1
|
Ni X, Luo X, Jiang X, Chen W, Bai R. Small-Molecule Tyrosinase Inhibitors for Treatment of Hyperpigmentation. Molecules 2025; 30:788. [PMID: 40005101 PMCID: PMC11858095 DOI: 10.3390/molecules30040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Increasing attention is being focused on skin health currently, especially the excessive deposition of melanin in the skin. Tyrosinase, the rate-limiting enzyme in melanin biosynthesis, is a crucial enzyme in melanin synthesis. However, existing tyrosinase inhibitors pose some degree of toxicity to humans. Therefore, the development of more efficient and low-toxicity tyrosinase inhibitors is urgently needed. This review briefly depicts the melanin biosynthesis process and the crystal structure and catalytic mechanism of tyrosinase. The latest research progress regarding small-molecule tyrosinase inhibitors is also reviewed. Moreover, the structure-function relationships are analyzed and summarized. This is expected to provide new and more scientific insights to enable researchers to explore safer and more potent tyrosinase inhibitors.
Collapse
Affiliation(s)
- Xinhua Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
3
|
Yan Z, Zhang L, Kang Y, Liu S, Li X, Li L, Rui K, Xiao M, Xie Y. Integrating serum pharmacochemistry and network pharmacology to explore potential compounds and mechanisms of Alpiniae oxyphyllae fructus in the treatment of cellular senescence in diabetic kidney disease. Front Med (Lausanne) 2024; 11:1424644. [PMID: 39021818 PMCID: PMC11251962 DOI: 10.3389/fmed.2024.1424644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Background Diabetic kidney disease (DKD), one of the microvascular complications in patients with diabetes mellitus, is a common cause of end-stage renal disease. Cellular senescence is believed to be an essential participant in the pathogenesis of DKD. Although there is evidence that Alpiniae oxyphyllae fructus (AOF) can ameliorate DKD progression and organismal senescence, its ability to ameliorate renal cellular senescence in DKD as well as active components and molecular mechanisms remain to be explored. Purpose This study aimed to investigate the role of AOF in the treatment of cellular senescence in DKD and to explore its active components and potential molecular mechanisms. Methods The pharmacological efficacy of AOF in ameliorating cellular senescence in DKD was assessed by establishing DKD mouse models and HK-2 cells under high glucose stress. UHPLC-QTOF-MS was used to screen the active compounds in AOF, which were used in conjunction with network pharmacology to predict the molecular mechanism of AOF in the treatment of cellular senescence in DKD. Results In vivo experiments showed that AOF reduced GLU, mAlb, Scr, BUN, MDA, SOD levels, and ameliorated renal pathological damage and renal cell senescence in DKD mice. In vitro experiments showed that AOF-containing serum improved the decline in HK-2 cell viability and alleviated cellular senescence under high glucose intervention. The results of the UHPLC-QTOF-MS screened 26 active compounds of AOF. The network pharmacological analyses revealed that Cubebin, 2',6'-dihydroxy-4'-methoxydihydrochalcone, Chalcone base + 3O,1Prenyl, Batatasin IV, and Lucidenolactone were the five core compounds and TP53, SRC, STAT3, PIK3CA, and AKT1 are the five core targets of AOF in the treatment of DKD. Molecular docking simulation results showed that the five core compounds had good binding ability to the five core targets. Western blot validated the network pharmacological prediction results and showed that AOF and AOF-containing serum down-regulate the expression of TP53, and phosphorylation of SRC, STAT3, PIK3CA, and AKT. Conclusion Our study shows that AOF may delay the development of cellular senescence in DKD by down-regulating the levels of TP53, and phosphorylation of SRC, STAT3, PIK3CA, and AKT.
Collapse
Affiliation(s)
- Zijie Yan
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Lin Zhang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Yu Kang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shuman Liu
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| | - Xiaoyan Li
- First Clinical College of Medicine of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lidan Li
- First Clinical College of Medicine of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kai Rui
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Man Xiao
- Key Laboratory of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Shaikh S, Lee EJ, Ahmad K, Choi I. Therapeutic potential and action mechanisms of licochalcone B: a mini review. Front Mol Biosci 2024; 11:1440132. [PMID: 39021879 PMCID: PMC11251949 DOI: 10.3389/fmolb.2024.1440132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Licochalcone B (LicB), a chalcone derived from Glycyrrhiza uralensis and Glycyrrhiza glabra, has received considerable attention due to its diverse pharmacological properties. Accumulated data indicates that LicB has pharmacological effects that include anti-cancer, hepatoprotective, anti-inflammatory, and neuroprotective properties. The action mechanism of LicB has been linked to several molecular targets, such as phosphoinositide 3-kinase/Akt/mammalian target of rapamycin, p53, nuclear factor-κB, and p38, and the involvements of caspases, apoptosis, mitogen-activated protein kinase-associated inflammatory pathways, and anti-inflammatory nuclear factor erythroid 2-related factor 2 signaling pathways highlight the multifaceted therapeutic potential of LicB. This review systematically updates recent findings regarding the pharmacological effects of LicB, and the mechanistic pathways involved, and highlights the potential use of LicB as a promising lead compound for drug discovery.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
5
|
Hsieh MJ, Lin CC, Lo YS, Chuang YC, Ho HY, Chen MK. Semilicoisoflavone B induces oral cancer cell apoptosis by targeting claspin and ATR-Chk1 signaling pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:2417-2428. [PMID: 38197544 DOI: 10.1002/tox.24107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/11/2024]
Abstract
The prevalence of oral squamous cell carcinoma (OSCC) is increasing worldwide mainly due to poor oral hygiene and unrestricted lifestyle. Advanced-stage OSCC is associated with poor prognosis and a 5-year survival rate of only 30%-50%. The present study was designed to investigate the anticancer effect and mode of action of Glycyrrhiza-derived semilicoisoflavone B (SFB) in 5-fluorourasil (5FU)-resistant human OSCC cell lines. The study findings revealed that SFB significantly reduces OSCC cell viability and colony formation ability by arresting cell cycle at the G2/M and S phases and reducing the expressions of key cell cycle regulators including cyclin A, cyclin B, CDC2, and CDK2. The compound caused a significant induction in the percentage of nuclear condensation and apoptotic cells in OSCC. Regarding pro-apoptotic mode of action, SFB was found to increase Fas-associated death domain and death receptor 5 expressions and reduce decoy receptor 2 expression, indicating involvement of extrinsic pathway. Moreover, SFB was found to increase pro-apoptotic Bim expression and reduce anti-apoptotic Bcl-2 and Bcl-xL expressions, indicating involvement of intrinsic pathway. Moreover, SFB-mediated induction in cleaved caspases 3, 8, and 9 and cleaved poly(ADP-ribose) polymerase confirmed the induction of caspase-mediated apoptotic pathways. Regarding upstream signaling pathway, SFB was found to reduce extracellular signal regulated kinase 1/2 (ERK) phosphorylation to execute its pro-apoptotic activity. The Human Apoptotic Array findings revealed that SFB suppresses claspin expression, which in turn caused reduced phosphorylation of ATR, checkpoint kinase 1 (Chk1), Wee1, and CDC25C, indicating disruption of ATR-Chk1 signaling pathway by SFB. Taken together, these findings indicate that SFB acts as a potent anticancer compound against 5FU-resistant OSCC by modulating mitogen-activated protein kinase (MAPK) and ATR-Chk1 signaling pathways.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Karati D, Mukherjee S, Roy S. A Promising Drug Candidate as Potent Therapeutic Approach for Neuroinflammation and Its In Silico Justification of Chalcone Congeners: a Comprehensive Review. Mol Neurobiol 2024; 61:1873-1891. [PMID: 37801205 DOI: 10.1007/s12035-023-03632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Multiple genetic, environmental, and immunological variables cause neuropsychiatric disorders (NPDs). The induced inflammatory immune response is also connected to the severity and treatment outcomes of various NPDs. These reactions also significantly impact numerous brain functions such as GABAergic signaling and neurotransmitter synthesis through inflammatory cytokines and chemokines. Chalcones (1,3-diaryl-2-propen-1-ones) and their heterocyclic counterparts are flavonoids with various biological characteristics including anti-inflammatory activity. Several pure chalcones have been clinically authorized or studied in humans. Chalcones are favored for their diagnostic and therapeutic efficacy in neuroinflammation due to their tiny molecular size, easy manufacturing, and flexibility for changes to adjust lipophilicity ideal for BBB penetrability. These compounds reached an acceptable plasma concentration and were well-tolerated in clinical testing. As a result, they are attracting increasing attention from scientists. However, chalcones' therapeutic potential remains largely untapped. This paper is aimed at highlighting the causes of neuroinflammation, more potent chalcone congeners, their mechanisms of action, and relevant structure-activity relationships.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
7
|
Li H, Zhang Y, Dai G, Zhaxi C, Wang Y, Wang S. Identification and quantification of compounds with Angiotensin-converting enzyme inhibitory activity in licorice by UPLC-MS. Food Chem 2023; 429:136962. [PMID: 37517229 DOI: 10.1016/j.foodchem.2023.136962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Licorice is a famous medicine-food herb for treating cardiovascular diseases in many compound prescriptions. Angiotensin-converting enzyme (ACE) is a key target of cardiovascular diseases. Despite its significance, there is limited scientific investigation regarding the ACE inhibitory effects of licorice. In this study, we used an activity-guided approach with an aggregation-induced emission (AIE) fluorescent probe to identify compounds with ACE-inhibitory activity in licorice. Nine components of licorice were found to have ACE inhibitory activity, in which 46 compounds were identified by using UPLC-QTOF-MS. Seven active compounds were found in this study. Among them, licochalcone B had best ACE inhibitory activity (IC50 = 0.24 μM). Finally, an UPLC-Q-MS method was established to quantify the five major active compounds in three batches of licorice. The findings of this study offer valuable insights into the potential of licorice as a source of ACE inhibitors and its relevance in the development of related products.
Collapse
Affiliation(s)
- Haoran Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yicheng Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaole Dai
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ciren Zhaxi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shufang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321016, China.
| |
Collapse
|
8
|
Li J, Zhao R, Miao P, Xu F, Chen J, Jiang X, Hui Z, Wang L, Bai R. Discovery of anti-inflammatory natural flavonoids: Diverse scaffolds and promising leads for drug discovery. Eur J Med Chem 2023; 260:115791. [PMID: 37683361 DOI: 10.1016/j.ejmech.2023.115791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Natural products have been utilized for medicinal purposes for millennia, endowing them with a rich source of chemical scaffolds and pharmacological leads for drug discovery. Among the vast array of natural products, flavonoids represent a prominent class, renowned for their diverse biological activities and promising therapeutic advantages. Notably, their anti-inflammatory properties have positioned them as promising lead compounds for developing novel drugs combating various inflammatory diseases. This review presents a comprehensive overview of flavonoids, highlighting their manifold anti-inflammatory activities and elucidating the underlying pathways in mediating inflammation. Furthermore, this review encompasses systematical classification of flavonoids, related anti-inflammatory targets, involved in vitro and in vivo test models, and detailed statistical analysis. We hope this review will provide researchers engaged in active natural products and anti-inflammatory drug discovery with practical information and potential leads.
Collapse
Affiliation(s)
- Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Peiran Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fengfeng Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
9
|
Tian Y, Zhang Z, Yan A. Discovering the Active Ingredients of Medicine and Food Homologous Substances for Inhibiting the Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms. Molecules 2023; 28:6782. [PMID: 37836625 PMCID: PMC10574661 DOI: 10.3390/molecules28196782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase (mPGES-1) are two key targets in anti-inflammatory therapy. Medicine and food homology (MFH) substances have both edible and medicinal properties, providing a valuable resource for the development of novel, safe, and efficient COX-2 and mPGES-1 inhibitors. In this study, we collected active ingredients from 503 MFH substances and constructed the first comprehensive MFH database containing 27,319 molecules. Subsequently, we performed Murcko scaffold analysis and K-means clustering to deeply analyze the composition of the constructed database and evaluate its structural diversity. Furthermore, we employed four supervised machine learning algorithms, including support vector machine (SVM), random forest (RF), deep neural networks (DNNs), and eXtreme Gradient Boosting (XGBoost), as well as ensemble learning, to establish 640 classification models and 160 regression models for COX-2 and mPGES-1 inhibitors. Among them, ModelA_ensemble_RF_1 emerged as the optimal classification model for COX-2 inhibitors, achieving predicted Matthews correlation coefficient (MCC) values of 0.802 and 0.603 on the test set and external validation set, respectively. ModelC_RDKIT_SVM_2 was identified as the best regression model based on COX-2 inhibitors, with root mean squared error (RMSE) values of 0.419 and 0.513 on the test set and external validation set, respectively. ModelD_ECFP_SVM_4 stood out as the top classification model for mPGES-1 inhibitors, attaining MCC values of 0.832 and 0.584 on the test set and external validation set, respectively. The optimal regression model for mPGES-1 inhibitors, ModelF_3D_SVM_1, exhibited predictive RMSE values of 0.253 and 0.35 on the test set and external validation set, respectively. Finally, we proposed a ligand-based cascade virtual screening strategy, which integrated the well-performing supervised machine learning models with unsupervised learning: the self-organized map (SOM) and molecular scaffold analysis. Using this virtual screening workflow, we discovered 10 potential COX-2 inhibitors and 15 potential mPGES-1 inhibitors from the MFH database. We further verified candidates by molecular docking, investigated the interaction of the candidate molecules upon binding to COX-2 or mPGES-1. The constructed comprehensive MFH database has laid a solid foundation for the further research and utilization of the MFH substances. The series of well-performing machine learning models can be employed to predict the COX-2 and mPGES-1 inhibitory capabilities of unknown compounds, thereby aiding in the discovery of anti-inflammatory medications. The COX-2 and mPGES-1 potential inhibitor molecules identified through the cascade virtual screening approach provide insights and references for the design of highly effective and safe novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yujia Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, China; (Y.T.); (Z.Z.)
| | - Zhixing Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, China; (Y.T.); (Z.Z.)
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing 100029, China; (Y.T.); (Z.Z.)
| |
Collapse
|
10
|
Olloquequi J, Ettcheto M, Cano A, Fortuna A, Bicker J, Sánchez-Lopez E, Paz C, Ureña J, Verdaguer E, Auladell C, Camins A. Licochalcone A: A Potential Multitarget Drug for Alzheimer's Disease Treatment. Int J Mol Sci 2023; 24:14177. [PMID: 37762479 PMCID: PMC10531537 DOI: 10.3390/ijms241814177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Licochalcone A (Lico-A) is a flavonoid compound derived from the root of the Glycyrrhiza species, a plant commonly used in traditional Chinese medicine. While the Glycyrrhiza species has shown promise in treating various diseases such as cancer, obesity, and skin diseases due to its active compounds, the investigation of Licochalcone A's effects on the central nervous system and its potential application in Alzheimer's disease (AD) treatment have garnered significant interest. Studies have reported the neuroprotective effects of Lico-A, suggesting its potential as a multitarget compound. Lico-A acts as a PTP1B inhibitor, enhancing cognitive activity through the BDNF-TrkB pathway and exhibiting inhibitory effects on microglia activation, which enables mitigation of neuroinflammation. Moreover, Lico-A inhibits c-Jun N-terminal kinase 1, a key enzyme involved in tau phosphorylation, and modulates the brain insulin receptor, which plays a role in cognitive processes. Lico-A also acts as an acetylcholinesterase inhibitor, leading to increased levels of the neurotransmitter acetylcholine (Ach) in the brain. This mechanism enhances cognitive capacity in individuals with AD. Finally, Lico-A has shown the ability to reduce amyloid plaques, a hallmark of AD, and exhibits antioxidant properties by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant defense mechanisms. In the present review, we discuss the available findings analyzing the potential of Lico-A as a neuroprotective agent. Continued research on Lico-A holds promise for the development of novel treatments for cognitive disorders and neurodegenerative diseases, including AD. Further investigations into its multitarget action and elucidation of underlying mechanisms will contribute to our understanding of its therapeutic potential.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Departament of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Av. Joan XXIII 27/31, 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Miren Ettcheto
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Reus, Spain
| | - Amanda Cano
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Ace Alzheimer Center Barcelona, International University of Catalunya (UIC), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (J.B.)
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), 3000-548 Coimbra, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (J.B.)
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), 3000-548 Coimbra, Portugal
| | - Elena Sánchez-Lopez
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Jesús Ureña
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Reus, Spain
| |
Collapse
|
11
|
Gao L, Zhang HL, Tan XY, Wang YG, Song H, Yuan VL, Liao XH. Sensitive Quantitative In Vivo Assay for Evaluating the Effects of Biomolecules on Hair Growth and Coloring Using Direct Microinjections into Mouse Whisker Follicles. Biomolecules 2023; 13:1076. [PMID: 37509112 PMCID: PMC10377598 DOI: 10.3390/biom13071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Many people suffer from hair loss and abnormal skin pigmentation, highlighting the need for simple assays to support drug discovery research. Current assays have various limitations, such as being in vitro only, not sensitive enough, or unquantifiable. We took advantage of the bilateral symmetry and large size of mouse whisker follicles to develop a novel in vivo assay called "whisker follicle microinjection assay". In this assay, we plucked mouse whiskers and then injected molecules directly into one side of the whisker follicles using microneedles that were a similar size to the whiskers, and we injected solvent on the other side as a control. Once the whiskers grew out again, we quantitatively measured their length and color intensity to evaluate the effects of the molecules on hair growth and coloring. Several chemicals and proteins were used to test this assay. The chemicals minoxidil and ruxolitinib, as well as the protein RSPO1, promoted hair growth. The effect of the clinical drug minoxidil could be detected at a concentration as low as 0.001%. The chemical deoxyarbutin inhibited melanin production. The protein Nbl1 was identified as a novel hair-growth inhibitor. In conclusion, we successfully established a sensitive and quantitative in vivo assay to evaluate the effects of chemicals and proteins on hair growth and coloring and identified a novel regulator by using this assay. This whisker follicle microinjection assay will be useful when investigating protein functions and when developing drugs to treat hair loss and abnormal skin pigmentation.
Collapse
Affiliation(s)
- Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - He-Li Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao-Yang Tan
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yan-Ge Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Hongzhi Song
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Vicky Lan Yuan
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
He L, Kang Q, Zhang Y, Chen M, Wang Z, Wu Y, Gao H, Zhong Z, Tan W. Glycyrrhizae Radix et Rhizoma: The popular occurrence of herbal medicine applied in classical prescriptions. Phytother Res 2023. [PMID: 37196671 DOI: 10.1002/ptr.7869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Glycyrrhizae Radix et Rhizoma is a well-known herbal medicine with a wide range of pharmacological functions that has been used throughout Chinese history. This review presents a comprehensive introduction to this herb and its classical prescriptions. The article discusses the resources and distribution of species, methods of authentication and determination chemical composition, quality control of the original plants and herbal medicines, dosages use, common classical prescriptions, indications, and relevant mechanisms of the active content. Pharmacokinetic parameters, toxicity tests, clinical trials, and patent applications are discussed. The review will provide a good starting point for the research and development of classical prescriptions to develop herbal medicines for clinical use.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zefei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yonghui Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hetong Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Hsieh MJ, Ho HY, Lo YS, Lin CC, Chuang YC, Abomughaid MM, Hsieh MC, Chen MK. Semilicoisoflavone B Induces Apoptosis of Oral Cancer Cells by Inducing ROS Production and Downregulating MAPK and Ras/Raf/MEK Signaling. Int J Mol Sci 2023; 24:4505. [PMID: 36901935 PMCID: PMC10003514 DOI: 10.3390/ijms24054505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common type of cancer worldwide. Despite advancement in treatment, advanced-stage OSCC is associated with poor prognosis and high mortality. The present study aimed to investigate the anticancer activities of semilicoisoflavone B (SFB), which is a natural phenolic compound isolated from Glycyrrhiza species. The results revealed that SFB reduces OSCC cell viability by targeting cell cycle and apoptosis. The compound caused cell cycle arrest at the G2/M phase and downregulated the expressions of cell cycle regulators including cyclin A and cyclin-dependent kinase (CDK) 2, 6, and 4. Moreover, SFB induced apoptosis by activating poly-ADP-ribose polymerase (PARP) and caspases 3, 8, and 9. It increased the expressions of pro-apoptotic proteins Bax and Bak, reduced the expressions of anti-apoptotic proteins Bcl-2 and Bcl-xL, and increased the expressions of the death receptor pathway protein Fas cell surface death receptor (FAS), Fas-associated death domain protein (FADD), and TNFR1-associated death domain protein (TRADD). SFB was found to mediate oral cancer cell apoptosis by increasing reactive oxygen species (ROS) production. The treatment of the cells with N-acetyl cysteine (NAC) caused a reduction in pro-apoptotic potential of SFB. Regarding upstream signaling, SFB reduced the phosphorylation of AKT, ERK1/2, p38, and JNK1/2 and suppressed the activation of Ras, Raf, and MEK. The human apoptosis array conducted in the study identified that SFB downregulated survivin expression to induce oral cancer cell apoptosis. Taken together, the study identifies SFB as a potent anticancer agent that might be used clinically to manage human OSCC.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Mu-Kuan Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| |
Collapse
|
14
|
Çevik D, Erdogan S, Serttas R, Kan Y, Kırmızıbekmez H. Cytotoxic and Antimigratory Activity of Retrochalcones from Glycyrrhiza echinata L. on Human Cancer Cells. Chem Biodivers 2023; 20:e202200589. [PMID: 36448364 DOI: 10.1002/cbdv.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Cytotoxic activity-guided fractionation studies on Glycyrrhiza echinata roots led to the isolation of eight compounds (1-8). Chemical structures of the isolates were identified by NMR and MS analysis. Among the tested molecules, retrochalcones namely echinatin (3) (IC50 =23.45-41.83 μM), licochalcone B (4) (IC50 =36.04-39.53 μM) and tetrahydroxylmethoxychalcone (5) (IC50 =7.09-80.81 μM) were the most active ones against PC3, MCF7 and HepG2 cells. Moreover, 5 exhibited selectivity on prostate cancer cells (SI: 5.19). Hoechst staining and Annexin V/PI binding assays as well as cell cycle analysis on the compounds 3 (23 μM) and 5 (5 and 7 μM) demonstrated that these retrochalcones induced apoptosis and significantly suppressed cell cycle in G1 and G2 /M phases. Furthermore, 3 and 5 showed antimigratory effects on PC3 cells by wound healing assay. The results indicated that tested retrochalcones most particularly 5 could be potential anticancer drug candidates that prevent proliferation and migration of cancer cells.
Collapse
Affiliation(s)
- Dicle Çevik
- Department of Pharmacognosy, Faculty of Pharmacy, Trakya University, 22030, Balkan Campus, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, 22030, Balkan Campus, Edirne, Turkey
| | - Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University, 22030, Balkan Campus, Edirne, Turkey
| | - Yüksel Kan
- Department of Medicinal Plants, Faculty of Agriculture, Selçuk University, 42070, Konya, Turkey
| | - Hasan Kırmızıbekmez
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755, Kayışdağı, İstanbul, Turkey
| |
Collapse
|
15
|
Liu Z, Gao H, Zhao Z, Huang M, Wang S, Zhan J. Status of research on natural protein tyrosine phosphatase 1B inhibitors as potential antidiabetic agents: Update. Biomed Pharmacother 2023; 157:113990. [PMID: 36459712 DOI: 10.1016/j.biopha.2022.113990] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a crucial therapeutic target for multiple human diseases comprising type 2 diabetes (T2DM) and obesity because it is a seminal part of a negative regulator in both insulin and leptin signaling pathways. PTP1B inhibitors increase insulin receptor sensitivity and have the ability to cure insulin resistance-related diseases. However, the few PTP1B inhibitors that entered the clinic (Ertiprotafib, ISIS-113715, Trodusquemine, and JTT-551) were discontinued due to side effects or low selectivity. Molecules with broad chemical diversity extracted from natural products have been reported to be potent PTP1B inhibitors with few side effects. This article summarizes the recent PTP1B inhibitors extracted from natural products, clarifying the current research progress, and providing new options for designing new and effective PTP1B inhibitors.
Collapse
Affiliation(s)
- Zhenyang Liu
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| | - Ziyu Zhao
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Mengrui Huang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Shengnan Wang
- School of Life Science, Ludong University, Yantai, Shandong 264025, China
| | - Jiuyu Zhan
- School of Life Science, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
16
|
Shao X, Chen X, Wang Z, Zhu C, Du Y, Tang D, Ji S. Diprenylated flavonoids from licorice induce death of SW480 colorectal cancer cells by promoting autophagy: Activities of lupalbigenin and 6,8-diprenylgenistein. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115488. [PMID: 35728712 DOI: 10.1016/j.jep.2022.115488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice is a well-known herbal medicine, and we previously found that several licorice prenylated flavonoids could cause death of SW480 colorectal cancer cells by promoting autophagy. Given many kinds of prenylated flavonoids in licorice, the activities of other compounds deserve further investigation. In addition, the contribution of isoprenyl groups on the autophagy promotion activities has not been clarified. AIM OF THE STUDY This study aimed to investigate whether lupalbigenin (LPB) and 6,8-diprenylgenistein (DPG), two licorice diprenylated flavonoids, could induce autophagic cell death of SW480 cells, and clarify the contribution of isoprenyl groups. MATERIALS AND METHODS Cytotoxic activities of LPB and DPG were tested by using an MTT method, and apoptosis induction effects were evaluated by PI-Annexin V staining-based flow cytometry and protein levels of caspase-3 and PARP-1. Autophagy promotion effects of LPB and DPG were assessed by protein levels of LC3, p62, Akt and mTOR as well as number of autophagosomes in cells, and autophagy inhibitor chloroquine (CQ) was involved to identify the role of autophagy on LPB or DPG-caused death of SW480 cells. In addition, two groups of structurally similar diprenylated, mono-prenylated and free flavonoids were obtained from licorice, which were used to investigate the contribution of isoprenyl groups on their autophagy promotion activities. RESULTS Both LPB and DPG significantly induced apoptosis of SW480 cells with strong cytotoxic activities, and meanwhile, they also promoted autophagy probably through the Akt/mTOR signaling pathway. Further studies indicated that LPB and DPG could induce autophagic cell death of SW480 cells. Moreover, isoprenyl groups contributed mainly to the cytotoxic and autophagy promotion activities of licorice prenylated flavonoids. CONCLUSION This study reported for the first time that licorice diprenylated flavonoids LPB and DPG induced death of SW480 cells by promoting autophagy, which was mainly attributed to the isoprenyl groups. The results provided theoretical basis for researches on anti-colorectal cancer drugs and their structural modification.
Collapse
Affiliation(s)
- Xian Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Medical Research Center, Shaoxing People's Hospital, Zhejiang University Shaoxing Hospital, Shaoxing, 312000, China.
| | - Xiaofei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Ziyu Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Cuicui Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
17
|
Xiang J, Kang H, Li HG, Shi YL, Zhang YL, Ruan CL, Liu LH, Gao HQ, Luo T, Hu GS, Zhu WL, Jia JM, Chen JC, Fang JB. Competitive CatSper Activators of Progesterone from Rhynchosia volubilis. PLANTA MEDICA 2022; 88:881-890. [PMID: 34359084 PMCID: PMC9439852 DOI: 10.1055/a-1542-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The root Rhynchosia volubilis was widely used for contraception in folk medicine, although its molecular mechanism on antifertility has not yet been revealed. In human sperm, it was reported that the cation channel of sperm, an indispensable cation channel for the fertilization process, could be regulated by various steroid-like compounds in plants. Interestingly, these nonphysiological ligands would also disturb the activation of the cation channel of sperm induced by progesterone. Therefore, this study aimed to explore whether the compounds in R. volubilis affect the physiological regulation of the cation channel of sperm. The bioguided isolation of the whole herb of R. volubilis has resulted in the novel discovery of five new prenylated isoflavonoids, rhynchones A - E (1: - 5: ), a new natural product, 5'-O-methylphaseolinisoflavan (6: ) (1H and 13C NMR data, Supporting Information), together with twelve known compounds (7: - 18: ). Their structures were established by extensive spectroscopic analyses and drawing a comparison with literature data, while their absolute configurations were determined by electronic circular dichroism calculations. The experiments of intracellular Ca2+ signals and patch clamping recordings showed that rhynchone A (1: ) significantly reduced cation channel of sperm activation by competing with progesterone. In conclusion, our findings indicat that rhynchone A might act as a contraceptive compound by impairing the activation of the cation channel of sperm and thus prevent fertilization.
Collapse
Affiliation(s)
- Jin Xiang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Kang
- Institute of Life Science and School of Life Science, Nanchang University, Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, China
| | - Hong-Gang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Long Shi
- CAS Key Laboratory of Receptor Research & Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Li Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chang-Lei Ruan
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Hui Liu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han-Qi Gao
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, China
| | - Gao-Sheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei-Liang Zhu
- CAS Key Laboratory of Receptor Research & Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jia-Chun Chen
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Bo Fang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Shang Z, Tian Y, Xiong M, Yi Y, Qiao X, Yang Y, Ye M. Characterization of prenylated phenolics in Glycyrrhiza uralensis by offline two-dimensional liquid chromatography/mass spectrometry coupled with mass defect filter. J Pharm Biomed Anal 2022; 220:115009. [PMID: 36029604 DOI: 10.1016/j.jpba.2022.115009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Prenylated phenolics are an important class of natural products. In this study, an efficient strategy was established to systematically characterize the prenylated phenolics in Glycyrrhiza uralensis, a popular herbal medicine. Firstly, offline two-dimensional liquid chromatography/mass spectrometry (2DLC/MS) coupled with mass defect filter (MDF) technology was used to preliminarily detect 1631 potential prenylated phenolics. Secondly, the tandem mass spectrometry fragmentation features of different types of prenylated phenolics were investigated using 29 reference standards. Diagnostic fragmentations included neutral loss (NL) of 42 Da for the annular type and NL of 56 Da for the catenulate type in the positive ion mode, and NL of 56 Da for A-ring prenyl groups and NL of 69 Da for B-ring prenyl groups in the negative ion mode. As a result, the prenylation types, substitution sites, and adjacent OH and OCH3 substitutions of 320 prenylated phenolics in G. uralensis were rapidly characterized. Moreover, three prenylated dihydrostilbenes were purified from the aerial part of G. uralensis to verify the structural characterizations.
Collapse
Affiliation(s)
- Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yungang Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Ming Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yanfang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
19
|
Wu Z, Singh SK, Lyu R, Pattanaik S, Wang Y, Li Y, Yuan L, Liu Y. Metabolic engineering to enhance the accumulation of bioactive flavonoids licochalcone A and echinatin in Glycyrrhiza inflata (Licorice) hairy roots. FRONTIERS IN PLANT SCIENCE 2022; 13:932594. [PMID: 36061790 PMCID: PMC9434314 DOI: 10.3389/fpls.2022.932594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023]
Abstract
Echinatin and licochalcone A (LCA) are valuable chalcones preferentially accumulated in roots and rhizomes of licorice (Glycyrrhiza inflata). The licorice chalcones (licochalcones) are valued for their anti-inflammatory, antimicrobial, and antioxidant properties and have been widely used in cosmetic, pharmaceutical, and food industries. However, echinatin and LCA are accumulated in low quantities, and the biosynthesis and regulation of licochalcones have not been fully elucidated. In this study, we explored the potential of a R2R3-MYB transcription factor (TF) AtMYB12, a known regulator of flavonoid biosynthesis in Arabidopsis, for metabolic engineering of the bioactive flavonoids in G. inflata hairy roots. Overexpression of AtMYB12 in the hairy roots greatly enhanced the production of total flavonoids (threefold), echinatin (twofold), and LCA (fivefold). RNA-seq analysis of AtMYB12-overexpressing hairy roots revealed that expression of phenylpropanoid/flavonoid pathway genes, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3'-hydroxylase (F3'H), is significantly induced compared to the control. Transient promoter activity assay indicated that AtMYB12 activates the GiCHS1 promoter in plant cells, and mutation to the MYB-binding motif in the GiCHS1 promoter abolished activation. In addition, transcriptomic analysis revealed that AtMYB12 overexpression reprograms carbohydrate metabolism likely to increase carbon flux into flavonoid biosynthesis. Further, AtMYB12 activated the biotic defense pathways possibly by activating the salicylic acid and jasmonic acid signaling, as well as by upregulating WRKY TFs. The transcriptome of AtMYB12-overexpressing hairy roots serves as a valuable source in the identification of potential candidate genes involved in LCA biosynthesis. Taken together, our findings suggest that AtMYB12 is an effective gene for metabolic engineering of valuable bioactive flavonoids in plants.
Collapse
Affiliation(s)
- Zhigeng Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Yongliang Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
20
|
Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules 2022; 27:molecules27144491. [PMID: 35889363 PMCID: PMC9323352 DOI: 10.3390/molecules27144491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
The review presents prenylated flavonoids as potential therapeutic agents for the treatment of topical skin infections and wounds, as they can restore the balance in the wound microenvironment. A thorough two-stage search of scientific papers published between 2000 and 2022 was conducted, with independent assessment of results by two reviewers. The main criteria were an MIC (minimum inhibitory concentration) of up to 32 µg/mL, a microdilution/macrodilution broth method according to CLSI (Clinical and Laboratory Standards Institute) or EUCAST (European Committee on Antimicrobial Susceptibility Testing), pathogens responsible for skin infections, and additional antioxidant, anti-inflammatory, and low cytotoxic effects. A total of 127 structurally diverse flavonoids showed promising antimicrobial activity against pathogens affecting wound healing, predominantly Staphylococcus aureus strains, but only artocarpin, diplacone, isobavachalcone, licochalcone A, sophoraflavanone G, and xanthohumol showed multiple activity, including antimicrobial, antioxidant, and anti-inflammatory along with low cytotoxicity important for wound healing. Although prenylated flavonoids appear to be promising in wound therapy of humans, and also animals, their activity was measured only in vitro and in vivo. Future studies are, therefore, needed to establish rational dosing according to MIC and MBC (minimum bactericidal concentration) values, test potential toxicity to human cells, measure healing kinetics, and consider formulation in smart drug release systems and/or delivery technologies to increase their bioavailability.
Collapse
|
21
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
22
|
Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and Their Constituents as Active Cosmeceutical Ingredients. COSMETICS 2022. [DOI: 10.3390/cosmetics9010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The interest in plant extracts and natural compounds in cosmetic formulations is growing. Natural products may significantly improve cosmetics performance since they have both cosmetic and therapeutic-like properties, known as cosmeceutical effects. Glycyrrhiza genus, belonging to the Leguminosae family, comprises more than 30 species, widely distributed worldwide. The rhizomes and roots are the most important medicinal parts currently used in pharmaceutical industries and in the production of functional foods and food supplements. In the last few years, the interest in their potential activities in cosmetic formulations has greatly increased. Glycyrrhiza spp. extracts are widely implemented in cosmetic products for their good whitening effect. The biological effects of Glycyrrhiza extracts are especially ascribable to the occurrence of specialized metabolites belonging to the flavonoid class. This review focuses on the botany and the chemistry of the main investigated Glycyrrhiza spp. (G. glabra, G. uralensis, and G. inflata) along with their cosmeceutical activities categorized as skin anti-aging, photoprotective, hair care, and anti-acne. It has been highlighted how, along with Glycyrrhiza extracts, three main flavonoids namely licochalcone A, glabridin, and dehydroglyasperin C are the most investigated compounds. It is noteworthy that other molecules from licorice show potential cosmeceutical effects. These data suggest further investigations to clarify their potential value for cosmetic industries.
Collapse
|
23
|
Mata-Torres G, Andrade-Cetto A, Espinoza-Hernández F. Approaches to Decrease Hyperglycemia by Targeting Impaired Hepatic Glucose Homeostasis Using Medicinal Plants. Front Pharmacol 2021; 12:809994. [PMID: 35002743 PMCID: PMC8733686 DOI: 10.3389/fphar.2021.809994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Liver plays a pivotal role in maintaining blood glucose levels through complex processes which involve the disposal, storage, and endogenous production of this carbohydrate. Insulin is the hormone responsible for regulating hepatic glucose production and glucose storage as glycogen, thus abnormalities in its function lead to hyperglycemia in obese or diabetic patients because of higher production rates and lower capacity to store glucose. In this context, two different but complementary therapeutic approaches can be highlighted to avoid the hyperglycemia generated by the hepatic insulin resistance: 1) enhancing insulin function by inhibiting the protein tyrosine phosphatase 1B, one of the main enzymes that disrupt the insulin signal, and 2) direct regulation of key enzymes involved in hepatic glucose production and glycogen synthesis/breakdown. It is recognized that medicinal plants are a valuable source of molecules with special properties and a wide range of scaffolds that can improve hepatic glucose metabolism. Some molecules, especially phenolic compounds and terpenoids, exhibit a powerful inhibitory capacity on protein tyrosine phosphatase 1B and decrease the expression or activity of the key enzymes involved in the gluconeogenic pathway, such as phosphoenolpyruvate carboxykinase or glucose 6-phosphatase. This review shed light on the progress made in the past 7 years in medicinal plants capable of improving hepatic glucose homeostasis through the two proposed approaches. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content.
Collapse
Affiliation(s)
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
24
|
Fu S, Cheng R, Deng Z, Liu T. Qualitative analysis of chemical components in Lianhua Qingwen capsule by HPLC-Q Exactive-Orbitrap-MS coupled with GC-MS. J Pharm Anal 2021; 11:709-716. [PMID: 35028175 PMCID: PMC8740115 DOI: 10.1016/j.jpha.2021.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
The Lianhua Qingwen (LHQW) capsule is a popular traditional Chinese medicine for the treatment of viral respiratory diseases. In particular, it has been recently prescribed to treat infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, due to its complex composition, little attention has been directed toward the analysis of chemical constituents present in the LHQW capsule. This study presents a reliable and comprehensive approach to characterizing the chemical constituents present in LHQW by high-performance liquid chromatography-Q Exactive-Orbitrap mass spectrometry (HPLC-Q Exactive-Orbitrap-MS) coupled with gas chromatography-mass spectrometry (GC-MS). An automated library alignment method with a high mass accuracy (within 5 ppm) was used for the rapid identification of compounds. A total of 104 compounds, consisting of alkaloids, flavonoids, phenols, phenolic acids, phenylpropanoids, quinones, terpenoids, and other phytochemicals, were successfully characterized. In addition, the fragmentation pathways and characteristic fragments of some representative compounds were elucidated. GC-MS analysis was conducted to characterize the volatile compounds present in LHQW. In total, 17 compounds were putatively characterized by comparing the acquired data with that from the NIST library. The major constituent was menthol, and all the other compounds were terpenoids. This is the first comprehensive report on the identification of the major chemical constituents present in the LHQW capsule by HPLC-Q Exactive-Orbitrap-MS, coupled with GC-MS, and the results of this study can be used for the quality control and standardization of LHQW capsules.
Collapse
Affiliation(s)
- Shuai Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rongrong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
25
|
Li J, Lin Y, He L, Ou R, Chen T, Zhang X, Li Q, Zeng Z, Long Q. Two New Isoprenoid Flavonoids from Sophora flavescens with Antioxidant and Cytotoxic Activities. Molecules 2021; 26:7228. [PMID: 34885820 PMCID: PMC8658773 DOI: 10.3390/molecules26237228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Sophora flavescens is a regularly used traditional Chinese medicine. In an attempt to discover adequate active agents, the isoprenoid flavonoids from S. flavescens were further investigated. In this work, two new compounds (1-2, kurarinol A-B) together with 26 known ones (3-28) were isolated and elucidated on the basis of extensive NMR, UV and MS analyses. Furthermore, the antioxidant activity of all constituents was assessed through ABTS, PTIO and DPPH methodologies and also were evaluated for cytotoxic activity by three tumor cell lines (HepG2, A549 and MCF7) and one human normal cell line (LO2 cells). As a result, a multitude of components revealed significant inhibitory activity. In particular, compound 1-2 (kurarinol A-B), two new flavanonols derivatives, exhibited the most potent ABTS inhibitory activity with IC50 of 1.21 µg/mL and 1.81 µg/mL, respectively. Meanwhile, the new compound 1 demonstrated remarkable cytotoxicity against three cancer cells lines with IC50 values ranging from 7.50-10.55 μM but showed little effect on the normal cell. The two new isoprenoid flavonoids could be promising antioxidant and anti-tumor nature agents.
Collapse
Affiliation(s)
- Jingjing Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550025, China; (J.L.); (Y.L.); (L.H.); (R.O.); (T.C.); (X.Z.); (Q.L.); (Z.Z.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Yan Lin
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550025, China; (J.L.); (Y.L.); (L.H.); (R.O.); (T.C.); (X.Z.); (Q.L.); (Z.Z.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Lei He
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550025, China; (J.L.); (Y.L.); (L.H.); (R.O.); (T.C.); (X.Z.); (Q.L.); (Z.Z.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Rongxiu Ou
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550025, China; (J.L.); (Y.L.); (L.H.); (R.O.); (T.C.); (X.Z.); (Q.L.); (Z.Z.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Tao Chen
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550025, China; (J.L.); (Y.L.); (L.H.); (R.O.); (T.C.); (X.Z.); (Q.L.); (Z.Z.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Xu Zhang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550025, China; (J.L.); (Y.L.); (L.H.); (R.O.); (T.C.); (X.Z.); (Q.L.); (Z.Z.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Qirui Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550025, China; (J.L.); (Y.L.); (L.H.); (R.O.); (T.C.); (X.Z.); (Q.L.); (Z.Z.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Zhu Zeng
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550025, China; (J.L.); (Y.L.); (L.H.); (R.O.); (T.C.); (X.Z.); (Q.L.); (Z.Z.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Qingde Long
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang 550025, China; (J.L.); (Y.L.); (L.H.); (R.O.); (T.C.); (X.Z.); (Q.L.); (Z.Z.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
26
|
Pharmacological properties of glabridin (a flavonoid extracted from licorice): A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
27
|
Jasim HA, Nahar L, Jasim MA, Moore SA, Ritchie KJ, Sarker SD. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021; 11:1203. [PMID: 34439870 PMCID: PMC8392591 DOI: 10.3390/biom11081203] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Chalcones belong to the flavonoid class of phenolic compounds. They form one of the largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, structural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient to perform structural modifications to generate functionalized chalcone derivatives. Many of these synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for exploitation for new drug discovery, justifying the title of this article. However, the focus remains on critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their interactions at the biomolecular level where appropriate, and revealing their possible mechanisms of action.
Collapse
Affiliation(s)
- Hiba A. Jasim
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
- Department of Biology, College of Education for Pure Sciences, University of Anbar, Al-Anbar 10081, Iraq
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mohammad A. Jasim
- Department of Biology, College of Education for Women, University of Anbar, Al-Anbar 10081, Iraq;
| | - Sharon A. Moore
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Kenneth J. Ritchie
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| |
Collapse
|
28
|
Kuang Y, Chai Y, Xu L, Wang Z, Liang L, Qiao X, Ye M. Glabrone as a specific UGT1A9 probe substrate and its application in discovering the inhibitor glycycoumarin. Eur J Pharm Sci 2021; 161:105786. [PMID: 33684484 DOI: 10.1016/j.ejps.2021.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
UDP-glucuronosyltransferase 1A9 (UGT1A9) is one of the most important UGT isoforms, and plays an important role in the metabolic elimination of therapeutic drugs via glucuronidation. Herbal medicines affecting the activity of UGT1A9 may influence the metabolism of related drugs, thus causing herb-drug interactions and even adverse effects. However, few methods are available to evaluate the activity of UGT1A9. In this study, a natural product glabrone was discovered as an isoform-specific probe substrate for UGT1A9. The Vmax and Km values of glabrone were 362.6 nmol/min/mg protein and 17.2 μM for human liver microsomes (HLMs), and 382.3 nmol/min/mg protein and 16.6 μM for recombinant human UGT1A9, respectively. Glabrone 7-O-glucuronide, the UGT1A9 metabolite of glabrone, was prepared by using a plant glucuronosyltransferase UGT88D1, and the structure was identified by NMR spectroscopy. Using glabrone as a probe, we established a rapid HPLC method to screen UGT1A9 inhibitors from 54 natural products isolated from the Chinese herbal medicine licorice. Among them, glycycoumarin was found as a potent UGT1A9 inhibitor with an IC50 value of 6.04 μM. In rats, the pretreatment of glycycoumarin (4 mg/kg, i.p.) for 3 days could remarkably increase the plasma concentrations of dapagliflozin while decrease the concentrations of dapagliflozin-O-glucuronide after administration of dapagliflozin (1 mg/kg, i.v.), which is mainly metabolized by UGT1A9. The results indicated the potential risk of herb-drug interactions between licorice and UGT1A9-metabolizing drugs.
Collapse
Affiliation(s)
- Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yue Chai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lulu Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lei Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
29
|
Sá IS, Neves KO, Guimarães AC, da Silva FM, Nunomura RDC. Chalcones and flavans from the bark of Brosimum acutifolium subsp. interjectum (Moraceae). BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Miyazaki A, Eerdunbayaer, Shiokawa T, Tada H, Lian Y, Taniguchi S, Hatano T. High-performance liquid chromatographic profile and 1H quantitative nuclear magnetic resonance analyses for quality control of a Xinjiang licorice extract. Biosci Biotechnol Biochem 2020; 84:2128-2138. [DOI: 10.1080/09168451.2020.1785272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Various pharmacological properties of Xinjiang licorice flavonoids have been reported recently. We have investigated constituents corresponding to distinct peaks on the high-performance liquid chromatography (HPLC) profile of a flavonoid-rich extract from licorice, and identified 13 flavonoids, including licochalcone A (1), licochalcone B (3), glabrone (4), and echinatin (5), by isolating them and then performing high-resolution electrospray ionization mass spectrometry and 1H nuclear magnetic resonance (NMR) spectral analyses. We then applied the 1H quantitative NMR (qNMR) method for analysis of major flavonoids, 1 and 3–5 in the extract. The 1H qNMR results were supported by 13C NMR analysis. The results demonstrated the utility of the combination of HPLC profiling and qNMR analyses for quality control of Xinjiang licorice. Additionally, we observed a moderate inhibitory effect of the most abundant constituent, licochalcone A (1), on acetylcholine esterase activity, suggesting utility as a seed for drug development.
Collapse
Affiliation(s)
- Atsumi Miyazaki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Eerdunbayaer
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Tsugumi Shiokawa
- Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Hiroko Tada
- Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Yunhe Lian
- Research Center, Chenguang Biotech Group Co., Ltd, Handan, P. R. China
| | - Shoko Taniguchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
31
|
Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G, Su H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med 2020; 20:173-185. [PMID: 32509007 PMCID: PMC7271691 DOI: 10.3892/etm.2020.8687] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/17/2020] [Indexed: 01/23/2023] Open
Abstract
Melanogenesis is the process for the production of melanin, which is the primary cause of human skin pigmentation. Skin-whitening agents are commercially available for those who wish to have a lighter skin complexions. To date, although numerous natural compounds have been proposed to alleviate hyperpigmentation, insufficient attention has been focused on potential natural skin-whitening agents and their mechanism of action from the perspective of compound classification. In the present article, the synthetic process of melanogenesis and associated core signaling pathways are summarized. An overview of the list of natural skin-lightening agents, along with their compound classifications, is also presented, where their efficacy based on their respective mechanisms of action on melanogenesis is discussed.
Collapse
Affiliation(s)
- Wenhui Qian
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Wenya Liu
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Yanli Cao
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Anfu Tang
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Hua Su
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
32
|
Li JJ, Zhang X, Shen XC, Long QD, Xu CY, Tan CJ, Lin Y. Phytochemistry and biological properties of isoprenoid flavonoids from Sophora flavescens Ait. Fitoterapia 2020; 143:104556. [PMID: 32194169 DOI: 10.1016/j.fitote.2020.104556] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/05/2023]
Abstract
Sophora flavescens Ait (Ku-Shen in Chinese) is a popular traditional Chinese herbal medicine in China for a long history. It shows significant pharmacological activities in the treatment of dysentery, eczema, fever, jaundice, vulvar swelling, gastrointestinal hemorrhage and inflammatory disorders. Alkaloids and flavonoids have been identified as virtual components, especially isoprenoid flavanonols are a class of characteristic compounds for S. flavescens. However, few studies have focused on isoprenoid flavonoids analyses and no comprehensive review has yet been published. In the current review, we systematically summarized the isoprenoid flavonoids, a total of 55 compounds have been isolated from S. flavescens, particularly an isoprenyl and a lavandulyl group in backbone structures. Further pharmacological activities, qualitative and quantitative chemical analyses research will contribute to the development of natural isoprenoid flavonoid products in S. flavescens.
Collapse
Affiliation(s)
- Jing-Jing Li
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources) School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Xu Zhang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources) School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Xiang-Chun Shen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources) School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Qing-de Long
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources) School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Chang-Yan Xu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources) School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Chuan-Jiao Tan
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources) School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China
| | - Yan Lin
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the Key Laboratory of Optimal Utilizaiton of Natural Medicine Resources) School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China.
| |
Collapse
|
33
|
Natural Chalcones in Chinese Materia Medica: Licorice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3821248. [PMID: 32256642 PMCID: PMC7102474 DOI: 10.1155/2020/3821248] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. These chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hepatoprotective activities, and so on. This review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice.
Collapse
|
34
|
He J, Hu Z, Dong Z, Li B, Chen K, Shang Z, Zhang M, Qiao X, Ye M. Enzymatic
O
‐Prenylation of Diverse Phenolic Compounds by a Permissive
O
‐Prenyltransferase from the Medicinal Mushroom
Antrodia camphorata. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junbin He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Zhimin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Zeyuan Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| |
Collapse
|
35
|
Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. COSMETICS 2019. [DOI: 10.3390/cosmetics6040057] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the most common approaches for control of skin pigmentation involves the inhibition of tyrosinase, a copper-containing enzyme which catalyzes the key steps of melanogenesis. This review focuses on the tyrosinase inhibition properties of a series of natural and synthetic, bioinspired phenolic compounds that have appeared in the literature in the last five years. Both mushroom and human tyrosinase inhibitors have been considered. Among the first class, flavonoids, in particular chalcones, occupy a prominent role as natural inhibitors, followed by hydroxystilbenes (mainly resveratrol derivatives). A series of more complex phenolic compounds from a variety of sources, first of all belonging to the Moraceae family, have also been described as potent tyrosinase inhibitors. As to the synthetic compounds, hydroxycinnamic acids and chalcones again appear as the most exploited scaffolds. Several inhibition mechanisms have been reported for the described inhibitors, pointing to copper chelating and/or hydrophobic moieties as key structural requirements to achieve good inhibition properties. Emerging trends in the search for novel skin depigmenting agents, including the development of assays that could distinguish between inhibitors and potentially toxic substrates of the enzyme as well as of formulations aimed at improving the bioavailability and hence the effectiveness of well-known inhibitors, have also been addressed.
Collapse
|
36
|
Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, Choudhury MD. Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Front Pharmacol 2019; 10:509. [PMID: 31178720 PMCID: PMC6543890 DOI: 10.3389/fphar.2019.00509] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is not only involved in metabolism and detoxification, but also participate in innate immune function and thus exposed to frequent target Thus, they are the frequent target of physical injury. Interestingly, liver has the unique ability to regenerate and completely recoup from most acute, non-iterative situation. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease, long term alcohol abuse and chronic use of medications can cause persistent injury in which regenerative capacity eventually becomes dysfunctional resulting in hepatic scaring and cirrhosis. Despite the recent therapeutic advances and significant development of modern medicine, hepatic diseases remain a health problem worldwide. Thus, the search for the new therapeutic agents to treat liver disease is still in demand. Many synthetic drugs have been demonstrated to be strong radical scavengers, but they are also carcinogenic and cause liver damage. Present day various hepatic problems are encountered with number of synthetic and plant based drugs. Nexavar (sorafenib) is a chemotherapeutic medication used to treat advanced renal cell carcinoma associated with several side effects. There are a few effective varieties of herbal preparation like Liv-52, silymarin and Stronger neomin phages (SNMC) against hepatic complications. Plants are the huge repository of bioactive secondary metabolites viz; phenol, flavonoid, alkaloid etc. In this review we will try to present exclusive study on phenolics with its mode of action mitigating liver associated complications. And also its future prospects as new drug lead.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Rajat Nath
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jagajjit Sahu
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
37
|
Çevik D, Kan Y, Kırmızıbekmez H. Mechanisms of action of cytotoxic phenolic compounds from Glycyrrhiza iconica roots. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152872. [PMID: 30826527 DOI: 10.1016/j.phymed.2019.152872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/01/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Glycyrrhiza (licorice) species are rich in bioactive secondary metabolites and their roots are used traditionally for the treatment of several diseases. In recent years, secondary metabolites of licorice are gaining popularity, especially due to their significant cytotoxic and antitumor effects. However, Glycyrrhiza iconica, an endemic species to Turkey, was not investigated in terms of its anticancer secondary metabolites previously. PURPOSE This study aimed to isolate the cytotoxic compounds from G. iconica through bioactivity-guided fractionation and to elucidate mechanisms of action of the most potent compounds. METHODS Total MeOH extract and CHCl3, EtOAc, n-buOH and rH2O subextracts were prepared from G. iconica roots. Sequential chromatographic techniques were conducted for the isolation studies. The chemical structures of the isolates were established based on NMR and HR-MS analysis. Sulforhodamine B assay was used to evaluate the cytotoxic activity of extracts, main fractions as well as isolates against hepatocellular (Huh7), breast (MCF7) and colorectal (HCT116) cancer cell lines. The mechanisms underlying the cytotoxicity of the most active compounds in Huh7 cells were elucidated by using Hoechst staining, Fluorescence-activated cell sorting and Western blot assays. RESULTS A new dihydrochalcone, iconichalcone (1) along with 15 known phenolic compounds were isolated from the active CHCl3, EtOAc and n-buOH subextracts. Compounds 2-5, 7-16 were found to be responsible for the in vitro cytotoxic activity of G. iconica against all tested cancer cell lines with IC50 values ranging from 2.4 to 33 µM. Amongst these compounds, licoricidin (10), dehydroglyasperin C (12), iconisoflaven (13) and 1-methoxyficifolinol (15) were found to be the most active compounds according to SRB and real time bioactivity assays and submitted to further mechanistic investigations in Huh7 cells. Compounds 10, 12, 13 and 15 caused accumulation of cells in different phases of cell cycle. Moreover, 10, 12, 13 and 15 induced apoptosis through caspase activation. Besides, 12 showed activation of p53 expression and thus G2/M arrest as well as a condensed nuclei, established very promising results. CONCLUSION The results demonstrated that the aforementioned compounds, particularly 12 could be potential lead molecules for anticancer drug development that deserve further in vivo and clinical investigations.
Collapse
Affiliation(s)
- Dicle Çevik
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Kayışdağı, İstanbul TR-34755, Turkey
| | - Yüksel Kan
- Department of Medicinal Plants, Faculty of Agriculture, Selçuk University, Konya TR-42070, Turkey
| | - Hasan Kırmızıbekmez
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Kayışdağı, İstanbul TR-34755, Turkey.
| |
Collapse
|
38
|
Chen J, Wei F, Ma SC. Application of analytical chemistry in the quality evaluation of Glycyrrhiza Spp. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1531293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jia Chen
- National Institute for Food and Drug Control, State Food and Drug Administration, Beijing, China
| | - Feng Wei
- National Institute for Food and Drug Control, State Food and Drug Administration, Beijing, China
| | - Shuang-Cheng Ma
- National Institute for Food and Drug Control, State Food and Drug Administration, Beijing, China
| |
Collapse
|
39
|
He J, Dong Z, Hu Z, Kuang Y, Fan J, Qiao X, Ye M. Regio-specific prenylation of pterocarpans by a membrane-bound prenyltransferase from Psoralea corylifolia. Org Biomol Chem 2019; 16:6760-6766. [PMID: 30187056 DOI: 10.1039/c8ob01724g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prenylated pterocarpans are valuable natural products that play significant roles in plant defence and possess diverse biological activities. However, structural diversity of prenylated pterocarpans is still limited. Prenyltransferases (PTs) could catalyze the transfer of prenyl moieties to acceptor molecules and increase the structural diversity and biological activity of natural products. Up to date, only two pterocarpan PTs have been identified from plants. In this study, a new pterocarpan prenyltransferase gene, designated as PcM4DT, was identified from Psoralea corylifolia. The deduced polypeptide is predicted to be a membrane-bound protein with eight transmembrane regions. Functional characterization of recombinant PcM4DT demonstrated this enzyme could catalyze C-4 prenylation of pterocarpans, and exhibited strict substrate specificity to maackiain and 3-hydroxy-9-methoxy-pterocarpan. It also showed a strict donor specificity to DMAPP. Furthermore, removal of the putative transit peptide of PcM4DT obviously increased the catalytic activity (up to 90%). PcM4DT represents the first PT identified from the Psoralea genus.
Collapse
Affiliation(s)
- Junbin He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu LF, Li WH, Li MY, Wu XZ, Yang F, Xu JN, Yuan CS. Chemical constituents from common vetch (Vicia sativa L.) and their antioxidant and cytotoxic activities. Nat Prod Res 2019; 34:3205-3211. [DOI: 10.1080/14786419.2018.1560282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li-Fang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People’s Republic of China
| | - Wen-Hai Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People’s Republic of China
| | - Man-Yu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiao-Zhen Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People’s Republic of China
| | - Fan Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People’s Republic of China
| | - Jia-Nan Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People’s Republic of China
| | - Cheng-Shan Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
41
|
Liu RX, Xu YL, Ma LF, Ying YM, Zhan ZJ. A New Flavanone from Spatholobus Suberectus Dunn. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15386515371813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new flavanone, namely 2-(S)-6,7,3’,5′-tetrahydroxyflavanone, was separated from the ethanol extracts of the dried vine stems of Spatholobus suberectus dunn, together with three known ones, 2-(S)-7,3’,5′-trihydroxyflavanone, liquiritigenin and butin. The structure of the new flavanone was identified by detailed analyses of the spectroscopic data, especially 1D and 2D NMR, and HR-ESI-MS.
Collapse
Affiliation(s)
- Ruo-Xi Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yi-Lian Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
42
|
Zhao Y, Lv B, Feng X, Li C. Perspective on Biotransformation and De Novo Biosynthesis of Licorice Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11147-11156. [PMID: 29179542 DOI: 10.1021/acs.jafc.7b04470] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Licorice, an important herbal medicine, is derived from the dried roots and rhizomes of Glycyrrhiza genus plants. It has been widely used in food, pharmaceutical, tobacco, and cosmetics industries with high economic value. However, overexploitation of licorice resources has severely destroyed the local ecology. Therefore, producing bioactive compounds of licorice through the biotransformation and bioengineering methods is a hot spot in recent years. In this perspective, we comprehensively summarize the biotransformation of licorice constituents into high-value-added derivatives by biocatalysts. Furthermore, successful cases and the strategies for de novo biosynthesizing compounds of licorice in microbes have been summarized. This paper will provide new insights for the further research of licorice.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Bo Lv
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Xudong Feng
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| | - Chun Li
- Institute for Biotransformation and Synthetic Biosystem, Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing 100081, People's Republic of China
| |
Collapse
|
43
|
Kuang Y, Li B, Fan J, Qiao X, Ye M. Antitussive and expectorant activities of licorice and its major compounds. Bioorg Med Chem 2017; 26:278-284. [PMID: 29224994 DOI: 10.1016/j.bmc.2017.11.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 01/02/2023]
Abstract
Licorice has been used as an antitussive and expectorant herbal medicine for a long history. This work evaluated the activities of 14 major compounds and crude extracts of licorice, using the classical ammonia-induced cough model and phenol red secretion model in mice. Liquiritin apioside (1), liquiritin (2), and liquiritigenin (3) at 50 mg/kg (i.g.) could significantly decrease cough frequency by 30-78% (p < .01). The antitussive effects could be partially antagonized by the pretreatment of methysergide or glibenclamide, but not naloxone. Moreover, compounds 1-3 showed potent expectorant activities after 3 days treatment (p < .05). The water and ethanol extracts of licorice, which contain abundant 1 and 2, could decrease cough frequency at 200 mg/kg by 25-59% (p < .05), and enhance the phenol red secretion (p < .05), while the ethyl acetate extract showed little effect. These results indicate liquiritin apioside and liquiritin are the major antitussive and expectorant compounds of licorice. Their antitussive effects depend on both peripheral and central mechanisms.
Collapse
Affiliation(s)
- Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Jingran Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
44
|
Kuang Y, Lin Y, Li K, Song W, Ji S, Qiao X, Zhang Q, Ye M. Screening of hepatoprotective compounds from licorice against carbon tetrachloride and acetaminophen induced HepG2 cells injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:59-66. [PMID: 28899510 DOI: 10.1016/j.phymed.2017.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/12/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Licorice and its constituents, especially licorice flavonoids have been reported to possess significant hepatoprotective activities. However, previous studies mainly focus on the extract and major compounds, and few reports are available on other licorice compounds. PURPOSE This work aims to evaluate the in vitro hepatoprotective activities of licorice compounds and screen active compounds, and to establish the structure-activity relationship. METHODS A compound library consisting of 180 compounds from three medicinal licorice species, Glycyrrhiza uralensis, G. glabra and G. inflata was established. HepG2 cells were incubated with the compounds, together with the treatment of 0.35% CCl4 for 6 h and 14 mM APAP for 24 h, respectively. RESULTS A total of 62 compounds at 10 µM showed protective effects against CCl4 to improve cell viability from 52.5% to >60%, and compounds 5 (licoflavone A), 104 (3,4-didehydroglabridin), 107 (isoliquiritigenin), 108 (3,4,3',4'-tetrahydroxychalcone), and 111 (licochalcone B) showed the most potent activities, improving cell viability to >80%. And 64 compounds showed protective effects against APAP to improve cell viability from 52.0% to >60%, and compounds 47 (derrone), 76 (xambioona), 77 ((2S)-abyssinone I), 107 (isoliquiritigenin), 118 (licoagrochalcone A), and 144 (2'-O-demethybidwillol B) showed the most potent activities, improving cell viability to >80%. Preliminary structure-activity analysis indicated that free phenolics compounds especially chalcones showed relatively stronger protective activities than other types of compounds. CONCLUSION Compounds 5, 76, 104, 107, 111, 118 and 144 possess potent activities against both CCl4 and APAP, and 5, 76 and 118 were reported for the first time. They could be the major active compounds of licorice for the treatment of liver injury.
Collapse
Affiliation(s)
- Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Kai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Wei Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Qingying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
45
|
Pharmacological Activities and Phytochemical Constituents. LIQUORICE 2017. [PMCID: PMC7120246 DOI: 10.1007/978-3-319-74240-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glycyrrhiza glabra is one of the most popular medicinal plants and it has been used in traditional herbal remedy since ancient times (Blumenthal et al. in Herbal medicine: expanded commission E monographs. Integrative Medicine Communications, Newton, 2000; Parvaiz et al. in Global J Pharmocol 8(1):8–13, 2014; Altay et al. in J Plant Res 129(6):1021–1032, 2016). Many experimental, pharmacological and clinical studies show that liquorice has antimicrobial, antibacterial, antiviral, antifungal, antihepatotoxic, antioxidant, antiulcer, anti-hemorrhoid antihyperglycemic, antidiuretic, antinephritic, anticarcinogenic, antimutagenic, anticytotoxic, anti-inflammatory, and blood stopper activity.
Collapse
|