimmune disease, is characterized by articular pain and swelling, synovial hyperplasia, and cartilage and bone destruction. Conventional treatment strategies for RA involve the use of anti-rheumatic drugs, which warrant high-dose, frequent, and long-term administration, resulting in serious adverse effects and poor patient compliance. To overcome these problems and improve clinical efficacy, drug delivery systems (DDS) have been designed for RA treatment. These systems have shown success in animal models of RA. In this review, representative DDS that target RA through passive or active effects on inflammatory cells are discussed and highlighted using examples. In particular, DDS allowing controlled and targeted drug release based on a variety of stimuli, intra-articular DDS, and transdermal DDS for RA treatment are described. Thus, this review provides an improved understanding of these DDS and paves the way for the development of novel DDS for efficient RA treatment.
Collapse
Affiliation(s)
- Qiying Shen
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou 311121, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China.
| |
Collapse
|
11
|
Rheumatoid arthritis characteristics and classification of heat and cold patterns-an observational study. Heliyon 2023; 9:e13439. [PMID: 36873147 PMCID: PMC9975089 DOI: 10.1016/j.heliyon.2023.e13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Traditional Chinese medicine (TCM) has been proven to be an effective complementary therapy in treating rheumatoid arthritis (RA). The cold pattern and the heat pattern were the two main TCM patterns for RA, which is crucial for TCM treatment. The cold pattern is characterized by fear of cold and wind, joint pain with a thin white tongue coating which can be relieved by hot herbs. In contrast, heat pattern patients suffer from severe joint pain with a yellow coating, with red swelling of the skin and high skin temperature which can be relieved by cooling herbs. Objective We aimed to classify the heat and cold patterns in RA patients with cluster analysis and factor analysis. Moreover, we aimed to explore the association of RA characteristics between these two patterns. Methods and Design: A cross-sectional observational research method was used, and data was collected on 300 RA patients in Hangzhou in China. Signs and symptoms associated with RA were clustered using SPSS 22.0 software. In addition, factor analysis was also used for the classification. After classification of heat and cold patterns, characteristics and treatment of the RA participants between the two patterns were explored. Results RA patients in the study were divided into two categories using cluster analysis. Twenty-two symptoms in the first category were included in the heat pattern of RA patients. After factor analysis, nine principal components were extracted to heat pattern. The component with the highest eigenvalue (2.530) were mainly contributed by shortness of breath, palpitation, heavy limbs, chest tightness and yellow greasy tongue with high factor loading values (0.765, 0.703, 0.504, 0.429 and 0.402, respectively). Ten symptoms in the second category were included in the cold pattern of RA patients. Four principal components were extracted to cold pattern. The component with the highest eigenvalue (2.089) were mainly contributed by joint distension and pain, joint stiffness, fatigue and upset with high factor loading values (0.597, 0.590, 0.491 and 0.481, respectively). Although there were no statistical differences between the levels of rheumatoid factor and anti-cyclic peptide containing citrulline (anti-CCP), the levels of C-reactive protein, platelet count and the disease activity score using 28 joint counts were significantly higher in the heat pattern RA patients compared to the ones in cold pattern. Moreover, heat pattern RA patients were more likely to be prescribed two more disease-modifying anti-rheumatic drugs (DMARDS) combined with Methotrexate (MTX) (70.59% versus 49.72%; P = 0.000). Conclusions In conclusion, heat and cold patterns in RA patients could be classified well using cluster analysis and factor analysis. Most of RA patients with heat pattern were active and likely to be prescribed two more DMARDs combined with MTX.
Collapse
|
12
|
Wang Y, Liu L, Le Z, Tay A. Analysis of Nanomedicine Efficacy for Osteoarthritis. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Ling Liu
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
| | - Zhicheng Le
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Andy Tay
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
- Tissue Engineering Programme National University of Singapore Singapore 117510 Singapore
| |
Collapse
|
13
|
Mo H, Yang S, Chen AM. Inhibition of GAB2 expression has a protective effect on osteoarthritis:An in vitro and in vivo study. Biochem Biophys Res Commun 2022; 626:229-235. [PMID: 36007472 DOI: 10.1016/j.bbrc.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Osteoarthritis is a chronic age-related degenerative disease associated with varying degrees of pain and joint mobility disorders. Grb2-associated-Binding protein-2 (GAB2) is an intermediate molecule that plays a role downstream in a variety of signaling pathways, such as inflammatory signaling pathways. The role of GAB2 in the pathogenesis of OA has not been fully studied. In this study, we found that GAB2 expression was elevated in chondrocytes after constructing in vivo and in vitro models of OA. Inhibition of GAB2 by siRNA decreased the expression of MMP3, MMP13, iNOS, COX2, p62, and increased the expression of COL2, SOX9, ATG7, Beclin-1 and LC3II/LC3I. Furthermore, inhibition of GAB2 expression inhibited interleukin-1β (IL-1β) -induced mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling. In vivo studies, we found that reduced GAB2 expression effectively delayed cartilage destruction in a mouse model of OA induced by destabilisation of the medial meniscus (DMM). In conclusion, our study demonstrates that GAB2 is a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Haokun Mo
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siying Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-Min Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Marine-derived microbes and molecules for drug discovery. Inflamm Regen 2022; 42:18. [PMID: 35655291 PMCID: PMC9164490 DOI: 10.1186/s41232-022-00207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Increasing attention has been paid to marine-derived biomolecules as sources of therapeutics for autoimmune diseases. Nagasaki Prefecture has many islands and is surrounded by seas, straits, gulfs, bays, and coves, giving it the second longest coastline in Japan after Hokkaido. We have collected more than 20,000 marine microbes and have been preparing an original marine microbial extract library, which contains small and mid-size biomolecules that may penetrate cell membranes and interfere with the intracellular protein–protein interaction involved in the development of autoinflammatory diseases such as familial Mediterranean fever. In addition, we have been developing an indoor shark farming system to prepare shark nanobodies that could be developed as potential therapeutic agents for autoimmune diseases. Sharks produce heavy-chain antibodies, called immunoglobulin new antigen receptors (IgNARs), consisting of one variable domain (VNAR) and five constant domains (CNAR); of these, VNAR can recognize a variety of foreign antigens. A VNAR single domain fragment, called a nanobody, can be expressed in Escherichia coli and has the properties of an ideal therapeutic candidate for autoimmune diseases. Shark nanobodies contain complementarity-determining regions that are formed through the somatic rearrangement of variable, diversity, and joining segments, with the segment end trimming and the N- and P-additions, as found in the variable domains of mammalian antibodies. The affinity and diversity of shark nanobodies are thus expected to be comparable to those of mammalian antibodies. In addition, shark nanobodies are physically robust and can be prepared inexpensively; as such, they may lead to the development of highly specific, stable, effective, and inexpensive biotherapeutics in the future. In this review, we first summarize the history of the development of conventional small molecule drugs and monoclonal antibody therapeutics for autoimmune diseases, and then introduce our drug discovery system at Nagasaki University, including the preparation of an original marine microbial extract library and the development of shark nanobodies.
Collapse
|
15
|
Pourhabibi-Zarandi F, Rafraf M, Zayeni H, Asghari-Jafarabadi M, Ebrahimi AA. Effects of curcumin supplementation on metabolic parameters, inflammatory factors and obesity values in women with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Phytother Res 2022; 36:1797-1806. [PMID: 35178811 DOI: 10.1002/ptr.7422] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 12/26/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to cartilage damage with mostly accompanied by metabolic disorders. This study aimed to investigate the effects of curcumin supplementation on metabolic parameters (lipid profile and glycemic indices), inflammatory factors, visfatin levels, and obesity values in women with RA. This randomized, double-blind, placebo-controlled clinical trial was conducted on 48 women with RA. The patients were treated with curcumin (500 mg once a day) or placebo for 8 weeks. Fasting blood samples, anthropometric measurements, dietary intakes, and physical activity levels of subjects were collected at baseline and the end of the study. Curcumin supplementation significantly decreased homeostatic model assessment for insulin resistance (HOMA-IR), erythrocyte sedimentation rate, serum levels of high-sensitivity C-reactive protein and triglycerides, weight, body mass index, and waist circumference of patients compared with the placebo at the end of the study (p < .05 for all). HOMA-IR and triglyceride levels significantly increased within the placebo group. Changes in fasting blood sugar, insulin, other lipids profile, and visfatin levels were not significant in any of the groups (p > .05). These results support the consumption of curcumin, as a part of an integrated approach to modulate metabolic factors, inflammation, and adiposity in women with RA.
Collapse
Affiliation(s)
- Fatemeh Pourhabibi-Zarandi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zayeni
- Guilan Rheumatology Research Center, Department of Rheumatology, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Asghari-Jafarabadi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Asghar Ebrahimi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Internal Medicine Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Rahimizadeh P, Rezaieyazdi Z, Behzadi F, Hajizade A, Lim SI. Nanotechnology as a promising platform for rheumatoid arthritis management: Diagnosis, treatment, and treatment monitoring. Int J Pharm 2021; 609:121137. [PMID: 34592396 DOI: 10.1016/j.ijpharm.2021.121137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that develops in about 5 per 1000 people. Over the past years, substantial progresses in knowledge of the disease's pathophysiology, effective diagnosis methods, early detection, and efficient treatment strategies have been made. Notably, nanotechnology has emerged as a game-changer in the efficacious management of many diseases, especially for RA. Joint replacement, photothermal therapy (PTT), photodynamic therapy (PDT), RA diagnosis, and treatment monitoring are nano-based avenues in RA management. Here, we present a brief overview of the pathogenesis of RA, risk factors, conventional diagnostic methods and treatment approaches, and then discuss the role of nanomedicine in RA diagnosis, treatment, and treatment monitoring with an emphasis on functional characteristics distinctive from other RA therapeutics.
Collapse
Affiliation(s)
- Parastou Rahimizadeh
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Zahra Rezaieyazdi
- Rheumatic Disease Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Faezeh Behzadi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
17
|
Pourhabibi-Zarandi F, Shojaei-Zarghani S, Rafraf M. Curcumin and rheumatoid arthritis: A systematic review of literature. Int J Clin Pract 2021; 75:e14280. [PMID: 33914984 DOI: 10.1111/ijcp.14280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Curcumin is a natural polyphenol and the main compound from the rhizome of Turmeric (Curcuma longa) and other Curcuma species. It has been widely used for different medical purposes, such as improvement of pain and inflammatory conditions in various diseases. PURPOSE This systematic review was aimed to assess all studies regarding the efficacy of the pure form of curcumin (unformulated curcumin) on rheumatoid arthritis (RA). METHODS The comprehensive search of the literature was done until September 2020 on the MEDLINE, Embase, Scopus and Web of Knowledge databases. Out of 2079 initial records, 51 articles (13 in vitro and 37 animal and one human) were met our inclusion criteria. RESULTS Most studies have shown the curative effects of curcumin on clinical and inflammatory parameters of RA and reported different mechanisms; inhibition of mitogen-activated protein kinase family, extracellular signal-regulated protein kinase, activator protein-1 and nuclear factor kappa B are the main mechanisms associated with the anti-inflammatory function of curcumin in RA. The results of the only human study showed that curcumin significantly improved morning stiffness, walking time and joint swelling. CONCLUSION In conclusion, curcumin seems to be useful, and it is recommended that more human studies be performed to approve the cellular and animal results and determine the effective and optimal doses of curcumin on RA patients.
Collapse
Affiliation(s)
- Fatemeh Pourhabibi-Zarandi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Shojaei-Zarghani
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Chen L, Lu Q, Chen J, Feng R, Yang C. Upregulating miR-27a-3p inhibits cell proliferation and inflammation of rheumatoid arthritis synovial fibroblasts through targeting toll-like receptor 5. Exp Ther Med 2021; 22:1227. [PMID: 34539823 PMCID: PMC8438689 DOI: 10.3892/etm.2021.10661] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a serious chronic inflammatory disease and synovial fibroblasts (SFs) serve a vital role in the pathogenesis and progression of RA. Current studies have demonstrated that dysregulation of microRNAs is involved in RA etiopathogenesis. The present study aimed to investigate the role of microRNA (miR)-27a-3p in RASFs, as well as its molecular mechanism. RASFs were isolated from synovial tissues from patients with RA. Expression of miR-27a-3p and toll-like receptor 5 (TLR5) was detected using reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation, apoptosis and inflammatory response were measured with MTT assay, flow cytometry and ELISA kits, respectively. The target binding between miR-27a-3p and TLR5 was predicted on DIANA TOOLS software, and confirmed by dual-luciferase reporter assay and Biotin-coupled miRNA pull-down assay. Expression of miR-27a-3p was downregulated and TLR5 was upregulated in synovial tissues and RASFs isolated from patients with RA. Functionally, upregulating miR-27a-3p may promote the apoptosis rate of RASFs and suppress cell proliferation and secretions of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. TLR5 was validated as a downstream target for miR-27a-3p in RASFs, and its expression was negatively regulated by miR-27a-3p. Silencing TLR5 in RASFs may exert similar effects to miR-27a-3p-overexpression; whereas, restoring TLR5 counteracted the suppression of miR-27a-3p-overexpression on RASF proliferation and inflammation, as well as the promotion on apoptosis. miR-27a-3p upregulation may suppress RA progression by inhibiting RASFs proliferation and inflammation through targeting TLR5.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Jianhua Chen
- Department of Rheumatology and Immunology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, P.R. China
| | - Ruibing Feng
- Department of Orthopedics, Central People's Liberation Army Central Theater, Wuhan, Hubei 430070, P.R. China
| | - Chenxi Yang
- Department of Orthopedics, Graduate School of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
19
|
Ebrahimzadeh A, Abbasi F, Ebrahimzadeh A, Jibril AT, Milajerdi A. Effects of curcumin supplementation on inflammatory biomarkers in patients with Rheumatoid Arthritis and Ulcerative colitis: A systematic review and meta-analysis. Complement Ther Med 2021; 61:102773. [PMID: 34478838 DOI: 10.1016/j.ctim.2021.102773] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although previous studies have examined the impact of curcumin supplementation on cytokine levels in patients with autoimmune disorders, we were unable to find a systematic review of the effect of curcumin supplementation on inflammatory biomarkers such as CRP and ESR in patients with rheumatoid arthritis or ulcerative colitis; therefore we conducted this systematic review and meta-analysis. METHODS Relevant studies published from inception to December 2020 were systematically searched through the PubMed, SCOPUS, and google scholar databases. We conducted our systematic review and meta-analysis according to the 2020 PRISMA guidelines. The quality of the papers were assessed by using the Cochrane Collaboration's risk of bias tool. Included studies were randomized clinical trials on the effects of supplementation with curcumin or its derivative on inflammatory factors in patients with rheumatoid arthritis and ulcerative colitis. Pooled effect sizes were calculated using a random-effects model and reported as the weighted mean difference (WMD) and 95 % CI. RESULTS In all, six studies met the inclusion criteria for this study. Curcumin supplementation in doses of 250-1500 mg/day over 8-12 weeks was observed to be associated with decreases in CRP and ESR in adult patients with rheumatoid arthritis and ulcerative colitis in comparison with the control group (WMD: -0.42; 95 % CI: -0.59, -0.26, I2 = 94.3 %; WMD: -55.96; 95 % CI: -93.74, -18.17, I2 = 99.7 %, respectively). Significant findings were also observed based on subgroup analyses by the study sample size, duration, participants' age, curcumin dosage, and type of disease. CONCLUSIONS Curcumin supplementation was associated with significant reductions in levels of CRP and ESR in patients with rheumatoid arthritis and ulcerative colitis. Earlier studies reported curcumin as a safe complementary therapy for several diseases. However, a handful of studies were found on the effect of curcumin on autoimmune diseases despite our comprehensive search. Further studies are therefore warranted in this area.
Collapse
Affiliation(s)
- Armin Ebrahimzadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Abbasi
- Department of Sports Injuries, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Anahita Ebrahimzadeh
- Homaijan Health Care Center, Deputy of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aliyu Tijani Jibril
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Iran
| | - Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Health, Science and Research Branch, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Mohammadian Haftcheshmeh S, Khosrojerdi A, Aliabadi A, Lotfi S, Mohammadi A, Momtazi-Borojeni AA. Immunomodulatory Effects of Curcumin in Rheumatoid Arthritis: Evidence from Molecular Mechanisms to Clinical Outcomes. Rev Physiol Biochem Pharmacol 2021; 179:1-29. [PMID: 33404796 DOI: 10.1007/112_2020_54] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disorder characterized by the destruction of the joint and bone resorption. The production of pro-inflammatory cytokines and chemokines, dysregulated functions of three important subtypes of T helper (TH) cells including TH1, TH17, and regulator T (Treg) cells are major causes of the initiation and development of RA. Moreover, B cells as a source of the production of several autoantibodies play key roles in the pathogenesis of RA. The last decades have seen increasingly rapid advances in the field of immunopharmacology using natural origin compounds for the management of various inflammatory diseases. Curcumin, a main active polyphenol compound isolated from turmeric, curcuma longa, possesses a wide range of pharmacologic properties for the treatment of several diseases. This review comprehensively will assess beneficial immunomodulatory effects of curcumin on the production of pro-inflammatory cytokines and also dysregulated functions of immune cells including TH1, TH17, Treg, and B cells in RA. We also seek the clinical efficacy of curcumin for the treatment of RA in several recent clinical trials. In conclusion, curcumin has been found to ameliorate RA complications through modulating inflammatory and autoreactive responses in immune cells and synovial fibroblast cells via inhibiting the expression or function of pro-inflammatory mediators, such as nuclear factor-κB (NF-κB), activated protein-1 (AP-1), and mitogen-activated protein kinases (MAPKs). Of note, curcumin treatment without any adverse effects can attenuate the clinical symptoms of RA patients and, therefore, has therapeutic potential for the treatment of the diseases.
Collapse
Affiliation(s)
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Lotfi
- Department of Medical Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Ongchai S, Chiranthanut N, Tangyuenyong S, Viriyakhasem N, Kongdang P. Kaempferia parviflora Extract Alleviated Rat Arthritis, Exerted Chondroprotective Properties In Vitro, and Reduced Expression of Genes Associated with Inflammatory Arthritis. Molecules 2021; 26:molecules26061527. [PMID: 33799537 PMCID: PMC8000004 DOI: 10.3390/molecules26061527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/06/2023] Open
Abstract
Kaempferia parviflora Wall. ex Baker (KP) has been reported to attenuate cartilage destruction in rat model of osteoarthritis. Previously, we demonstrated that KP rhizome extract and its active components effectively suppressed mechanisms associated with RA in SW982 cells. Here, we further evaluated the anti-arthritis potential of KP extract by using multi-level models, including a complete Freund’s adjuvant-induced arthritis and a cartilage explant culture model, and to investigate the effects of KP extract and its major components on related gene expressions and underlying mechanisms within cells. In arthritis rats, the KP extract reduced arthritis indexes, with no significant changes in biological parameters. In the cartilage explant model, the KP extract exerted chondroprotective potential by suppressing sulfated glycosaminoglycans release while preserving high accumulation of proteoglycans. In human chondrocyte cell line, a mixture of the major components equal to their amounts in KP extract showed strong suppression the expression of genes-associated inflammatory joint disease similar to that of the extract. Additionally, KP extract significantly suppressed NF-κB and MAPK signaling pathways. The suppressing expression of necroptosis genes and promoted anti-apoptosis were also found. Collectively, these results provided supportive evidence of the anti-arthritis properties of KP extract, which are associated with its three major components.
Collapse
Affiliation(s)
- Siriwan Ongchai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Siriwan Tangyuenyong
- Equine Clinic, Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Nawarat Viriyakhasem
- The School of Traditional and Alternative Medicine, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand;
| | - Patiwat Kongdang
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
22
|
Gallotti FC, Serafini MR, Thomazzi SM. Scenario of the Treatment of Arthritis with Natural Products. ACTA ACUST UNITED AC 2021; 14:95-105. [DOI: 10.2174/1872213x14666200228103001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 11/22/2022]
Abstract
Background:
Conventional treatments of arthritis use toxic and poorly tolerated drugs.
Therefore, natural products are an alternative because they are important sources of bioactive substances
with therapeutic potential.
Objective:
To perform synthesis of patent applications associated with the use of natural products
in the technological development of the invention for use in treating arthritis.
Methods:
The search for patents was conducted using the following databases of World Intellectual
Property Organization (WIPO), European Patent Office (EPO, Espacenet), United States Patents
and Trademark Office (USPTO) and National Institute of Intellectual Property (INPI) using as keywords
- arthritis, treatment and the International Patent Classification (IPC) A61K36 / 00.
Results:
A total of 617 patents related to the subject were registered in the period available in patents
databases during the study period from the years 2005 to 2017, of which 44 were analyzed
based on the established inclusion criteria. The most important countries for protecting these inventions
were China, followed by the United States of America, the Republic of Korea and Japan. As
for the typology of depositors, that were identified by Educational Institutions and Public Institutes
of Research (IEIPP) and Companies and Private Research Institutes (EIPP).
Conclusion:
The analysis of patents made it possible to characterize the natural products used in
the treatment of arthritis, with emphasis on botanical extracts (71%), as a single component, as
well as in association with other botanical extracts, isolated compounds and minerals.
Collapse
Affiliation(s)
| | | | - Sara M. Thomazzi
- Department of Physiology, University of Sergipe, Sao Cristovao, Brazil
| |
Collapse
|
23
|
Guan F, Wang Q, Bao Y, Chao Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Adv 2021; 11:7280-7293. [PMID: 35423269 PMCID: PMC8695102 DOI: 10.1039/d0ra08817j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Quercetin is a potential anti-rheumatoid drug. Nano formulation strategies could improve its solubility and efficacy.
Collapse
Affiliation(s)
- Feng Guan
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- P. R. China
| | - Qi Wang
- Norwich Medical School
- University of East Anglia
- Norwich NR4 7UQ
- UK
| | - Yongping Bao
- Norwich Medical School
- University of East Anglia
- Norwich NR4 7UQ
- UK
| | - Yimin Chao
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| |
Collapse
|
24
|
Chen J, Wang W, Jiang M, Yang M, Wei W. Combination therapy of ginsenoside compound K and methotrexate was efficient in elimination of anaemia and reduction of disease activity in adjuvant-induced arthritis rats. PHARMACEUTICAL BIOLOGY 2020; 58:1131-1139. [PMID: 33198544 PMCID: PMC7671656 DOI: 10.1080/13880209.2020.1844761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT Ginsenoside compound K (CK) has anti-inflammatory, immunoregulatory, and myelosuppressive protective effects. Methotrexate (MTX) is widely used in combination therapy for rheumatoid arthritis (RA). OBJECTIVE To evaluate the effects of combination therapy of CK and MTX on anaemia and anti-arthritis in adjuvant-induced arthritis (AA) rats. MATERIALS AND METHODS AA was induced in rats by Complete Freund's adjuvant, and divided into five groups (n = 10): normal, AA, CK 80 mg/kg, combination therapy (80 mg/kg CK combined with 0.5 mg/kg MTX), and MTX 0.5 mg/kg. From day 12, CK (once a day for 15 days) or MTX (once every 3 days, five times) were intragastrically administered. RESULTS Combination therapy showed increased haemoglobin to 148.5 ± 10.1 g/L compared with AA (129.8 ± 11.7 g/L) and MTX (128.8 ± 18.4 g/L), and decreased reticulocytes in peripheral blood to 4.9 ± 1.1% compared with MTX (9.3 ± 3.3%). In combination therapy group, paw swelling decreased to 5.6 ± 4.3 mL compared with CK (9.4 ± 3.9 mL) and MTX (13.5 ± 7.4 mL), and swollen joint count decreased to 1.4 ± 0.8 compared with CK (2.1 ± 1.0) and MTX (2.4 ± 1.2) at day 24. Combination therapy showed decreased IL-6 to 25.1 ± 17.2 pg/mL compared with MTX (44.9 ± 4.8 pg/mL), and decreased IL-17 to 5.8 ± 3.9 pg/mL compared with MTX (10.7 ± 4.2 pg/mL). CONCLUSION The anti-anaemia effect of CK deserves further study, and CK can be a candidate effective drug for combined treatment in RA with anaemia.
Collapse
Affiliation(s)
- Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
- Jingyu Chen Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wu Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Mengya Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Mei Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
- CONTACT Wei Wei
| |
Collapse
|
25
|
Thomas JV, Smina TP, Khanna A, Kunnumakkara AB, Maliakel B, Mohanan R, Krishnakumar IM. Influence of a low-dose supplementation of curcumagalactomannoside complex (CurQfen) in knee osteoarthritis: A randomized, open-labeled, active-controlled clinical trial. Phytother Res 2020; 35:1443-1455. [PMID: 33210408 DOI: 10.1002/ptr.6907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
A 6-week, randomized, open-label, active-controlled clinical trial was conducted to evaluate the influence of a low-dose curcumagalactomannosides (CGM) (400 mg once daily) in OA subjects. The treatment was compared with a standard combination of 500 mg glucosamine hydrochloride (GLN) and 415 mg chondroitin sulphate (CHN), supplied as a single oral dose twice a day. Out of 84 subjects randomized, 72 subjects who have completed the study were evaluated for the safety and efficacy of the treatments at baseline and subsequent visits (day 28 and 42), by measuring walking performance, VAS, KPS, and WOMAC scores. CGM exhibited 47.02, 21.43, and 206% improvement in VAS, KPS, and walking performance, respectively, compared to the baseline. Similarly, there was 31.17, 32.93, 36.44, and 35% improvement in the pain, stiffness, physical function, and total WOMAC scores. CGM also caused a substantial reduction in the serum inflammatory marker levels. The results indicate that a short-term supplementation of a low dosage CGM exerted superior beneficial effects than a high-dosage CHN-GLN combination in alleviating the pain and symptoms of OA subjects. Further clinical trials of extended duration in a larger population is required to substantiate the efficacy of CGM in the long-term management of OA.
Collapse
Affiliation(s)
- Jestin V Thomas
- Leads Clinical Research & Bio Services Pvt. Ltd., Bangalore, India
| | | | - Aman Khanna
- Aman Hospital and Research Center, Vadodara, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Balu Maliakel
- R&D Centre, Akay Natural Ingredients Pvt. Ltd., Cochin, India
| | - Ratheesh Mohanan
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | | |
Collapse
|
26
|
Protective effect of Corynoline on the CFA induced Rheumatoid arthritis via attenuation of oxidative and inflammatory mediators. Mol Cell Biochem 2020; 476:831-839. [PMID: 33174074 DOI: 10.1007/s11010-020-03948-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/23/2020] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) is a long-standing and growing autoimmune disease. Therefore, the present study was intended to investigate the effect of Corynoline (COR) on CFA induced rheumatoid arthritis in a rat model. Results suggested that COR causes significant reduction in paw swelling, edema, arthritis score, thymus and spleen indexes and neutrophil infiltration (p < 0.01). Moreover, the levels of inflammatory cytokines (interleukin- 1β, -6, and -17, and TNF-α) and anti-collagen II-specific immunoglobulins (IgG1 and IgG2a) were decreased significantly (p < 0.01) together with increase in antioxidant enzymes (SOD, CAT, and GSH) (p < 0.01) in COR-treated group in dose-dependent manner. In western blot analysis, COR-treated group showed concentration-dependent reduction of expression of COX-2, 5-LOX and NF-p65 as compared to CFA rats. Moreover, COR-treated group showed mild inflammation of cartilage with fewer cartilage erosion and synovititis with most significant reversal of arthritic features in the rats treated with 30 mg/kg. It has been concluded that, COR alleviates oxidative stress and inflammation in arthritic rats, thus verifying its anti-rheumatoid arthritis property.
Collapse
|
27
|
Shen P, Jiao Y, Miao L, Chen J, Momtazi‐Borojeni AA. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 2020; 24:12234-12245. [PMID: 32969153 PMCID: PMC7687014 DOI: 10.1111/jcmm.15803] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome designated by synovial joint inflammation leading to cartilage degradation and bone damage as well as progressive disability. Synovial inflammation is promoted through the infiltration of mononuclear immune cells, dominated by CD4+ T cells, macrophages and dendritic cells (DCs), together with fibroblast-like synoviocytes (FLS), into the synovial compartment. Berberine is a bioactive isoquinoline alkaloid compound showing various pharmacological properties that are mainly attributed to immunomodulatory and anti-inflammatory effects. Several lines of experimental study have recently investigated the therapeutic potential of berberine and its underlying mechanisms in treating RA condition. The present review aimed to clarify determinant cellular and molecular targets of berberine in RA and found that berberine through modulating several signalling pathways involved in the joint inflammation, including PI3K/Akt, Wnt1/β-catenin, AMPK/lipogenesis and LPA/LPA1 /ERK/p38 MAPK can inhibit inflammatory proliferation of FLS cells, suppress DC activation and modulate Th17/Treg balance and thus prevent cartilage and bone destruction. Importantly, these molecular targets may explore new therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Peng Shen
- Department of StomatologyClinical Department of Aerospace CityNorthern Beijing Medical DistrictChinese PLA General HospitalBeijingChina
| | - Yang Jiao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
- Outpatient Department of PLA Macao GarrisonMacaoChina
| | - Li Miao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Oral DiseasesDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | | |
Collapse
|
28
|
Marrelli M, Amodeo V, Viscardi F, De Luca M, Statti G, Conforti F. Essential Oils of Foeniculum vulgare subsp. piperitum and Their in Vitro Anti-Arthritic Potential. Chem Biodivers 2020; 17:e2000388. [PMID: 33063941 DOI: 10.1002/cbdv.202000388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023]
Abstract
Wild Foeniculum vulgare subsp. piperitum (C.Presl) Bég. flowers, fruits and leaves were extracted with steam distillation and obtained essential oils (EOs) were characterized using GC/MS. The study was designed to verify the potential effectiveness of fennel EOs in the treatment of inflammation and arthritis. Since tissue proteins denaturation is a major cause of arthritic diseases, fennel EOs and their main constituents were evaluated for their ability to inhibit the heat-induced proteins degradation using bovine serum albumin as a protein model. Moreover, the in vitro inhibitory effects of the three EOs on the pro-inflammatory mediator nitric oxide (NO) production were verified in LPS-stimulated RAW 264.7 cells. Estragole (28.81-33.40 %), anethole (24.16-27.40 %), fenchone (9.76-18.48 %), α-phellandrene (1.63-8.37 %) and limonene (5.54-6.05 %) were the major constituents. All the EOs showed a concentration-dependent biological activity, being the flower EO the most effective in inhibiting NO production (IC50 =232.2±11.3 μg/mL). The leaf EO showed a very good bovine serum albumin (BSA) anti-denaturation activity (IC50 =95.9±2.4 μg/mL). Moreover, four components were proved to be effective in protecting protein from heat-induced degradation, being α-phellandrene the most active compound (IC50 =73.2±1.9 μg/mL).
Collapse
Affiliation(s)
- Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Valentina Amodeo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Florinda Viscardi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| |
Collapse
|
29
|
Kapoor B, Gulati M, Singh SK, Khatik GL, Gupta R, Kumar R, Kumar R, Gowthamarajan K, Mahajan S, Gupta S. Fail-safe nano-formulation of prodrug of sulfapyridine: Preparation and evaluation for treatment of rheumatoid arthritis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111332. [PMID: 33254964 DOI: 10.1016/j.msec.2020.111332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/28/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
Abstract
Aim of the present study was to give a second life to the long-abandoned drug, sulfapyridine (SP) for its anti-arthritic potential by design of nano-vesicular delivery system. For this, intra-articular delivery of its liposomal formulation was tried. As the prepared formulation exhibited rapid drug leakage, an arthritis responsive prodrug of SP showing lability towards synovial enzymes was synthesized to exploit the over-expression of arthritis specific enzymes. Prodrug (SP-PD) exhibited better retention in liposomes as compared to the drug, preventing its escape from synovium. Hydrolysis of SP-PD in human plasma and synovial fluid indicated its high susceptibility to enzymes. The liposomes of SP-PD exhibited larger mean size, less PDI and higher zeta potential as compared to those for SP liposomes. In arthritic rats, prodrug liposomes were found to reverse the symptoms of inflammation, including the levels of biochemical markers. Liposomes of bio-responsive prodrug, therefore, offer a revolutionary approach in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144401, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144401, Punjab, India.
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144401, Punjab, India
| | - Gopal L Khatik
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144401, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144401, Punjab, India
| | - Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144401, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144401, Punjab, India
| | - K Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Sanjeev Mahajan
- Department of Orthopaedics, Joint Replacement and Sports Injuries, Fortis Hospital, Chandigarh Road, Ludhiana 141015, Punjab, India
| | - Som Gupta
- Department of Physiotherapy and Rehabilitation(,) Fortis Hospital, Chandigarh Road, Ludhiana 141015, Punjab, India
| |
Collapse
|
30
|
Kumar S, Sharma B. Leveraging Electrostatic Interactions for Drug Delivery to the Joint. Bioelectricity 2020; 2:82-100. [PMID: 32856016 DOI: 10.1089/bioe.2020.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Arthritis is a debilitating joint disease with a high economic burden and prevalence. There are many challenges delivering therapeutics to the joint, including low bioavailability when administered systemically and low joint retention after intra-articular injection. Therefore, drug delivery systems such as nanoparticles, liposomes, dendrimers, and carrier proteins have been utilized to overcome some of these limitations. To enhance joint tissue localization and retention, there are opportunities to leverage electrostatic interactions between drug carriers and various tissues and cells. These opportunities, as they pertain to specific joint tissues, are explored in this review. Further, the impact that electrostatic interactions has on various drug delivery parameters, such as the formation of a protein corona, the uptake and cytotoxicity, and the biodistribution of the drug delivery systems, is discussed. Lastly, this review summarizes key findings from studies that have investigated the use of electrostatic interactions to increase targeting of specific joint tissues and limitations in preclinical investigations are identified. As more novel targets are discovered in treating arthritis, there will be a continued need to localize therapeutics to specific tissues for greater therapeutic outcomes and hence attention must be paid in designing the drug delivery systems.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Mohammadian Haftcheshmeh S, Momtazi-Borojeni AA. Immunomodulatory therapeutic effects of curcumin in rheumatoid arthritis. Autoimmun Rev 2020; 19:102593. [PMID: 32540449 DOI: 10.1016/j.autrev.2020.102593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | - Amir Abbas Momtazi-Borojeni
- Halal Research center of IRI, FDA, Tehran, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Moosavian SP, Paknahad Z, Habibagahi Z, Maracy M. The effects of garlic (Allium sativum) supplementation on inflammatory biomarkers, fatigue, and clinical symptoms in patients with active rheumatoid arthritis: A randomized, double-blind, placebo-controlled trial. Phytother Res 2020; 34:2953-2962. [PMID: 32478922 DOI: 10.1002/ptr.6723] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
Based on the antiinflammatory properties of garlic, current study was conducted to evaluate the garlic supplement effects on serum levels of some inflammatory biomarkers, clinical symptoms, and fatigue in women with active rheumatoid arthritis. In this randomized, double-blind, placebo-controlled trial study, 70 women with RA were randomly divided into two groups: The intervention group was supplemented with 1,000 mg of garlic, and the control group received placebo for 8 weeks. At baseline and at the end of the study, clinical symptoms, fatigue, serum level of C-reactive protein (CRP), tumor necrosis factor-a (TNF-a), and erythrocyte sedimentation rate (ESR) were determined. After intervention, serum levels of CRP (p = .018) and TNF-a (p < .001) decreased significantly in the garlic group as compared with the placebo group. Also, pain intensity, tender joint count, disease activity score (DAS-28), and fatigue were significantly decreased in the intervention group compared with the control group (p < .001; for all). Swollen joint count was significantly decreased in the garlic group (p < .001), but not in the placebo group (p = .123). No significant changes were observed for ESR. Garlic supplementation by improving inflammatory mediators and clinical symptoms can be considered as a potential adjunct treatment in patients with RA. However, further studies with larger duration are needed.
Collapse
Affiliation(s)
- Seyedeh Parisa Moosavian
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zamzam Paknahad
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Habibagahi
- Department of Rheumatology, Shiraz University of Medical Sciences, Shiraz, Iran.,Autoimmune Diseases Research Center, Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Maracy
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS OMEGA 2020; 5:11849-11872. [PMID: 32478277 PMCID: PMC7254783 DOI: 10.1021/acsomega.0c01818] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 05/03/2023]
Abstract
Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer's, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que.
Collapse
Affiliation(s)
- Bahare Salehi
- Student
Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Laura Machin
- Institute
of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Lianet Monzote
- Parasitology
Department, Institute of Medicine Tropical
Pedro Kourí, Havana, Cuba
| | - Javad Sharifi-Rad
- Phytochemistry
Research Center, Shahid Beheshti University
of Medical Sciences, Tehran 1991953381, Iran
| | - Shahira M. Ezzat
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, Cairo 11562, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 6th October 12566, Egypt
| | - Mohamed A. Salem
- Department
of Pharmacognosy, Faculty of Pharmacy, Menoufia
University, Gamal Abd
El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Rana M. Merghany
- Department
of Pharmacognosy, National Research Centre, Giza 12622, Egypt
| | - Nihal M. El Mahdy
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Ceyda Sibel Kılıç
- Department
of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak
University of Agriculture, Nitra, A. Hlinku 2, Nitra 94976, Slovak Republic
| | - Mehdi Sharifi-Rad
- Department
of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - Natália Martins
- Faculty of Medicine, University
of Porto, Porto 4200-319, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy,
and Centre
for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad
de Desarrollo Tecnológico,
UDT, Concepción 4070386, Chile
| | - William C. Cho
- Department
of Clinical Oncology, Queen
Elizabeth Hospital, 30
Gascoigne Road, Kowloon, Hong
Kong
| |
Collapse
|
34
|
Rasquel-Oliveira FS, Manchope MF, Staurengo-Ferrari L, Ferraz CR, Saraiva-Santos T, Zaninelli TH, Fattori V, Artero NA, Badaro-Garcia S, de Freitas A, Casagrande R, Verri WA. Hesperidin methyl chalcone interacts with NFκB Ser276 and inhibits zymosan-induced joint pain and inflammation, and RAW 264.7 macrophage activation. Inflammopharmacology 2020; 28:979-992. [PMID: 32048121 DOI: 10.1007/s10787-020-00686-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/27/2020] [Indexed: 01/29/2023]
Abstract
Arthritis can be defined as a painful musculoskeletal disorder that affects the joints. Hesperidin methyl chalcone (HMC) is a flavonoid with analgesic, anti-inflammatory, and antioxidant effects. However, its effects on a specific cell type and in the zymosan-induced inflammation are unknown. We aimed at evaluating the effects of HMC in a zymosan-induced arthritis model. A dose-response curve of HMC (10, 30, or 100 mg/kg) was performed to determine the most effective analgesic dose after intra-articular zymosan stimuli. Knee joint oedema was determined using a calliper. Leukocyte recruitment was performed by cell counting on knee joint wash as well as histopathological analysis. Oxidative stress was measured by colorimetric assays (GSH, FRAP, ABTS and NBT) and RT-qPCR (gp91phox and HO-1 mRNA expression) performed. In vitro, oxidative stress was assessed by DCFDA assay using RAW 264.7 macrophages. Cytokine production was evaluated in vivo and in vitro by ELISA. In vitro NF-κB activation was analysed by immunofluorescence. We observed HMC reduced mechanical hypersensitivity and knee joint oedema, leukocyte recruitment, and pro-inflammatory cytokine levels. We also observed a reduction in zymosan-induced oxidative stress as per increase in total antioxidant capacity and reduction in gp91phox and increase in HO-1 mRNA expression. Accordingly, total ROS production and macrophage NFκB activation were diminished. HMC interaction with NFκB p65 at Ser276 was revealed using molecular docking analysis. Thus, data presented in this work suggest the usefulness of HMC as an analgesic and anti-inflammatory in a zymosan-induced arthritis model, possibly by targeting NFκB activation in macrophages.
Collapse
Affiliation(s)
- Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Marilia F Manchope
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Camila R Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Nayara A Artero
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Stephanie Badaro-Garcia
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil
| | - Andressa de Freitas
- Departament of Physiological Sciences, Centre of Biological Sciences, Londrina State University, Londrina, PR, Brazil
| | - Rubia Casagrande
- Departament of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, PR, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, PR, Brazil.
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, KM 380, PO Box 10.011, Londrina, Parana, 86057-970, Brazil.
| |
Collapse
|
35
|
Jesionek A, Kokotkiewicz A, Mikosik-Roczynska A, Ciesielska-Figlon K, Luczkiewicz P, Bucinski A, Daca A, Witkowski JM, Bryl E, Zabiegala B, Luczkiewicz M. Chemical variability of Rhododendron tomentosum (Ledum palustre) essential oils and their pro-apoptotic effect on lymphocytes and rheumatoid arthritis synoviocytes. Fitoterapia 2019; 139:104402. [PMID: 31672661 DOI: 10.1016/j.fitote.2019.104402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022]
Abstract
Rhododendron tomentosum (Ledum palustre) is an aromatic plant traditionally used for alleviating rheumatic complaints which makes it a potential candidate for a natural drug in rheumatoid arthritis (RA) treatment. However, the effects of plants' volatiles on apoptosis of synovial fibroblasts and infiltrating leucocytes of RA synovia, have not been reported. Volatile fraction of R. tomentosum is chemically variable and chemotypes of the plants need to be defined if the oil is to be used for therapeutic purposes. In the presented work, cluster analysis of literature data enabled to define 10 chemotypes of the plant. The volatile fractions of known composition were then tested for bioactivity using a RA-specific in vitro models. Essential oils of two wild types (γ-terpineol and palustrol/ledol type) and one in vitro chemotype (ledene oxide type) were obtained by hydrodistillation and their bioactivity was tested in two in vitro models: I - peripheral blood lymphocytes of healthy volunteers and II - synoviocytes and immune cells isolated from synovia of RA patients. The influence of oils on blood lymphocytes' proliferation and apoptosis rates of synovia-derived cells was determined by flow cytometry. Dose-dependent inhibitory effect of the serial dilutions of R. tomentosum oils on proliferation rates of blood lymphocytes was found. At 1:400 dilutions, all the tested oils increased the number of necrotic cells in synovial fibroblasts from RA synovia. Additionally, increased proportions of late apoptotic cells were observed in leucocyte populations subjected to oils at 1:400 dilution.
Collapse
Affiliation(s)
- Anna Jesionek
- Department of Pharmacognosy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Adam Kokotkiewicz
- Department of Pharmacognosy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Anna Mikosik-Roczynska
- Department of Pathophysiology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | | | - Piotr Luczkiewicz
- II Clinic of Orthopaedics and Kinetic Organ Traumatology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Adam Bucinski
- Department of Biopharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Bozena Zabiegala
- Department of Analytical Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Maria Luczkiewicz
- Department of Pharmacognosy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland.
| |
Collapse
|
36
|
Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater 2019; 93:239-257. [PMID: 30862551 DOI: 10.1016/j.actbio.2019.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a prevalent and debilitating disease that involves pathological contributions from numerous joint tissues and cells. The joint is a challenging arena for drug delivery, since the joint has poor bioavailability for systemically administered drugs and experiences rapid clearance of therapeutics after intra-articular injection. Moreover, each tissue within the joint presents unique barriers to drug localization. In this review, the various applications of nanotechnology to overcome these drug delivery limitations are investigated. Nanomaterials have reliably shown improvements to retention profiles of drugs within the joint space relative to injected free drugs. Additionally, nanomaterials have been modified through active and passive targeting strategies to facilitate interactions with and localization within specific joint tissues such as cartilage and synovium. Last, the limitations of drawing cross-study comparisons, the implications of synovial fluid, and the potential importance of multi-modal therapeutic strategies are discussed. As emerging, cell-specific disease modifying osteoarthritis drugs continue to be developed, the need for targeted nanomaterial delivery will likely become critical for effective clinical translation of therapeutics for osteoarthritis. STATEMENT OF SIGNIFICANCE: Improving drug delivery to the joint is a pressing clinical need. Over 27 million Americans live with osteoarthritis, and this figure is continuously expanding. Numerous drugs have been investigated but have failed in clinical trials, likely related to poor bioavailability to target cells. This article comprehensively reviews the advances in nano-scale delivery vehicles designed to overcome the delivery barriers in the joint. This is the first review to analyze active and passive targeting strategies systematically for different target sites while also delineating between tissue homing and whole joint retention. By bringing together the lessons learned across numerous nano-scale platforms, researchers may be able to hone future nanomaterial designs, allowing emerging therapeutics to perform with clinically relevant efficacy and disease modifying potential.
Collapse
|
37
|
Tu Y, Wang K, Liang Y, Jia X, Wang L, Wan JB, Han J, He C. Glycine tabacina ethanol extract ameliorates collagen-induced arthritis in rats via inhibiting pro-inflammatory cytokines and oxidation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:20-27. [PMID: 30880257 DOI: 10.1016/j.jep.2019.03.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The whole plant of Glycine tabacina (Labill.) Benth has been used as a traditional herbal medicine to treat rheumatism, ostealgia and nephritis in China. It is also one of the sources of the renowned native herbal medicine 'I-Tiao-Gung' in Taiwan. AIM OF THE STUDY This study aimed to investigate the anti-arthritic effect of ethanol extract of G. tabacina (GTE) in a collagen-induced arthritis (CIA) rat model. MATERIALS AND METHODS The chemical profile of GTE was analyzed by HPLC-UV. The CIA was induced in male Wistar rats by intradermal injection of bovine type II collagen at tail root, back and ankle joints. The rats were orally administrated daily with GTE (1.11, 2.22 and 4.44 g dry weight of herb powder per kg body weight) from day 0 and continued for 30 days. Swelling volume and thickness of paw, arthritis index, X-radiographs and histopathological changes were examined to assess the severity of arthritis. Furthermore, the levels of pro-inflammatory cytokines, such as interleukin1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α), total superoxide dismutase (T-SOD) activity and malonaldehyde (MDA) level were measured to preliminarily explore the possible mechanisms. RESULTS Oral administration of GTE significantly ameliorated the arthritic symptoms in CIA rat model, as indicated by the effects on paws swelling and arthritis index. X-radiographic analysis and histopathological examinations demonstrated that GTE effectively protected the bone and cartilage of joints from erosion, lesion and deformation. The efficacy of GTE treatment on CIA was comparable to that of indomethacin (positive drug). Besides, the overproduction of IL-1β, IL-6 and TNF-α was remarkably inhibited in the serum of all GTE treatment groups. The restoration of serum T-SOD activity and MDA level proved that GTE administration alleviated the oxidative stress in CIA rats. CONCLUSIONS GTE exhibited strong anti-CIA activity through inhibiting pro-inflammatory cytokines and oxidation in rats, suggesting its potential preventive and therapeutic effects on rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Kai Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Yeer Liang
- Zhuhai Livzon Cynvenio Diagnostics Ltd., Zhuhai, Guangdong, 519060, China
| | - Xuejing Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Lili Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China.
| |
Collapse
|
38
|
Ramos PT, Pedra NS, Soares MSP, da Silveira EF, Oliveira PS, Grecco FB, da Silva LMC, Ferreira LM, Ribas DA, Gehrcke M, Felix AOC, Stefanello FM, Spanevello RM, Cruz L, Braganhol E. Ketoprofen-loaded rose hip oil nanocapsules attenuate chronic inflammatory response in a pre-clinical trial in mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109742. [PMID: 31349429 DOI: 10.1016/j.msec.2019.109742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 04/03/2019] [Accepted: 05/11/2019] [Indexed: 12/13/2022]
Abstract
This study aimed to develop nanocapsules containing ketoprofen using rose hip oil (Keto-NC) as oil core, and to evaluate their anti-inflammatory activity in acute and chronic ear edema models in mice. Physicochemical characterization, drug release, photostability and cytotoxicity assays were performed for the developed Keto-NC formulations and compared to ketoprofen-loaded nanocapsules using medium chain triglycerides as oil core (Keto-MCT-NC). Anti-inflammatory activity of orally delivered KP (Ketoprofen-free; 10 mg.kg-1) or Keto-NC (2.5; 5; 10 mg.kg-1) was assessed in mouse acute and chronic ear edema induced by croton oil (CO). Edema histological characteristics were determined by H&E stain, and redox parameters were analyzed in blood plasma and erythrocytes. Keto-MCT-NC and Keto-NC did not exhibit differences regarding physicochemical parameters, including size diameters, polydispersity index, pH, Ketoprofen content, and encapsulation efficiency. However, Keto-NC, which contains rose hip oil as lipid core, decreased drug photodegradation under UVC radiation when compared to Keto-MCT-NC. KP or Keto-NC were not cytotoxic to keratinocyte cultures and produced equal edema inhibition in the acute protocol. Conversely, in the chronic protocol, Keto-NC was more effective in reducing edema (~60-70% on 7-9th days of treatment) when compared to KP (~40% on 8-9th days of treatment). This result was confirmed by histological analysis, which indicated reduction of edema and inflammatory infiltrate. A sub-therapeutic dose of Keto-NC (5 mg.kg-1) significantly reduced edema when compared to control. Finally, KP and Keto-NC exhibited similar effects on redox parameters, suggesting that the advantages associated with Ketoprofen nanoencapsulation did not involve oxidative stress pathways. The results showed that Keto-NC was more efficient than KP in reducing chronic inflammation. These data may be important for the development of strategies aiming treatment of chronic inflammatory diseases with fewer adverse effects.
Collapse
Affiliation(s)
- P T Ramos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - N S Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - M S P Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - E F da Silveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - P S Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - F B Grecco
- Departamento de Patologia Animal, Faculdade de Veterinária, UFPel, Pelotas, RS, Brazil
| | - L M C da Silva
- Departamento de Patologia Animal, Faculdade de Veterinária, UFPel, Pelotas, RS, Brazil
| | - L M Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - D A Ribas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - M Gehrcke
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - A O C Felix
- Biotério Central, UFPel, Pelotas, RS, Brazil
| | - F M Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - R M Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - L Cruz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - E Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Affiliation(s)
- Ameer Elbuluk
- Department of Orthopaedic Surgery, NYU Langone Medical Center, Hospital for Joint Diseases, New York, NY
| | | | | |
Collapse
|
40
|
Bussmann AJC, Borghi SM, Zaninelli TH, Dos Santos TS, Guazelli CFS, Fattori V, Domiciano TP, Pinho-Ribeiro FA, Ruiz-Miyazawa KW, Casella AMB, Vignoli JA, Camilios-Neto D, Casagrande R, Verri WA. The citrus flavanone naringenin attenuates zymosan-induced mouse joint inflammation: induction of Nrf2 expression in recruited CD45 + hematopoietic cells. Inflammopharmacology 2019; 27:1229-1242. [PMID: 30612217 DOI: 10.1007/s10787-018-00561-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Naringenin is a biologically active analgesic, anti-inflammatory, and antioxidant flavonoid. Naringenin targets in inflammation-induced articular pain remain poorly explored. METHODS The present study investigated the cellular and molecular mechanisms involved in the analgesic/anti-inflammatory effects of naringenin in zymosan-induced arthritis. Mice were pre-treated orally with naringenin (16.7-150 mg/kg), followed by intra-articular injection of zymosan. Articular mechanical hyperalgesia and oedema, leucocyte recruitment to synovial cavity, histopathology, expression/production of pro- and anti-inflammatory mediators and NFκB activation, inflammasome component expression, and oxidative stress were evaluated. RESULTS Naringenin inhibited articular pain and oedema in a dose-dependent manner. The dose of 50 mg/kg inhibited leucocyte recruitment, histopathological alterations, NFκB activation, and NFκB-dependent pro-inflammatory cytokines (TNF-α, IL-1β, and IL-33), and preproET-1 mRNA expression, but increased anti-inflammatory IL-10. Naringenin also inhibited inflammasome upregulation (reduced Nlrp3, ASC, caspase-1, and pro-IL-1β mRNA expression) and oxidative stress (reduced gp91phox mRNA expression and superoxide anion production, increased GSH levels, induced Nrf2 protein in CD45+ hematopoietic recruited cells, and induced Nrf2 and HO-1 mRNA expression). CONCLUSIONS Naringenin presents analgesic and anti-inflammatory effects in zymosan-induced arthritis by targeting its main physiopathological mechanisms. These data highlight this flavonoid as an interesting therapeutic compound to treat joint inflammation, deserving additional pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Allan J C Bussmann
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Sergio M Borghi
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Tiago H Zaninelli
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Telma S Dos Santos
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Carla F S Guazelli
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Victor Fattori
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Talita P Domiciano
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Kenji W Ruiz-Miyazawa
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil
| | - Antonio M B Casella
- Department of Clinical Medicine, Health Science Center, Londrina State University, University Hospital, 86039-440, Londrina, Paraná State, Brazil
| | - Josiane A Vignoli
- Department of Biochemistry and Biotechnology, Exact Sciences Center, Londrina State University, Londrina, 86057-970, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, Londrina State University, Londrina, 86057-970, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Science Center, Londrina State University, University Hospital, Londrina, Paraná State, 86039-440, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Science Center, Londrina State University, Rod. Celso Garcia Cid, PR 445, Km 380, Londrina, Paraná State, 86051-990, Brazil.
| |
Collapse
|
41
|
Jacob J, Amalraj A, Raj KKJ, Divya C, Kunnumakkara AB, Gopi S. A novel bioavailable hydrogenated curcuminoids formulation (CuroWhite™) improves symptoms and diagnostic indicators in rheumatoid arthritis patients - A randomized, double blind and placebo controlled study. J Tradit Complement Med 2018; 9:346-352. [PMID: 31453131 PMCID: PMC6702143 DOI: 10.1016/j.jtcme.2018.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that cause chronic pain, disability and joint destruction. The present placebo controlled randomized study aimed to evaluate the efficacy of a novel hydrogenated curcuminoid formulation-CuroWhite™, in rheumatoid arthritis (RA) patients. Twenty four RA patients were randomized in 1:1:1 ratio to receive 250 mg, 500 mg CuroWhite or placebo as one capsule a day, over a period of three months. Improvement in the ACR response, changes in disease activity assessed using the DAS 28 score, change in physical function assessed on change in ESR, CRP, RF values were evaluated before and after the study. Results suggested that patients who received CuroWhite both low and high doses reported statistically significant changes in their clinical symptoms towards end of the study when compared with placebo. There were significant changes in DAS28 (50–64%) VAS (63–72%) ESR (88–89%), CRP (31–45%) RF (80–84%) values and ACR response for CuroWhite groups in comparison with placebo. Thus, CuroWhite acts as the analgesic and anti-inflammatory product for management of RA by the reduction of the inflammatory action which was confirmed by improvement in ESR, CRP, VAS, RF, DAS-28 and ACR responses. CuroWhite was significantly effective against RA with highly safe without serious side effects and well tolerated.
Collapse
Affiliation(s)
- Joby Jacob
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| | - Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| | - K K Jithin Raj
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| | | | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd, 682311, Kolenchery, Cochin, India
| |
Collapse
|
42
|
Chen SR, Li F, Ding MY, Wang D, Zhao Q, Wang Y, Zhou GC, Wang Y. Andrographolide derivative as STAT3 inhibitor that protects acute liver damage in mice. Bioorg Med Chem 2018; 26:5053-5061. [PMID: 30228000 DOI: 10.1016/j.bmc.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 02/08/2023]
Abstract
Sustained activation of the Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway contributed to the progression of cancer and liver diseases. STAT3 signaling inhibitor has been extensively investigated for pharmacological use. We synthesized a series of andrographolide derivatives, and characterized their activity against STAT3 signaling pathway both in vitro and in the CCl4-induced acute liver damage mice model. Among these derivatives, compound 24 effectively inhibited phosphorylation and dimerization of STAT3 but not its DNA binding activity. Compound 24 significantly ameliorated carbon tetrachloride-induced acute liver damage in vivo without changing mice body weight. Treatment with 24 attenuated hepatic pathologic damage and promoted hepatic proliferation and activation of STAT3. Compound 24 inhibited elevated expression of α-smooth muscle actin and serum pro-inflammatory cytokines downstream of STAT3 but not those factors that are regulated by NF-κB or SMADs. In summary, our results suggest that compound 24 may serve as a potential therapeutic agent for the treatment of hepatic damage or a liver protection agent via regulating STAT3 activation.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Mo-Yu Ding
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China.
| |
Collapse
|
43
|
Wang SZ, Wu DY, Chang Q, Guo YD, Wang C, Fan WM. Intra-articular, single-shot co-injection of hyaluronic acid and corticosteroids in knee osteoarthritis: A randomized controlled trial. Exp Ther Med 2018; 16:1928-1934. [PMID: 30186420 PMCID: PMC6122426 DOI: 10.3892/etm.2018.6371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/25/2018] [Indexed: 01/26/2023] Open
Abstract
The aim of the present study was to investigate whether the co-injection of hyaluronic acid (HA) and corticosteroids (CS) was superior to HA alone in the treatment of knee OA. A total of 120 participants with symptomatic knee OA were recruited and formed the intention-to-treat population for a 6-month follow-up. In the HA group, patients received a single-shot injection of 4 ml HA. In the HA&CS group, patients received a co-injection of 3 ml compound betamethasone solution and 4 ml HA. Visual analog scale (VAS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and knee flexion motion were assessed as primary outcomes. Patients in the HA&CS group exhibited better pain relief and knee function at the time points of week 1, month 1 and month 3 (P<0.05). For the last follow-up at month 6, the values did not differ significantly between these two groups. Patients in both groups exhibited improvement in pain, knee function, and range of motion following injection. For the final follow-up at month 6, the mean VAS score, WOMAC score and knee flexion motion were still superior to that prior to treatment, but the values did not differ significantly. The co-injection of HA and CS provided a rapid improvement in pain relief, knee function, and range of motion, but did not differ significantly from that of HA alone in the long term effect.
Collapse
Affiliation(s)
- Shan-Zheng Wang
- Department of Orthopaedics, The First Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dong-Ying Wu
- Department of Orthopaedics, The First Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qing Chang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yu-Dong Guo
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Wei-Min Fan
- Department of Orthopaedics, The First Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
44
|
Oliveira RAD, Fierro IM. New strategies for patenting biological medicines used in rheumatoid arthritis treatment. Expert Opin Ther Pat 2018; 28:635-646. [DOI: 10.1080/13543776.2018.1502748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Rodrigo Ayres de Oliveira
- Academy of Intellectual Property and Innovation, National Institute of Industrial Property (INPI-Brazil), Rio de Janeiro, Brazil
| | - Iolanda M. Fierro
- Academy of Intellectual Property and Innovation, National Institute of Industrial Property (INPI-Brazil), Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Mak KK, Tan JJ, Marappan P, Balijepalli MK, Choudhury H, Ramamurthy S, Pichika MR. Galangin’s potential as a functional food ingredient. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
46
|
Anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenes from Daphne genkwa based on hierarchical cluster and principal component analysis. J Nat Med 2018; 72:675-685. [PMID: 29680963 DOI: 10.1007/s11418-018-1202-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/09/2018] [Indexed: 01/31/2023]
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent chronic inflammatory and angiogenic diseases. The aim of this study was to evaluate the anti-inflammatory and anti-angiogenic activities in vitro of eight diterpenoids isolated from Daphne genkwa. LC-MS was used to identify diterpenes isolated from D. genkwa. The anti-inflammatory and anti-angiogenic activities of eight diterpenoids were evaluated on LPS-induced macrophage RAW264.7 cells and TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) using hierarchical cluster analysis (HCA) and principal component analysis (PCA). The eight diterpenes isolated from D. genkwa were identified as yuanhuaphnin, isoyuanhuacine, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuagine, isoyuanhuadine, yuanhuadine, yuanhuaoate C and yuanhuacine. All the eight diterpenes significantly down-regulated the excessive secretion of TNF-α, IL-6, IL-1β and NO in LPS-induced RAW264.7 macrophages. However, only 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl markedly reduced production of VEGF, MMP-3, ICAM and VCAM in TNF-α-stimulated HUVECs. HCA obtained 4 clusters, containing 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, isoyuanhuacine, isoyuanhuadine and five other compounds. PCA showed that the ranking of diterpenes sorted by efficacy from highest to lowest was 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl, yuanhuaphnin, isoyuanhuacine, yuanhuacine, yuanhuaoate C, yuanhuagine, isoyuanhuadine, yuanhuadine. In conclusion, eight diterpenes isolated from D. genkwa showed different levels of activity in LPS-induced RAW264.7 cells and TNF-α-stimulated HUVECs. The comprehensive evaluation of activity by HCA and PCA indicated that of the eight diterpenes, 12-O-(2'E,4'E-decadienoyl)-4-hydroxyphorbol-13-acetyl was the best, and can be developed as a new drug for RA therapy.
Collapse
|
47
|
Jayashree S, Nirekshana K, Guha G, Bhakta-Guha D. Cancer chemotherapeutics in rheumatoid arthritis: A convoluted connection. Biomed Pharmacother 2018; 102:894-911. [PMID: 29710545 DOI: 10.1016/j.biopha.2018.03.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is one of the most popular therapeutic strategies to treat cancer. However, cancer chemotherapeutics have often been associated with impairment of the immune system, which might consequently lead to an augmented risk of autoimmune disorders, such as rheumatoid arthritis. Though the accurate mechanistic facets of rheumatoid arthritis induction have not been interpreted yet, a conglomeration of genetic and environmental factors might promote its etiology. What makes the scenario more challenging is that patients with rheumatoid arthritis are at a significantly elevated risk of developing various types of cancer. It is intriguing to note that diverse cancer chemotherapy drugs are also commonly used to treat symptoms of rheumatoid arthritis. However, a colossal multitude of such cancer therapeutics has demonstrated highly varied results in rheumatoid arthritis patients, including both beneficial and adverse effects. Herein, we attempt to present a holistic account of the variegated modalities of this complex tripartite cross-talk between cancer, rheumatoid arthritis and chemotherapy drugs in order to decode the sinuous correlation between these two appalling pathological conditions.
Collapse
Affiliation(s)
- S Jayashree
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - K Nirekshana
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), Department of Biotechnology, School of Chemical and Bio Technology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
48
|
Abstract
Fever depends on a complex physiologic response to infectious agents and other conditions. To alleviate fever, many medicinal agents have been developed over a century of trying to improve upon aspirin, which was determined to work by inhibiting prostaglandin synthesis. We present the process of fever induction through prostaglandin synthesis and discuss the development of pharmaceuticals that target enzymes and receptors involved in prostaglandin-mediated signal transduction, including prostaglandin H2 synthase (also known as cyclooxygenase), phospholipase A2, microsomal prostaglandin E2 synthase-1, EP receptors, and transient potential cation channel subfamily V member 1. Clinical use of established antipyretics will be discussed as well as medicinal agents under clinical trials and future research.
Collapse
Affiliation(s)
- Jonathan J Lee
- Biochemistry Department, Brigham Young University, Provo, UT, United States
| | - Daniel L Simmons
- Biochemistry Department, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
49
|
Borghi SM, Mizokami SS, Pinho-Ribeiro FA, Fattori V, Crespigio J, Clemente-Napimoga JT, Napimoga MH, Pitol DL, Issa JPM, Fukada SY, Casagrande R, Verri WA. The flavonoid quercetin inhibits titanium dioxide (TiO 2)-induced chronic arthritis in mice. J Nutr Biochem 2017; 53:81-95. [PMID: 29197723 DOI: 10.1016/j.jnutbio.2017.10.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/31/2017] [Accepted: 10/16/2017] [Indexed: 01/14/2023]
Abstract
Titanium dioxide (TiO2) is a common component of orthopedic prosthesis. However, prosthesis wear releases TiO2, which induces inflammation and osteolysis in peri-prosthetic tissues. Quercetin is a flavonoid widely present in human diet, which presents biological activities such as antinociceptive, anti-inflammatory and antioxidant effects. Therefore, the effect of intraperitoneal treatment with quercetin in TiO2-induced arthritis model was evaluated. In the first set of experiments, mice received injection of TiO2 (0.1-3 mg/knee joint) and articular mechanical hyperalgesia, edema and histopathology analysis were performed in a 30 days protocol. The dose of 3 mg of TiO2 showed the most harmful effect, and was chosen to the following experiments. Subsequently, mice received 3 mg of TiO2 followed by post-treatment with quercetin during 30 days. Quercetin (10-100 mg/kg) inhibited in a dose-dependent manner TiO2-induced knee joint mechanical hyperalgesia, edema and leukocyte recruitment and did not induce damage in major organs such as liver, kidney and stomach. The dose of 30 mg/kg was chosen for the subsequent analysis, and reduced histopathological changes such as leukocyte infiltration, vascular proliferation and synovial hyperplasia (pannus formation) on day 30 after TiO2 challenge. The protective analgesic and anti-inflammatory mechanisms of quercetin included the inhibition of TiO2-induced neutrophil and macrophage recruitment, proteoglycan degradation, oxidative stress, cytokine production (TNF-α, IL-1β, IL-6, and IL-10), COX-2 mRNA expression, and bone resorption as well as activation of Nrf2/HO-1 signaling pathway. These results demonstrate the potential therapeutic applicability of the dietary flavonoid quercetin to reduce pain and inflammatory damages associated with prosthesis wear process-induced arthritis.
Collapse
Affiliation(s)
- Sergio M Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Sandra S Mizokami
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Victor Fattori
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Jefferson Crespigio
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, 13045-755, Campinas, São Paulo, Brazil
| | - Marcelo H Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, 13045-755, Campinas, São Paulo, Brazil
| | - Dimitrius L Pitol
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - João P M Issa
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, 86038-350, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
50
|
Amalraj A, Varma K, Jacob J, Divya C, Kunnumakkara AB, Stohs SJ, Gopi S. A Novel Highly Bioavailable Curcumin Formulation Improves Symptoms and Diagnostic Indicators in Rheumatoid Arthritis Patients: A Randomized, Double-Blind, Placebo-Controlled, Two-Dose, Three-Arm, and Parallel-Group Study. J Med Food 2017; 20:1022-1030. [DOI: 10.1089/jmf.2017.3930] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
| | | | - Joby Jacob
- R&D Centre, Aurea Biolabs (P) Ltd., Cochin, India
| | | | - Ajaikumar B. Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sidney J. Stohs
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, USA
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd., Cochin, India
| |
Collapse
|