1
|
Ortiz-Perez E, Vazquez-Jimenez LK, Paz-Gonzalez AD, Delgado-Maldonado T, González-González A, Gaona-Lopez C, Moreno-Herrera A, Vazquez K, Rivera G. Advances in the Development of Carbonic Anhydrase Inhibitors as New Antiprotozoal Agents. Curr Med Chem 2024; 31:6735-6759. [PMID: 37909441 DOI: 10.2174/0109298673249553231018070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/19/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Parasitic diseases are a public health problem despite the existence of drugs for their treatment. These treatments have variable efficacy and, in some cases, serious adverse effects. There has been interest in the enzyme carbonic anhydrase (CA) in the last two decades since it is essential in the life cycle of various parasites due to its important participation in processes such as pyrimidine synthesis, HCO3 - transport across cell membranes, and the maintenance of intracellular pH and ion transport (Na+, K+, and H+), among others. OBJECTIVE In this review, CA was analyzed as a pharmacological target in etiological agents of malaria, American trypanosomiasis, leishmaniasis, amoebiasis, and trichomoniasis. The CA inhibitors´ design, binding mode, and structure-activity relationship are also discussed. CONCLUSION According to this review, advances in discovering compounds with potent inhibitory activity suggest that CA is a candidate for developing new antiprotozoal agents.
Collapse
Affiliation(s)
- Eyra Ortiz-Perez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Alma D Paz-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Carlos Gaona-Lopez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| | - Karina Vazquez
- Departamento de Biotecnología Farmacéutica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Gral. Escobedo, 66050, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, México
| |
Collapse
|
2
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
3
|
Krymov SK, Scherbakov AM, Dezhenkova LG, Salnikova DI, Solov’eva SE, Sorokin DV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Indoline-5-Sulfonamides: A Role of the Core in Inhibition of Cancer-Related Carbonic Anhydrases, Antiproliferative Activity and Circumventing of Multidrug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15121453. [PMID: 36558903 PMCID: PMC9783868 DOI: 10.3390/ph15121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.
Collapse
Affiliation(s)
- Stepan K. Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Svetlana E. Solov’eva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
- Correspondence: (C.T.S.); (A.E.S.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (C.T.S.); (A.E.S.)
| |
Collapse
|
4
|
Krymov SK, Scherbakov AM, Salnikova DI, Sorokin DV, Dezhenkova LG, Ivanov IV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Synthesis, biological evaluation, and in silico studies of potential activators of apoptosis and carbonic anhydrase inhibitors on isatin-5-sulfonamide scaffold. Eur J Med Chem 2022; 228:113997. [PMID: 34902732 DOI: 10.1016/j.ejmech.2021.113997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/09/2023]
Abstract
Carbonic anhydrase IX is a promising target for the search for new antitumor compounds with improved properties. Using the molecular hybridization approach, on the basis of structures of a selective carbonic anhydrase IX inhibitor 3 and an activator of apoptosis 2 (1), a series of 1-substituted isatin-5-sulfonamides 5a-5u were designed and synthesized. The study of the inhibitory activity of isatin-5-sulfonamides showed the ability to inhibit I, II, IX, XII isoforms at nano- and micromolar concentrations. Docking of compounds 5e and 5k into the active site of II and IX carbonic anhydrase isoforms showed the coordination of sulfonamidate anions with zinc cations, as well as a number of additional hydrophobic interactions. The trifluoromethylthio derivative 5r suppressed the growth of tumor cells at low micromolar concentrations, maintaining activity on resistant lines and under hypoxic conditions. Immunoblotting of MCF7 cells treated with the 5r revealed its antiestrogenic activity and ability to activate apoptosis in tumor cells.
Collapse
Affiliation(s)
- Stepan K Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Alexander M Scherbakov
- Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115522, Russia
| | - Diana I Salnikova
- Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115522, Russia
| | - Danila V Sorokin
- Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115522, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Ivan V Ivanov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy.
| | | |
Collapse
|
5
|
Mancuso F, De Luca L, Bucolo F, Vrabel M, Angeli A, Capasso C, Supuran CT, Gitto R. 4-Sulfamoylphenylalkylamides as Inhibitors of Carbonic Anhydrases Expressed in Vibrio cholerae. ChemMedChem 2021; 16:3787-3794. [PMID: 34592052 PMCID: PMC9298201 DOI: 10.1002/cmdc.202100510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/21/2022]
Abstract
A current issue of antimicrobial therapy is the resistance to treatment with worldwide consequences. Thus, the identification of innovative targets is an intriguing challenge in the drug and development process aimed at newer antimicrobial agents. The state-of-art of anticholera therapy might comprise the reduction of the expression of cholera toxin, which could be reached through the inhibition of carbonic anhydrases expressed in Vibrio cholerae (VchCAα, VchCAβ, and VchCAγ). Therefore, we focused our interest on the exploitation of sulfonamides as VchCA inhibitors. We planned to design and synthesize new benzenesulfonamides based on our knowledge of the VchCA catalytic site. The synthesized compounds were tested thus collecting useful SAR information. From our investigation, we identified new potent VchCA inhibitors, some of them displayed high affinity toward VchCAγ class, for which few inhibitors are currently reported in literature. The best interesting VchCAγ inhibitor (S)-N-(1-oxo-1-((4-sulfamoylbenzyl)amino)propan-2-yl)furan-2-carboxamide (40) resulted more active and selective inhibitor when compared with acetazolamide (AAZ) as well as previously reported VchCA inhibitors.
Collapse
Affiliation(s)
- Francesca Mancuso
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| | - Laura De Luca
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| | - Federica Bucolo
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry (IOCB)Czech Academy of SciencesFlemingovo nám. 216000PragueCzech Republic
| | - Andrea Angeli
- NEUROFARBA DepartmentUniversity of FlorenceVia U. Schiff 650019FlorenceItaly
| | - Clemente Capasso
- Institute of Biosciences and BioresourcesCNRVia Castellino 11180131NapoliItaly
| | - Claudiu T. Supuran
- NEUROFARBA DepartmentUniversity of FlorenceVia U. Schiff 650019FlorenceItaly
| | - Rosaria Gitto
- CHIBIOFARAM DepartmentUniversity of MessinaViale Stagno D'Alcontres98166MessinaItaly
| |
Collapse
|
6
|
Del Prete S, Bua S, Supuran CT, Capasso C. Escherichia coli γ-carbonic anhydrase: characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J Enzyme Inhib Med Chem 2021; 35:1545-1554. [PMID: 32746656 PMCID: PMC7470111 DOI: 10.1080/14756366.2020.1800670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes involved in biosynthetic processes, transport, supply, and balance of CO2/HCO3- into the cell. In Bacteria, CAs avoid the depletion of the dissolved CO2/HCO3- from the cell, providing them to the central metabolism that is compromised without the CA activity. The involvement of CAs in the survival, pathogenicity, and virulence of several bacterial pathogenic species is recent. Here, we report the kinetic properties of the recombinant γ-CA (EcoCAγ) encoded in the genome of Escherichia coli. EcoCAγ is an excellent catalyst for the physiological CO2 hydration reaction to bicarbonate and protons, with a kcat of 5.7 × 105 s−1 and kcat/KM of 6.9 × 106 M−1 s−1. The EcoCAγ inhibition profile with a broad series of known CA inhibitors, the substituted benzene-sulphonamides, and clinically licenced drugs was explored. Benzolamide showed a KI lower than 100 nM. Our study reinforces the hypothesis that the synthesis of new drugs capable of interfering selectively with the bacterial CA activity, avoiding the inhibition of the human α -CAs, is achievable and may lead to novel antibacterials.
Collapse
Affiliation(s)
- Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Silvia Bua
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| |
Collapse
|
7
|
De Luca V, Petreni A, Nocentini A, Scaloni A, Supuran CT, Capasso C. Effect of Sulfonamides and Their Structurally Related Derivatives on the Activity of ι-Carbonic Anhydrase from Burkholderia territorii. Int J Mol Sci 2021; 22:ijms22020571. [PMID: 33430028 PMCID: PMC7827628 DOI: 10.3390/ijms22020571] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
Carbonic anhydrases (CAs) are essential metalloenzymes in nature, catalyzing the carbon dioxide reversible hydration into bicarbonate and proton. In humans, breathing and many other critical physiological processes depend on this enzymatic activity. The CA superfamily function and inhibition in pathogenic bacteria has recently been the object of significant advances, being demonstrated to affect microbial survival/virulence. Targeting bacterial CAs may thus be a valid alternative to expand the pharmacological arsenal against the emergence of widespread antibiotic resistance. Here, we report an extensive study on the inhibition profile of the recently discovered ι-CA class present in some bacteria, including Burkholderia territorii, namely BteCAι, using substituted benzene-sulfonamides and clinically licensed sulfonamide-, sulfamate- and sulfamide-type drugs. The BteCAι inhibition profile showed: (i) several benzene-sulfonamides with an inhibition constant lower than 100 nM; (ii) a different behavior with respect to other α, β and γ-CAs; (iii) clinically used drugs having a micromolar affinity. This prototype study contributes to the initial recognition of compounds which efficiently and selectively inhibit a bacterial member of the ι-CA class, for which such a selective inhibition with respect to other protein isoforms present in the host is highly desired and may contribute to the development of novel antimicrobials.
Collapse
Affiliation(s)
- Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, via Pietro Castellino 111, 80131 Napoli, Italy;
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, via Argine 1085, 80147 Napoli, Italy;
| | - Andrea Petreni
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, via U. Schiff 6, 50019 Florence, Italy; (A.P.); (A.N.)
| | - Alessio Nocentini
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, via U. Schiff 6, 50019 Florence, Italy; (A.P.); (A.N.)
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, via Argine 1085, 80147 Napoli, Italy;
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, via U. Schiff 6, 50019 Florence, Italy; (A.P.); (A.N.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, via Pietro Castellino 111, 80131 Napoli, Italy;
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| |
Collapse
|
8
|
Salbitani G, Del Prete S, Bolinesi F, Mangoni O, De Luca V, Carginale V, Donald WA, Supuran CT, Carfagna S, Capasso C. Use of an immobilised thermostable α-CA (SspCA) for enhancing the metabolic efficiency of the freshwater green microalga Chlorella sorokiniana. J Enzyme Inhib Med Chem 2020; 35:913-920. [PMID: 32223467 PMCID: PMC7170359 DOI: 10.1080/14756366.2020.1746785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is significant interest in increasing the microalgal efficiency for producing high-quality products that are commonly used as food additives in nutraceuticals. Some natural substances that can be extracted from algae include lipids, carbohydrates, proteins, carotenoids, long-chain polyunsaturated fatty acids, and vitamins. Generally, microalgal photoautotrophic growth can be maximised by optimising CO2 biofixation, and by adding sodium bicarbonate and specific bacteria to the microalgal culture. Recently, to enhance CO2 biofixation, a thermostable carbonic anhydrase (SspCA) encoded by the genome of the bacterium Sulfurihydrogenibium yellowstonense has been heterologously expressed and immobilised on the surfaces of bacteria. Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, which catalyse the physiologically reversible reaction of carbon dioxide hydration to bicarbonate and protons: CO2 + H2O ⇄ HCO3− + H+. Herein, we demonstrate for the first time that the fragments of bacterial membranes containing immobilised SspCA (M-SspCA) on their surfaces can be doped into the microalgal culture of the green unicellular alga, Chlorella sorokiniana, to significantly enhance the biomass, photosynthetic activity, carotenoids production, and CA activity by this alga. These results are of biotechnological interest because C. sorokiniana is widely used in many different areas, including photosynthesis research, human pharmaceutical production, aquaculture-based food production, and wastewater treatment.
Collapse
Affiliation(s)
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | | | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Vincenzo Carginale
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- School of Chemistry, University of New South Wales, Sydney, Australia.,Department of NEUROFARB, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Simona Carfagna
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| |
Collapse
|
9
|
Del Prete S, Nocentini A, Supuran CT, Capasso C. Bacterial ι-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2020; 35:1060-1068. [PMID: 32314608 PMCID: PMC7191908 DOI: 10.1080/14756366.2020.1755852] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/05/2020] [Indexed: 01/30/2023] Open
Abstract
The carbonic anhydrases (CAs, EC 4.2.1.1) catalyse a simple but physiologically crucial reversible reaction, the carbon dioxide hydration with the production of bicarbonate and protons. In the last years, and especially, to the rapid emergence of the bacterial antibiotic resistance that is occurring worldwide, the understanding of the function of bacterial CAs has increased significantly. Recently, a new CA-class (ι-CA) was discovered in the marine diatom T. pseudonana. It has been reported that bacterial genomes may contain genes with relevant homology to the diatom ι-class CA. Still, the catalytic activity of the enzyme encoded by the gene was not investigated. Thus, herein, for the first time, we cloned, expressed, and purified the recombinant bacterial ι-CA (acronym BteCAι) identified in the genome of Burkholderia territorii. The recombinant BteCAι resulted in a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat of 3.0 × 105 s -1 and kcat/KM of 3.9 × 107 M -1 s -1, and is also sensitive to inhibition by the sulphonamide acetazolamide. Furthermore, with the aid of the protonography, it has been demonstrated that BteCAι can be present as a dimer. This result is corroborated by the construction of a molecular model of BteCAι, which showed that the enzyme is formed by two equivalent monomers having a structure similar to a butterfly.
Collapse
Affiliation(s)
- Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Firenze, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
10
|
Del Prete S, De Luca V, Bua S, Nocentini A, Carginale V, Supuran CT, Capasso C. The Effect of Substituted Benzene-Sulfonamides and Clinically Licensed Drugs on the Catalytic Activity of CynT2, a Carbonic Anhydrase Crucial for Escherichia coli Life Cycle. Int J Mol Sci 2020; 21:ijms21114175. [PMID: 32545297 PMCID: PMC7312386 DOI: 10.3390/ijms21114175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Proteins are relevant antimicrobial drug targets, and among them, enzymes represent a significant group, since most of them catalyze reactions essential for supporting the central metabolism, or are necessary for the pathogen vitality. Genomic exploration of pathogenic and non-pathogenic microorganisms has revealed genes encoding for a superfamily of metalloenzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1). CAs catalyze the physiologically crucial reversible reaction of the carbon dioxide hydration to bicarbonate and protons. Herein, we investigated the sulfonamide inhibition profile of the recombinant β-CA (CynT2) identified in the genome of the Gram-negative bacterium Escherichia coli. This biocatalyst is indispensable for the growth of the microbe at atmospheric pCO2. Surprisingly, this enzyme has not been investigated for its inhibition with any class of CA inhibitors. Here, we show that CynT2 was strongly inhibited by some substituted benzene-sulfonamides and the clinically used inhibitor sulpiride (KIs in the range of 82–97 nM). This study may be relevant for identifying novel CA inhibitors, as well as for another essential part of the drug discovery pipeline, such as the structure–activity relationship for this class of enzyme inhibitors.
Collapse
Affiliation(s)
- Sonia Del Prete
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.); (V.C.)
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.); (V.C.)
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Via Argine 1085, 80147 Naples, Italy
| | - Silvia Bua
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.B.); (A.N.)
| | - Alessio Nocentini
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.B.); (A.N.)
| | - Vincenzo Carginale
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.); (V.C.)
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.B.); (A.N.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.); (V.C.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| |
Collapse
|
11
|
Del Prete S, De Luca V, Nocentini A, Scaloni A, Mastrolorenzo MD, Supuran CT, Capasso C. Anion Inhibition Studies of the Beta-Carbonic Anhydrase from Escherichia coli. Molecules 2020; 25:E2564. [PMID: 32486444 PMCID: PMC7321114 DOI: 10.3390/molecules25112564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The interconversion of CO2 and HCO3- is catalyzed by a superfamily of metalloenzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1), which maintain the equilibrium between dissolved inorganic CO2 and HCO3-. In the genome of Escherichia coli, a Gram-negative bacterium typically colonizing the lower intestine of warm-blooded organisms, the cyn operon gene includes the CynT gene, encoding for a β-CA, and CynS gene, encoding for the cyanase. CynT (β-CA) prevents the depletion of the cellular bicarbonate, which is further used in the reaction catalyzed by cyanase. A second β-CA (CynT2 or Can or yadF), as well as a γ and ι-CAs were also identified in the E. coli genome. CynT2 is essential for bacterial growth at atmospheric CO2 concentration. Here, we characterized the kinetic properties and the anion inhibition profiles of recombinant CynT2. The enzyme showed a good activity for the physiological CO2 hydratase reaction with the following parameters: kcat = 5.3 × 105 s-1 and kcat/KM = of 4.1 × 107 M-1 s-1. Sulfamide, sulfamate, phenylboronic acid, phenylarsonic acid, and diethyldithiocarbamate were the most effective CynT2 inhibitors (KI = 2.5 to 84 µM). The anions allowed for a detailed understanding of the interaction of inhibitors with the amino acid residues surrounding the catalytic pocket of the enzyme and may be used as leads for the design of more efficient and specific inhibitors.
Collapse
Affiliation(s)
- Sonia Del Prete
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.)
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.)
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Via Argine 1085, 80147 Naples, Italy,
| | - Alessio Nocentini
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.N.); (M.D.M.)
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Via Argine 1085, 80147 Naples, Italy,
| | - Margaret D. Mastrolorenzo
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.N.); (M.D.M.)
- University of California, San Diego (UCSD), 3425 Lebon Drive, Unit 918, San Diego, CA 92122, USA
| | - Claudiu T. Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.N.); (M.D.M.)
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (S.D.P.); (V.D.L.)
| |
Collapse
|
12
|
Sulfonamide Inhibition Profile of the β-Carbonic Anhydrase from Malassezia restricta, An Opportunistic Pathogen Triggering Scalp Conditions. Metabolites 2020; 10:metabo10010039. [PMID: 31963335 PMCID: PMC7023381 DOI: 10.3390/metabo10010039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
The critical CO2 hydration reaction to bicarbonate and protons is catalyzed by carbonic anhydrases (CAs, EC 4.2.1.1). Their physiological role is to assist the transport of the CO2 and HCO3− at the cellular level, which will not be ensured by the low velocity of the uncatalyzed reaction. CA inhibition may impair the growth of microorganisms. In the yeasts, Candida albicans and Malassezia globosa, the activity of the unique β-CA identified in their genomes was demonstrated to be essential for growth of the pathogen. Here, we decided to investigate the sulfonamide inhibition profile of the homologous β-CA (MreCA) identified in the genome of Malassezia restricta, an opportunistic pathogen triggering dandruff and seborrheic dermatitis. Among 40 investigated derivatives, the best MreCA sulfonamide inhibitors were dorzolamide, brinzolamide, indisulam, valdecoxib, sulthiam, and acetazolamide (KI < 1.0 μM). The MreCA inhibition profile was different from those of the homologous enzyme from Malassezia globosa (MgCA) and the human isoenzymes (hCA I and hCA II). These results might be useful to for designing CA inhibitor scaffolds that may selectively inhibit the dandruff-producing fungi.
Collapse
|
13
|
Alissa SA, Alghulikah HA, ALOthman ZA, Osman SM, Del Prete S, Capasso C, Nocentini A, Supuran CT. Inhibition survey with phenolic compounds against the δ- and η-class carbonic anhydrases from the marine diatom thalassiosira weissflogii and protozoan Plasmodium falciparum. J Enzyme Inhib Med Chem 2019; 35:377-382. [PMID: 31856608 PMCID: PMC6968676 DOI: 10.1080/14756366.2019.1706089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The inhibition of δ- and η-class carbonic anhydrases (CAs; EC 4.2.1.1) was poorly investigated so far. Only one δ-CA, TweCA from the diatom Thalassiosira weissflogii, and one η-CA, PfCA, from Plasmodium falciparum, have been cloned and characterised to date. To enrich δ- and η-CAs inhibition profiles, a panel of 22 phenols was investigated for TweCA and PfCA inhibition. Some derivatives showed effective, sub-micromolar inhibition of TweCA (KIs 0.81–65.4 µM) and PfCA (KIs 0.62–78.7 µM). A subset of compounds demonstrated a significant selectivity for the target CAs over the human physiologically relevant ones. This study promotes the identification of new potent and selective inhibitors of TweCA and PfCA, which could be considered as leads for finding molecular probes in the study of carbon fixation processes (in which TweCA and orthologue enzymes are involved) or drug candidates in the treatment of malaria.
Collapse
Affiliation(s)
- Siham A Alissa
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hanan A Alghulikah
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
14
|
Gitto R, De Luca L, Mancuso F, Del Prete S, Vullo D, Supuran CT, Capasso C. Seeking new approach for therapeutic treatment of cholera disease via inhibition of bacterial carbonic anhydrases: experimental and theoretical studies for sixteen benzenesulfonamide derivatives. J Enzyme Inhib Med Chem 2019; 34:1186-1192. [PMID: 31282228 PMCID: PMC6691843 DOI: 10.1080/14756366.2019.1618292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
A series of sixteen benzenesulfonamide derivatives has been synthesised and tested as inhibitors of Vibrio cholerae carbonic anhydrase (CA) enzymes, belonging to α-CA, β-CA, and γ-CA classes (VchCAα, VchCAβ, and VchCAγ). The determined Ki values were compared to those of selected human CA isoforms (hCA I and hCA II). Structure-affinity relationship analysis highlighted that all tested compounds proved to be active inhibitors of VchCAα at nanomolar concentration. The VchCAβ activity was lower to respect inhibitory efficacy toward VchCAα, whereas, these benzenesulfonamide derivatives failed to inhibit VchCAγ. Interestingly, compound 7e combined the best activity toward VchCAα and VchCAβ. In order to obtain a model for binding mode of our inhibitors toward bacterial CAs, we carried out docking simulations by using the available crystal structures of VchCAβ.
Collapse
Affiliation(s)
- Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Messina, Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Messina, Italy
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Messina, Italy
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources- CNR, Napoli, Italy
| | - Daniela Vullo
- NUROFARBA Department, University of Florence, Sesto Fiorentino, Italy
| | | | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources- CNR, Napoli, Italy
| |
Collapse
|
15
|
Anion Inhibition Profile of the β-Carbonic Anhydrase from the Opportunist Pathogenic Fungus Malassezia Restricta Involved in Dandruff and Seborrheic Dermatitis. Metabolites 2019; 9:metabo9070147. [PMID: 31323880 PMCID: PMC6680850 DOI: 10.3390/metabo9070147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, which catalyze the crucial physiological CO2 hydration/dehydration reaction (CO2 + H2O ⇌ HCO3- + H+) balancing the equilibrium between CO2, H2CO3, HCO3- and CO32-. It has been demonstrated that their selective inhibition alters the equilibrium of the metabolites above affecting the biosynthesis and energy metabolism of the organism. In this context, our interest has been focalized on the fungus Malassezia restricta, which may trigger dandruff and seborrheic dermatitis altering the complex bacterial and fungal equilibrium of the human scalp. We investigated a rather large number of inorganic metal-complexing anions (a well-known class of CA inhibitors) for their interaction with the β-CA (MreCA) encoded by the M. restricta genome. The results were compared with those obtained for the two human ?-CA isoforms (hCAI and hCAII) and the β-CA from Malassezia globosa. The most effective MreCA inhibitors were diethyldithiocarbamate, sulfamide, phenyl arsenic acid, stannate, tellurate, tetraborate, selenocyanate, trithiocarbonate, and bicarbonate. The different KI values obtained for the four proteins investigated might be attributed to the architectural features of their catalytic site. The anion inhibition profile is essential for better understanding the inhibition/catalytic mechanisms of these enzymes and for designing novel types of inhibitors, which may have clinical applications for the management of dandruff and seborrheic dermatitis.
Collapse
|
16
|
Del Prete S, Merlo R, Valenti A, Mattossovich R, Rossi M, Carginale V, Supuran CT, Perugino G, Capasso C. Thermostability enhancement of the α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense by using the anchoring-and-self-labelling-protein-tag system (ASL tag). J Enzyme Inhib Med Chem 2019; 34:946-954. [PMID: 31039618 PMCID: PMC6493269 DOI: 10.1080/14756366.2019.1605991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are a superfamily of ubiquitous metalloenzymes present in all living organisms on the planet. They are classified into seven genetically distinct families and catalyse the hydration reaction of carbon dioxide to bicarbonate and protons, as well as the opposite reaction. CAs were proposed to be used for biotechnological applications, such as the post-combustion carbon capture processes. In this context, there is a great interest in searching CAs with robust chemical and physical properties. Here, we describe the enhancement of thermostability of the α-CA from Sulfurihydrogenibium yellowstonense (SspCA) by using the anchoring-and-self-labelling-protein-tag system (ASLtag). The anchored chimeric H5-SspCA was active for the CO2 hydration reaction and its thermostability increased when the cells were heated for a prolonged period at high temperatures (e.g. 70 °C). The ASLtag can be considered as a useful method for enhancing the thermostability of a protein useful for biotechnological applications, which often need harsh operating conditions.
Collapse
Affiliation(s)
- Sonia Del Prete
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Rosa Merlo
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Anna Valenti
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Rosanna Mattossovich
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Mosè Rossi
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Vincenzo Carginale
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Claudiu T Supuran
- b Neurofarba Department , University of Florence, Polo Scientifico , Sesto Fiorentino Firenze , Italy
| | - Giuseppe Perugino
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Clemente Capasso
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| |
Collapse
|
17
|
Rogato A, Del Prete S, Nocentini A, Carginale V, Supuran CT, Capasso C. Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of sulphonamide carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019; 34:510-518. [PMID: 30688123 PMCID: PMC6352938 DOI: 10.1080/14756366.2018.1559840] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous metalloenzymes, which started to be investigated in detail in pathogenic, as well as non-pathogenic species since their pivotal role is to accelerate the physiological CO2 hydration/dehydration reaction significantly. Here, we propose the marine unicellular diatom Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of CA inhibitors (CAIs). Seven inhibitors belonging to the sulphonamide type and possessing a diverse scaffold have been explored for their in vitro inhibition of the whole diatom CAs and the in vivo inhibitory effect on the growth of P. tricornutum. Interesting, inhibition of growth was observed, in vivo, demonstrating that this diatom is a good model for testing the cell wall penetrability of this class of pharmacological agents. Considering that many pathogens are difficult and dangerous to grow in the laboratory, the growth inhibition of P. tricornutum with different such CAIs may be subsequently used to design inhibition studies of CAs from pathogenic organisms.
Collapse
Affiliation(s)
- Alessandra Rogato
- a Institute of Bioscience and BioResources, CNR , Naples , Italy.,b Department of Integrative Marine Ecology , Stazione Zoologica Anton Dohrn , Naples , Italy
| | - Sonia Del Prete
- a Institute of Bioscience and BioResources, CNR , Naples , Italy
| | - Alessio Nocentini
- c Neurofarba Department, University of Florence, Polo Scientifico , Sesto Fiorentino , Florence , Italy
| | | | - Claudiu T Supuran
- c Neurofarba Department, University of Florence, Polo Scientifico , Sesto Fiorentino , Florence , Italy
| | - Clemente Capasso
- a Institute of Bioscience and BioResources, CNR , Naples , Italy
| |
Collapse
|
18
|
Del Prete S, Bua S, Alasmary FAS, AlOthman Z, Tambutté S, Zoccola D, Supuran CT, Capasso C. Comparison of the Sulfonamide Inhibition Profiles of the α-Carbonic Anhydrase Isoforms (SpiCA1, SpiCA2 and SpiCA3) Encoded by the Genome of the Scleractinian Coral Stylophora pistillata. Mar Drugs 2019; 17:E146. [PMID: 30832211 PMCID: PMC6471618 DOI: 10.3390/md17030146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
The ubiquitous metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1) are responsible for the reversible hydration of CO₂ to bicarbonate (HCO₃-) and protons (H⁺). Bicarbonate may subsequently generate carbonate used in many functional activities by marine organisms. CAs play a crucial role in several physiological processes, e.g., respiration, inorganic carbon transport, intra and extra-cellular pH regulation, and bio-mineralization. Multiple transcript variants and protein isoforms exist in the organisms. Recently, 16 α-CA isoforms have been identified in the coral Stylophora pistillata. Here, we focalized the interest on three coral isoforms: SpiCA1 and SpiCA2, localized in the coral-calcifying cells; and SpiCA3, expressed in the cytoplasm of the coral cell layers. The three recombinant enzymes were heterologously expressed and investigated for their inhibition profiles with sulfonamides and sulfamates. The three coral CA isoforms differ significantly in their susceptibility to inhibition with sulfonamides. This study provides new insights into the coral physiology and the comprehension of molecular mechanisms involved in the bio-mineralization processes, since CAs interact with bicarbonate transporters, accelerating the trans-membrane bicarbonate movement and modulating the pH at both sides of the plasma membranes.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Silvia Bua
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Fatmah A S Alasmary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Sylvie Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 8 Quai Antoine 1, 98000 Monaco, Monaco.
| | - Didier Zoccola
- Department of Marine Biology, Centre Scientifique de Monaco, 8 Quai Antoine 1, 98000 Monaco, Monaco.
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
19
|
Del Prete S, Bua S, Zoccola D, Alasmary FAS, AlOthman Z, Alqahtani LS, Techer N, Supuran CT, Tambutté S, Capasso C. Comparison of the Anion Inhibition Profiles of the α-CA Isoforms (SpiCA1, SpiCA2 and SpiCA3) from the Scleractinian Coral Stylophora pistillata. Int J Mol Sci 2018; 19:ijms19072128. [PMID: 30037122 PMCID: PMC6073313 DOI: 10.3390/ijms19072128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes used by living organisms to accelerate the CO2 hydration/dehydration reaction at rates dramatically high compared to the uncatalyzed reaction. These enzymes have different isoforms and homologues and can be found in the form of cytoplasmic, secreted or membrane-bound proteins. CAs play a role in numerous physiological processes including biomineralization and symbiosis, as is the case in reef-building corals. Previously, molecular and biochemical data have been obtained at the molecular level in the branching coral Stylophora pistillata for two coral isoforms which differ significantly in their catalytic activity and susceptibility to inhibition with anions and sulfonamides. More recently it has been determined that the genome of S. pistillata encodes for 16 CAs. Here, we cloned, expressed, purified and characterized a novel α-CA, named SpiCA3, which is cytoplasmic and ubiquitously expressed in all the cell layers including the calcifying cells. SpiCA3 is the most effective CA among the coral isoforms investigated and the most efficient catalyst known up to date in Metazoa. We also investigated the inhibition profiles of SpiCA3 and compared it with those obtained for the two other isoforms in the presence of inorganic anions and other small molecules known to interfere with metalloenzymes. These results suggest that S. pistillata has adapted its CA isoforms to achieve the physiological functions in different physicochemical microenvironments.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy.
| | - Silvia Bua
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Didier Zoccola
- Centre Scientifique de Monaco, Department of Marine Biology, 8 Quai Antoine 1, 98000 Monaco.
| | - Fatmah A S Alasmary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
| | - Linah S Alqahtani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia.
- Department of Chemistry, King Faisal University, Alahsa, Saudi Arabia.
| | - Nathalie Techer
- Centre Scientifique de Monaco, Department of Marine Biology, 8 Quai Antoine 1, 98000 Monaco.
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 8 Quai Antoine 1, 98000 Monaco.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy.
| |
Collapse
|
20
|
Abstract
INTRODUCTION The hydration/dehydration of CO2 catalyzed by carbonic anhydrases (CAs, EC 4.2.1.1) is a crucial physiological reaction for the survival of all living organisms because it is connected with numerous biosynthetic and biochemical pathways requiring CO2 or HCO3-, such as respiration, photosynthesis, carboxylation reactions, pH homeostasis, secretion of electrolytes, transport of CO2, bicarbonate, etc. AREAS COVERED The bacterial genome encodes CAs belonging to the α-, β-, and γ-CA classes able to ensure the survival and/or satisfying the metabolic needs of the bacteria, as demonstrated by in vivo and in vitro experiments. The discovery of new anti-infectives that target new bacterial pathways, such as those involving CAs, may lead to effective therapies against diseases subject to the antibiotic resistance. This aspect is important in pharmaceutical and biomedical research but received little attention till recently. EXPERT OPINION An overview of the potential use of CAs in biomedical applications, as drug targets, bioindicators, and within artificial organs is presented. The discovery of thermostable bacterial CAs allowed the use of CAs in biotechnological applications, but patents related to the use of bacterial CAs in the development of pharmacological agents are scarce.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | | |
Collapse
|
21
|
Del Prete S, Vullo D, Caminiti-Segonds N, Zoccola D, Tambutté S, Supuran CT, Capasso C. Protonography and anion inhibition profile of the α-carbonic anhydrase (CruCA4) identified in the Mediterranean red coral Corallium rubrum. Bioorg Chem 2017; 76:281-287. [PMID: 29223031 DOI: 10.1016/j.bioorg.2017.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/06/2017] [Accepted: 12/03/2017] [Indexed: 12/19/2022]
Abstract
CruCA4 is a secreted isoform of the α-carbonic anhydrase (CA, EC 4.2.1.1) family, which has been identified in the octocoral Corallium rubrum. This enzyme is involved in the calcification process leading to the formation of the coral calcium carbonate skeleton. We report here experiments performed on the recombinant CruCA4 with the technique of protonography that can be used to detect in a simple way the enzyme activity. We have also investigated the inhibition profile of CruCA4 with one major class of CA inhibitors, the inorganic anions. A range of weak and moderate inhibitors have been identified having KI in the range of 1-100 mM, among which the halides, pseudohalides, bicarbonate, sulfate, nitrate, nitrite, and many complex inorganic anions. Stronger inhibitors were sulfamide, sulfamate, phenylboronic acid, phenylarsonic acid, and diethylditiocarbamate, which showed a better affinity for this enzyme, with KI in the range of 75 μM-0.60 mM. All these anions/small molecules probably coordinate to the Zn(II) ion within the CA active site as enzyme inhibition mechanism.
Collapse
Affiliation(s)
- Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy
| | - Daniela Vullo
- Università degli Studi di Firenze, Dipartimento Di Chimica, Laboratorio di Chimica Bioinorganica, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | | | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98 000, Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 Quai Antoine 1°, 98 000, Monaco
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, Napoli, Italy.
| |
Collapse
|
22
|
An Overview of the Bacterial Carbonic Anhydrases. Metabolites 2017; 7:metabo7040056. [PMID: 29137134 PMCID: PMC5746736 DOI: 10.3390/metabo7040056] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Bacteria encode carbonic anhydrases (CAs, EC 4.2.1.1) belonging to three different genetic families, the α-, β-, and γ-classes. By equilibrating CO2 and bicarbonate, these metalloenzymes interfere with pH regulation and other crucial physiological processes of these organisms. The detailed investigations of many such enzymes from pathogenic and non-pathogenic bacteria afford the opportunity to design both novel therapeutic agents, as well as biomimetic processes, for example, for CO2 capture. Investigation of bacterial CA inhibitors and activators may be relevant for finding antibiotics with a new mechanism of action.
Collapse
|
23
|
Del Prete S, Perfetto R, Rossi M, Alasmary FAS, Osman SM, AlOthman Z, Supuran CT, Capasso C. A one-step procedure for immobilising the thermostable carbonic anhydrase (SspCA) on the surface membrane of Escherichia coli. J Enzyme Inhib Med Chem 2017; 32:1120-1128. [PMID: 28791907 PMCID: PMC6010132 DOI: 10.1080/14756366.2017.1355794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The carbonic anhydrase superfamily (CA, EC 4.2.1.1) of metalloenzymes is present in all three domains of life (Eubacteria, Archaea, and Eukarya), being an interesting example of convergent/divergent evolution, with its seven families (α-, β-, γ-, δ-, ζ-, η-, and θ-CAs) described so far. CAs catalyse the simple, but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Recently, our groups characterised the α-CA from the thermophilic bacterium, Sulfurihydrogenibium yellowstonense finding a very high catalytic activity for the CO2 hydration reaction (kcat = 9.35 × 105 s-1 and kcat/Km = 1.1 × 108 M-1 s-1) which was maintained after heating the enzyme at 80 °C for 3 h. This highly thermostable SspCA was covalently immobilised within polyurethane foam and onto the surface of magnetic Fe3O4 nanoparticles. Here, we describe a one-step procedure for immobilising the thermostable SspCA directly on the surface membrane of Escherichia coli, using the INPN domain of Pseudomonas syringae. This strategy has clear advantages with respect to other methods, which require as the first step the production and the purification of the biocatalyst, and as the second step the immobilisation of the enzyme onto a specific support. Our results demonstrate that thermostable SspCA fused to the INPN domain of P. syringae ice nucleation protein (INP) was correctly expressed on the outer membrane of engineered E. coli cells, affording for an easy approach to design biotechnological applications for this highly effective thermostable catalyst.
Collapse
Affiliation(s)
- Sonia Del Prete
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy.,b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | - Rosa Perfetto
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Mosè Rossi
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Fatmah A S Alasmary
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Sameh M Osman
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | - Clemente Capasso
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| |
Collapse
|
24
|
Sequence Analysis, Kinetic Constants, and Anion Inhibition Profile of the Nacrein-Like Protein (CgiNAP2X1) from the Pacific Oyster Magallana gigas (Ex-Crassostrea gigas). Mar Drugs 2017; 15:md15090270. [PMID: 28846630 PMCID: PMC5618409 DOI: 10.3390/md15090270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022] Open
Abstract
The carbonic anhydrase (CA, EC 4.2.1.1) superfamily of metalloenzymes catalyzes the hydration of carbon dioxide to bicarbonate and protons. The catalytically active form of these enzymes incorporates a metal hydroxide derivative, the formation of which is the rate-determining step of catalytic reaction, being affected by the transfer of a proton from a metal-coordinated water molecule to the environment. Here, we report the cloning, expression, and purification of a particular CA, i.e., nacrein-like protein encoded in the genome of the Pacific oyster Magallana gigas (previously known as Crassostrea gigas). Furthermore, the amino acid sequence, kinetic constants, and anion inhibition profile of the recombinant enzyme were investigated for the first time. The new protein, CgiNAP2X1, is highly effective as catalyst for the CO2 hydration reaction, based on the measured kinetic parameters, i.e., kcat = 1.0 × 106 s−1 and kcat/KM = 1.2 × 108 M−1·s−1. CgiNAP2X1 has a putative signal peptide, which probably allows an extracellular localization of the protein. The inhibition data demonstrated that the best anion inhibitors of CgiNAP2X1 were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed a micromolar affinity for this enzyme, with KIs in the range of 76–87 μM. These studies may add new information on the physiological role of the molluskan CAs in the biocalcification processes.
Collapse
|
25
|
Anion inhibitors of the β-carbonic anhydrase from the pathogenic bacterium responsible of tularemia, Francisella tularensis. Bioorg Med Chem 2017; 25:4800-4804. [PMID: 28754318 DOI: 10.1016/j.bmc.2017.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/29/2017] [Accepted: 07/15/2017] [Indexed: 11/21/2022]
Abstract
A β-class carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Francisella tularensis (FtuβCA) was cloned and purified, and the anion inhibition profile was investigated. Based on the measured kinetic parameters for the enzyme catalyzed CO2 hydration reaction (kcat of 9.8×105s-1 and a kcat/KM of 8.9×107M-1s-1), FtuβCA is a highly effective enzyme. The activity of FtuβCA was not inhibited by a range of anions that do not typically coordinate Zn(II) effectively, including perchlorate, tetrafluoroborate, and hexafluorophosphate. Surprisingly, some anions which generally complex well with many cations, including Zn(II), also did not effectively inhibit FtuβCA, e.g., fluoride, cyanide, azide, nitrite, bisulphite, sulfate, tellurate, perrhenate, perrhuthenate, and peroxydisulfate. However, the most effective inhibitors were in the range of 90-94µM (sulfamide, sulfamic acid, phenylarsonic and phenylboronic acid). N,N-Diethyldithiocarbamate (KI of 0.31mM) was a moderately potent inhibitor. As Francisella tularensis is the causative agent of tularemia, the discovery of compounds that can interfere with the life cycle of this pathogen may result in novel opportunities to fight antibiotic drug resistance.
Collapse
|
26
|
Carbonic Anhydrase from Porphyromonas Gingivalis as a Drug Target. Pathogens 2017; 6:pathogens6030030. [PMID: 28714894 PMCID: PMC5617987 DOI: 10.3390/pathogens6030030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
Periodontitis originates from a microbial synergy causing the development of a mouth microbial imbalance (dysbiosis), consisting of a microbial community composed of anaerobic bacteria. Most studies concerning the treatment of periodontitis have primarily take into account the Gram-negative bacterium Porphyromonas gingivalis, because it is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. Here, we focus our attention on the study of the carbonic anhydrases (CAs, EC 4.2.1.1) encoded in the genome of this pathogen as a possible drug target. Carbonic anhydrases are a superfamily of metalloenzymes, which catalyze the simple but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Bacterial CAs have attracted significant attention for affecting the survival, invasion, and pathogenicity of many microorganisms. The P. gingivalis genome encodes for two CAs belonging to β-CA (PgiCAβ) and γ-CA (PgiCAγ) families. These two enzymes were cloned, heterologously expressed in Escherichia coli, and purified to homogeneity. Moreover, they were subject to extensive inhibition studies using the classical CA inhibitors (sulfonamides and anions) with the aim of identifying selective inhibitors of PgiCAβ and PgiCAγ to be used as pharmacological tools for P. gingivalis eradication.
Collapse
|
27
|
Jun SY, Kim SH, Kanth BK, Lee J, Pack SP. Expression and characterization of a codon-optimized alkaline-stable carbonic anhydrase from Aliivibrio salmonicida for CO 2 sequestration applications. Bioprocess Biosyst Eng 2016; 40:413-421. [PMID: 27896426 DOI: 10.1007/s00449-016-1709-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 11/17/2016] [Indexed: 11/28/2022]
Abstract
The CO2 mineralization process, accelerated by carbonic anhydrase (CA) was proposed for the efficient capture and storage of CO2, the accumulation of which in the atmosphere is the main cause of global warming. Here, we characterize a highly stable form of the cloned CA from the Gram-negative marine bacterium Aliivibrio salmonicida, named ASCA that can promote CO2 absorption in an alkaline solvent required for efficient carbon capture. We designed a mature form of ASCA (mASCA) using a codon optimization of ASCA gene and removal of ASCA signal peptide. mASCA was highly expressed (255 mg/L) with a molecular weight of approximately 26 kDa. The mASCA enzyme exhibited stable esterase activity within a temperature range of 10-60 °C and a pH range of 6-11. mASCA activity remained stable for 48 h at pH 10. We also investigated its inhibition profiles using inorganic anions, such as acetazolamide, sulfanilamide, iodide, nitrate, and azide. We also demonstrate that mASCA is capable of catalyzing the conversion of CO2 to CaCO3 (calcite form) in the presence of Ca2+. It should be noted that mASCA enzyme exhibits high production yield and sufficient stabilities against relatively high temperature and alkaline pH, which are required conditions for the development of more efficient enzymatic CCS systems.
Collapse
Affiliation(s)
- So-Young Jun
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea
| | - Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea
| | - Bashista Kumar Kanth
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Seoul, 04107, Korea.
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea.
| |
Collapse
|