1
|
A Role for Neuropeptide S in Alcohol and Cocaine Seeking. Pharmaceuticals (Basel) 2022; 15:ph15070800. [PMID: 35890099 PMCID: PMC9317571 DOI: 10.3390/ph15070800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide S (NPS) is the endogenous ligand of the NPS receptor (NPSR). The NPSR is widely expressed in brain regions that process emotional and affective behavior. NPS possesses a unique physio-pharmacological profile, being anxiolytic and promoting arousal at the same time. Intracerebroventricular NPS decreased alcohol consumption in alcohol-preferring rats with no effect in non-preferring control animals. This outcome is most probably linked to the anxiolytic properties of NPS, since alcohol preference is often associated with high levels of basal anxiety and intense stress-reactivity. In addition, NPSR mRNA was overexpressed during ethanol withdrawal and the anxiolytic-like effects of NPS were increased in rodents with a history of alcohol dependence. In line with these preclinical findings, a polymorphism of the NPSR gene was associated with anxiety traits contributing to alcohol use disorders in humans. NPS also potentiated the reinstatement of cocaine and ethanol seeking induced by drug-paired environmental stimuli and the blockade of NPSR reduced reinstatement of cocaine-seeking. Altogether, the work conducted so far indicates the NPS/NPSR system as a potential target to develop new treatments for alcohol and cocaine abuse. An NPSR agonist would be indicated to help individuals to quit alcohol consumption and to alleviate withdrawal syndrome, while NPSR antagonists would be indicated to prevent relapse to alcohol- and cocaine-seeking behavior.
Collapse
|
2
|
Albanese V, Ruzza C, Marzola E, Bernardi T, Fabbri M, Fantinati A, Trapella C, Reinscheid RK, Ferrari F, Sturaro C, Calò G, Amendola G, Cosconati S, Pacifico S, Guerrini R, Preti D. Structure-Activity Relationship Studies on Oxazolo[3,4- a]pyrazine Derivatives Leading to the Discovery of a Novel Neuropeptide S Receptor Antagonist with Potent In Vivo Activity. J Med Chem 2021; 64:4089-4108. [PMID: 33733768 PMCID: PMC8041306 DOI: 10.1021/acs.jmedchem.0c02223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuropeptide S modulates important neurobiological functions including locomotion, anxiety, and drug abuse through interaction with its G protein-coupled receptor known as neuropeptide S receptor (NPSR). NPSR antagonists are potentially useful for the treatment of substance abuse disorders against which there is an urgent need for new effective therapeutic approaches. Potent NPSR antagonists in vitro have been discovered which, however, require further optimization of their in vivo pharmacological profile. This work describes a new series of NPSR antagonists of the oxazolo[3,4-a]pyrazine class. The guanidine derivative 16 exhibited nanomolar activity in vitro and 5-fold improved potency in vivo compared to SHA-68, a reference pharmacological tool in this field. Compound 16 can be considered a new tool for research studies on the translational potential of the NPSergic system. An in-depth molecular modeling investigation was also performed to gain new insights into the observed structure-activity relationships and provide an updated model of ligand/NPSR interactions.
Collapse
Affiliation(s)
- Valentina Albanese
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Martina Fabbri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Anna Fantinati
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| | - Rainer K Reinscheid
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, University of Münster, 48149 Münster, Germany
| | - Federica Ferrari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Chiara Sturaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti, 2, 35131 Padova, Italy
| | - Giorgio Amendola
- "DiSTABiF", Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Sandro Cosconati
- "DiSTABiF", Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, 44121 Ferrara, Italy
| | - Delia Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Batran RZ, Gugnani KS, Maher TJ, Khedr MA. New quinolone derivatives as neuropeptide S receptor antagonists: Design, synthesis, homology modeling, dynamic simulations and modulation of Gq/Gs signaling pathways. Bioorg Chem 2021; 111:104817. [PMID: 33848721 DOI: 10.1016/j.bioorg.2021.104817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023]
Abstract
In a search for new neuropeptide S receptor antagonists, we have described a new series of quinolone-pyranopyrimidine hybrid derivatives aiming to modify the inhibitory characters towards NPSR to develop new therapeutic strategies against anxiety, addiction and food disorders. We identified six potent antagonists 3, 4b, 6, 8, 9 and 10 which counteracted the stimulatory effect of NPS at both Gq and Gs pathways, at low micromolar concentrations, through modulation of Ca2+ and cAMP signaling, respectively. Molecular docking predicted the orientation mode of the top active compounds; 10 and 4b with ΔG value of -23.94 and -23.87 kcal/mol, respectively that is considered good when compared to that of the reference compound ML154 (ΔG = -25.75 kcal/mol) . Molecular dynamic simulations confirmed the stability of binding of compound 10 to the homology model of NPSR as it reached the equilibrium after 4 ns at RMSD of 1.00 Å while ML154 was faster to achieve the equilibrium after 2 ns at RMSD of 1.00 Å.
Collapse
Affiliation(s)
- Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. Box 12622, Egypt.
| | - Kuljeet S Gugnani
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Timothy J Maher
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Mohammed A Khedr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, P.O. Box 11795, Egypt
| |
Collapse
|
4
|
Blough B, Namjoshi O. Small Molecule Neuropeptide S and Melanocortin 4 Receptor Ligands as Potential Treatments for Substance Use Disorders. Handb Exp Pharmacol 2019; 258:61-87. [PMID: 31628605 DOI: 10.1007/164_2019_313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a vital need for novel approaches and biological targets for drug discovery and development. Treatment strategies for substance use disorders (SUDs) to date have been mostly ineffective other than substitution-like therapeutics. Two such targets are the peptide G-protein-coupled receptors neuropeptide S (NPS) and melanocortin 4 (MC4). Preclinical evidence suggests that antagonists, inverse agonists, or negative allosteric modulators of these receptors might be novel therapeutics for SUDs. NPS is a relatively unexplored receptor with high potential for treating SUD. MC4 has a strong link to early-onset obesity, and emerging evidence suggests significant overlap between food-maintained and drug-maintained behaviors making MC4 an intriguing target for SUD. This chapter provides an overview of the literature in relation to the roles of NPS and MC4 in drug-seeking behaviors and then provides a medicinal chemistry-based survey of the small molecule ligands for each receptor.
Collapse
Affiliation(s)
- Bruce Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA.
| | - Ojas Namjoshi
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
5
|
Batran RZ, Dawood DH, El-Seginy SA, Maher TJ, Gugnani KS, Rondon-Ortiz AN. Coumarinyl pyranopyrimidines as new neuropeptide S receptor antagonists; design, synthesis, homology and molecular docking. Bioorg Chem 2017; 75:274-290. [DOI: 10.1016/j.bioorg.2017.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
|
6
|
Ruzza C, Calò G, Di Maro S, Pacifico S, Trapella C, Salvadori S, Preti D, Guerrini R. Neuropeptide S receptor ligands: a patent review (2005-2016). Expert Opin Ther Pat 2016; 27:347-362. [PMID: 27788040 DOI: 10.1080/13543776.2017.1254195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuropeptide S (NPS) is a 20-residue peptide and endogenous ligand of the NPS receptor (NPSR). This receptor was a formerly orphan GPCR whose activation increases calcium and cyclic adenosine monophosphate levels. The NPS/NPSR system is expressed in several brain regions where it controls important biological functions including locomotor activity, arousal and sleep, anxiety, food intake, memory, pain, and drug addiction. Areas covered: This review furnishes an updated overview of the patent literature covering NPSR ligands since 2005, when the first example of an NPSR antagonist was disclosed. Expert opinion: Several potent NPSR antagonists are available as valuable pharmacological tools despite showing suboptimal pharmacokinetic properties in vivo. The optimization of these ligands is needed to speed up their potential clinical advancement as pharmaceuticals to treat drug addiction. In order to support the design of novel NPSR antagonists, we performed a ligand-based conformational analysis recognizing some structural requirements for NPSR antagonism. The identification of small-molecule NPSR agonists now represents an unmet challenge to be addressed. These molecules will allow investigation of the beneficial effects of selective NPSR activation in a large panel of psychiatric disorders and to foresee their therapeutic potential as anxiolytics, nootropics, and analgesics.
Collapse
Affiliation(s)
- Chiara Ruzza
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | - Girolamo Calò
- a Department of Medical Sciences, Section of Pharmacology, School of Medicine and National Institute of Neuroscience , University of Ferrara , Ferrara , Italy
| | | | - Salvatore Pacifico
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Claudio Trapella
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Severo Salvadori
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Delia Preti
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| | - Remo Guerrini
- c Department of Chemical and Pharmaceutical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
7
|
Bonano JS, Runyon SP, Hassler C, Glennon RA, Stevens Negus S. Effects of the neuropeptide S receptor antagonist RTI-118 on abuse-related facilitation of intracranial self-stimulation produced by cocaine and methylenedioxypyrovalerone (MDPV) in rats. Eur J Pharmacol 2014; 743:98-105. [PMID: 25220242 PMCID: PMC4259821 DOI: 10.1016/j.ejphar.2014.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/21/2023]
Abstract
Neuropeptide S (NPS) is a neurotransmitter that activates the NPS receptor to modulate biological functions including anxiety-like behaviors, feeding, and drug reinforcement. RTI-118 is a novel NPS receptor antagonist that decreased cocaine self-administration in rats at doses that had little or no effect on food-maintained responding. To build on these previous findings, this study examined effects of RTI-118 on cocaine-induced facilitation of intracranial self-stimulation (ICSS) in rats. To provide a context for data interpretation, effects of RTI-118 were compared to effects of the kappa opioid receptor agonist U69,593, because the kappa opioid receptor is another peptide neurotransmitter receptor reported to modulate abuse-related cocaine effects. RTI-118 effects were also examined on ICSS facilitation produced by methylenedioxypyrovalerone (MDPV), a novel designer drug of abuse with some cocaine-like effects. Male Sprague-Dawley rats (n=12) with electrodes targeting the medial forebrain bundle responded under a fixed-ratio 1 schedule for range of brain stimulation frequencies. Under control conditions, brain stimulation maintained a frequency-dependent increase in ICSS rates. Cocaine (1.0-10mg/kg) and MDPV (3.2mg/kg) facilitated ICSS. RTI-118 (3.2-32mg/kg) alone produced little effect on ICSS but dose dependently blocked cocaine-induced ICSS facilitation. U69,593 (0.25-0.5mg/kg) also attenuated cocaine effects, but blockade of cocaine effects was incomplete even at a U69,593 dose that alone depressed ICSS. RTI-118 (32mg/kg) failed to block MDPV-induced ICSS facilitation. These results support further consideration of NPS receptor antagonists as candidate treatments for cocaine abuse and provide evidence for differential effects of a candidate treatment on abuse-related effects of cocaine and MDPV.
Collapse
Affiliation(s)
- Julie S Bonano
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA.
| | - Scott P Runyon
- Organic and Medicinal Chemistry, Research Triangle Institute, 3040 East Cornwallis Road, PO Box 12194, Research Triangle Park, NC 27709, USA
| | - Carla Hassler
- Organic and Medicinal Chemistry, Research Triangle Institute, 3040 East Cornwallis Road, PO Box 12194, Research Triangle Park, NC 27709, USA
| | - Richard A Glennon
- Department of Medicinal Chemistry, Virginia Commonwealth University, 1101 East Marshall Street, PO Box 980551, Richmond, VA 23298, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Hassler C, Zhang Y, Gilmour B, Graf T, Fennell T, Snyder R, Deschamps J, Reinscheid RK, Garau C, Runyon SP. Identification of neuropeptide S antagonists: structure-activity relationship studies, X-ray crystallography, and in vivo evaluation. ACS Chem Neurosci 2014; 5:731-44. [PMID: 24964000 PMCID: PMC4140596 DOI: 10.1021/cn500113c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
Modulation of the neuropeptide S (NPS) system has been linked to a variety of CNS disorders such as panic disorder, anxiety, sleeping disorders, asthma, obesity, PTSD, and substance abuse. In this study, a series of diphenyltetrahydro-1H-oxazolo[3,4-α]pyrazin-3(5H)-ones were synthesized and evaluated for antagonist activity at the neuropeptide S receptor. The absolute configuration was determined by chiral resolution of the key synthetic intermediate, followed by analysis of one of the individual enantiomers by X-ray crystallography. The R isomer was then converted to a biologically active compound (34) that had a Ke of 36 nM. The most potent compound displayed enhanced aqueous solubility compared with the prototypical antagonist SHA-68 and demonstrated favorable pharmacokinetic properties for behavioral assessment. In vivo analysis in mice indicated a significant blockade of NPS induced locomotor activity at an ip dose of 50 mg/kg. This suggests that analogs having improved drug-like properties will facilitate more detailed studies of the neuropeptide S receptor system.
Collapse
Affiliation(s)
- Carla Hassler
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Yanan Zhang
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Brian Gilmour
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Tyler Graf
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Timothy Fennell
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rodney Snyder
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Jeffrey
R. Deschamps
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6930, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Rainer K. Reinscheid
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Celia Garau
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 2214
Natural Sciences I, Mail Code: 3958, Irvine, California 92697-3958, United States
| | - Scott P. Runyon
- Research
Triangle Institute, Post Office Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| |
Collapse
|
9
|
Abstract
Snapshot of key developments in the patent literature accompanied by explanatory synopses
Collapse
|
10
|
Schmoutz CD, Zhang Y, Runyon SP, Goeders NE. Antagonism of the neuropeptide S receptor with RTI-118 decreases cocaine self-administration and cocaine-seeking behavior in rats. Pharmacol Biochem Behav 2012; 103:332-7. [PMID: 22982682 PMCID: PMC3494782 DOI: 10.1016/j.pbb.2012.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/20/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
Neuropeptide S (NPS) is a neuromodulatory peptide, acting via a G-protein-coupled receptor to regulate sleep, anxiety and behavioral arousal. Recent research has found that intracerebroventricular NPS can increase cocaine and alcohol self-administration in rodents, suggesting a key role in reward-related neurocircuitry. It is hypothesized that antagonism of the NPS system might represent a novel strategy for the pharmacological treatment of cocaine abuse. To this end, a small-molecule NPSR antagonist (RTI-118) was developed and tested in animal models of cocaine seeking and cocaine taking. Male Wistar rats (n=54) trained to self-administer cocaine and food under a concurrent alternating FR4 schedule exhibited specific dose-dependent decreases in cocaine intake when administered RTI-118. RTI-118 also decreased the reinstatement of extinguished cocaine-seeking behavior induced by conditioned cues, yohimbine and a priming dose of cocaine. These data support the hypothesis that antagonism of the neuropeptide S receptor may ultimately show efficacy in reducing cocaine use and relapse.
Collapse
Affiliation(s)
- Christopher D Schmoutz
- Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Box 33932, Shreveport, LA 71130 USA.
| | | | | | | |
Collapse
|
11
|
Valdivielso AM, Ventosa-Andrés P, García-López MT, Herranz R, Gutiérrez-Rodríguez M. Synthesis and Regioselective Functionalization of Piperazin-2-ones Based on Phe-Gly Pseudodipeptides. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
The role of the neuropeptide S system in addiction: focus on its interaction with the CRF and hypocretin/orexin neurotransmission. Prog Neurobiol 2012; 100:48-59. [PMID: 23041581 DOI: 10.1016/j.pneurobio.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/19/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
Abstract
Recent behavioral, pharmacological and molecular findings have linked the NPS system to drug dependence. Most of the evidence supports the possibility that increased NPS activity may contribute to shaping vulnerability to addiction, especially relapse. However, data suggesting that the anxiolytic-like properties of NPS may have protective effects on addiction have been also published. In addition, evidence from conditioned place preference experiments, though not unequivocal, suggests that NPS per se is devoid of motivational properties. Intriguingly, several effects of NPS on drugs of abuse appear to be mediated by downstream activation of brain corticotrophin releasing factor (CRF) and hypocretin-1/orexin-A (Hcrt-1/Ox-A) systems. The major objective of the present article is to review the existing work on NPS and addiction. Particular attention is devoted to the interpretation of findings revealing complex neuroanatomical and functional interactions between NPS, CRF, and the Hcrt-1/Ox-A systems. Original data aimed at shedding light on the role of NPS in reward processing are also shown. Finally, existing findings are discussed within the framework of addiction theories, and the potential of the NPS system as a treatment target for addiction is analyzed.
Collapse
|
13
|
Dal Ben D, Antonini I, Buccioni M, Lambertucci C, Marucci G, Thomas A, Volpini R, Cristalli G. Neuropeptide S receptor: recent updates on nonpeptide antagonist discovery. ChemMedChem 2011; 6:1163-71. [PMID: 21452188 DOI: 10.1002/cmdc.201100038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/24/2011] [Indexed: 11/09/2022]
Abstract
Neuropeptide S (NPS) is a 20-amino acid peptide of great interest due to its possible involvement in several biological processes, including food intake, locomotion, wakefulness, arousal, and anxiety. Structure-activity relationship studies of NPS have identified key points for structural modifications with the goal of modulating NPS receptor (NPSR) agonist activity or achieving antagonism at the same receptor. Only limited information is available for nonpeptide NPSR antagonists. In the last year, several studies have been reported in literature which present various series of small molecules as antagonists of this receptor. The results allow a comparison of the structures and activities of these molecules, leading to the design of new ligands with increased potency and improved pharmacological and pharmacokinetic profiles. This work presents a brief overview of the available information regarding structural features and pharmacological characterization of published nonpeptide NPSR antagonists.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino via S. Agostino 1, 62032 Camerino, MC, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Guerrini R, Salvadori S, Rizzi A, Regoli D, Calo' G. Neurobiology, pharmacology, and medicinal chemistry of neuropeptide S and its receptor. Med Res Rev 2011; 30:751-77. [PMID: 19824051 DOI: 10.1002/med.20180] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuropeptide S (NPS) is the last neuropeptide identified via reverse pharmacology techniques. NPS selectively binds and activates a previous orphan GPCR, now named NPSR, producing intracellular calcium mobilization and increases in cAMP levels. Biological functions modulated by the NPS/NPSR system include anxiety, arousal, locomotion, food intake, memory, and drug addiction. The primary sequence of NPS (in humans SFRNGVGTGMKKTSFQRAKS) is highly conserved among vertebrates especially at the N-terminus. Ala- and D-scan studies demonstrated that this part of the molecule is crucial for biological activity. Focused structure-activity studies performed on Phe(2), Arg(3), and Asn(4) confirmed this indication and revealed the chemical requirements of these positions for NPSR binding and activation. The sequence Gly(5)-Val(6)-Gly(7) seems to be important for shaping the bioactive conformation of the peptide. Structure-activity studies on Gly(5) enabled identification of the first generation of peptidergic NPSR pure antagonists including [D-Cys(tBu)(5)]NPS and [D-Val(5)]NPS whose antagonist properties were confirmed in vivo. Finally, the pharmacological features of substituted bicyclic piperazine molecules (e.g. SHA 68 (3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-carboxylic acid 4-fluoro-benzylamide) were recently published making available the first generation of nonpeptide NPSR antagonists. The use in future studies of NPSR antagonists will be of paramount importance for understanding which biological functions are controlled by the NPS/NPSR system and for defining the therapeutic potential of selective NPSR ligands.
Collapse
Affiliation(s)
- Remo Guerrini
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
15
|
Synthesis and pharmacological characterization of 5-phenyl-2-[2-(1-piperidinylcarbonyl)phenyl]-2,3-dihydro-1H-pyrrolo[1,2-c]imidazol-1-ones: A new class of Neuropeptide S antagonists. Bioorg Med Chem Lett 2010; 20:7308-11. [DOI: 10.1016/j.bmcl.2010.10.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 11/23/2022]
|
16
|
Peng YL, Han RW, Chang M, Zhang L, Zhang RS, Li W, Han YF, Wang R. Central Neuropeptide S inhibits food intake in mice through activation of Neuropeptide S receptor. Peptides 2010; 31:2259-63. [PMID: 20800637 DOI: 10.1016/j.peptides.2010.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Neuropeptide S (NPS), the endogenous ligand of NPS receptor (NPSR), can regulate a variety of biological functions, including arousal, anxiety, locomotion, memory and drug abuse. Previous studies have shown that central NPS inhibited food intake in rats and chicks. In the present study, we investigated the role of central NPS on food intake in fasted mice, and detected the underlying mechanism(s) by using NPSR antagonist [D-Val(5)]NPS and Corticotropin-Releasing Factor 1 (CRF₁) Receptor antagonist NBI-27914. The present results indicated that intracerebroventricular injection of NPS (0.001-0.1 nmol) dose-dependently inhibited food intake in fasted mice. The anorectic effect of NPS reached the maximum at the dose of 0.1 nmol, which could be antagonized by co-injection of 10 nmol NPSR antagonist [D-Val(5)]NPS. Furthermore, CRF₁ receptor antagonist NBI-27914 at the dose of 2 μg antagonized the hyperlocomotor action of NPS, but did not affect the role of NPS on food intake. In conclusion, our results demonstrated central NPS inhibited food intake in fasted mice, mediated by its cognate NPSR, but not by CRF₁ receptor.
Collapse
Affiliation(s)
- Ya-Li Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, and Institute of Biochemistry and Molecular Biology, School of Life Sciences, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Peng YL, Zhang JN, Chang M, Li W, Han RW, Wang R. Effects of central neuropeptide S in the mouse formalin test. Peptides 2010; 31:1878-83. [PMID: 20603169 DOI: 10.1016/j.peptides.2010.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/24/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Neuropeptide S (NPS), a recently discovered bioactive peptide, was reported to regulate arousal, anxiety, locomotion, feeding behaviors, memory, and drug addiction. NPS receptor (NPSR) mRNA was found in several brain regions related to descending control system of pain, including the periaqueductal gray (PAG). Our previous study had shown that NPS could produce antinociception in mice. The present study was designed to evaluate whether NPS may produce antinociceptive effect observed in the mouse formalin test, a model of inflammatory pain. NPS (0.1-100 pmol) administrated intracerebroventricularly (i.c.v.) dose-dependently attenuated both first-phase and second-phase nociceptive behaviors induced by paw formalin injection. NPS (10 pmol, i.c.v.)-elicited antinociceptive effect was counteracted by co-injection with 1000 and 10,000 pmol [D-Val(5)]NPS, which alone induced neither hyperalgesia nor antinociception. The antinociception induced by NPS (10 pmol, i.c.v.) was not affected by naloxone (i.p., 10 mg/kg) and naloxone alone had no effect in the formalin test. In addition, compared to the saline (i.c.v.) treated group, NPS (10 pmol, i.c.v.) treated group increased c-Fos protein expression in nearly all subdivisions of the PAG in the formalin-injected mice. The above results revealed that NPS could produce antinociception in the formalin test through NPSR, which may be involved in the activation of PAG, suggesting that NPS-NPSR system may be a potential target for developing new analgesic drugs.
Collapse
Affiliation(s)
- Ya-Li Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, State Key Laboratory of Applied Organic Chemistry, and Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
18
|
McCoy JG, Marugan JJ, Liu K, Zheng W, Southall N, Huang W, Heilig M, Austin CP. Selective Modulation of Gq/Gs pathways by Naphtho Pyrano Pyrimidines as antagonists of the Neuropeptide S Receptor. ACS Chem Neurosci 2010; 1:559-574. [PMID: 21116448 DOI: 10.1021/cn100040h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Antagonists of the Neuropeptide S Receptor have been postulated as promising therapeutics in the treatment of respiratory, sleep, anxiety, and addictive disorders. Here we present the SAR of a new series of orthosteric antagonists. Neuropeptide S Receptor signaling is coupled to both Gq and Gs proteins, and we observe that different analogues in this structural series can selectively antagonize these two pathways. Many G-protein coupled receptors transduce signals through multiple pathways. Selective antagonism of these pathways may lead the way to the development of more targeted pharmacological profiles and therapies.
Collapse
Affiliation(s)
- Joshua G. McCoy
- NIH Chemical Genomic Center, National Human Genome Research Institute, National Institutes of Heath, 9800 Medical Center Drive, Rockville, Maryland 20850
| | - Juan J. Marugan
- NIH Chemical Genomic Center, National Human Genome Research Institute, National Institutes of Heath, 9800 Medical Center Drive, Rockville, Maryland 20850
| | - Ke Liu
- NIH Chemical Genomic Center, National Human Genome Research Institute, National Institutes of Heath, 9800 Medical Center Drive, Rockville, Maryland 20850
| | - Wei Zheng
- NIH Chemical Genomic Center, National Human Genome Research Institute, National Institutes of Heath, 9800 Medical Center Drive, Rockville, Maryland 20850
| | - Noel Southall
- NIH Chemical Genomic Center, National Human Genome Research Institute, National Institutes of Heath, 9800 Medical Center Drive, Rockville, Maryland 20850
| | - Wenwei Huang
- NIH Chemical Genomic Center, National Human Genome Research Institute, National Institutes of Heath, 9800 Medical Center Drive, Rockville, Maryland 20850
| | - Markus Heilig
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Heath, Bethesda, Maryland 20892
| | - Christopher P. Austin
- NIH Chemical Genomic Center, National Human Genome Research Institute, National Institutes of Heath, 9800 Medical Center Drive, Rockville, Maryland 20850
| |
Collapse
|
19
|
Dal Ben D, Antonini I, Buccioni M, Lambertucci C, Marucci G, Vittori S, Volpini R, Cristalli G. Molecular modeling studies on the human neuropeptide S receptor and its antagonists. ChemMedChem 2010; 5:371-83. [PMID: 20087922 DOI: 10.1002/cmdc.200900467] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuropeptide S (NPS) is a 20-residue peptide of great interest due to its potential involvement in several biological processes such as arousal, anxiety, and food intake. The NPS receptor belongs to the rhodopsin-like G-protein-coupled receptor superfamily, and several polymorphisms and isoforms of this receptor are associated with asthma, allergies, and bronchial hyper-responsiveness, in particular the Asn 107 Ile mutation. Limited structural information is available for this peptide-receptor system, particularly regarding the NPS receptor structure, its nonpeptide ligands, and the molecular aspects of agonist and antagonist binding processes. In this work, rhodopsin-based homology models of the NPS receptor and its Asn 107 Ile variant were built and refined in a membrane bilayer model, and binding modes for nonpeptide antagonists were simulated. This study provides the first structural study of the human NPS receptor, and the results provide a starting point for further characterization of the binding modes of its antagonists, and for the rational design of new NPS receptor ligands.
Collapse
Affiliation(s)
- Diego Dal Ben
- Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Melamed JY, Zartman AE, Kett NR, Gotter AL, Uebele VN, Reiss DR, Condra CL, Fandozzi C, Lubbers LS, Rowe BA, McGaughey GB, Henault M, Stocco R, Renger JJ, Hartman GD, Bilodeau MT, Trotter BW. Synthesis and evaluation of a new series of Neuropeptide S receptor antagonists. Bioorg Med Chem Lett 2010; 20:4700-3. [PMID: 20510609 DOI: 10.1016/j.bmcl.2010.04.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
Administration of Neuropeptide S (NPS) has been shown to produce arousal, that is, independent of novelty and to induce wakefulness by suppressing all stages of sleep, as demonstrated by EEG recordings in rat. Medicinal chemistry efforts have identified a quinolinone class of potent NPSR antagonists that readily cross the blood-brain barrier. We detail here optimization efforts resulting in the identification of a potent NPSR antagonist which dose-dependently and specifically inhibited (125)I-NPS binding in the CNS when administered to rats.
Collapse
Affiliation(s)
- Jeffrey Y Melamed
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tricyclic imidazole antagonists of the Neuropeptide S Receptor. Bioorg Med Chem Lett 2010; 20:4704-8. [PMID: 20615693 DOI: 10.1016/j.bmcl.2010.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 11/22/2022]
Abstract
A new structural class of potent antagonists of the Neuropeptide S Receptor (NPSR) is reported. High-throughput screening identified a tricyclic imidazole antagonist of NPSR, and medicinal chemistry optimization of this structure was undertaken to improve potency against the receptor as well as CNS penetration. Detailed herein are synthetic and medicinal chemistry studies that led to the identification of antagonists 15 and NPSR-PI1, which demonstrate potent in vitro NPSR antagonism and central exposure in vivo.
Collapse
|
22
|
De Risi C, Pelà M, Pollini GP, Trapella C, Zanirato V. Mastering chiral substituted 2-oxopiperazines. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Han RW, Chang M, Peng YL, Qiao LY, Yin XQ, Li W, Wang R. Central Neuropeptide S inhibits distal colonic transit through activation of central Neuropeptide S receptor in mice. Peptides 2009; 30:1313-7. [PMID: 19540430 DOI: 10.1016/j.peptides.2009.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
Abstract
Neuropeptide S (NPS), the endogenous ligand of NPS receptor (NPSR), regulates many biological functions, including arousal, anxiety, locomotion and food intake. NPSR mRNA is expressed in several regions of central autonomic network through which the brain controls visceromotor and other responses essential for survival. However, the role of NPS/NPSR system in regulating gastrointestinal motor is still unknown. Here, we studied the effects of NPS on distal colonic transit in mice. Intracerebroventricular (i.c.v.) injection of NPS (1-1000 pmol) inhibited fecal pellet output and bead expulsion in a dose-dependent manner. However, intraperitoneal injection of NPS (1000 and 10000 pmol) did not affect fecal pellet output and bead expulsion. In vitro, NPS (0.1-10 microM) also did not modulate distal colonic contractions. Furthermore, i.c.v. co-administration of [D-Val(5)]NPS, a pure and potent NPSR antagonist, dose-dependently antagonized the inhibitory effects of NPS on fecal pellet output and bead expulsion. In conclusion, our results firstly indicate that central NPS inhibits distal colonic transit through the activation of central NPSR, which implicate that NPS/NPSR system might be a new target to treat function disorder of distal colon.
Collapse
Affiliation(s)
- Ren-Wen Han
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Li W, Chang M, Peng YL, Gao YH, Zhang JN, Han RW, Wang R. Neuropeptide S produces antinociceptive effects at the supraspinal level in mice. ACTA ACUST UNITED AC 2009; 156:90-5. [PMID: 19345242 DOI: 10.1016/j.regpep.2009.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/06/2009] [Accepted: 03/25/2009] [Indexed: 11/25/2022]
Abstract
Neuropeptide S (NPS), a recently identified bioactive peptide through reverse pharmacology approach, was reported to regulate arousal, anxiety, locomotor activity, feeding behaviors and drug reward. NPS receptor (NPSR) mRNA was found in the area related to the descending control system of pain, such as the periaqueductal gray (PAG), raphe nuclei, and lateral parabrachial nucleus (PBN), suggesting a possible role of the NPS-NPSR system in the regulation of pain transmission. In the present study, we evaluated the effects of NPS in pain modulation at the supraspinal level for the first time, using the tail withdrawal test and hot-plate test in mice. NPS (mouse, 0.01-1 nmol) injected intracerebroventricularly (i.c.v.) caused a significant increase of tail withdrawal latency and paw-licking/jumping latency in the tail withdrawal test and the hot-plate test, respectively. Antinociceptive effect elicited by NPS (0.1 nmol, i.c.v.) was not affected by naloxone (i.c.v., 10 nmol co-injection or i.p., 10 mg/kg, 10 min prior to NPS) in both tail withdrawal test and hot-plate test. However, at the doses, naloxone significantly inhibited the antinociceptive effect induced by morphine (i.c.v., 3 nmol). NPS (0.1 nmol, i.c.v.)-induced antinociception was inhibited by co-injection with 10 nmol, but not 3 nmol [D-Cys(tBu)(5)]NPS, a peptidergic antagonist identified more recently, while [D-Cys(tBu)(5)]NPS (3 and 10 nmol) alone induced neither hyperalgesia nor antinociception. These results revealed that NPS could produce antinociception through NPS receptor, but not opioid receptor, and NPS-NPSR system could be a potential target for developing new analgesic drugs.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, State Key Laboratory of Applied Organic Chemistry, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
25
|
Manlove A, Groziak MP. Chapter 6.2: Six-Membered Ring Systems: Diazines and Benzo Derivatives. PROGRESS IN HETEROCYCLIC CHEMISTRY 2009. [DOI: 10.1016/s0959-6380(09)70040-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|