1
|
Fouda A, Negi S, Zaremba O, Gaidar RS, Moroz YS, Rusanov E, Paraskevas S, Tchervenkov J. Discovery, Synthesis, and In Vitro Characterization of 2,3 Derivatives of 4,5,6,7-Tetrahydro-Benzothiophene as Potent Modulators of Retinoic Acid Receptor-Related Orphan Receptor γt. J Med Chem 2023; 66:7355-7373. [PMID: 37172324 PMCID: PMC10259452 DOI: 10.1021/acs.jmedchem.3c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 05/14/2023]
Abstract
Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor that is expressed in a variety of tissues and is a potential drug target for the treatment of inflammatory and auto-immune diseases, metabolic diseases, and resistant cancer types. We herein report the discovery of 2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene modulators of RORγt. We also report the solubility in acidic/neutral pH, mouse/human/dog/rat microsomal stability, Caco-2, and MDR1-MDCKII permeabilities of a set of these derivatives. For this group of modulators, inverse agonism by steric clashes and push-pull mechanisms induce greater instability to protein conformation compared to agonist lock hydration. Independent of the two mechanisms, we observed a basal modulatory activity of the tested 2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene toward RORγt due to the interactions with the Cys320-Glu326 and Arg364-Phe377 hydrophilic regions. The drug discovery approach reported in the current study can be employed to discover modulators of nuclear receptors and other globular protein targets.
Collapse
Affiliation(s)
- Ahmed Fouda
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
| | - Sarita Negi
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
| | | | | | - Yurii S. Moroz
- Chemspace
LLC, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyïv, Kyïv 01601, Ukraine
| | - Eduard Rusanov
- Institute
of Organic Chemistry, National Academy of
Sciences of Ukraine, Kyïv 02094, Ukraine
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
| | - Steven Paraskevas
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
- Department
of Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- McGill
University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Jean Tchervenkov
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
- Department
of Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- McGill
University Health Centre, Montréal, Québec H4A 3J1, Canada
| |
Collapse
|
2
|
Zeng J, Li M, Zhao Q, Chen M, Zhao L, Wei S, Yang H, Zhao Y, Wang A, Shen J, Du F, Chen Y, Deng S, Wang F, Zhang Z, Li Z, Wang T, Wang S, Xiao Z, Wu X. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases. J Pharm Anal 2023; 13:545-562. [PMID: 37440911 PMCID: PMC10334362 DOI: 10.1016/j.jpha.2023.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
As a ligand-dependent transcription factor, retinoid-associated orphan receptor γt (RORγt) that controls T helper (Th) 17 cell differentiation and interleukin (IL)-17 expression plays a critical role in the progression of several inflammatory and autoimmune conditions. An emerging novel approach to the therapy of these diseases thus involves controlling the transcriptional capacity of RORγt to decrease Th17 cell development and IL-17 production. Several RORγt inhibitors including both antagonists and inverse agonists have been discovered to regulate the transcriptional activity of RORγt by binding to orthosteric- or allosteric-binding sites in the ligand-binding domain. Some of small-molecule inhibitors have entered clinical evaluations. Therefore, in current review, the role of RORγt in Th17 regulation and Th17-related inflammatory and autoimmune diseases was highlighted. Notably, the recently developed RORγt inhibitors were summarized, with an emphasis on their optimization from lead compounds, efficacy, toxicity, mechanisms of action, and clinical trials. The limitations of current development in this area were also discussed to facilitate future research.
Collapse
Affiliation(s)
- Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shulin Wei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Anqi Wang
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhuo Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| |
Collapse
|
3
|
Jokinen EM, Niemeläinen M, Kurkinen ST, Lehtonen JV, Lätti S, Postila PA, Pentikäinen OT, Niinivehmas SP. Virtual Screening Strategy to Identify Retinoic Acid-Related Orphan Receptor γt Modulators. Molecules 2023; 28:molecules28083420. [PMID: 37110655 PMCID: PMC10145393 DOI: 10.3390/molecules28083420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Molecular docking is a key method used in virtual screening (VS) campaigns to identify small-molecule ligands for drug discovery targets. While docking provides a tangible way to understand and predict the protein-ligand complex formation, the docking algorithms are often unable to separate active ligands from inactive molecules in practical VS usage. Here, a novel docking and shape-focused pharmacophore VS protocol is demonstrated for facilitating effective hit discovery using retinoic acid receptor-related orphan receptor gamma t (RORγt) as a case study. RORγt is a prospective target for treating inflammatory diseases such as psoriasis and multiple sclerosis. First, a commercial molecular database was flexibly docked. Second, the alternative docking poses were rescored against the shape/electrostatic potential of negative image-based (NIB) models that mirror the target's binding cavity. The compositions of the NIB models were optimized via iterative trimming and benchmarking using a greedy search-driven algorithm or brute force NIB optimization. Third, a pharmacophore point-based filtering was performed to focus the hit identification on the known RORγt activity hotspots. Fourth, free energy binding affinity evaluation was performed on the remaining molecules. Finally, twenty-eight compounds were selected for in vitro testing and eight compounds were determined to be low μM range RORγt inhibitors, thereby showing that the introduced VS protocol generated an effective hit rate of ~29%.
Collapse
Affiliation(s)
- Elmeri M Jokinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Miika Niemeläinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
| | - Sami T Kurkinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Jukka V Lehtonen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, FI-20500 Turku, Finland
| | - Sakari Lätti
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Pekka A Postila
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Olli T Pentikäinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| | - Sanna P Niinivehmas
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
4
|
Pham B, Cheng Z, Lopez D, Lindsay RJ, Foutch D, Majors RT, Shen T. Statistical Analysis of Protein-Ligand Interaction Patterns in Nuclear Receptor RORγ. Front Mol Biosci 2022; 9:904445. [PMID: 35782874 PMCID: PMC9240913 DOI: 10.3389/fmolb.2022.904445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
The receptor RORγ belongs to the nuclear receptor superfamily that senses small signaling molecules and regulates at the gene transcription level. Since RORγ has a high basal activity and plays an important role in immune responses, inhibitors targeting this receptor have been a focus for many studies. The receptor-ligand interaction is complex, and often subtle differences in ligand structure can determine its role as an inverse agonist or an agonist. We examined more than 130 existing RORγ crystal structures that have the same receptor complexed with different ligands. We reported the features of receptor-ligand interaction patterns and the differences between agonist and inverse agonist binding. Specific changes in the contact interaction map are identified to distinguish active and inactive conformations. Further statistical analysis of the contact interaction patterns using principal component analysis reveals a dominant mode which separates allosteric binding vs. canonical binding and a second mode which may indicate active vs. inactive structures. We also studied the nature of constitutive activity by performing a 100-ns computer simulation of apo RORγ. Using constitutively active nuclear receptor CAR as a comparison, we identified a group of conserved contacts that have similar contact strength between the two receptors. These conserved contact interactions, especially a couple key contacts in H11–H12 interaction, can be considered essential to the constitutive activity of RORγ. These protein-ligand and internal protein contact interactions can be useful in the development of new drugs that direct receptor activity.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Ziju Cheng
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Daniel Lopez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Richard J. Lindsay
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - David Foutch
- UT-ORNL Graduate School of Genome Science and Technology, Knoxville, TN, United States
| | - Rily T. Majors
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Tongye Shen,
| |
Collapse
|
5
|
Shim JH, Park SJ, Ahn BK, Lee JY, Kim HS, Ha DC. Enantioselective Thiolysis and Aminolysis of Cyclic Anhydrides Using a Chiral Diamine-Derived Thiourea Catalyst. ACS OMEGA 2021; 6:34501-34511. [PMID: 34963935 PMCID: PMC8697410 DOI: 10.1021/acsomega.1c04741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Catalytic desymmetrization of cyclic anhydrides has been widely investigated in the field of organocatalysis. Using this approach, many stereocenters can be established in a single, symmetry-breaking transformation. Herein, a thiourea organocatalyst was prepared in a single step from a chiral diamine, (R,R)-1,2-diphenylethylenediamine, and used for the desymmetrization of various cyclic anhydrides through double hydrogen-bonding activation. The asymmetric ring-opening reaction of the cyclic anhydride proceeded via the enantioselective addition reaction catalyzed by diamine thiourea. Thiolysis afforded the desired products in the yields of 86-98% and enantioselectivities of 60-94%, while aminolysis afforded the yields of 90-94% and enantioselectivities of 90-95%.
Collapse
Affiliation(s)
- Jae Ho Shim
- Department
of Anatomy, Korea University College of
Medicine, 46, Gaeunsa 2-gil, Seongbuk-gu, Seoul 02842, Republic of Korea
| | - Sung Joo Park
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Byung Kook Ahn
- Department
of Anatomy, Korea University College of
Medicine, 46, Gaeunsa 2-gil, Seongbuk-gu, Seoul 02842, Republic of Korea
| | - Ji Yeon Lee
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hyeon Soo Kim
- Department
of Anatomy, Korea University College of
Medicine, 46, Gaeunsa 2-gil, Seongbuk-gu, Seoul 02842, Republic of Korea
| | - Deok-Chan Ha
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
6
|
Suri C, Awasthi A, Asthana S. Crystallographic landscape provides molecular insights into the modes of action of diverse ROR-γt modulators. Drug Discov Today 2021; 27:652-663. [PMID: 34838728 DOI: 10.1016/j.drudis.2021.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022]
Abstract
ROR-γt, the master regulator of Th-17 cells, is activated by the binding of small molecules at its orthosteric site, followed by the recruitment of co-activators or co-repressors in the ligand binding domain (LBD). Th-17 cells provide immune-dependent protection against cancers and pathogens. Their dysregulation causes inflammation and is therefore implicated in various autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis. Consequently, there is enormous interest in the development of ROR-γt modulators, both agonist and inverse-agonists. Here, we review advances in the development of ROR-γt modulators that have been made over the past decade, focusing on the rich crystallography landscape for ROR-γt co-crystals that has delineated the relationship between the binding patterns of modulators and the resulting biological activities.
Collapse
Affiliation(s)
- Charu Suri
- Translational Health Science and Technology Institute (THSTI), Haryana 121001, India.
| | - Amit Awasthi
- Translational Health Science and Technology Institute (THSTI), Haryana 121001, India.
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Haryana 121001, India.
| |
Collapse
|
7
|
Li Z, Liu T, He X, Bai C. The evolution paths of some reprehensive scaffolds of RORγt modulators, a perspective from medicinal chemistry. Eur J Med Chem 2021; 228:113962. [PMID: 34776280 DOI: 10.1016/j.ejmech.2021.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
The ligand binding domain (LBD) of retinoid-related orphan nuclear receptor γt (RORγt) has been exploited as a promising target for the new small molecule therapeutics to cure autoimmune diseases via modulating the IL-17 and IL-22 production by Th17 cells. Diverse chemical scaffolds of these small molecules have been discovered by multiple groups with methods such as high throughput screening (HTS) and virtual screening. These different scaffolds are further developed by medicinal chemists to afford lead compounds the best of which enter clinical trials. In this review, we summarize these chemical scaffolds and their evolution paths according to the groups in which they have been discovered or studied. We combine the data of the chemistry, biological assays and structural biology of each chemical scaffold, in order to afford insight to develop new RORγt modulators with higher potency, less toxicity and elucidated working mechanism.
Collapse
Affiliation(s)
- Zhuohao Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chuan Bai
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
8
|
Gege C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases - where are we presently? Expert Opin Drug Discov 2021; 16:1517-1535. [PMID: 34192992 DOI: 10.1080/17460441.2021.1948833] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The transcription factor retinoic acid-related orphan receptor gamma t (RORγt) has been identified as the master regulator of TH17 cell differentiation and IL-17/22 production and is therefore an attractive target for the treatment of inflammatory diseases. Several orally or topically administered small molecule RORγt inverse agonists (RIAs) have progressed up to the end of clinical Phase 2.Areas covered: Based on publications and patent evaluations this review summarizes the evolution of the chemical matter for all 16 pharmaceutical companies, who develop(ed) a clinical-stage RIAs (until March 2021). Structure proposals for some clinical stage RIAs are presented and the outcome of the clinical trials is discussed.Expert opinion: So far, the clinical trials have been plagued with a high attrition rate. Main reasons were lack of efficacy (topical) or safety signals (oral) as well as, amongst other things, thymic lymphomas as seen with BMS-986251 in a preclinical study and liver enzyme elevations in humans with VTP-43742. Possibilities to mitigate these risks could be the use of RIAs with different chemical structures not interfering with thymocytes maturation and no livertox-inducing properties. With new frontrunners (e.g., ABBV-157 (cedirogant), BI 730357 or IMU-935) this is still an exciting time for this treatment approach.
Collapse
|
9
|
Gao Y, Zhou J, Li J. Discoidin domain receptors orchestrate cancer progression: A focus on cancer therapies. Cancer Sci 2021; 112:962-969. [PMID: 33377205 PMCID: PMC7935774 DOI: 10.1111/cas.14789] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Discoidin domain receptors (DDR), including DDR1 and DDR2, are special types of the transmembrane receptor tyrosine kinase superfamily. DDR are activated by binding to the triple-helical collagen and, in turn, DDR can activate signal transduction pathways that regulate cell-collagen interactions involved in multiple physiological and pathological processes such as cell proliferation, migration, apoptosis, and cytokine secretion. Recently, DDR have been found to contribute to various diseases, including cancer. In addition, aberrant expressions of DDR have been reported in various human cancers, which indicates that DDR1 and DDR2 could be new targets for cancer treatment. Considerable effort has been made to design DDR inhibitors and several molecules have shown therapeutic effects in pre-clinical models. In this article, we review the recent literature on the role of DDR in cancer progression, the development status of DDR inhibitors, and the clinical potential of targeting DDR in cancer therapies.
Collapse
Affiliation(s)
- Yuan Gao
- Tongji University School of Medicine, Shanghai, China
| | - Jiuli Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Discovery of novel N-sulfonamide-tetrahydroquinolines as potent retinoic acid receptor-related orphan receptor γt inverse agonists for the treatment of autoimmune diseases. Eur J Med Chem 2020; 187:111984. [DOI: 10.1016/j.ejmech.2019.111984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022]
|
11
|
Sato A, Fukase Y, Kono M, Ochida A, Oda T, Sasaki Y, Ishii N, Tomata Y, Fukumoto S, Imai YN, Uga K, Shibata A, Yamasaki M, Nakagawa H, Shirasaki M, Skene R, Hoffman I, Sang B, Snell G, Shirai J, Yamamoto S. Design and Synthesis of Conformationally Constrained RORγt Inverse Agonists. ChemMedChem 2019; 14:1917-1932. [DOI: 10.1002/cmdc.201900416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/04/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ayumu Sato
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Axcelead Drug Discovery Partners, Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Yoshiyuki Fukase
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Tri-Institutional Therapeutics Discovery Institute, Inc. 413 East 69th Street New York NY 10021 USA
| | - Mitsunori Kono
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Atsuko Ochida
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Tsuneo Oda
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Yusuke Sasaki
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Naoki Ishii
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Yoshihide Tomata
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Shoji Fukumoto
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Japan Tobacco Inc.Central Pharmaceutical Research Institute 1-1 Murasaki-cho Takatsuki, Osaka 569-1125 Japan
| | - Yumi N. Imai
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Chordia Therapeutics Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Keiko Uga
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Axcelead Drug Discovery Partners, Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Akira Shibata
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Masashi Yamasaki
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Axcelead Drug Discovery Partners, Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Hideyuki Nakagawa
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Mikio Shirasaki
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Axcelead Drug Discovery Partners, Inc. 26-1, Muraoka-Higashi 2-Chome, Fujisawa Kanagawa 251-0012 Japan
| | - Robert Skene
- Takeda California, Inc.10410 Science Center Drive San Diego CA 92121 USA
| | - Isaac Hoffman
- Takeda California, Inc.10410 Science Center Drive San Diego CA 92121 USA
| | - Bi‐Ching Sang
- Takeda California, Inc.10410 Science Center Drive San Diego CA 92121 USA
| | - Gyorgy Snell
- Takeda California, Inc.10410 Science Center Drive San Diego CA 92121 USA
| | - Junya Shirai
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
- Cardurion Pharmaceuticals K.K. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| | - Satoshi Yamamoto
- Pharmaceutical Research DivisionTakeda Pharmaceutical Company Ltd. 26-1, Muraokahigashi 2-chome, Fujisawa Kanagawa 251-8555 Japan
| |
Collapse
|
12
|
Marcoux D, Duan JJW, Shi Q, Cherney RJ, Srivastava AS, Cornelius L, Batt DG, Liu Q, Beaudoin-Bertrand M, Weigelt CA, Khandelwal P, Vishwakrishnan S, Selvakumar K, Karmakar A, Gupta AK, Basha M, Ramlingam S, Manjunath N, Vanteru S, Karmakar S, Maddala N, Vetrichelvan M, Gupta A, Rampulla RA, Mathur A, Yip S, Li P, Wu DR, Khan J, Ruzanov M, Sack JS, Wang J, Yarde M, Cvijic ME, Li S, Shuster DJ, Borowski V, Xie JH, McIntyre KW, Obermeier MT, Fura A, Stefanski K, Cornelius G, Hynes J, Tino JA, Macor JE, Salter-Cid L, Denton R, Zhao Q, Carter PH, Dhar TGM. Rationally Designed, Conformationally Constrained Inverse Agonists of RORγt-Identification of a Potent, Selective Series with Biologic-Like in Vivo Efficacy. J Med Chem 2019; 62:9931-9946. [PMID: 31638797 DOI: 10.1021/acs.jmedchem.9b01369] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RORγt is an important nuclear receptor that regulates the production of several pro-inflammatory cytokines such as IL-17 and IL-22. As a result, RORγt has been identified as a potential target for the treatment of various immunological disorders such as psoriasis, psoriatic arthritis, and inflammatory bowel diseases. Structure and computer-assisted drug design led to the identification of a novel series of tricyclic RORγt inverse agonists with significantly improved in vitro activity in the reporter (Gal4) and human whole blood assays compared to our previous chemotype. Through careful structure activity relationship, several potent and selective RORγt inverse agonists have been identified. Pharmacokinetic studies allowed the identification of the lead molecule 32 with a low peak-to-trough ratio. This molecule showed excellent activity in an IL-2/IL-23-induced mouse pharmacodynamic study and demonstrated biologic-like efficacy in an IL-23-induced preclinical model of psoriasis.
Collapse
Affiliation(s)
- David Marcoux
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - James J-W Duan
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Qing Shi
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Robert J Cherney
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Anurag S Srivastava
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Lyndon Cornelius
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Douglas G Batt
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Qingjie Liu
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Myra Beaudoin-Bertrand
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Carolyn A Weigelt
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Purnima Khandelwal
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Sureshbabu Vishwakrishnan
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Kumaravel Selvakumar
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Ananta Karmakar
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Arun Kumar Gupta
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Mushkin Basha
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Sridharan Ramlingam
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Naveen Manjunath
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Sridhar Vanteru
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Sukhen Karmakar
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Nageswara Maddala
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Muthalagu Vetrichelvan
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Anuradha Gupta
- Department of Discovery Synthesis , Biocon Bristol-Myers Squibb Research Centre , Biocon Park, Bommasandra IV Phase, Jigani Link Road , Bengaluru 560099 , India
| | - Richard A Rampulla
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Arvind Mathur
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Shiuhang Yip
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Peng Li
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Dauh-Rurng Wu
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Javed Khan
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Max Ruzanov
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - John S Sack
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Jinhong Wang
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Melissa Yarde
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Mary Ellen Cvijic
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Sha Li
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - David J Shuster
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Virna Borowski
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Jenny H Xie
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Kim W McIntyre
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Mary T Obermeier
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Aberra Fura
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Kevin Stefanski
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Georgia Cornelius
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - John Hynes
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Joseph A Tino
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - John E Macor
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Luisa Salter-Cid
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Rex Denton
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Qihong Zhao
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - Percy H Carter
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| | - T G Murali Dhar
- Research and Development , Bristol-Myers Squibb , 3551 Lawrenceville Rd , Princeton , New Jersey 08540 , United States
| |
Collapse
|
13
|
Jarvis A, Ouvry G. Essential ingredients for rational drug design. Bioorg Med Chem Lett 2019; 29:126674. [PMID: 31521476 DOI: 10.1016/j.bmcl.2019.126674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023]
Abstract
This short review focuses on three aspects of rational drug design that we consider of utmost importance: the conformation of small molecules in solid form, the conformation of small molecules in solution and lesser studied interactions in protein-ligand complexes. Using examples from recent literature, we will illustrate these different aspects and how they have contributed to the discovery of potent modulators.
Collapse
Affiliation(s)
- Ashley Jarvis
- Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Gilles Ouvry
- Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom.
| |
Collapse
|
14
|
Jetten AM, Cook DN. (Inverse) Agonists of Retinoic Acid-Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease. Annu Rev Pharmacol Toxicol 2019; 60:371-390. [PMID: 31386594 DOI: 10.1146/annurev-pharmtox-010919-023711] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Retinoic acid-related orphan receptor γt (RORγt) functions as a ligand-dependent transcription factor that regulates multiple proinflammatory genes and plays a critical role in several inflammatory and autoimmune diseases. Various endogenous and synthetic RORγ (inverse) agonists have been identified that regulate RORγ transcriptional activity, including many cholesterol intermediates and oxysterols. Changes in cholesterol biosynthesis and metabolism can therefore have a significant impact on the generation of oxysterol RORγ ligands and, consequently, can control RORγt activity and inflammation. These observations contribute to a growing literature that connects cholesterol metabolism to the regulation of immune responses and autoimmune disease. Loss of RORγ function in knockout mice and in mice treated with RORγ inverse agonists results in reduced production of proinflammatory cytokines, such as IL-17A/F, and increased resistance to autoimmune disease in several experimental rodent models. Thus, RORγt inverse agonists might provide an attractive therapeutic approach to treat a variety of autoimmune diseases.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA;
| | - Donald N Cook
- Immunogenetics Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
15
|
Shi X, Song P, Tao S, Zhang X, Chu CQ. Silencing RORγt in Human CD4 + T cells with CD30 aptamer-RORγt shRNA Chimera. Sci Rep 2019; 9:10375. [PMID: 31316164 PMCID: PMC6637186 DOI: 10.1038/s41598-019-46855-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022] Open
Abstract
Targeting specific T cell subtypes and intervening in their function are emerging a critical strategy for treatment of autoimmune diseases. Here we report that an RNA CD30 aptamer was utilized to deliver short hairpin RNA (shRNA) to CD30+ T cells to target retinoic acid receptor-related orphan receptor gamma t (RORγt), leading to impaired expression of RORγt and suppression of IL-17A and IL-17F. A DNA template consisting of CD30 aptamer and RORγt shRNA sequences was synthesized and was transcribed CD30 aptamer-RORγt shRNA chimera (CD30-AshR-RORγt). Insertion of 2'-F-dCTP and 2'-FdUTP was incorporated during CD30-AshR-RORγt transcription to increase its resistance to RNase. CD30-AshR-RORγt was specifically up-taken by CD30+ Karpas 299 cells, but not by Jurkat cells which lack CD30. It was also up-taken by activated, CD30 expressing human CD4+T cells, but not by resting CD4+ T cells. The RORγt shRNA moiety of CD30-AshR-RORγt chimera was cleaved and released by Dicers. Then, CD30-AshR-RORγt suppressed RORγt gene expression in Karpas 299 cells and activated human CD4+ T cells. Consistently, silence of Th17 cell differentiation and IL-17A and IL-17F synthesis with CD30-AshR-RORγt was demonstrated in activated human CD4+ T cells from healthy donors and RA patients. CD30-AshR-negative control chimera and prostate specific membrane antigen (PSMA)-AshR-RORγt had no significant impact on the expression of RORγt or IL-17A and IL-17F. These data present a novel strategy for shRNA delivery using CD30 RNA aptamers to down-regulate CD30+ Th17 cells and can be developed as a targeted therapy for treating Th17 cell mediated conditions.
Collapse
Affiliation(s)
- Xiaofei Shi
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, 97239, USA
- Department of Rheumatology and Immunology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Pingfang Song
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Shao Tao
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Xiaowei Zhang
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, 97239, USA
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, 97239, USA.
| |
Collapse
|
16
|
Amaudrut J, Argiriadi MA, Barth M, Breinlinger EC, Bressac D, Broqua P, Calderwood DJ, Chatar M, Cusack KP, Gauld SB, Jacquet S, Kamath RV, Kort ME, Lepais V, Luccarini JM, Masson P, Montalbetti C, Mounier L, Potin D, Poupardin O, Rouaud S, Spitzer L, Wallace CD. Discovery of novel quinoline sulphonamide derivatives as potent, selective and orally active RORγ inverse agonists. Bioorg Med Chem Lett 2019; 29:1799-1806. [DOI: 10.1016/j.bmcl.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/08/2023]
|
17
|
Wang Y, Liu H. A Drug with Lipophilicity-Dependent Potency Can Be Metabolically Stable: Discovery of a Potent and Selective Retinoic Acid Receptor-Related Orphan Receptor C2 (RORC2) Inverse Agonist as an Orally Bioavailable Anti-Inflammatory Agent. J Med Chem 2018; 61:10412-10414. [DOI: 10.1021/acs.jmedchem.8b01545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yibing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
18
|
Schnute ME, Wennerstål M, Alley J, Bengtsson M, Blinn JR, Bolten CW, Braden T, Bonn T, Carlsson B, Caspers N, Chen M, Choi C, Collis LP, Crouse K, Färnegårdh M, Fennell KF, Fish S, Flick AC, Goos-Nilsson A, Gullberg H, Harris PK, Heasley SE, Hegen M, Hromockyj AE, Hu X, Husman B, Janosik T, Jones P, Kaila N, Kallin E, Kauppi B, Kiefer JR, Knafels J, Koehler K, Kruger L, Kurumbail RG, Kyne RE, Li W, Löfstedt J, Long SA, Menard CA, Mente S, Messing D, Meyers MJ, Napierata L, Nöteberg D, Nuhant P, Pelc MJ, Prinsen MJ, Rhönnstad P, Backström-Rydin E, Sandberg J, Sandström M, Shah F, Sjöberg M, Sundell A, Taylor AP, Thorarensen A, Trujillo JI, Trzupek JD, Unwalla R, Vajdos FF, Weinberg RA, Wood DC, Xing L, Zamaratski E, Zapf CW, Zhao Y, Wilhelmsson A, Berstein G. Discovery of 3-Cyano-N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide: A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C2 Inverse Agonist. J Med Chem 2018; 61:10415-10439. [DOI: 10.1021/acs.jmedchem.8b00392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Tomas Bonn
- Karo Bio AB (now Karo Pharma AB), 111 48 Stockholm, Sweden
| | - Bo Carlsson
- Karo Bio AB (now Karo Pharma AB), 111 48 Stockholm, Sweden
| | - Nicole Caspers
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Ming Chen
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Chulho Choi
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | | | | | | | | | - Andrew C. Flick
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | | | | | - Steven E. Heasley
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | | | | | - Bolette Husman
- Karo Bio AB (now Karo Pharma AB), 111 48 Stockholm, Sweden
| | - Tomasz Janosik
- Karo Bio AB (now Karo Pharma AB), 111 48 Stockholm, Sweden
| | | | | | | | - Björn Kauppi
- Karo Bio AB (now Karo Pharma AB), 111 48 Stockholm, Sweden
| | | | - John Knafels
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Konrad Koehler
- Karo Bio AB (now Karo Pharma AB), 111 48 Stockholm, Sweden
| | - Lars Kruger
- Karo Bio AB (now Karo Pharma AB), 111 48 Stockholm, Sweden
| | - Ravi G. Kurumbail
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Robert E. Kyne
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | | | | | - Carol A. Menard
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | | | | | | | | | - Philippe Nuhant
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | | | | | | | | | | | | | - Maria Sjöberg
- Karo Bio AB (now Karo Pharma AB), 111 48 Stockholm, Sweden
| | - Aron Sundell
- Karo Bio AB (now Karo Pharma AB), 111 48 Stockholm, Sweden
| | | | | | - John I. Trujillo
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | | | - Felix F. Vajdos
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gabr MT, Abdel-Raziq MS. Structure-Based Design and Synthesis of Fluorene Derivatives as Novel RORγt Inverse Agonists. Chem Biodivers 2018; 15:e1800244. [PMID: 29935095 DOI: 10.1002/cbdv.201800244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/22/2018] [Indexed: 01/21/2023]
Abstract
A new series of fluorene derivatives was designed and synthesized as novel retinoic acid receptor-related orphan receptor gamma t (RORγt) inverse agonists utilizing a molecular hybridization approach. The new compounds 10 - 15 were evaluated for their RORγt activity using biochemical FRET and cellular reporter gene assays. Moreover, the inhibitory activity of the fluorene derivatives 10 - 15 in mouse Th17 cell differentiation assay was assessed. The hybrid compound 15 that combines both fluorene and arylsulfone moieties displayed promising RORγt activity with IC50 values of 68.6 and 99.5 nm in FRET and cellular assays, respectively. In addition, molecular modeling studies were employed to investigate potential binding mode of 15 to RORγt. These results render 15 a potential lead compound for development of therapeutics for Th17-driven autoimmune diseases.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed S Abdel-Raziq
- Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.,School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|