1
|
Wang H, Wu Y, Liu A, Li S, Zhu P, Zuo J, Kuang Y, Li J, Jiang X. Design, synthesis and biological evaluation of novel pyrazolinone derivatives as multifunctional ligands for the treatment of Alzheimer's disease. Bioorg Chem 2024; 154:108052. [PMID: 39675097 DOI: 10.1016/j.bioorg.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the depletion of cholinergic neurons and the accumulation of amyloid β (Aβ) plaques. The complexity and multifaceted nature of AD necessitate further exploration of multi-target drugs for its treatment. In this study, a series of novel pyrazolinone-based compounds were designed, synthesized, and evaluated as acetylcholinesterase (AChE) inhibitors and antioxidants. The lead compounds ET11 and ET21 showed strong inhibitory activity against human AChE, with IC50 values of 6.34 and 1.81 nM, respectively. In vitro DPPH and ORACFL assays confirmed the compounds' strong antioxidant capabilities. ET11 exhibited excellent neuroprotective activity in the tBHP-induced SH-SY5Y cell damage model. Benefiting from the pyridopyrazolone moiety, ET11 showed significant Cu2+ chelating ability and effectively inhibited Cu2+-induced Aβ aggregation. In vivo behavioral studies and histopathology analysis preliminarily confirmed the compound's cognitive improvement and neuroprotective effects. Overall, these findings suggested that compound ET11 is expected to play a synergistic role in the treatment of AD, potentially slowing disease progression.
Collapse
Affiliation(s)
- Huabo Wang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yulu Wu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anran Liu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Siyi Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jianguo Zuo
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ying Kuang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jiaming Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China.
| | - Xueyang Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
3
|
Liu N, Haziyihan A, Zhao W, Chen Y, Chao H. Trajectory of brain-derived amyloid beta in Alzheimer's disease: where is it coming from and where is it going? Transl Neurodegener 2024; 13:42. [PMID: 39160618 PMCID: PMC11331646 DOI: 10.1186/s40035-024-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that primarily impacts cognitive function. Currently there are no disease-modifying treatments to stop or slow its progression. Recent studies have found that several peripheral and systemic abnormalities are associated with AD, and our understanding of how these alterations contribute to AD is becoming more apparent. In this review, we focuse on amyloid‑beta (Aβ), a major hallmark of AD, summarizing recent findings on the source of brain-derived Aβ and discussing where and how the brain-derived Aβ is cleared in vivo. Based on these findings, we propose future strategies for AD prevention and treatment, from a novel perspective on Aβ metabolism.
Collapse
Affiliation(s)
- Ni Liu
- Zhengzhou University, Zhengzhou, 450001, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Wei Zhao
- Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- Zhengzhou University, Zhengzhou, 450001, China.
- Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Singh G, Kumar S, Panda SR, Kumar P, Rai S, Verma H, Singh YP, Kumar S, Srikrishna S, Naidu VGM, Modi G. Design, Synthesis, and Biological Evaluation of Ferulic Acid-Piperazine Derivatives Targeting Pathological Hallmarks of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:2756-2778. [PMID: 39076038 DOI: 10.1021/acschemneuro.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and is characterized by low levels of acetyl and butyrylcholine, increased oxidative stress, inflammation, accumulation of metals, and aggregations of Aβ and tau proteins. Current treatments for AD provide only symptomatic relief without impacting the pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multitarget molecules for AD, through extensive medicinal chemistry efforts, we have developed 13a, harboring the key functional groups to provide not only symptomatic relief but also targeting oxidative stress, able to chelate iron, inhibiting NLRP3, and Aβ1-42 aggregation in various AD models. 13a exhibited promising anticholinesterase activity against AChE (IC50 = 0.59 ± 0.19 μM) and BChE (IC50 = 5.02 ± 0.14 μM) with excellent antioxidant properties in DPPH assay (IC50 = 5.88 ± 0.21 μM) over ferulic acid (56.49 ± 0.62 μM). The molecular docking and dynamic simulations further corroborated the enzyme inhibition studies and confirmed the stability of these complexes. Importantly, in the PAMPA-BBB assay, 13a turned out to be a promising molecule that can efficiently cross the blood-brain barrier. Notably, 13a also exhibited iron-chelating properties. Furthermore, 13a effectively inhibited self- and metal-induced Aβ1-42 aggregation. It is worth mentioning that 13a demonstrated no symptom of cytotoxicity up to 30 μM concentration in PC-12 cells. Additionally, 13a inhibited the NLRP3 inflammasome and mitigated mitochondrial-induced reactive oxygen species and mitochondrial membrane potential damage triggered by LPS and ATP in HMC-3 cells. 13a could effectively reduce mitochondrial and cellular reactive oxygen species (ROS) in the Drosophila model of AD. Finally, 13a was found to be efficacious in reversing memory impairment in a scopolamine-induced AD mouse model in the in vivo studies. In ex vivo assessments, 13a notably modulates the levels of superoxide, catalase, and malondialdehyde along with AChE and BChE. These findings revealed that 13a holds promise as a potential candidate for further development in AD management.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Prabhat Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanskriti Rai
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Himanshu Verma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Saroj Kumar
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Saripella Srikrishna
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| |
Collapse
|
5
|
Nagani A, Shah M, Patel S, Patel H, Parikh V, Patel A, Patel S, Patel K, Parmar H, Bhimani B, Yadav MR. Unveiling piperazine-quinoline hybrids as potential multi-target directed anti-Alzheimer's agents: design, synthesis and biological evaluation. Mol Divers 2024:10.1007/s11030-024-10927-4. [PMID: 38990393 DOI: 10.1007/s11030-024-10927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Multi-target directed ligands (MTDLs) have recently been popularized due to their outstanding efficacy in combating the complicated features of Alzheimer's disease. This study details the synthesis of piperazine-quinoline-based MTDLs through a multicomponent Petasis reaction, targeting multiple factors such as AChE, BuChE, metal chelation to restore metal dyshomeostasis, and antioxidant activity. Some of the synthesized compounds exhibited notable inhibitory activity against AChE and BuChE enzymes at specific concentrations. Among the synthesized compounds compound (95) containing a 4-chloroaniline moiety and a 4-methoxybenzyl group displayed the most promising inhibitory activities against AChE (IC50 3.013 µM) and BuChE (IC50 = 3.144 µM). Compound (83) featuring 2-methoxyaniline and 4-fluorobenzyl substituents, exhibited the highest BuChE inhibition (IC50 1.888 µM). Notably, compound (79) demonstrated 93-times higher selectivity for BuChE over AChE. Molecular docking and molecular dynamics simulations were also performed to explore the binding modes and stability of these compounds with the AChE amd BuChE proteins. Further, kinetics study was performed against AChE for comounds (83 and 95) which indicated mixed inhibition of the enzyme by these compounds, Amongs the synthesized compounds, nine compounds were assessed for their antioxidant activity, displaying significant antioxidant properties with IC50 values ranging from 156 µM to 310 µM. Moreover, all the compounds demonstrated metal chelating tendency with Cu+2, Zn+2, Fe+2, Fe+3 and Al+3. This study provides insights into the design of novel MTDLs, highlighting compound (95) as a potential candidate for combating Alzheimer's disease.
Collapse
Affiliation(s)
- Afzal Nagani
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
- Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Moksh Shah
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Salman Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Harnisha Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Vruti Parikh
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, India
| | - Sagar Patel
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, University of Toronto, Toronto, ON, Canada
| | - Kirti Patel
- Faculty of Pharmacy, The M.S University of Baroda, Vadodara, Gujarat, India
| | - Hardik Parmar
- Faculty of Pharmacy, The M.S University of Baroda, Vadodara, Gujarat, India
| | | | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
6
|
Abdo Moustafa E, Abdelrasheed Allam H, Fouad MA, El Kerdawy AM, Nasser Eid El-Sayed N, Wagner C, Abdel-Aziz HA, Abdel Fattah Ezzat M. Discovery of novel quinolin-2-one derivatives as potential GSK-3β inhibitors for treatment of Alzheimer's disease: Pharmacophore-based design, preliminary SAR, in vitro and in vivo biological evaluation. Bioorg Chem 2024; 146:107324. [PMID: 38569322 DOI: 10.1016/j.bioorg.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Recently, glycogen synthase kinase-3β (GSK-3β) has been considered as a critical factor implicated in Alzheimer's disease (AD). In a previous work, a 3D pharmacophore model for GSK-3β inhibitors was created and the results suggested that derivative ZINC67773573, VIII, may provide a promising lead for developing novel GSK-3β inhibitors for the AD's treatment. Consequently, in this work, novel series of quinolin-2-one derivatives were synthesized and assessed for their GSK-3β inhibitory properties. In vitro screening identified three compounds: 7c, 7e and 7f as promising GSK-3β inhibitors. Compounds 7c, 7e and 7f were found to exhibit superior inhibitory effect on GSK-3β with IC50 value ranges between 4.68 ± 0.59 to 8.27 ± 0.60 nM compared to that of staurosporine (IC50 = 6.12 ± 0.74 nM). Considerably, compounds 7c, 7e and 7f effectively lowered tau hyperphosphorylated aggregates and proving their safety towards the SH-SY5Y and THLE2 normal cell lines. The most promising compound 7c alleviated cognitive impairments in the scopolamine-induced model in mice. Compound 7c's activity profile, while not highly selective, may provide a starting point and valuable insights into the design of multi-target inhibitors. According to the ADME prediction results, compounds 7c, 7e and 7f followed Lipinski's rule of five and could almost permeate through the BBB. Molecular docking simulations showed that these compounds are well accommodated in the ATP binding site interacting by its quinoline-2-one ring through hydrogen bonding with the key amino acids Asp133 and Val135 at the hinge region. The findings of this study suggested that these new compounds may have potential as anti-AD drugs targeting GSK-3β.
Collapse
Affiliation(s)
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, Newgiza, km 22 Cairo- Alexandria Desert Road, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt; School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | | | - Christoph Wagner
- Institut für Chemie, Naturwissenschaftliche FakultätII, Universität Halle, Kurt-Mothes-Str. 206120, Halle, Germany
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| | - Manal Abdel Fattah Ezzat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| |
Collapse
|
7
|
Singh G, Shankar G, Panda SR, Kumar S, Rai S, Verma H, Kumar P, Nayak PK, Naidu VGM, Srikrishna S, Kumar S, Modi G. Design, Synthesis, and Biological Evaluation of Ferulic Acid Template-Based Novel Multifunctional Ligands Targeting NLRP3 Inflammasome for the Management of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1388-1414. [PMID: 38525886 DOI: 10.1021/acschemneuro.3c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aβ and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on EJMC-4e were caried out to improve its multifunctional properties. The rigorous medicinal efforts led to the development of 12o, which displayed a 15-fold enhancement in antioxidant properties and a 2-fold increase in the activity against AChE and BChE over EJMC-4e. Molecular docking and dynamics studies revealed the binding sites and stability of the complex of 12o with AChE and BChE. The PAMPA-BBB assay clearly demonstrated that 12o can easily cross the blood-brain barrier. Interestingly, 12o also expresses promising metal chelation activity, while EJMC-4e was found to be devoid of this property. Further, 12o inhibited metal-induced or self Aβ1-42 aggregation. Observing the neuroprotection ability of 12o against H2O2-induced oxidative stress in the PC-12 cell line is noteworthy. Furthermore, 12o also inhibited NLRP3 inflammasome activation and attenuated mitochondrial-induced ROS and MMP damage caused by LPS and ATP in HMC-3 cells. In addition, 12o is able to effectively reduce mitochondrial and cellular oxidative stress in the AD Drosophila model. Finally, 12o could reverse memory impairment in the scopolamine-induced AD mice model, as evident through in vivo and ex vivo studies. These findings suggest that this compound may act as a promising candidate for further improvement in the management of AD.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Himanshu Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
8
|
Chen H, Mi J, Li S, Liu Z, Yang J, Chen R, Wang Y, Ban Y, Zhou Y, Dong W, Sang Z. Design, synthesis and evaluation of quinoline- O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2169682. [PMID: 36688444 PMCID: PMC9873282 DOI: 10.1080/14756366.2023.2169682] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A series of novel quinoline-O-carbamate derivatives was rationally designed for treating Alzheimer's disease (AD) by multi-target-directed ligands (MTDLs) strategy. The target compounds were synthesised and evaluated by AChE/BuChE inhibition and anti-inflammatory property. The in vitro activities showed that compound 3f was a reversible dual eeAChE/eqBuChE inhibitor with IC50 values of 1.3 µM and 0.81 µM, respectively. Moreover, compound 3f displayed good anti-inflammatory property by decreasing the production of IL-6, IL-1β and NO. In addition, compound 3f presented significant neuroprotective effect on Aβ25-35-induced PC12 cell injury. Furthermore, compound 3f presented good stabilities in artificial gastrointestinal fluids, liver microsomes in vitro and plasma. Furthermore, compound 3f could improve AlCl3-induced zebrafish AD model by increasing the level of ACh. Therefore, compound 3f was a promising multifunctional agent for the treatment of AD.
Collapse
Affiliation(s)
- Hongsong Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Sen Li
- Department of Orthopaedics Surgery, Nanyang Central Hospital, Nanyang, Henan, China
| | - Zhengwei Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Jing Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Rui Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yujie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yujuan Ban
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Zhou
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China,Yi Zhou College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China,Wu Dong Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Zhipei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China,School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China,CONTACT Zhipei Sang College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, China
| |
Collapse
|
9
|
Shayegan N, Haghipour S, Tanideh N, Moazzam A, Mojtabavi S, Faramarzi MA, Irajie C, Parizad S, Ansari S, Larijani B, Hosseini S, Iraji A, Mahdavi M. Synthesis, in vitro α-glucosidase inhibitory activities, and molecular dynamic simulations of novel 4-hydroxyquinolinone-hydrazones as potential antidiabetic agents. Sci Rep 2023; 13:6304. [PMID: 37072431 PMCID: PMC10113378 DOI: 10.1038/s41598-023-32889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
In the present study, new structural variants of 4-hydroxyquinolinone-hydrazones were designed and synthesized. The structure elucidation of the synthetic derivatives 6a-o was carried out using different spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, and elemental analysis, and their α-glucosidase inhibitory activity was also determined. The synthetic molecules 6a-o exhibited good α-glucosidase inhibition with IC50 values ranging between 93.5 ± 0.6 to 575.6 ± 0.4 µM as compared to the standard acarbose (IC50 = 752.0 ± 2.0 µM). Structure-activity relationships of this series were established which is mainly based on the position and nature of the substituent on the benzylidene ring. A kinetic study of the active compounds 6l and 6m as the most potent derivatives were also carried out to confirm the mode of inhibition. The binding interactions of the most active compounds within the active site of the enzyme were determined by molecular docking and molecular dynamic simulations.
Collapse
Affiliation(s)
- Nahal Shayegan
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Haghipour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Parizad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Ansari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samanehsadat Hosseini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Liu X, Yu C, Su B, Zha D. Synthesis and properties of the kojic acid dimer and its potential for the treatment of Alzheimer's disease. RSC Med Chem 2023; 14:268-276. [PMID: 36846369 PMCID: PMC9945874 DOI: 10.1039/d2md00383j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The kojic acid dimer (KAD) is a metabolite derived from developing cottonseed when contaminated with aflatoxin. The KAD has been shown to exhibit bright greenish-yellow fluorescence, but little else is known about its biological activity. In this study, using kojic acid as a raw material, we developed a four-step synthetic route that achieved the gram-scale preparation of the KAD in approximately 25% total yield. The structure of the KAD was verified by single-crystal X-ray diffraction. The KAD showed good safety in a variety of cells and had a good protective effect in SH-SY5Y cells. At concentrations lower than 50 μM, the KAD was superior to vitamin C in ABTS+ free radical scavenging assay; the KAD resisted the production of reactive oxygen species induced by H2O2 as confirmed by fluorescence microscopy observation and flow cytometry analysis. Notably, the KAD could enhance the superoxide dismutase activity, which might be the mechanism of its antioxidant activity. The KAD also moderately inhibited the deposition of amyloid-β (Aβ) and selectively chelated Cu2+, Zn2+, Fe2+, Fe3+, and Al3+, which are related to the progress of Alzheimer's disease. Based on its good effects in terms of oxidative stress, neuroprotection, inhibition of Aβ deposition, and metal accumulation, the KAD shows potential for the multi-target treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueyan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| | - Chuanyu Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Biling Su
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University Fuzhou 350004 Fujian Province China .,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University China
| |
Collapse
|
11
|
Novel neuroprotective pyromeconic acid derivatives with concurrent anti-Aβ deposition, anti-inflammatory, and anti-oxidation properties for treatment of Alzheimer's disease. Eur J Med Chem 2023; 248:115120. [PMID: 36682173 DOI: 10.1016/j.ejmech.2023.115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
We synthesized a series of novel pyromeconic acid-styrene hybrid compounds and measured their activities in inhibiting Aβ1-42 self-aggregation and promoting disaggregation, and their anti-inflammatory and antioxidant properties. The most potent compound, compound 30, had IC50 values of 11.15 μM and 6.87 μM for inhibition of fibril aggregation and promotion of fibril disaggregation, respectively. Because of its redox metal chelating property, 30 also inhibited Cu2+-induced Aβ1-42 fibril aggregation and promoted fibril disaggregation with IC50 of 3.69 μM and 3.35 μM, respectively. Molecular docking demonstrated that 30 interacted with key amino acids of Aβ1-42, and the reliability of the complex was confirmed by molecular dynamics. In addition, 30 displayed excellent antioxidative activity (oxygen radical absorbance capacity = 2.65 Trolox equivalents) and moderate anti-inflammatory activity and neuroprotection in cell culture assays. Compound 30 was safe in acute toxicity test in mice, and it exhibited favorable pharmacokinetic properties, particularly, accumulation in the hippocampus (maximum ratio of hippocampus to plasma = 7.12). Compound 30 alleviated cognitive deficits in scopolamine-induced amnesia mice; this property may have been attributed to reducing neuroinflammation by inhibiting ionized calcium binding adapter molecule 1 and glial fibrillary acidic protein expression and reducing oxidative stress by activating the Nrf2/HO-1 signaling pathway. In view of its many properties, we envision that 30 is a promising lead for the treatment of Alzheimer's disease.
Collapse
|
12
|
Chen X, Cai Q, Liang R, Zhang D, Liu X, Zhang M, Xiong Y, Xu M, Liu Q, Li P, Yu P, Shi A. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis 2023; 14:105. [PMID: 36774340 PMCID: PMC9922317 DOI: 10.1038/s41419-023-05639-w] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
Copper is a vital mineral, and an optimal amount of copper is required to support normal physiologic processes in various systems, including the cardiovascular system. Over the past few decades, copper-induced cell death, named cuproptosis, has become increasingly recognized as an important process mediating the pathogenesis and progression of cardiovascular disease (CVD), including atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure. Therefore, an in-depth understanding of the regulatory mechanisms of cuproptosis in CVD may be useful for improving CVD management. Here, we review the relationship between copper homeostasis and cuproptosis-related pathways in CVD, as well as therapeutic strategies addressing copper-induced cell death in CVD.
Collapse
Affiliation(s)
- Xinyue Chen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruikai Liang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Xiong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Liu
- Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Ao Shi
- Faculty of Medicine, St. George University of London, London, UK.
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus.
| |
Collapse
|
13
|
Puentes-Díaz N, Chaparro D, Morales-Morales D, Flores-Gaspar A, Alí-Torres J. Role of Metal Cations of Copper, Iron, and Aluminum and Multifunctional Ligands in Alzheimer's Disease: Experimental and Computational Insights. ACS OMEGA 2023; 8:4508-4526. [PMID: 36777601 PMCID: PMC9909689 DOI: 10.1021/acsomega.2c06939] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people around the world. Even though the causes of AD are not completely understood due to its multifactorial nature, some neuropathological hallmarks of its development have been related to the high concentration of some metal cations. These roles include the participation of these metal cations in the production of reactive oxygen species, which have been involved in neuronal damage. In order to avoid the increment in the oxidative stress, multifunctional ligands used to coordinate these metal cations have been proposed as a possible treatment to AD. In this review, we present the recent advances in experimental and computational works aiming to understand the role of two redox active and essential transition-metal cations (Cu and Fe) and one nonbiological metal (Al) and the recent proposals on the development of multifunctional ligands to stop or revert the damaging effects promoted by these metal cations.
Collapse
Affiliation(s)
- Nicolás Puentes-Díaz
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
| | - Diego Chaparro
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
| | - David Morales-Morales
- Instituto
de Química, Universidad Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Areli Flores-Gaspar
- Departamento
de Química, Universidad Militar Nueva
Granada, Cajicá 250240, Colombia
- Areli Flores-Gaspar − Departamento de Química,
Universidad Militar Nueva
Granada, Cajicá, 250247, Colombia.
| | - Jorge Alí-Torres
- Departamento
de Química, Universidad Nacional
de Colombia−Sede Bogotá, Bogotá 11301, Colombia
- Jorge Alí-Torres − Departamento de Química, Universidad Nacional de
Colombia, Sede Bogotá,11301, Bogotá, Colombia.
| |
Collapse
|
14
|
Li Y, Luo Y, Wang J, Shi H, Liao J, Wang Y, Chen Z, Xiong L, Zhang C, Wang T. Discovery of novel danshensu derivatives bearing pyrazolone moiety as potential anti-ischemic stroke agents with antioxidant activity. Bioorg Chem 2023; 131:106283. [PMID: 36436417 DOI: 10.1016/j.bioorg.2022.106283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Neuroprotective agents with attenuation of oxidative stress by directly scavenging ROS and indirectly through Keap1-Nrf2 signal pathway activation may be a promising cerebral ischemic stroke therapeutic strategy. In this study, a series of novel danshensu derivatives bearing pyrazolone moieties with dual antioxidant effects were synthesized for the treatment of ischemic stroke. Most compounds exhibited considerable DPPH free radical scavenging ability and neuroprotective activity against H2O2-induced oxidative injury in PC12 neuronal cells, without cytotoxicity. Among these target compounds, Del03 displayed the strongest dose-dependent neuroprotective activity in vitro, directly downregulated intracellular ROS levels, and improved the oxidative stress parameters MDA, SOD, and LDH. Del03 also promoted Nrf2 translocation to the nucleus, subsequently increasing the expression of the Nrf2 downstream target HO-1. Molecular docking analysis revealed that Del03 could anchor to the key site of Keap1. Del03 possessed the ability to penetrate blood-brain barrier and displayed good ability on pharmacokinetic properties in rats Del03 possessed good BBB penetration efficiency, suitable pharmacokinetic properties in vivo. Del03 reduced cerebral infarction volume and promoted neurological function in a middle cerebral artery occlusion (MCAO) mouse model at a dose of 20 mg/kg by intravenous injection. The characteristics of Del03 detailed in this study demonstrate its potential as a therapeutic agent in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jing Wang
- Department of Pharmacy, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Hao Shi
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jun Liao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Wang
- Baoshan Zhaohui New Drug R & D and Transformation Functional Platform, Zhaohui Pharmaceutical, Shanghai 201908, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York 11439, USA
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
SAR studies of quinoline and derivatives as potential treatments for Alzheimer’s disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Modified Fluoroquinolones as Antimicrobial Compounds Targeting Chlamydia trachomatis. Int J Mol Sci 2022; 23:ijms23126741. [PMID: 35743189 PMCID: PMC9224431 DOI: 10.3390/ijms23126741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis causes the most common sexually transmitted bacterial infection and trachoma, an eye infection. Untreated infections can lead to sequelae, such as infertility and ectopic pregnancy in women and blindness. We previously enhanced the antichlamydial activity of the fluoroquinolone ciprofloxacin by grafting a metal chelating moiety onto it. In the present study, we pursued this pharmacomodulation and obtained nanomolar active molecules (EC50) against this pathogen. This gain in activity prompted us to evaluate the antibacterial activity of this family of molecules against other pathogenic bacteria, such as Neisseria gonorrhoeae and bacteria from the ESKAPE group. The results show that the novel molecules have selectively improved activity against C. trachomatis and demonstrate how the antichlamydial effect of fluoroquinolones can be enhanced.
Collapse
|
17
|
Khasawneh MA, AlKaabi A, Samadi A, Antony P, Vijayan R, Ahmed Al-Keridis L, Saadeh HA, Abutaha N. Synthesis and Biological Applications of Some Novel 8-Hydroxyquinoline Urea and Thiourea Derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
18
|
Prachayasittikul V, Pingaew R, Prachayasittikul S, Prachayasittikul V. 8-Hydroxyquinolines: A Promising Pharmacophore Potentially Developed as Disease-Modifying Agents for Neurodegenerative Diseases: A Review. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Meiss CJ, Bothwell PJ, Webb MI. Ruthenium(II)–arene complexes with chelating quinoline ligands as anti-amyloid agents. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent recognition of the soluble form of the amyloid-beta (Aβ) peptide as a neurotoxic agent in Alzheimer’s disease (AD) has spurred the development of agents to target this species. Because Aβ is known to chelate metal ions in solution, metal-based therapeutics are uniquely suited to exploit this affinity, where coordination to Aβ has been shown to impact the neurotoxicity of the peptide. Ruthenium(II)–arene complexes are unique candidates for evaluation, as one face of the molecule is blocked by the hydrophobic arene ring, while coordination to the Aβ peptide can occur on the other side of the molecule. We have prepared and evaluated two Ru(II)–arene complexes with chelating quinoline-based ligands, Ru1 and Ru2, for their respective anti-amyloid abilities. Although both complexes decreased the aggregation of soluble Aβ, Ru1 displayed promise in disrupting formed aggregates of the peptide. These findings represent an exciting new avenue for therapeutic development in AD, where both sides of the aggregation equilibrium are affected.
Collapse
Affiliation(s)
- Cade J. Meiss
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| | - Paige J. Bothwell
- Core Microscope Facility, Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Michael I. Webb
- Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA
| |
Collapse
|
20
|
Lachowicz JI, Lecca LI, Meloni F, Campagna M. Metals and Metal-Nanoparticles in Human Pathologies: From Exposure to Therapy. Molecules 2021; 26:6639. [PMID: 34771058 PMCID: PMC8587420 DOI: 10.3390/molecules26216639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/13/2023] Open
Abstract
An increasing number of pathologies correlates with both toxic and essential metal ions dyshomeostasis. Next to known genetic disorders (e.g., Wilson's Disease and β-Thalassemia) other pathological states such as neurodegeneration and diabetes are characterized by an imbalance of essential metal ions. Metal ions can enter the human body from the surrounding environment in the form of free metal ions or metal-nanoparticles, and successively translocate to different tissues, where they are accumulated and develop distinct pathologies. There are no characteristic symptoms of metal intoxication, and the exact diagnosis is still difficult. In this review, we present metal-related pathologies with the most common onsets, biomarkers of metal intoxication, and proper techniques of metal qualitative and quantitative analysis. We discuss the possible role of drugs with metal-chelating ability in metal dyshomeostasis, and present recent advances in therapies of metal-related diseases.
Collapse
Affiliation(s)
| | | | | | - Marcello Campagna
- Division of Occupational Medicine, Department of Medical Sciences and Public Health, University of Cagliari, 09048 Monserrato, CA, Italy; (J.I.L.); (L.I.L.); (F.M.)
| |
Collapse
|
21
|
Wang X, Niu X, Sha W, Feng X, Yu L, Zhang Z, Wang W, Yuan Z. An oxidation responsive nano-radiosensitizer increases radiotherapy efficacy by remolding tumor vasculature. Biomater Sci 2021; 9:6308-6324. [PMID: 34519724 DOI: 10.1039/d1bm00834j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As an excellent candidate material for nano-sensitizers, gold nanostructures have shown great potential in radiotherapy. Nevertheless, severe hypoxia and low accumulation of nanomedicine caused by poor perfusion at the tumor site have significantly reduced radiotherapy efficacy. Vascular normalization has gained attention owing to its ability to relieve hypoxia and increase perfusion. The synergistic therapy of tumor vascular normalization and radiotherapy has become a new option to increase anti-cancer efficacy. However, the commonly used strategy of suppressing a single growth factor to induce vascular normalization is limited by tumor compensatory effects. In this work, we developed a strategy to inhibit oxidative stress in tumors by generating chelating agents in response to hydrogen peroxide, thereby inhibiting multi-angiogenic factors simultaneously to normalize blood vessels. Concretely, sodium alginate (SA) reacted with 8-quinoline boric acid (QBA) to form SA-QBA. Then gold nanoparticles (Au NPs) were modified with SA-QBA to obtain Au@SA-QBA. The system was simple in structure and could generate 8HQ in response to H2O2in vitro to inhibit oxidative stress and reduce the expression of VEGF, bFGF, and Ang-2. In vivo, the perfusion unit (PU) increased by 78% after Au@SA-QBA treatment, and the coverage of pericytes increased by 32%, which in turn induced vascular normalization. In addition, blood routine and blood biochemical tests confirmed its good biocompatibility and 8HQ was not detected in the supernatant after homogenization of major organs. More importantly, after the synergistic treatment of vascular normalization and radiotherapy (4 Gy), the tumor growth inhibition rate was increased by 38.6% compared to the Au@SA-treated group with negligible side effects to normal tissues.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Weizhou Sha
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaoyue Feng
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Licheng Yu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhenjie Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Redox Homeostasis and Prospects for Therapeutic Targeting in Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9971885. [PMID: 34394839 PMCID: PMC8355971 DOI: 10.1155/2021/9971885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022]
Abstract
Reactive species, such as those of oxygen, nitrogen, and sulfur, are considered part of normal cellular metabolism and play significant roles that can impact several signaling processes in ways that lead to either cellular sustenance, protection, or damage. Cellular redox processes involve a balance in the production of reactive species (RS) and their removal because redox imbalance may facilitate oxidative damage. Physiologically, redox homeostasis is essential for the maintenance of many cellular processes. RS may serve as signaling molecules or cause oxidative cellular damage depending on the delicate equilibrium between RS production and their efficient removal through the use of enzymatic or nonenzymatic cellular mechanisms. Moreover, accumulating evidence suggests that redox imbalance plays a significant role in the progression of several neurodegenerative diseases. For example, studies have shown that redox imbalance in the brain mediates neurodegeneration and alters normal cytoprotective responses to stress. Therefore, this review describes redox homeostasis in neurodegenerative diseases with a focus on Alzheimer's and Parkinson's disease. A clearer understanding of the redox-regulated processes in neurodegenerative disorders may afford opportunities for newer therapeutic strategies.
Collapse
|
23
|
Oliveri V, Vecchio G. Bis(8‐hydroxyquinoline) Ligands: Exploring their Potential as Selective Copper‐Binding Agents for Alzheimer's Disease. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche Università degli Studi di Catania viale A. Doria 6 95125 Catania Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche Università degli Studi di Catania viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
24
|
Konshina DN, Lupanova IA, Efimenko SE, Konshin VV. A new derivative of 8-hydroxyquinoline. Features of distribution and complexation with Cu(II) and Zn(II) in two-phase systems. SOLVENT EXTRACTION AND ION EXCHANGE 2021. [DOI: 10.1080/07366299.2021.1910271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dzhamilya N. Konshina
- Department of Chemistry and High Technologies, Kuban State University, Krasnodar, Russia
| | - Ida A. Lupanova
- Department of Chemistry and High Technologies, Kuban State University, Krasnodar, Russia
| | - Sergey E. Efimenko
- Department of Chemistry and High Technologies, Kuban State University, Krasnodar, Russia
| | - Valery V. Konshin
- Department of Chemistry and High Technologies, Kuban State University, Krasnodar, Russia
| |
Collapse
|
25
|
Khan NH, Mir M, Ngowi EE, Zafar U, Khakwani MMAK, Khattak S, Zhai YK, Jiang ES, Zheng M, Duan SF, Wei JS, Wu DD, Ji XY. Nanomedicine: A Promising Way to Manage Alzheimer's Disease. Front Bioeng Biotechnol 2021; 9:630055. [PMID: 33996777 PMCID: PMC8120897 DOI: 10.3389/fbioe.2021.630055] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating disease of the aging population characterized by the progressive and slow brain decay due to the formation of extracellular plaques in the hippocampus. AD cells encompass tangles of twisted strands of aggregated microtubule binding proteins surrounded by plaques. Delivering corresponding drugs in the brain to deal with these clinical pathologies, we face a naturally built strong, protective barrier between circulating blood and brain cells called the blood-brain barrier (BBB). Nanomedicines provide state-of-the-art alternative approaches to overcome the challenges in drug transport across the BBB. The current review presents the advances in the roles of nanomedicines in both the diagnosis and treatment of AD. We intend to provide an overview of how nanotechnology has revolutionized the approaches used to manage AD and highlight the current key bottlenecks and future perspective in this field. Furthermore, the emerging nanomedicines for managing brain diseases like AD could promote the booming growth of research and their clinical availability.
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Ujala Zafar
- School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | | | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuan-Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institutes of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
26
|
Gupta R, Luxami V, Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg Chem 2021; 108:104633. [PMID: 33513476 DOI: 10.1016/j.bioorg.2021.104633] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
8-Hydroxyquinoline (8-HQ) is a significant heterocyclic scaffold in organic and analytical chemistry because of the properties of chromophore and is used to detect various metal ions and anions. But from the last 2 decades, this moiety has been drawn great attention of medicinal chemists due to its significant biological activities. Synthetic modification of 8-hydroxyquinoline is under exploration on large scale to develop more potent target-based broad spectrum drug molecules for the treatment of several life-threatening diseases such as anti-cancer, HIV, neurodegenerative disorders, etc. Metal chelation properties of 8-hydroxyquinoline and its derivatives also make these potent drug candidates for the treatment of various diseases. This review comprises 8-hydroxyquinoline derivatives reported in the literature in last five years (2016-2020) and we anticipate that it will assist medicinal chemists in the synthesis of novel and pharmacologically potent agents for various therapeutic targets, mainly anti-proliferative, anti-microbial, anti-fungal and anti-viral as well as for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rohini Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India.
| |
Collapse
|
27
|
Kareem RT, Abedinifar F, Mahmood EA, Ebadi AG, Rajabi F, Vessally E. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's agents: highlights from 2010 to 2020. RSC Adv 2021; 11:30781-30797. [PMID: 35498922 PMCID: PMC9041380 DOI: 10.1039/d1ra03718h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Dementia is a term used to define different brain disorders that affect memory, thinking, behavior, and emotion. Alzheimer's disease (AD) is the second cause of dementia that is generated by the death of cholinergic neurons (especially acetylcholine (ACh)), which have a vital role in cognition. Acetylcholinesterase inhibitors (AChEI) affect acetylcholine levels in the brain and are broadly used to treat Alzheimer's. Donepezil, rivastigmine, and galantamine, which are FDA-approved drugs for AD, are cholinesterase inhibitors. In addition, scientists are attempting to develop hybrid molecules and multi-target-directed ligands (MTDLs) that can simultaneously modulate multiple biological targets. This review highlights recent examples of MTDLs and fragment-based strategy in the rational design of new potential AD medications from 2010 onwards. This review highlights recent examples of multi-target-directed ligands (MTDLs) based on donepezil structure modification from 2010 onwards.![]()
Collapse
Affiliation(s)
- Rzgar Tawfeeq Kareem
- Department of Chemistry, College of Science, University of Bu Ali Sina, Hamadan, Iran
| | - Fahimeh Abedinifar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Evan Abdolkareem Mahmood
- College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq
| | - Abdol Ghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| | - Fatemeh Rajabi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| |
Collapse
|
28
|
Qin JC, Wang M, Fu ZH, Zhang ZH. Design and synthesis of a solvent-dependent fluorescent probe for dual selective detection of Mg2+ ion and Zn2+ ion. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Bellia F, Grasso GI, Ahmed IMM, Oliveri V, Vecchio G. Carnoquinolines Target Copper Dyshomeostasis, Aberrant Protein-Protein Interactions, and Oxidative Stress. Chemistry 2020; 26:16690-16705. [PMID: 32627921 DOI: 10.1002/chem.202001591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Metal dysregulation, oxidative stress, protein modification, and aggregation are factors strictly interrelated and associated with neurodegenerative pathologies. As such, all of these aspects represent valid targets to counteract neurodegeneration and, therefore, the development of metal-binding compounds with other properties to combat multifactorial disorders is definitely on the rise. Herein, the synthesis and in-depth analysis of the first hybrids of carnosine and 8-hydroxyquinoline, carnoquinolines (CarHQs), which combine the properties of the dipeptide with those of 8-hydroxyquinoline, are reported. CarHQs and their copper complexes were characterized through several techniques, such as ESI-MS and NMR, UV/Vis, and circular dichroism spectroscopy. CarHQs can modulate self- and copper-induced amyloid-β aggregation. These hybrids combine the antioxidant activity of their parent compounds. Therefore, they can simultaneously scavenge free radicals and reactive carbonyl species, thanks to the phenolic group and imidazole ring. These results indicate that CarHQs are promising multifunctional candidates for neurodegenerative disorders and they are worthy of further studies.
Collapse
Affiliation(s)
- Francesco Bellia
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, P. Gaifami 18, 95126, Catania, Italy
| | - Giuseppa Ida Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
30
|
Grechnikova M, Ženíšková K, Malych R, Mach J, Sutak R. Copper detoxification machinery of the brain-eating amoeba Naegleria fowleri involves copper-translocating ATPase and the antioxidant system. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:126-135. [PMID: 33096396 PMCID: PMC7578549 DOI: 10.1016/j.ijpddr.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022]
Abstract
Copper is a trace metal that is necessary for all organisms but toxic when present in excess. Different mechanisms to avoid copper toxicity have been reported to date in pathogenic organisms such as Cryptococcus neoformans and Candida albicans. However, little if anything is known about pathogenic protozoans despite their importance in human and veterinary medicine. Naegleria fowleri is a free-living amoeba that occurs naturally in warm fresh water and can cause a rapid and deadly brain infection called primary amoebic meningoencephalitis (PAM). Here, we describe the mechanisms employed by N. fowleri to tolerate high copper concentrations, which include various strategies such as copper efflux mediated by a copper-translocating ATPase and upregulation of the expression of antioxidant enzymes and obscure hemerythrin-like and protoglobin-like proteins. The combination of different mechanisms efficiently protects the cell and ensures its high copper tolerance, which can be advantageous both in the natural environment and in the host. Nevertheless, we demonstrate that copper ionophores are potent antiamoebic agents; thus, copper metabolism may be considered a therapeutic target. N. fowleri employs the combination of copper efflux and antioxidant system to ensure a high copper tolerance. Copper efflux in N. fowleri is mediated by a copper-translocating P-type ATPase. Copper ionophores have amoebicidal effect against N. fowleri and thus may be potentially used as antiamoebic agents. Iron-binding proteins hemerythrin and protoglobin are highly upregulated in N. fowleri under copper overload.
Collapse
Affiliation(s)
- Maria Grechnikova
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
31
|
Saadeh HA, Sweidan KA, Mubarak MS. Recent Advances in the Synthesis and Biological Activity of 8-Hydroxyquinolines. Molecules 2020; 25:molecules25184321. [PMID: 32967141 PMCID: PMC7571046 DOI: 10.3390/molecules25184321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Compounds containing the 8-hydroxyquinoline (8-HQ) 1 nucleus exhibit a wide range of biological activities, including antimicrobial, anticancer, and antifungal effects. The chemistry and biology of this group have attracted the attention of chemists, medicinal chemists, and professionals in health sciences. A number of prescribed drugs incorporate this group, and numerous 8-HQ- based molecules can be used to develop potent lead compounds with good efficacy and low toxicity. This review focusses on the recent advances in the synthesis of 8-HQ derivatives with different pharmacological properties, including anticancer, antiviral, and antibacterial activities. For this purpose, recent relevant references were searched in different known databases and search engines, such as MEDLINE (PubMed), Google Scholar, Science Direct, Scopus, Cochrane, Scientific Information Database (SID), SciFinder, and Institute for Scientific Information (ISI) Web of Knowledge. This review article provides a literature overview of the various synthetic strategies and biological activities of 8-HQ derivatives and covers the recent related literature. Taken together, compounds containing the 8-HQ moiety have huge therapeutic value and can act as potential building blocks for various pharmacologically active scaffolds. In addition, several described compounds in this review could act leads for the development of drugs against numerous diseases including cancer.
Collapse
Affiliation(s)
- Haythem A. Saadeh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan;
| | - Kamal A. Sweidan
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan;
| | - Mohammad S. Mubarak
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan;
- Correspondence: ; Tel.: +962-791-016-126
| |
Collapse
|
32
|
The aroylhydrazone INHHQ prevents memory impairment induced by Alzheimer's-linked amyloid-β oligomers in mice. Behav Pharmacol 2020; 31:738-747. [PMID: 32773452 DOI: 10.1097/fbp.0000000000000578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Converging evidence indicates that neurotoxicity and memory impairment in Alzheimer's disease is induced by brain accumulation of soluble amyloid-β oligomers (AβOs). Physiological metals are poorly distributed and concentrated in the senile plaques typical of Alzheimer's disease, where they may be coordinated to the amyloid-β peptide (Aβ). Indeed, zinc and copper increase Aβ oligomerization and toxicity. Metal-protein attenuating compounds represent a class of agents proposed for Alzheimer's disease treatment, as they reduce abnormal interactions of metal ions with Aβ, inhibit Aβ oligomerization and prevent deleterious redox reactions in the brain. The present work investigates the protective action of an isoniazid-derived aroylhydrazone, INHHQ, on AβO-induced memory impairment. Systemic administration of a single dose of INHHQ (1 mg/kg) prevented both short-term and long-term memory impairment caused by AβOs in mice. In-vitro studies showed that INHHQ prevents Cu(Aβ)-catalyzed production of reactive oxygen species. Although the mechanism of protection by INHHQ is not yet fully understood at a molecular level, the results reported herein certainly point to the value of aroylhydrazones as promising neuroprotective agents in Alzheimer's disease and related disorders.
Collapse
|
33
|
Bowroju SK, Mainali N, Ayyadevara S, Penthala NR, Krishnamachari S, Kakraba S, Reis RJS, Crooks PA. Design and Synthesis of Novel Hybrid 8-Hydroxy Quinoline-Indole Derivatives as Inhibitors of Aβ Self-Aggregation and Metal Chelation-Induced Aβ Aggregation. Molecules 2020; 25:E3610. [PMID: 32784464 PMCID: PMC7463714 DOI: 10.3390/molecules25163610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023] Open
Abstract
A series of novel hybrid 8-hydroxyquinoline-indole derivatives (7a-7e, 12a-12b and 18a-18h) were synthesized and screened for inhibitory activity against self-induced and metal-ion induced Aβ1-42 aggregation as potential treatments for Alzheimer's disease (AD). In vitro studies identified the most inhibitory compounds against self-induced Aβ1-42 aggregation as 18c, 18d and 18f (EC50 = 1.72, 1.48 and 1.08 µM, respectively) compared to the known anti-amyloid drug, clioquinol (1, EC50 = 9.95 µM). The fluorescence of thioflavin T-stained amyloid formed by Aβ1-42 aggregation in the presence of Cu2+ or Zn2+ ions was also dramatically decreased by treatment with 18c, 18d and 18f. The most potent hybrid compound 18f afforded 82.3% and 88.3% inhibition, respectively, against Cu2+- induced and Zn2+- induced Aβ1-42 aggregation. Compounds 18c, 18d and 18f were shown to be effective in reducing protein aggregation in HEK-tau and SY5Y-APPSw cells. Molecular docking studies with the most active compounds performed against Aβ1-42 peptide indicated that the potent inhibitory activity of 18d and 18f were predicted to be due to hydrogen bonding interactions, π-π stacking interactions and π-cation interactions with Aβ1-42, which may inhibit both self-aggregation as well as metal ion binding to Aβ1-42 to favor the inhibition of Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Suresh K. Bowroju
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.B.); (N.R.P.)
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (S.K.)
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.); (S.A.)
| | - Narsimha R. Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.B.); (N.R.P.)
| | - Sesha Krishnamachari
- Central Arkansas Veterans Healthcare Service, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.); (S.A.)
| | - Samuel Kakraba
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (S.K.)
| | - Robert J. Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.M.); (S.K.)
- Central Arkansas Veterans Healthcare Service, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.); (S.A.)
- Department of Geriatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.K.B.); (N.R.P.)
| |
Collapse
|
34
|
Savić-Gajić IM, Savić IM. Drug design strategies with metal-hydroxyquinoline complexes. Expert Opin Drug Discov 2019; 15:383-390. [DOI: 10.1080/17460441.2020.1702964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ivan M. Savić
- Faculty of Technology, University of Nis, Leskovac, Republic of Serbia
| |
Collapse
|
35
|
Wichur T, Więckowska A, Więckowski K, Godyń J, Jończyk J, Valdivieso ÁDR, Panek D, Pasieka A, Sabaté R, Knez D, Gobec S, Malawska B. 1-Benzylpyrrolidine-3-amine-based BuChE inhibitors with anti-aggregating, antioxidant and metal-chelating properties as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2019; 187:111916. [PMID: 31812794 DOI: 10.1016/j.ejmech.2019.111916] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023]
Abstract
Complex pathomechanism of Alzheimer's disease (AD) prompts researchers to develop multifunctional molecules in order to find effective therapy against AD. We designed and synthesized novel multifunctional ligands for which we assessed their activities towards butyrylcholinesterase, beta secretase, amyloid beta (Aβ) and tau protein aggregation as well as antioxidant and metal-chelating properties. All compounds showed dual anti-aggregating properties towards Aβ and tau protein in the in cellulo assay in Escherichia coli. Of particular interest are compounds 24b and 25b, which efficiently inhibit aggregation of Aβ and tau protein at 10 μM (24b: 45% for Aβ, 53% for tau; 25b: 49% for Aβ, 54% for tau). They display free radical scavenging capacity and antioxidant activity in ABTS and FRAP assays, respectively, and selectively chelate copper ions. Compounds 24b and 25b are also the most potent inhibitors of BuChE with IC50 of 2.39 μM and 1.94 μM, respectively. Promising in vitro activities of the presented multifunctional ligands as well as their original scaffold are a very interesting starting point for further research towards effective anti-AD treatment.
Collapse
Affiliation(s)
- Tomasz Wichur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Krzysztof Więckowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | | | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
36
|
Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophys Rev 2019; 11:10.1007/s12551-019-00606-2. [PMID: 31713720 DOI: 10.1007/s12551-019-00606-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported that amyloid hypothesis-based treatments can be developed as a new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known compounds that can inhibit amyloid-β (Aβ) aggregation and their potential role in advancing current AD treatments. We have specifically focused on Aβ aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aβ aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic agents for AD treatment and diagnostics.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials , Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Hossein Behnammanesh
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, P.O. Box: 71555-313, Shiraz, Iran.
| |
Collapse
|
37
|
Xu Y, Wei H, Wang J, Wang W, Gao J. Synthesis of andrographolide analogues and their neuroprotection and neurite outgrowth-promoting activities. Bioorg Med Chem 2019; 27:2209-2219. [DOI: 10.1016/j.bmc.2019.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
38
|
Sales TA, Prandi IG, Castro AAD, Leal DHS, Cunha EFFD, Kuca K, Ramalho TC. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int J Mol Sci 2019; 20:E1829. [PMID: 31013856 PMCID: PMC6514778 DOI: 10.3390/ijms20081829] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g. neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients' quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs.
Collapse
Affiliation(s)
- Thais A Sales
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Ingrid G Prandi
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Alexandre A de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Daniel H S Leal
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus/ES, 29932-540, Brazil.
| | - Elaine F F da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 500 03 Czech Republic.
| | - Teodorico C Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
| |
Collapse
|
39
|
|
40
|
Sharma A, Pachauri V, Flora SJS. Advances in Multi-Functional Ligands and the Need for Metal-Related Pharmacology for the Management of Alzheimer Disease. Front Pharmacol 2018; 9:1247. [PMID: 30498443 PMCID: PMC6249274 DOI: 10.3389/fphar.2018.01247] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/12/2018] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the age linked neurodegenerative disorder with no disease modifying therapy currently available. The available therapy only offers short term symptomatic relief. Several hypotheses have been suggested for the pathogenesis of the disease while the molecules developed as possible therapeutic agent in the last decade, largely failed in the clinical trials. Several factors like tau protein hyperphosphorylation, amyloid-β (Aβ) peptide aggregation, decline in acetyl cholinesterase and oxidative stress might be contributing toward the pathogenesis of AD. Additionally, biometals dyshomeostasis (Iron, Copper, and Zinc) in the brain are also reported to be involved in the pathogenesis of AD. Thus, targeting these metal ions may be an effective strategy for the development of a drug to treat AD. Chelation therapy is currently employed for the metal intoxication but we lack a safe and effective chelating agents with additional biological properties for their possible use as multi target directed ligands for a complex disease like AD. Chelating agents possess the ability to disaggregate Aβ aggregation, dissolve amyloid plaques, and delay the cognitive impairment. Thus there is an urgent need to develop disease modifying therapeutic molecules with multiple beneficial features like targeting more than one factor responsible of the disease. These molecules, as disease modifying therapeutic agents for AD, should possess the potential to inhibit Aβ-metal interactions, the formation of toxic Aβ aggregates; and the capacity to reinstate metal homeostasis.
Collapse
Affiliation(s)
- Abha Sharma
- Department of Pharmacology and Toxicology and Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Vidhu Pachauri
- Department of Pharmacology and Toxicology and Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Pharmacology and Toxicology and Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
41
|
Peng Y, Zhao Y, Chen Y, Yang Z, Zhang L, Xiao W, Yang J, Guo L, Wu Y. Dual-targeting for brain-specific liposomes drug delivery system: Synthesis and preliminary evaluation. Bioorg Med Chem 2018; 26:4677-4686. [DOI: 10.1016/j.bmc.2018.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022]
|
42
|
Heat Shock Proteins in Alzheimer's Disease: Role and Targeting. Int J Mol Sci 2018; 19:ijms19092603. [PMID: 30200516 PMCID: PMC6163571 DOI: 10.3390/ijms19092603] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Among diseases whose cure is still far from being discovered, Alzheimer’s disease (AD) has been recognized as a crucial medical and social problem. A major issue in AD research is represented by the complexity of involved biochemical pathways, including the nature of protein misfolding, which results in the production of toxic species. Considering the involvement of (mis)folding processes in AD aetiology, targeting molecular chaperones represents a promising therapeutic perspective. This review analyses the connection between AD and molecular chaperones, with particular attention toward the most important heat shock proteins (HSPs) as representative components of the human chaperome: Hsp60, Hsp70 and Hsp90. The role of these proteins in AD is highlighted from a biological point of view. Pharmacological targeting of such HSPs with inhibitors or regulators is also discussed.
Collapse
|
43
|
Yu S, Wu J, Lan H, Xu H, Shi X, Zhu X, Yin Z. Transition metal/Brønsted acid cooperative catalysis enabled facile synthesis of 8-hydroxyquinolines through one-pot reactions of ortho-aminophenol, aldehydes and alkynes. RSC Adv 2018; 8:33968-33971. [PMID: 35548801 PMCID: PMC9086736 DOI: 10.1039/c8ra07212d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 01/21/2023] Open
Abstract
A convenient and straightforward three-component one-pot strategy has been developed for the synthesis of 8-hydroxyquinoline derivatives. Under the cooperative catalysis of silver(i) triflate and trifluoroacetic acid, ortho-aminophenol reacted with a range of aldehydes and alkynes under mild reactions, affording the corresponding 8-hydroxyquinoline derivatives with good to excellent yields. These transformations exhibited exceptional substrate generality and functional group compatibility. An efficient and cooperative catalytic one-pot synthetic methodology for 8-hydroxyquinoline compounds has been developed.![]()
Collapse
Affiliation(s)
- Shuyan Yu
- Material and Chemical Engineering College
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- People's Republic of China
| | - Jingxin Wu
- Material and Chemical Engineering College
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- People's Republic of China
| | - Hongbing Lan
- Material and Chemical Engineering College
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- People's Republic of China
| | - Hanwen Xu
- Material and Chemical Engineering College
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- People's Republic of China
| | - Xiaofei Shi
- Material and Chemical Engineering College
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- People's Republic of China
| | - Xuewen Zhu
- Material and Chemical Engineering College
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- People's Republic of China
| | - Zhigang Yin
- Material and Chemical Engineering College
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- People's Republic of China
| |
Collapse
|