1
|
Krings KS, Wassenberg TR, Cea-Medina P, Schmitt L, Lechtenberg I, Llewellyn TR, Qin N, Gohlke H, Wesselborg S, Müller TJJ. Novel 4-alkoxy Meriolin Congeners Potently Induce Apoptosis in Leukemia and Lymphoma Cells. Molecules 2024; 29:6050. [PMID: 39770138 PMCID: PMC11676355 DOI: 10.3390/molecules29246050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Meriolins (3-(pyrimidin-4-yl)-7-azaindoles) are synthetic hybrids of the naturally occurring alkaloids variolin and meridianin and display a strong cytotoxic potential. We have recently shown that the novel derivative meriolin16 is highly cytotoxic in several lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells and predominantly targets cyclin-dependent kinases (CDKs). Here, we efficiently synthesized nine novel 2-aminopyridyl meriolin congeners (3a-3i), i.e., pyrimeriolins, using a one-pot Masuda borylation-Suzuki coupling (MBSC) sequence, with eight of them bearing lipophilic alkoxy substituents of varying length, to systematically determine the influence of the alkoxy sidechain length on the biological activity. All the synthesized derivatives displayed a pronounced cytotoxic potential, with six compounds showing IC50 values in the nanomolar range. Derivatives 3b-3f strongly induced apoptosis and activated caspases with rapid kinetics within 3-4 h in Jurkat leukemia and Ramos lymphoma cells. The induction of apoptosis by the most potent derivative 3e was mediated by the intrinsic mitochondrial death pathway, as it was blocked in caspase-9 deficient and Apaf-1 knockdown Jurkat cells. However, as recently shown for meriolin16, derivative 3e was able to induce apoptosis in the Jurkat cells overexpressing the antiapoptotic protein Bcl-2. Since tumor cells often inactivate the intrinsic mitochondrial apoptosis pathway (e.g., by overexpression of Bcl-2), these meriolin congeners represent promising therapeutic agents for overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Karina S. Krings
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.S.K.); (L.S.); (I.L.)
| | - Tobias R. Wassenberg
- Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany;
| | - Pablo Cea-Medina
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (P.C.-M.); (H.G.)
| | - Laura Schmitt
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.S.K.); (L.S.); (I.L.)
| | - Ilka Lechtenberg
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.S.K.); (L.S.); (I.L.)
| | - Tanya R. Llewellyn
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany; (T.R.L.); (N.Q.)
| | - Nan Qin
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany; (T.R.L.); (N.Q.)
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), University Hospital Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (P.C.-M.); (H.G.)
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, D-52425 Jülich, Germany
| | - Sebastian Wesselborg
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.S.K.); (L.S.); (I.L.)
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), University Hospital Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Thomas J. J. Müller
- Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Khalaf HS, Abdel-Aziz MS, Radwan MAA, Sediek AA. Synthesis, Biological Evaluation, and Molecular Docking Studies of Indole-Based Heterocyclic Scaffolds as Potential Antibacterial Agents. Chem Biodivers 2024:e202402325. [PMID: 39433506 DOI: 10.1002/cbdv.202402325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Indole-based heterocyclic scaffolds have become increasingly important in medicinal chemistry due to their notable pharmacological and biological properties. Their role in the discovery and development of innovative drugs for treating various diseases highlights their value. This study aimed to synthesize C3-indole derivatives linked to various heterocyclic scaffolds, including thiophenes, thiazolidine-4-ones, and 1,3,4-thiadiazoles, via the reaction of ethylthioacetanilide 2 with different α-haloketones.The structures of the target compounds were established using 1H and 13C nuclear magnetic resonance spectroscopy, mass spectrometry, infrared spectroscopy, and elemental analysis. The synthesized compounds were tested for antimicrobial activity against different microbes: S. aureus ATCC 6538 (Gram-positive bacteria), E. coli ATCC 25933 (Gram-negative bacteria), C. albicans ATCC 10231 (yeast), and fungi (A. niger NRRL-A326). Thiophene 6a, thiazolidine-4-one 8, and compound 10d exhibited the highest antimicrobial activities. The molecular docking study showed that compounds 2, 4, 6a, and 6c had good binding energy and favorable binding modes of interactions with the DNA gyrase B enzymes (PDB: 3 U2D) and (PDB: 1S14). The results showed that the NH group of the indole in compounds 2 and 4, together with the nitrile group (CN), played an important role in inhibiting DNA gyrase B of S. aureus, PDB: 3 U2D. Furthermore, the NH of the indole ring, together with the ethylamino group of compound 2, was crucial in inhibiting DNA gyrase B of E. coli, PDB: 1S14. These findings may encourage researchers to develop more effective C3-indole derivatives in their search for antimicrobial drugs.
Collapse
Affiliation(s)
- Hemat S Khalaf
- Department of Photochemistry, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A A Radwan
- Applied Organic Chemistry Department, National Research Centre, Dokki, 12622, Egypt
| | - Ashraf A Sediek
- Chemical Industries Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
3
|
Sharma V, Chander Sharma P, Reang J, Yadav V, Kumar Tonk R, Majeed J, Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg Chem 2024; 147:107378. [PMID: 38643562 DOI: 10.1016/j.bioorg.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3β and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3β and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3β and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3β and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | | | - Jurnal Reang
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Vivek Yadav
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India; Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Rai T, Kaushik N, Malviya R, Sharma PK. A review on marine source as anticancer agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:415-451. [PMID: 37675579 DOI: 10.1080/10286020.2023.2249825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
This review investigates the potential of natural compounds obtained from marine sources for the treatment of cancer. The oceans are believed to contain physiologically active compounds, such as alkaloids, nucleosides, macrolides, and polyketides, which have shown promising effects in slowing human tumor cells both in vivo and in vitro. Various marine species, including algae, mollusks, actinomycetes, fungi, sponges, and soft corals, have been studied for their bioactive metabolites with diverse chemical structures. The review explores the therapeutic potential of various marine-derived substances and discusses their possible applications in cancer treatment.
Collapse
Affiliation(s)
- Tamanna Rai
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
5
|
Islam F, Dehbia Z, Zehravi M, Das R, Sivakumar M, Krishnan K, Billah AAM, Bose B, Ghosh A, Paul S, Nainu F, Ahmad I, Emran TB. Indole alkaloids from marine resources: Understandings from therapeutic point of view to treat cancers. Chem Biol Interact 2023; 383:110682. [PMID: 37648047 DOI: 10.1016/j.cbi.2023.110682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the leading cause of mortality all over the world. Scientific investigation has demonstrated that disruptions in the process of autophagy are frequently interrelated with the emergence of cancer. Hence, scientists are seeking permanent solutions to counter the deadly disease. Indole alkaloids have been extensively studied and are acknowledged to exhibit several bioactivities. The current state of disease necessitates novel pharmacophores development. In recent decades, indole alkaloids have become increasingly significant in cancer treatment and are also used as adjuvants. A substantial amount of pharmacologically active molecules come from indole alkaloids, which are widely distributed in nature. Indole alkaloids derived from marine organisms show immense potential for therapeutic applications and seem highly effective in cancer treatment. A couple of experiments have been conducted preclinically to investigate the possibility of indole alkaloids in cancer treatment. Marine-derived indole alkaloids possess the ability to exhibit anticancer properties through diverse antiproliferative mechanisms. Certain indole alkaloids, including vincristine and vinblastine, were verified in clinical trials or are presently undergoing clinical assessments for preventing and treating cancer. Indole alkaloids from marine resources hold a significant functionality in identifying new antitumor agents. The current literature highlights recent advancements in indole alkaloids that appear to be anticancer agents and the underlying mechanisms.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of Agro - Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M Sivakumar
- Department of Pharmacognosy, Faculty of Pharmacy, Sree Balaji Medical College and Hospital BIHER (DU), Chromepet, Chennai, 600044, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, India
| | - Abdul Ajeed Mohathasim Billah
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, SRIHER (DU), Porur, Chennai, Tamil Nadu, India
| | - Bharadhan Bose
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
6
|
Casertano M, Vito A, Aiello A, Imperatore C, Menna M. Natural Bioactive Compounds from Marine Invertebrates That Modulate Key Targets Implicated in the Onset of Type 2 Diabetes Mellitus (T2DM) and Its Complications. Pharmaceutics 2023; 15:2321. [PMID: 37765290 PMCID: PMC10538088 DOI: 10.3390/pharmaceutics15092321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an ongoing, risky, and costly health problem that therefore always requires new treatment options. Moreover, although several drugs are available, only 36% of patients achieve glycaemic control, and patient adherence is a major obstacle. With monotherapy, T2DM and its comorbidities/complications often cannot be managed, and the concurrent administration of several hypoglycaemic drugs is required, which increases the risk of side effects. In fact, despite the efficacy of the drugs currently on the market, they generally come with serious side effects. Therefore, scientific research must always be active in the discovery of new therapeutic agents. DISCUSSION The present review highlights some of the recent discoveries regarding marine natural products that can modulate the various targets that have been identified as crucial in the establishment of T2DM disease and its complications, with a focus on the compounds isolated from marine invertebrates. The activities of these metabolites are illustrated and discussed. OBJECTIVES The paper aims to capture the relevant evidence of the great chemical diversity of marine natural products as a key tool that can advance understanding in the T2DM research field, as well as in antidiabetic drug discovery. The variety of chemical scaffolds highlighted by the natural hits provides not only a source of chemical probes for the study of specific targets involved in the onset of T2DM, but is also a helpful tool for the development of drugs that are capable of acting via novel mechanisms. Thus, it lays the foundation for the design of multiple ligands that can overcome the drawbacks of polypharmacology.
Collapse
Affiliation(s)
| | | | | | | | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (A.V.); (A.A.); (C.I.)
| |
Collapse
|
7
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|
8
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
9
|
Sun H, Sun K, Sun J. Recent Advances of Marine Natural Indole Products in Chemical and Biological Aspects. Molecules 2023; 28:molecules28052204. [PMID: 36903451 PMCID: PMC10005763 DOI: 10.3390/molecules28052204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ocean has always been one of the important sources of natural products. In recent years, many natural products with different structures and biological activities have been obtained, and their value has been clearly recognized. Researchers have been deeply engaged in the field of separation and extraction, derivative synthesis, structural studies, biological evaluation, and other fields of research for marine natural products. Thus, a series of marine indole natural products which have structural and biological prospect have caught our eyes. In this review, we summarize some of these marine indole natural products with relatively good pharmacological activity and research value, and discuss issues concerning chemistry, pharmacological activity, biological evaluation, and synthesis, including monomeric indoles, indole peptides, bis-indoles, and annelated indoles. Most of the compounds have cytotoxic, antiviral, antifungal, or anti-inflammatory activities.
Collapse
Affiliation(s)
- Haoyi Sun
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Kangping Sun
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jingyong Sun
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan 250117, China
- Key Laboratory for Rare & Uncommon Discases of Shandong Province, Jinan 250117, China
- Correspondence: ; Tel.: +86-531-59567209
| |
Collapse
|
10
|
Vrabec R, Blunden G, Cahlíková L. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054399. [PMID: 36901826 PMCID: PMC10003045 DOI: 10.3390/ijms24054399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people; currently, there is no efficient treatment. Considering the increase in life expectancy worldwide AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. A great amount of experimental and clinical evidence indicated that AD is a complex disorder characterized by widespread neurodegeneration of the CNS, with major involvement of the cholinergic system, causing progressive cognitive decline and dementia. The current treatment, based on the cholinergic hypothesis, is only symptomatic and mainly involves the restoration of acetylcholine (ACh) levels through the inhibition of acetylcholinesterase (AChE). Since the introduction of the Amaryllidaceae alkaloid galanthamine as an antidementia drug in 2001, alkaloids have been one of the most attractive groups for searching for new AD drugs. The present review aims to comprehensively summarize alkaloids of various origins as multi-target compounds for AD. From this point of view, the most promising compounds seem to be the β-carboline alkaloid harmine and several isoquinoline alkaloids since they can simultaneously inhibit several key enzymes of AD's pathophysiology. However, this topic remains open for further research on detailed mechanisms of action and the synthesis of potentially better semi-synthetic analogues.
Collapse
Affiliation(s)
- Rudolf Vrabec
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Lucie Cahlíková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
- Correspondence:
| |
Collapse
|
11
|
Kruppa M, Müller TJJ. A Survey on the Synthesis of Variolins, Meridianins, and Meriolins-Naturally Occurring Marine (aza)Indole Alkaloids and Their Semisynthetic Derivatives. Molecules 2023; 28:molecules28030947. [PMID: 36770618 PMCID: PMC9920529 DOI: 10.3390/molecules28030947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Marine natural products are a source of essential significance due to a plethora of highly diverse biological properties. The naturally occurring (aza)indole alkaloids variolin B (1), meridianins (2), and their synthetic hybrids meriolins (3) exhibit potent kinase inhibitory activities and have aroused considerable interest in the past two decades. Therefore, the immense demand for versatile synthetic accesses to these structures has considerably increased. This review surveys the synthetic pathways to these naturally occurring alkaloids and their semisynthetic derivatives.
Collapse
|
12
|
Xiao L. A Review: Meridianins and Meridianins Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248714. [PMID: 36557848 PMCID: PMC9781522 DOI: 10.3390/molecules27248714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Meridianins are a family of indole alkaloids derived from Antarctic tunicates with extensive pharmacological activities. A series of meridianin derivatives had been synthesized by drug researchers. This article reviews the extraction and purification methods, biological activities and pharmacological applications, pharmacokinetic characters and chemical synthesis of meridianins and their derivatives. And prospects on discovering new bioactivities of meridianins and optimizing their structure for the improvement of the ADMET properties are provided.
Collapse
Affiliation(s)
- Linxia Xiao
- School of Pharmacology, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
13
|
El-Gamil DS, ElHady AK, Chen PJ, Hwang TL, Abadi AH, Abdel-Halim M, Engel M. Development of novel conformationally restricted selective Clk1/4 inhibitors through creating an intramolecular hydrogen bond involving an imide linker. Eur J Med Chem 2022; 238:114411. [DOI: 10.1016/j.ejmech.2022.114411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
|
14
|
Concise Syntheses of Marine (Bis)indole Alkaloids Meridianin C, D, F, and G and Scalaridine A via One-Pot Masuda Borylation-Suzuki Coupling Sequence. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072233. [PMID: 35408633 PMCID: PMC9000334 DOI: 10.3390/molecules27072233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
N-Protected 3-iodoindoles were reacted with (di)azine halides in a sequentially Pd-catalyzed one-pot fashion, i.e., by Masuda borylation–Suzuki coupling (MBSC) sequence. This methodology was successfully applied to the concise syntheses of marine indole alkaloids meridianin C, D, F, and G, as well as to the bisindole alkaloid scalaridine A, which were obtained in moderate to excellent yield.
Collapse
|
15
|
Catarzi D, Varano F, Vigiani E, Lambertucci C, Spinaci A, Volpini R, Colotta V. Casein Kinase 1δ Inhibitors as Promising Therapeutic Agents for Neurodegenerative Disorders. Curr Med Chem 2022; 29:4698-4737. [PMID: 35232339 DOI: 10.2174/0929867329666220301115124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/06/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Casein kinase 1 (CK1) belongs to the serine-threonine kinase family and is expressed in all eukaryotic organisms. At least six human isoforms of CK1 (termed α, γ1-3, δ and ε) have been cloned and characterized. CK1 isoform modulates several physiological processes, including DNA damage repair, circadian rhythm, cellular proliferation and apoptosis. Therefore, CK1 dysfunction may trigger diverse pathologies, such as cancer, inflammation and central nervous system disorders. Overexpression and aberrant activity of CK1 has been connected to hyperphosphorylation of key proteins implicated in the development of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases and Amyotrophic Lateral Sclerosis. Thus, CK1 inhibitors have attracted attention as potential drugs for these pathologies and several compounds have been synthesized or isolated from natural sources to be evaluated for their CK1 inhibitory activity. Here we report a comprehensive review on the development of CK1 inhibitors, with a particular emphasis on structure-activity relationships and computational studies which provide useful insight for the design of novel inhibitors.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Erica Vigiani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Catia Lambertucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Andrea Spinaci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
17
|
Design, Synthesis and Structure-Activity Relationship Studies of Meridianin Derivatives as Novel JAK/STAT3 Signaling Inhibitors. Int J Mol Sci 2022; 23:ijms23042199. [PMID: 35216314 PMCID: PMC8875316 DOI: 10.3390/ijms23042199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperactivation of Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling is an attractive therapeutic target for tumor therapy. Herein, forty-eight novel meridianin derivatives were designed and synthesized, and their antitumor activity was evaluated in vitro both for activity optimization and structure–activity relationship (SAR) study. The results indicated that most derivatives exhibited significantly improved antitumor activity, especially for compound 6e. The compound 6e contains an isothiouronium linked by an alkyl chain consisting of six carbon atoms with IC50 ranging from 1.11 to 2.80 μM on various cancer cell lines. Consistently, the 6e dose dependently induced the apoptosis of A549 and DU145 cells, in which STAT3 is constitutively active. Western blotting assays indicated that the phosphorylation levels of JAK1, JAK2 and STAT3 were inhibited by 6e at 5 μM without significant change in the total STAT3 level. Moreover, 6e also suppressed the expression of STAT3 downstream genes, including c-Myc, Cyclin D1 and Bcl-XL at 10 μM. An additional in vivo study revealed that 6e at the dose of 10 mg/kg could potently inhibit the DU145 xenograft tumor without obvious body weight loss. These results clearly indicate that 6e could be a potential antitumor agent by targeting the JAK/STAT3 signaling pathway.
Collapse
|
18
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
19
|
Lima E, Medeiros J. Marine Organisms as Alkaloid Biosynthesizers of Potential Anti-Alzheimer Agents. Mar Drugs 2022; 20:75. [PMID: 35049930 PMCID: PMC8780771 DOI: 10.3390/md20010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), increases continuously demanding the urgent development of anti-Alzheimer's agents. Marine organisms (MO) have to create their own defenses due to the adverse environment where they live and so synthesize several classes of compounds, such as akaloids, to defend themselves. Therefore, the identification of marine natural products with neuroprotective effects is a necessity. Being that AD is not only a genetic but also an environmental complex disease, a treatment for AD remains to discover. As the major clinical indications (CI) of AD are extracellular plaques formed by β-amyloid (Aβ) protein, intracellular neurofibrillary tangles (NFTs) formed by hyper phosphorylated τ-protein, uncommon inflammatory response and neuron apoptosis and death caused by oxidative stress, alkaloids that may decrease CI, might be used against AD. Most of the alkalolids with those properties are derivatives of the amino acid tryptophan mainly with a planar indole scaffold. Certainly, alkaloids targeting more than one CI, multitarget-directed ligands (MTDL), have the potential to become a lead in AD treatment. Alkaloids to have a maximum of activity against CI, should be planar and contain halogens and amine quaternization.
Collapse
Affiliation(s)
- Elisabete Lima
- Faculty of Science and Technology (FCT), Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal;
| | - Jorge Medeiros
- Faculty of Science and Technology (FCT), Biotechnology Centre of Azores (CBA), University of Azores, 9500-321 Ponta Delgada, São Miguel, Açores, Portugal
| |
Collapse
|
20
|
Han S, Zhou W, Zhuang C, Chen F. Structure-Based design of Marine-derived Meridianin C derivatives as glycogen synthase kinase 3β inhibitors with improved oral bioavailability: From aminopyrimidyl-indoles to the sulfonyl analogues. Bioorg Chem 2021; 119:105537. [PMID: 34902644 DOI: 10.1016/j.bioorg.2021.105537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Glycogen synthase kinase 3β (GSK-3β) has become an attractive target for the treatment of diabetes. Compound I is an indole-based GSK-3β inhibitor designed from the Meridianin C, a marine natural product (MNP) isolated from Aplidium meridianum. However, this compound has a moderate inhibitory activity toward GSK-3β (IC50 = 24.4 μM), moderate glucose uptake (38%), and especially, a low oral bioavailability (F = 11.4%). In the present study, applying the structure-based design strategy, a series of derivatives modified on the indole moiety were synthesized based on the lead compound I, followed by evaluating their cytotoxic activity, antihyperglycemic activity, and kinase inhibitory activity. Among this series, compound 6x with a sulfonyl group displayed the highest glucose uptake (83.5%) in muscle L6 cells, showing much higher inhibitory activity against GSK-3β (IC50 = 5.25 μM). Molecular docking indicated that compound 6x was properly inserted into the ATP-binding binding pocket of GSK-3β with a higher docking score (-8.145 kcal/mol) compared with that of compound I (-6.950 kcal/mol), interpreting the higher kinase inhibitory activity toward GSK-3β. Remarkably, compound 6x showed favorable drug-like properties, including significantly better oral bioavailability (F = 47.4%) and no two-week acute toxicity at a dose of 1 g/kg. Our findings suggest that these MNP-derived sulfonyl indole derivatives could be used as lead compounds for the development of anti-hyperglycemic drugs.
Collapse
Affiliation(s)
- Shuwen Han
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fener Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| |
Collapse
|
21
|
King A, Blackledge MS. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem Biol Drug Des 2021; 98:1038-1064. [PMID: 34581492 PMCID: PMC8616828 DOI: 10.1111/cbdd.13962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a global and pressing concern. Our current therapeutic arsenal is increasingly limited as bacteria are developing resistance at a rate that far outpaces our ability to create new treatments. Novel approaches to treating and curing bacterial infections are urgently needed. Bacterial kinases have been increasingly explored as novel drug targets and are poised for development into novel therapeutic agents to combat bacterial infections. This review describes several general classes of bacterial kinases that play important roles in bacterial growth, antibiotic resistance, and biofilm formation. General features of these kinase classes are discussed and areas of particular interest for the development of inhibitors will be highlighted. Small molecule kinase inhibitors are described and organized by phenotypic effect, spotlighting particularly interesting inhibitors with novel functions and potential therapeutic benefit. Finally, we provide our perspective on the future of bacterial kinase inhibition as a viable strategy to combat bacterial infections and overcome the pressures of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| | - Meghan S. Blackledge
- Department of Chemistry, High Point University, One University Parkway, High Point, NC 27268
| |
Collapse
|
22
|
Zhang G, Xiao L, Qi L. Metabolite Profiling of Meridianin C In Vivo of Rat by UHPLC/Q-TOF MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:1382421. [PMID: 34721922 PMCID: PMC8553504 DOI: 10.1155/2021/1382421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Meridianin C (MC), as a marine alkaloid, is a potent protein kinase inhibitor which exhibits good anticancer activity. However, the in vivo metabolism of MC has not been described to date. In this study, an ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS) method is employed to investigate the in vivo metabolites of MC in rats. Plasma, bile, urine, and feces are collected after a single oral dose of MC. Protein precipitation, solid phase extraction (SPE), and ultrasonic extraction methods are used to prepare samples. Based on the mass spectral fragmentation patterns, elution order, and retrieving literatures, a total of 13 metabolites of MC were detected and tentatively identified, utilizing MetaboLynx software. The metabolic pathways of MC in rats include N- or O-glucuronidation, O-sulfation, N-hydroxylation, dihydroxylation, and trihydroxylation. The relative content of the metabolites in each kinds of biological samples is also evaluated. This study will help to understand the in vivo properties of MC for the future usage.
Collapse
Affiliation(s)
- Guozhe Zhang
- Department of Translational Medicine, Jiangsu Vocational College of Medicine, 283 South of Republic Road, Yancheng 224005, China
| | - Linxia Xiao
- Department of Translational Medicine, Jiangsu Vocational College of Medicine, 283 South of Republic Road, Yancheng 224005, China
| | - Liang Qi
- Department of Translational Medicine, Jiangsu Vocational College of Medicine, 283 South of Republic Road, Yancheng 224005, China
| |
Collapse
|
23
|
Xu Z, Chen H, Deng GJ, Huang H. Copper-catalyzed three-component formal [3 + 1 + 2] annulations for the synthesis of 2-aminopyrimidines from O-acyl ketoximes. Org Biomol Chem 2021; 19:8706-8710. [PMID: 34581386 DOI: 10.1039/d1ob01582f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A copper-based catalytic system has been developed to enable formal [3 + 1 + 2] annulations of ketoxime acetates, aldehydes, and cyanamides. This protocol offers a new strategy for the synthesis of highly substituted 2-aminopyrimidine compounds, and more importantly, pyrimidines have now been included in the N-heterocycle family constructed using O-acyl ketoximes as N-C-C synthons.
Collapse
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
24
|
Development of New Meridianin/Leucettine-Derived Hybrid Small Molecules as Nanomolar Multi-Kinase Inhibitors with Antitumor Activity. Biomedicines 2021; 9:biomedicines9091131. [PMID: 34572319 PMCID: PMC8468039 DOI: 10.3390/biomedicines9091131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Although the sea ecosystem offers a broad range of bioactivities including anticancer, none of the FDA-approved antiproliferative protein kinase inhibitors are derived from a marine source. In a step to develop new marine-inspired potent kinase inhibitors with antiproliferative activities, a new series of hybrid small molecules (5a–5g) was designed and synthesized based on chemical moieties derived from two marine natural products (Meridianin E and Leucettamine B). Over a panel of 14 cancer-related kinases, a single dose of 10 µM of the parent hybrid 5a possessing the benzo[d][1,3]dioxole moiety of Leucettamine B was able to inhibit the activity of FMS, LCK, LYN, and DAPK1 kinases with 82.5 ± 0.6, 81.4 ± 0.6, 75.2 ± 0.0, and 55 ± 1.1%, respectively. Further optimization revealed the most potent multiple kinase inhibitor of this new series (5g) with IC50 values of 110, 87.7, and 169 nM against FMS, LCK, and LYN kinases, respectively. Compared to imatinib (FDA-approved multiple kinase inhibitor), compound 5g was found to be ~ 9- and 2-fold more potent than imatinib over both FMS and LCK kinases, respectively. In silico docking simulation models of the synthesized compounds within the active site of FMS, LCK, LYN, and DAPK1 kinases offered reasonable explanations of the elicited biological activities. In an in vitro anticancer assay using a library of 60 cancer cell lines that include blood, lung, colon, CNS, skin, ovarian, renal, prostate, and breast cancers, it was found that compound 5g was able to suppress 60 and 70% of tumor growth in leukemia SR and renal RXF 393 cell lines, respectively. Moreover, an ADME study indicated a suitable profile of compound 5g concerning cell permeability and blood-brain barrier (BBB) impermeability, avoiding possible CNS side effects. Accordingly, compound 5g is reported as a potential lead towards novel antiproliferative marine-derived kinase modulators.
Collapse
|
25
|
GSK-3β, FYN, and DYRK1A: Master Regulators in Neurodegenerative Pathways. Int J Mol Sci 2021; 22:ijms22169098. [PMID: 34445804 PMCID: PMC8396491 DOI: 10.3390/ijms22169098] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Protein kinases (PKs) have been recognized as central nervous system (CNS)-disease-relevant targets due to their master regulatory role in different signal transduction cascades in the neuroscience space. Among them, GSK-3β, FYN, and DYRK1A play a crucial role in the neurodegeneration context, and the deregulation of all three PKs has been linked to different CNS disorders with unmet medical needs, including Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal lobar degeneration (FTLD), and several neuromuscular disorders. The multifactorial nature of these diseases, along with the failure of many advanced CNS clinical trials, and the lengthy approval process of a novel CNS drug have strongly limited the CNS drug discovery. However, in the near-decade from 2010 to 2020, several computer-assisted drug design strategies have been combined with synthetic efforts to develop potent and selective GSK-3β, FYN, and DYRK1A inhibitors as disease-modifying agents. In this review, we described both structural and functional aspects of GSK-3β, FYN, and DYRK1A and their involvement and crosstalk in different CNS pathological signaling pathways. Moreover, we outlined attractive medicinal chemistry approaches including multi-target drug design strategies applied to overcome some limitations of known PKs inhibitors and discover improved modulators with suitable blood–brain barrier (BBB) permeability and drug-like properties.
Collapse
|
26
|
Silva M, Seijas P, Otero P. Exploitation of Marine Molecules to Manage Alzheimer's Disease. Mar Drugs 2021; 19:md19070373. [PMID: 34203244 PMCID: PMC8307759 DOI: 10.3390/md19070373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are sociosanitary challenges of today, as a result of increased average life expectancy, with Alzheimer’s disease being one of the most prevalent. This pathology is characterized by brain impairment linked to a neurodegenerative process culminating in cognitive decline and behavioral disorders. Though the etiology of this pathology is still unknown, it is usually associated with the appearance of senile plaques and neurofibrillary tangles. The most used prophylaxis relies on anticholinesterase drugs and NMDA receptor antagonists, whose main action is to relieve symptoms and not to treat or prevent the disease. Currently, the scientific community is gathering efforts to disclose new natural compounds effective against Alzheimer’s disease and other neurodegenerative pathologies. Marine natural products have been shown to be promising candidates, and some have been proven to exert a high neuroprotection effect, constituting a large reservoir of potential drugs and nutraceutical agents. The present article attempts to describe the processes of extraction and isolation of bioactive compounds derived from sponges, algae, marine bacteria, invertebrates, crustaceans, and tunicates as drug candidates against AD, with a focus on the success of pharmacological activity in the process of finding new and effective drug compounds.
Collapse
Affiliation(s)
- Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal;
- Department of Plant Biology, Faculty of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Paula Seijas
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Paz Otero
- Department of Pharmacology, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence UAM+CSIC, 28049 Madrid, Spain
- Nutrition and Bromatology Group, CITACA, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain
- Correspondence: or
| |
Collapse
|
27
|
Goel B, Tripathi N, Bhardwaj N, Jain SK. Small Molecule CDK Inhibitors for the Therapeutic Management of Cancer. Curr Top Med Chem 2021; 20:1535-1563. [PMID: 32416692 DOI: 10.2174/1568026620666200516152756] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 01/03/2023]
Abstract
Cyclin-dependent kinases (CDKs) are a group of multifunctional enzymes consisting of catalytic and regulatory subunits. The regulatory subunit, cyclin, remains dissociated under normal circumstances, and complexation of cyclin with the catalytic subunit of CDK leads to its activation for phosphorylation of protein substrates. The primary role of CDKs is in the regulation of the cell cycle. Retinoblastoma protein (Rb) is one of the widely investigated tumor suppressor protein substrates of CDK, which prevents cells from entering into cell-cycle under normal conditions. Phosphorylation of Rb by CDKs causes its inactivation and ultimately allows cells to enter a new cell cycle. Many cancers are associated with hyperactivation of CDKs as a result of mutation of the CDK genes or CDK inhibitor genes. Therefore, CDK modulators are of great interest to explore as novel therapeutic agents against cancer and led to the discovery of several CDK inhibitors to clinics. This review focuses on the current progress and development of anti-cancer CDK inhibitors from preclinical to clinical and synthetic to natural small molecules.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
28
|
Li SS, Dong YH, Liu ZP. Recent Advances in the Development of Casein Kinase 1 Inhibitors. Curr Med Chem 2021; 28:1585-1604. [PMID: 32660395 DOI: 10.2174/0929867327666200713185413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The casein kinase 1 (CK1) family is involved in regulating many cellular processes, including membrane trafficking, DNA damage repair, cytoskeleton dynamics, cytoskeleton maintenance and apoptosis. CK1 isoforms, especially CK1δ and CK1ε have emerged as important therapeutic targets for severe disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), familial advanced sleep phase syndrome and cancer. Due to the importance of CK1 for the pathogenesis of disorders, there are great interests in the development of CK1 inhibitors. METHODS Using SciFinder® as a tool, the publications about the biology of CK1 and the recent developments of CK1 inhibitors were surveyed with an exclusion of those published as patents. RESULTS This review presents the current state of knowledge on the development of CK1 inhibitors, including both synthetic small molecular inhibitors that were divided into 7 categories according to structural features, and the natural compounds. An overview of the advancement of CK1 inhibitors was given, with the introduction of various existing CK1 inhibitors, their inhibitory activities, and the structure-activity relationships. CONCLUSION Through physicochemical characterization and biological investigations, it is possible to understand the structure-activity relationship of CK1 inhibitors, which will contribute to better design and discovery of potent and selective CK1 inhibitors as potential agents for severe disorders such as AD, ALS and cancer.
Collapse
Affiliation(s)
- Sha-Sha Li
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue-Hui Dong
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
29
|
Han S, Zhuang C, Zhou W, Chen F. Structural-Based Optimizations of the Marine-Originated Meridianin C as Glucose Uptake Agents by Inhibiting GSK-3β. Mar Drugs 2021; 19:md19030149. [PMID: 33809065 PMCID: PMC7998309 DOI: 10.3390/md19030149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a widely investigated molecular target for numerous diseases, and inhibition of GSK-3β activity has become an attractive approach for the treatment of diabetes. Meridianin C, an indole-based natural product isolated from marine Aplidium meridianum, has been reported as a potent GSK-3β inhibitor. In the present study, applying the structural-based optimization strategy, the pyrimidine group of meridianin C was modified by introducing different substituents based on the 2-aminopyrimidines-substituted pyrazolo pyridazine scaffold. Among them, compounds B29 and B30 showed a much higher glucose uptake than meridianin C (<5%) and the positive compound 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8, 16%), with no significant toxicity against HepG2 cells at the same time. Furthermore, they displayed good GSK-3β inhibitory activities (IC50 = 5.85; 24.4 μM). These results suggest that these meridianin C analogues represent novel lead compounds with therapeutic potential for diabetes.
Collapse
Affiliation(s)
- Shuwen Han
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China;
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China;
| | - Chunlin Zhuang
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China;
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, China
- Correspondence: (W.Z.); (F.C.)
| | - Fener Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China;
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China;
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Correspondence: (W.Z.); (F.C.)
| |
Collapse
|
30
|
Łukasik P, Baranowska-Bosiacka I, Kulczycka K, Gutowska I. Inhibitors of Cyclin-Dependent Kinases: Types and Their Mechanism of Action. Int J Mol Sci 2021; 22:ijms22062806. [PMID: 33802080 PMCID: PMC8001317 DOI: 10.3390/ijms22062806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/04/2022] Open
Abstract
Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small molecule drugs have become very attractive for the treatment of cancer and neurodegenerative disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However, CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP binding site present a great interest in the biomedical field, both from the fundamental point of view and for the wide range of their potential applications. This review tries to explain whether the ATP competitive inhibitors are still an option for future research, and highlights alternative approaches to discover more selective and potent small molecule inhibitors.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Kulczycka
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
31
|
Tao H, Zuo L, Xu H, Li C, Qiao G, Guo M, Lin X. Alkaloids as Anticancer Agents: A Review of Chinese Patents in Recent 5 Years. Recent Pat Anticancer Drug Discov 2021; 15:2-13. [PMID: 32003702 DOI: 10.2174/1574892815666200131120618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/19/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND In recent years, many novel alkaloids with anticancer activity have been found in China, and some of them are promising for developing as anticancer agents. OBJECTIVE This review aims to provide a comprehensive overview of the information about alkaloid anticancer agents disclosed in Chinese patents, and discusses their potential to be developed as anticancer drugs used clinically. METHODS Anticancer alkaloids disclosed in Chinese patents in recent 5 years were presented according to their mode of actions. Their study results published on PubMed, and SciDirect databases were presented. RESULTS More than one hundred anticancer alkaloids were disclosed in Chinese patents and their mode of action referred to arresting cell cycle, inhibiting protein kinases, affecting DNA synthesis and p53 expression, etc. Conclusion: Many newly found alkaloids displayed potent anticancer activity both in vitro and in vivo, and some of the anticancer alkaloids acted as protein kinase inhibitors or CDK inhibitors possess the potential for developing as novel anticancer agents.
Collapse
Affiliation(s)
- Hongyu Tao
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Ling Zuo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Cong Li
- Department of Pharmacology, School of Basic Medicine, Capital Medical University, Beijing 100069, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| | - Mingyue Guo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan 646000, China
| |
Collapse
|
32
|
Cheng J, Feng X, Li Z, Zhou F, Yang JM, Zhao Y. Pharmacological inhibition of NF-κB-inducing kinase (NIK) with small molecules for the treatment of human diseases. RSC Med Chem 2021; 12:552-565. [PMID: 34046627 DOI: 10.1039/d0md00361a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
NIK is a key kinase required for the activation of alternative NF-κB signaling pathways. Overactivation of NIK in patients has been observed and is implicated in the pathogenesis of inflammatory diseases, B-cell malignances, and solid tumors. Over the past decade, inhibition of NIK overactivation with small molecules has been pursued as an attractive strategy for drug discovery, where numerous potent and selective NIK inhibitors with novel pharmacophores have been identified. This review summarizes the structural features and key efficacy studies of the NIK inhibitors reported, which justify the mechanism of action of such inhibitors in animal models driven by NIK overactivation. Given the strong pathological associations between overactivation of NIK and human diseases, human clinical trials of NIK inhibitors as drug candidates are eagerly awaited. Information showcased in this review article might be helpful for the discovery and clinical development of the next generation of NIK inhibitors in the near future.
Collapse
Affiliation(s)
- Jing Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuexin Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608.,School of Pharmacy, Yancheng Teachers University Yancheng Jiangsu 224051 China
| | - Zhiqiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Feilong Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University Yancheng Jiangsu 224051 China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608.,University of Chinese Academy of Sciences Beijing 100049 China.,School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
33
|
Catanesi M, Caioni G, Castelli V, Benedetti E, d’Angelo M, Cimini A. Benefits under the Sea: The Role of Marine Compounds in Neurodegenerative Disorders. Mar Drugs 2021; 19:24. [PMID: 33430021 PMCID: PMC7827849 DOI: 10.3390/md19010024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Marine habitats offer a rich reservoir of new bioactive compounds with great pharmaceutical potential; the variety of these molecules is unique, and its production is favored by the chemical and physical conditions of the sea. It is known that marine organisms can synthesize bioactive molecules to survive from atypical environmental conditions, such as oxidative stress, photodynamic damage, and extreme temperature. Recent evidence proposed a beneficial role of these compounds for human health. In particular, xanthines, bryostatin, and 11-dehydrosinulariolide displayed encouraging neuroprotective effects in neurodegenerative disorders. This review will focus on the most promising marine drugs' neuroprotective potential for neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. We will describe these marine compounds' potential as adjuvant therapies for neurodegenerative diseases, based on their antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
34
|
Mou J, Chen D, Deng Y. Inhibitors of Cyclin-Dependent Kinase 1/2 for Anticancer Treatment. Med Chem 2020; 16:307-325. [PMID: 31241436 DOI: 10.2174/1573406415666190626113900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/05/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The cell cycle is regulated by cyclin-dependent kinases (CDKs) and their cognate cyclins, along with their endogenous inhibitors (CDKIs). CDKs act as central regulators in this process. Different CDKs play relevant roles in different phases. Among all CDKs, CDK1 is indispensible, which can drive all events that are required in the cell cycle in the absence of interphase CDKs (CDK2, CDK3, CDK4 and CDK6). So, CDK1 is an attractive target for anticancer drug development. METHODS CDK1 and CDK2 have 89.19% similar residues and 74.32% identical residues, their structures especially the ATP-binding sites are of great similarity. So, it is difficult to inhibit CDK1 and CDK2 individually. In this review, recent advances about CDK1/2 inhibitors were summarized. The chemical structures of different classes of CDK1/2 inhibitors and their structure activity are presented. RESULTS 19 kinds of CDK1/2 or CDK1 inhibitors with different scaffolds, including CDK2 allosteric inhibitors, were summarized. Some inhibitors are nature derived, for example, phenanthrene derivatives, nortopsentin derivatives, variolin B derivatives and meridians. CONCLUSION Nature products, especially marine ones are potential resources for CDK1 inhibitors development. The findings of CDK2 allosteric inhibitors open an avenue to the discovery of novel selective CDK1 or other CDKs allosteric inhibitors.
Collapse
Affiliation(s)
- Jiajia Mou
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Health Industry Park, Jinghai District, Tianjin, 301617, China
| | - Danghui Chen
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Health Industry Park, Jinghai District, Tianjin, 301617, China
| | - Yanru Deng
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Health Industry Park, Jinghai District, Tianjin, 301617, China
| |
Collapse
|
35
|
Dong J, Huang SS, Hao YN, Wang ZW, Liu YX, Li YQ, Wang QM. Marine-natural-products for biocides development: first discovery of meridianin alkaloids as antiviral and anti-phytopathogenic-fungus agents. PEST MANAGEMENT SCIENCE 2020; 76:3369-3376. [PMID: 31756256 DOI: 10.1002/ps.5690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Food is an important strategic material related to national economy and people's livelihood. Plant diseases seriously affect crop yield and quality. Marine natural products are an important source for novel drugs discovery. In this work, meridianin alkaloids were selected as the parent structure. A series of meridianin alkaloid analogues were rationally designed, synthesized and evaluated for their antiviral activities and fungicidal activities. RESULT These compounds were found to have good antiviral and fungicidal activities for the first time. The structure-activity relationship (SAR) research revealed that introducing bromine atom at the 5-position of indole ring is beneficial to antiviral activity, but introducing methoxy group is not conducive. Introducing bromine atom at the 6-position of indole ring or nitrogen atom at the 7-position of the indole ring resulted in lower antiviral activity. Most of the meridianin derivatives showed higher anti-TMV activities at 500 μg mL-1 than Ribavirin, especially for compounds 6c, 8a and 10a. All of the compounds also displayed broad spectrum fungicidal activities against 14 kinds of phytopathogenic fungi at 50 μg mL-1 . CONCLUSION Compound 6c with relatively simple structure and excellent antiviral activity, which is similar to that of Ningnanmycin, emerged as novel anti-TMV lead compound. Compound 5d with broad spectrum and high effect fungicidal activity emerged as a new fungicidal lead compound. Current research lays a solid foundation for the application of meridianin alkaloids in crop protection. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ji Dong
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin, China
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Shi-Sheng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Ya-Nan Hao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Zi-Wen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Yu-Xiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Yong-Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Qing-Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| |
Collapse
|
36
|
Recent Advances on the Role of GSK3β in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain Sci 2020; 10:brainsci10100675. [PMID: 32993098 PMCID: PMC7600609 DOI: 10.3390/brainsci10100675] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disease characterized by progressive motor neuron degeneration. Although several studies on genes involved in ALS have substantially expanded and improved our understanding of ALS pathogenesis, the exact molecular mechanisms underlying this disease remain poorly understood. Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine-protein kinase that plays a critical role in the regulation of various cellular signaling pathways. Dysregulation of GSK3β activity in neuronal cells has been implicated in the pathogenesis of neurodegenerative diseases. Previous research indicates that GSK3β inactivation plays a neuroprotective role in ALS pathogenesis. GSK3β activity shows an increase in various ALS models and patients. Furthermore, GSK3β inhibition can suppress the defective phenotypes caused by SOD, TDP-43, and FUS expression in various models. This review focuses on the most recent studies related to the therapeutic effect of GSK3β in ALS and provides an overview of how the dysfunction of GSK3β activity contributes to ALS pathogenesis.
Collapse
|
37
|
Marine Terpenoids from Polar Latitudes and Their Potential Applications in Biotechnology. Mar Drugs 2020; 18:md18080401. [PMID: 32751369 PMCID: PMC7459527 DOI: 10.3390/md18080401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/03/2023] Open
Abstract
Polar marine biota have adapted to thrive under one of the ocean’s most inhospitable scenarios, where extremes of temperature, light photoperiod and ice disturbance, along with ecological interactions, have selected species with a unique suite of secondary metabolites. Organisms of Arctic and Antarctic oceans are prolific sources of natural products, exhibiting wide structural diversity and remarkable bioactivities for human applications. Chemical skeletons belonging to terpene families are the most commonly found compounds, whereas cytotoxic antimicrobial properties, the capacity to prevent infections, are the most widely reported activities from these environments. This review firstly summarizes the regulations on access and benefit sharing requirements for research in polar environments. Then it provides an overview of the natural product arsenal from Antarctic and Arctic marine organisms that displays promising uses for fighting human disease. Microbes, such as bacteria and fungi, and macroorganisms, such as sponges, macroalgae, ascidians, corals, bryozoans, echinoderms and mollusks, are the main focus of this review. The biological origin, the structure of terpenes and terpenoids, derivatives and their biotechnological potential are described. This survey aims to highlight the chemical diversity of marine polar life and the versatility of this group of biomolecules, in an effort to encourage further research in drug discovery.
Collapse
|
38
|
GSK-3-associated signaling is crucial to virus infection of cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118767. [PMID: 32522661 DOI: 10.1016/j.bbamcr.2020.118767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Signal transduction pathways play important roles in virus infection, replication, and associated pathogenesis. Some of the best understood cell signaling networks are crucial to virus infections such the mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and the WNT/β-catenin pathways. Glycogen synthase kinase-3 (GSK-3) is a lesser known signaling molecule in the field of virus research. Interestingly, GSK-3 forms the crux of multiple cell signaling pathways. However, recent studies indicate that GSK-3 may perform key roles in the response to viral infection, replication and pathogenesis. The effects of activated or inactivated forms of GSK-3 on virus infection are still not yet clearly understood phenomenon. The comprehension of the molecular mechanisms underlying the regulation of GSK-3-associated signaling pathways in terms of different stages of virus replication could be important not only to understand the pathogenesis of virus, but also possibly leading to new therapeutic targets. This review will focus on recent advances in understanding the roles of GSK-3 on viral replication, pathogenesis and the immune responses.
Collapse
|
39
|
Su D, Wang W, Wu X, Li M, Yan X, Hua Z, Liu J, Zhu Z, Hu K, Ren J. Meriolin1 induces cell cycle arrest, apoptosis, autophagy and targeting the Akt/MAPKs pathways in human neuroblastoma SH-SY5Y cells. ACTA ACUST UNITED AC 2020; 72:561-574. [PMID: 32034768 DOI: 10.1111/jphp.13224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Meriolins, a kind of chemical hybrid between meridianins and variolins, have lately been determined as kinase inhibitors and reportedly have antitumour activity. However, there is currently no in-depth study for the action mechanism. This study aimed to elucidate the potentially antitumour action mechanism of Meriolin1 on human neuroblastoma (SH-SY5Y) cells. METHODS Firstly, cell viability was detected by MTT assay. Secondly, cell cycle, cell apoptosis, cell autophagy, reactive oxygen species and mitochondrial membrane potential (ΔΨm) were measured by flow cytometry. Then, cell cycle-associated proteins, Bcl-2 family proteins, Akt/MAPK proteins and autophagy-associated proteins expressions were evaluated by Western blot. Bcl-2 and Bax mRNA expressions were also evaluated by qRT-PCR. Furthermore, cell adhesion assay and Hoechst 33258 fluorescent staining were carried out to detect the effect of Meriolin1 on cell adhesion and morphology. Finally, to gain further insight into mechanism of action of Meriolin1 to CDK protein, the molecular docking study was performed by using the CDOCKER module of DS software. KEY FINDINGS Meriolin1 could exert the antitumour activity on SH-SY5Y cells by inducing cell cycle arrest, cell autophagy, the mitochondrion-dependent cell apoptosis and targeting the Akt/MAPKs signalling pathway. CONCLUSIONS Meriolin1 might be a promising therapeutic candidate for neuroblastoma.
Collapse
Affiliation(s)
- Dan Su
- Changzhou No.2 People's Hospital, Changzhou, Jiangsu, China
| | - Wenbin Wang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Xinyue Wu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Minyue Li
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Xuelong Yan
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Zhonghong Hua
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Jiahui Liu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Zhiyu Zhu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Kun Hu
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| | - Jie Ren
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
40
|
Brackett SM, Cox KE, Barlock SL, Huggins WM, Ackart DF, Bassaraba RJ, Melander RJ, Melander C. Meridianin D analogues possess antibiofilm activity against Mycobacterium smegmatis. RSC Med Chem 2020; 11:92-97. [PMID: 33479607 PMCID: PMC7523022 DOI: 10.1039/c9md00466a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 11/21/2022] Open
Abstract
The formation of bacterial biofilms significantly decreases the efficacy of antibiotic treatments. Herein, we've investigated the antibiofilm properties of the natural product meridianin D and a library of analogues against Mycobacterium smegmatis. As a result, we discovered several analogues that both inhibit and disperse M. smegmatis biofilms.
Collapse
Affiliation(s)
- Sara M Brackett
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - Karlie E Cox
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - Samantha L Barlock
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - William M Huggins
- Department of Chemistry , North Carolina State University , Raleigh , NC 27695 , USA
| | - David F Ackart
- Department of Microbiology, Immunology, and Pathology , Colorado State University , Fort Collins , CO 80523 , USA
| | - Randall J Bassaraba
- Department of Microbiology, Immunology, and Pathology , Colorado State University , Fort Collins , CO 80523 , USA
| | - Roberta J Melander
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| | - Christian Melander
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN 46556 , USA .
| |
Collapse
|
41
|
AboulMagd AM, Hassan HM, Sayed AM, Abdelmohsen UR, Abdel-Rahman HM. Saccharomonosporine A inspiration; synthesis of potent analogues as potential PIM kinase inhibitors. RSC Adv 2020; 10:6752-6762. [PMID: 35493904 PMCID: PMC9049778 DOI: 10.1039/c9ra10216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Saccharomonosporine A was recently reported as a natural anti-cancer agent working through inhibition of a Proviral integration site for Moloney murine leukemia virus-1 (PIM-1) kinase. Structural bioisosteres of this natural product were synthesized and tested against PIM kinase enzymes. They showed potent inhibitory activity against all the known PIM kinases (PIM-1, 2 and 3) with IC50 values ranging from 0.22 to 2.46 μM. Compound 5 was the most potent pan-inhibitor with IC50 values of 0.37, 0.41, and 0.3 μM, against PIM-1, 2, 3 respectively. Compounds 4–6 were tested for their cytotoxic activities against 3 cell lines: H1650, HT-29, and HL-60. Compound 5 exhibited significant cytotoxic activity against human colon adenocarcinoma HT-29 and the human promyelocytic leukemia HL-60, with IC50 μM values of 1.4 and 1.7 respectively. Molecular docking and homology modeling studies were carried out to confirm the affinity of these synthesized compounds to the three different PIM kinases. Additionally, a number of in silico predictions, ADME/Tox, were adopted to evaluate their drug-likeness. The E isomer of compound 5 exhibited a potent inhibitory effect against PIM kinase isoforms of IC50s 0.30–0.41 μM.![]()
Collapse
Affiliation(s)
- Asmaa M. AboulMagd
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Nahda University
- Beni Suef
- Egypt
| | - Hossam M. Hassan
- Pharmacognosy Department
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Ahmed M. Sayed
- Pharmacognosy Department
- Faculty of Pharmacy
- Nahda University
- Beni-Suef
- Egypt
| | | | - Hamdy M. Abdel-Rahman
- Pharmaceutical Chemistry Department
- Faculty of Pharmacy
- Nahda University
- Beni Suef
- Egypt
| |
Collapse
|
42
|
Venkatesan M, Arumugam V, Ayyasamy R, Murugesan S, Saravanan N, Sundaresan U, Ramachandran S, Manivasagam T, Thenmozhi AJ, Qoronfleh MW. Bioactive Metabolites from Marine Ascidians: Future Treatment for Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:661-678. [PMID: 32006379 DOI: 10.1007/978-3-030-30402-7_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that influences communication and behavior. Numerous researches propose that genes can act together with manipulations from the environment to affect development in ways that lead to ASD. The broad range of issues facing people with ASD means that there is no single proper drug and treatment for ASD. Numerous shortcomings associated with the present conventional therapeutic strategies have forced researchers to venture into alternative natural sources for effective compounds. The marine environment has emerged as an alternate search environment due to its versatile conditions where organisms employ various biodefense mechanisms for their survival. Ascidians are an excellent source for unique bioactive compounds with nutritive and therapeutic content and it still holds credit for being an underused source from marine animals. Bioactive compounds isolated from ascidians have various commendable biomedical applications due to their unique chemical structures. The present chapter will focus on the potential of bioactive compounds derived from ascidians for the treatment of the neurologic disorder-ASD.
Collapse
Affiliation(s)
- Manigandan Venkatesan
- Department of Medical Biotechnology, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Velusamy Arumugam
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Rathinam Ayyasamy
- Department of Animal Science, Centre for Pheromone Technology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Selvakumar Murugesan
- Department of Biotechnology, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Nishakavya Saravanan
- Department of Medical Biotechnology, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Umamaheswari Sundaresan
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Saravanan Ramachandran
- Department of Medical Biotechnology, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | | | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
43
|
Cho H, Yadav AK, Do Y, Heo M, Bishop-Bailey D, Lee J, Jang BC. Anti‑survival and pro‑apoptotic effects of meridianin C derivatives on MV4‑11 human acute myeloid leukemia cells. Int J Oncol 2019; 56:368-378. [PMID: 31789392 DOI: 10.3892/ijo.2019.4925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/24/2019] [Indexed: 11/06/2022] Open
Abstract
Meridianin C is a marine natural product with anticancer activity. Several meridianin C derivatives (compounds 7a‑j) were recently synthesized, and their inhibitory effects on pro‑viral integration site for Moloney murine leukemia virus (PIM) kinases, as well as their antiproliferative effects on human leukemia cells, were reported. However, the anti‑leukemic effects and mechanisms of action of meridianin C and its derivatives remain largely unknown. The aim of the present study was to investigate the effects of meridianin C and its derivatives on MV4‑11 human acute myeloid leukemia cell growth. The parent compound meridianin C did not markedly affect the viability and survival of MV4‑11 cells. By contrast, MV4‑11 cell viability and survival were reduced by meridianin C derivatives, with compound 7a achieving the most prominent reduction. Compound 7a notably inhibited the expression and activity of PIM kinases, as evidenced by reduced B‑cell lymphoma‑2 (Bcl‑2)‑associated death promoter phosphorylation at Ser112. However, meridianin C also suppressed PIM kinase expression and activity, and the pan‑PIM kinase inhibitor AZD1208 only slightly suppressed the survival of MV4‑11 cells. Thus, the anti‑survival effect of compound 7a on MV4‑11 cells was unrelated to PIM kinase inhibition. Moreover, compound 7a induced apoptosis, caspase‑9 and ‑3 activation and poly(ADP‑ribose) polymerase (PARP) cleavage, but did not affect death receptor (DR)‑4 or DR‑5 expression in MV4‑11 cells. Compound 7a also induced the generation of cleaved Bcl‑2, and the downregulation of myeloid cell leukemia (Mcl)‑1 and X‑linked inhibitor of apoptosis (XIAP) in MV4‑11 cells. Furthermore, compound 7a increased eukaryotic initiation factor (eIF)‑2α phosphorylation and decreased S6 phosphorylation, whereas GRP‑78 expression was unaffected. Importantly, treatment with a pan‑caspase inhibitor (z‑VAD‑fmk) significantly attenuated compound 7a‑induced apoptosis, caspase‑9 and ‑3 activation, PARP cleavage, generation of cleaved Bcl‑2 and downregulation of Mcl‑1 and XIAP in MV4‑11 cells. Collectively, these findings demonstrated the strong anti‑survival and pro‑apoptotic effects of compound 7a on MV4‑11 cells through regulation of caspase‑9 and ‑3, Bcl‑2, Mcl‑1, XIAP, eIF‑2α and S6 molecules.
Collapse
Affiliation(s)
- Hyorim Cho
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Youngrok Do
- Department of Hematology and Oncology, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Mihwa Heo
- Department of Hematology and Oncology, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - David Bishop-Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London NW 10TU, United Kingdom
| | - Jinho Lee
- Department of Chemistry, College of Life Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
44
|
Wali AF, Majid S, Rasool S, Shehada SB, Abdulkareem SK, Firdous A, Beigh S, Shakeel S, Mushtaq S, Akbar I, Madhkali H, Rehman MU. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm J 2019; 27:767-777. [PMID: 31516319 PMCID: PMC6733955 DOI: 10.1016/j.jsps.2019.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022] Open
Abstract
Marine natural products have as of now been acknowledged as the most important source of bioactive substances and drug leads. Marine flora and fauna, such as algae, bacteria, sponges, fungi, seaweeds, corals, diatoms, ascidian etc. are important resources from oceans, accounting for more than 90% of the total oceanic biomass. They are taxonomically different with huge productive and are pharmacologically active novel chemical signatures and bid a tremendous opportunity for discovery of new anti-cancer molecules. The water bodies a rich source of potent molecules which improve existence suitability and serve as chemical shield against microbes and little or huge creatures. These molecules have exhibited a range of biological properties antioxidant, antibacterial, antitumour etc. In spite of huge resources enriched with exciting chemicals, the marine floras and faunas are largely unexplored for their anticancer properties. In recent past, numerous marine anticancer compounds have been isolated, characterized, identified and are under trials for human use. In this write up we have tried to compile about marine-derived compounds anticancer biological activities of diverse flora and fauna and their underlying mechanisms and the generous raise in these compounds examined for malignant growth treatment in the course of the most recent quite a long while.
Collapse
Affiliation(s)
- Adil Farooq Wali
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sabhiya Majid
- Department of Biochemistry, Govt. Medical College (GMC), Karan Nagar, Srinagar 190010, J&K, India
| | - Shabhat Rasool
- Department of Biochemistry, Govt. Medical College (GMC), Karan Nagar, Srinagar 190010, J&K, India
| | - Samar Bassam Shehada
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Shahad Khalid Abdulkareem
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Aimen Firdous
- Department of Processing Technology, Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad 682506, Kerala, India
| | - Saba Beigh
- Institut de Biologie, Molecular et Cellulaire, CNRS, immunopathologie et Chimie Therapeutique, Strasbourg Cedex, France
| | - Sheeba Shakeel
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences, University of Kashmir, Srinagar 110006, J&K, India
| | - Saima Mushtaq
- Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama 190006, J&K, India
| | - Imra Akbar
- School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Hassan Madhkali
- Department of Pharmacology, College of Pharmacy, Prince Sattan Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Biochemistry, Govt. Medical College (GMC), Karan Nagar, Srinagar 190010, J&K, India
| |
Collapse
|
45
|
Drießen D, Stuhldreier F, Frank A, Stark H, Wesselborg S, Stork B, Müller TJJ. Novel meriolin derivatives as rapid apoptosis inducers. Bioorg Med Chem 2019; 27:3463-3468. [PMID: 31248707 DOI: 10.1016/j.bmc.2019.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022]
Abstract
3-(Hetero)aryl substituted 7-azaindoles possessing multikinase inhibitor activity are readily accessed in a one-pot Masuda borylation-Suzuki coupling sequence. Several promising derivatives were identified as apoptosis inducers and, emphasizing the multikinase inhibition potential, as sphingosine kinase 2 inhibitors. Our measurements provide additional insights into the structure-activity relationship of meriolin derivatives, suggesting derivatives bearing a pyridine moiety with amino groups in 2-position as most active anticancer compounds and thus as highly promising candidates for future in vivo studies.
Collapse
Affiliation(s)
- Daniel Drießen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Fabian Stuhldreier
- Institut für Molekulare Medizin I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Annika Frank
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße1, D-40225 Düsseldorf, Germany
| | - Holger Stark
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße1, D-40225 Düsseldorf, Germany
| | - Sebastian Wesselborg
- Institut für Molekulare Medizin I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Björn Stork
- Institut für Molekulare Medizin I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
46
|
Plisson F, Piggott AM. Predicting Blood⁻Brain Barrier Permeability of Marine-Derived Kinase Inhibitors Using Ensemble Classifiers Reveals Potential Hits for Neurodegenerative Disorders. Mar Drugs 2019; 17:E81. [PMID: 30699889 PMCID: PMC6410078 DOI: 10.3390/md17020081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
The recent success of small-molecule kinase inhibitors as anticancer drugs has generated significant interest in their application to other clinical areas, such as disorders of the central nervous system (CNS). However, most kinase inhibitor drug candidates investigated to date have been ineffective at treating CNS disorders, mainly due to poor blood⁻brain barrier (BBB) permeability. It is, therefore, imperative to evaluate new chemical entities for both kinase inhibition and BBB permeability. Over the last 35 years, marine biodiscovery has yielded 471 natural products reported as kinase inhibitors, yet very few have been evaluated for BBB permeability. In this study, we revisited these marine natural products and predicted their ability to cross the BBB by applying freely available open-source chemoinformatics and machine learning algorithms to a training set of 332 previously reported CNS-penetrant small molecules. We evaluated several regression and classification models, and found that our optimised classifiers (random forest, gradient boosting, and logistic regression) outperformed other models, with overall cross-validated model accuracies of 80%⁻82% and 78%⁻80% on external testing. All 3 binary classifiers predicted 13 marine-derived kinase inhibitors with appropriate physicochemical characteristics for BBB permeability.
Collapse
Affiliation(s)
- Fabien Plisson
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36824, Mexico.
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Andrew M Piggott
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
47
|
Indole-substituted 2,4-diamino-5,8-dihydropyrido[2,3-d]pyrimidines from one-pot process and evaluation of their ability to bind dopamine receptors. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Park N, Park Y, Ramalingam M, Yadav AK, Cho H, Hong VS, More KN, Bae J, Bishop‐Bailey D, Kano J, Noguchi M, Jang I, Lee K, Lee J, Choi J, Jang B. Meridianin C inhibits the growth of YD-10B human tongue cancer cells through macropinocytosis and the down-regulation of Dickkopf-related protein-3. J Cell Mol Med 2018; 22:5833-5846. [PMID: 30246484 PMCID: PMC6237585 DOI: 10.1111/jcmm.13854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Meridianin C is a marine natural product known for its anti-cancer activity. At present, the anti-tumour effects of meridianin C on oral squamous cell carcinoma are unknown. Here, we investigated the effect of meridianin C on the proliferation of four different human tongue cancer cells, YD-8, YD-10B, YD-38 and HSC-3. Among the cells tested, meridianin C most strongly reduced the growth of YD-10B cells; the most aggressive and tumorigenic of the cell lines tested. Strikingly, meridianin C induced a significant accumulation of macropinosomes in the YD-10B cells; confirmed by the microscopic and TEM analysis as well as the entry of FITC-dextran, which was sensitive to the macropinocytosis inhibitor amiloride. SEM data also revealed abundant long and thin membrane extensions that resemble lamellipodia on the surface of YD-10B cells treated with meridianin C, pointing out that meridianin C-induced macropinosomes was the result of macropinocytosis. In addition, meridianin C reduced cellular levels of Dickkopf-related protein-3 (DKK-3), a known negative regulator of macropinocytosis. A role for DKK-3 in regulating macropinocytosis in the YD-10B cells was confirmed by siRNA knockdown of endogenous DKK-3, which led to a partial accumulation of vacuoles and a reduction in cell proliferation, and by exogenous DKK-3 overexpression, which resulted in a considerable inhibition of the meridianin C-induced vacuole formation and decrease in cell survival. In summary, this is the first study reporting meridianin C has novel anti-proliferative effects via macropinocytosis in the highly tumorigenic YD-10B cell line and the effects are mediated in part through down-regulation of DKK-3.
Collapse
Affiliation(s)
- Nam‐Sook Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Yu‐Kyoung Park
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Mahesh Ramalingam
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Anil Kumar Yadav
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Hyo‐Rim Cho
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | - Victor Sukbong Hong
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Kunal N. More
- Department of ChemistryCollege of Natural SciencesKeimyung UniversityDaeguRepublic of Korea
| | - Jae‐Hoon Bae
- Department of PhysiologyCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| | | | - Junko Kano
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Masayuki Noguchi
- Faculty of MedicineDepartment of PathologyUniversity of TsukubaTsukubaJapan
| | - Ik‐Soon Jang
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Kyung‐Bok Lee
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
| | - Jinho Lee
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Jong‐Soon Choi
- Biological Disaster Analysis GroupDivision of Convergence BiotechnologyKorea Basic Science InstituteDaejeonRepublic of Korea
- Graduate School of Analytical Science and TechnologyChungnam National UniversityDaejeonRepublic of Korea
| | - Byeong‐Churl Jang
- Department of Molecular MedicineCollege of MedicineKeimyung UniversityDaeguRepublic of Korea
| |
Collapse
|
49
|
Jarhad DB, Mashelkar KK, Kim HR, Noh M, Jeong LS. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) Inhibitors as Potential Therapeutics. J Med Chem 2018; 61:9791-9810. [PMID: 29985601 DOI: 10.1021/acs.jmedchem.8b00185] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a member of an evolutionarily conserved family of protein kinases that belongs to the CMGC group of kinases. DYRK1A, encoded by a gene located in the human chromosome 21q22.2 region, has attracted attention due to its association with both neuropathological phenotypes and cancer susceptibility in patients with Down syndrome (DS). Inhibition of DYRK1A attenuates cognitive dysfunctions in animal models for both DS and Alzheimer's disease (AD). Furthermore, DYRK1A has been studied as a potential cancer therapeutic target because of its role in the regulation of cell cycle progression by affecting both tumor suppressors and oncogenes. Consequently, selective synthetic inhibitors have been developed to determine the role of DYRK1A in various human diseases. Our perspective includes a comprehensive review of potent and selective DYRK1A inhibitors and their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Karishma K Mashelkar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
50
|
Huggins WM, Barker WT, Baker JT, Hahn NA, Melander RJ, Melander C. Meridianin D Analogues Display Antibiofilm Activity against MRSA and Increase Colistin Efficacy in Gram-Negative Bacteria. ACS Med Chem Lett 2018; 9:702-707. [PMID: 30034604 DOI: 10.1021/acsmedchemlett.8b00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/25/2018] [Indexed: 01/31/2023] Open
Abstract
In the last 30 years, development of new classes of antibiotics has slowed, increasing the necessity for new options to treat multidrug resistant bacterial infections. Development of antibiotic adjuvants that increase the effectiveness of currently available antibiotics is a promising alternative approach to classical antibiotic development. Reports of the ability of the natural product meridianin D to modulate bacterial behavior have been rare. Herein, we describe the ability of meridianin D to inhibit biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) and to increase the potency of colistin against colistin-resistant and sensitive Gram-negative bacteria. Analogues were identified that are capable of inhibiting and dispersing MRSA biofilms and lowering the colistin MIC to below the CLSI breakpoint against Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli.
Collapse
Affiliation(s)
- William M. Huggins
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - William T. Barker
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - James T. Baker
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Nicholas A. Hahn
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Roberta J. Melander
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Christian Melander
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|