1
|
Liu SJ, Zhao Q, Liu XC, Gamble AB, Huang W, Yang QQ, Han B. Bioactive atropisomers: Unraveling design strategies and synthetic routes for drug discovery. Med Res Rev 2024; 44:1971-2014. [PMID: 38515232 DOI: 10.1002/med.22037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Atropisomerism, an expression of axial chirality caused by limited bond rotation, is a prominent aspect within the field of medicinal chemistry. It has been shown that atropisomers of a wide range of compounds, including established FDA-approved drugs and experimental molecules, display markedly different biological activities. The time-dependent reversal of chirality in atropisomers poses complexity and obstacles in the process of drug discovery and development. Nonetheless, recent progress in understanding atropisomerism and enhanced characterization methods have greatly assisted medicinal chemists in the effective development of atropisomeric drug molecules. This article provides a comprehensive review of their special design thoughts, synthetic routes, and biological activities, serving as a reference for the synthesis and biological evaluation of bioactive atropisomers in the future.
Collapse
Affiliation(s)
- Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Chen Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Zhang Y, Wu K, Mao D, Iberg CA, Yin-Declue H, Sun K, Wikfors HA, Keeler SP, Li M, Young D, Yantis J, Crouch EC, Chartock JR, Han Z, Byers DE, Brody SL, Romero AG, Holtzman MJ. A first-in-kind MAPK13 inhibitor that can correct stem cell reprogramming and post-injury disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608990. [PMID: 39229202 PMCID: PMC11370402 DOI: 10.1101/2024.08.21.608990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The stress kinase MAPK13 (aka p38δ-MAPK) is an attractive entry point for therapeutic intervention because it regulates the structural remodeling that can develop after epithelial barrier injury in the lung and likely other tissue sites. However, a selective, safe, and effective MAPK13 inhibitor is not yet available for experimental or clinical application. Here we identify a first-in-kind MAPK13 inhibitor using structure-based drug design combined with a screening funnel for cell safety and molecular specificity. This inhibitor (designated NuP-4) down-regulates basal-epithelial stem cell reprogramming, structural remodeling, and pathophysiology equivalently to Mapk13 gene-knockout in mouse and mouse organoid models of post-viral lung disease. This therapeutic benefit persists after stopping treatment as a sign of disease modification and attenuates key aspects of inflammation and remodeling as an indication of disease reversal. Similarly, NuP-4 treatment can directly control cytokine-stimulated growth, immune activation, and mucinous differentiation in human basal-cell organoids. The data thereby provide a new tool and potential fix for long-term stem cell reprogramming after viral injury and related conditions that require MAPK13 induction-activation.
Collapse
Affiliation(s)
- Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua R Chartock
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhenfu Han
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
3
|
Wu K, Zhang Y, Mao D, Iberg CA, Yin-Declue H, Sun K, Keeler SP, Wikfors HA, Young D, Yantis J, Austin SR, Byers DE, Brody SL, Crouch EC, Romero AG, Holtzman MJ. MAPK13 controls structural remodeling and disease after epithelial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596863. [PMID: 38895360 PMCID: PMC11185504 DOI: 10.1101/2024.05.31.596863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All living organisms are charged with repair after injury particularly at epithelial barrier sites, but in some cases this response leads instead to structural remodeling and long-term disease. Identifying the molecular and cellular control of this divergence is key to disease modification. In that regard, stress kinase control of epithelial stem cells is a rational entry point for study. Here we examine the potential for mitogen-activated protein kinase 13 (MAPK13) regulation of epithelial stem cells using models of respiratory viral injury and post-viral lung disease. We show that Mapk13 gene-knockout mice handle acute infectious illness as expected but are protected against structural remodeling manifest as basal-epithelial stem cell (basal-ESC) hyperplasia-metaplasia, immune activation, and mucinous differentiation. In corresponding cell models, Mapk13-deficiency directly attenuates basal-ESC growth and organoid formation. Extension to human studies shows marked induction/activation of basal-cell MAPK13 in clinical samples of comparable remodeling found in asthma and COPD. Here again, MAPK13 gene-knockdown inhibits human basal-ESC growth in culture. Together, the data identify MAPK13 as a control for structural remodeling and disease after epithelial injury and as a suitable target for down-regulation as a disease-modifying strategy.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A. Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A. Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen R. Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C. Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G. Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
4
|
Nanjegowda MV, Basak S, Paul T, Punniyamurthy T. Palladium-Catalyzed Weak Chelation-Assisted Site-Selective C-H Arylation of N-Aryl Pyridones via 2-fold C-H Activation. J Org Chem 2024; 89:6564-6574. [PMID: 38630989 DOI: 10.1021/acs.joc.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Palladium-catalyzed weak chelation-assisted oxidative cross-dehydrogenative coupling of arenes has been accomplished. The use of medicinally important pyridones as the intrinsic directing group, regioselectivity, 2-fold C-H activation, and late-stage modification of bioactive compounds are the important practical features.
Collapse
Affiliation(s)
- Maniya V Nanjegowda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Shubhajit Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tripti Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
5
|
Zhang ZJ, Jacob N, Bhatia S, Boos P, Chen X, DeMuth JC, Messinis AM, Jei BB, Oliveira JCA, Radović A, Neidig ML, Wencel-Delord J, Ackermann L. Iron-catalyzed stereoselective C-H alkylation for simultaneous construction of C-N axial and C-central chirality. Nat Commun 2024; 15:3503. [PMID: 38664372 PMCID: PMC11045758 DOI: 10.1038/s41467-024-47589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The assembly of chiral molecules with multiple stereogenic elements is challenging, and, despite of indisputable advances, largely limited to toxic, cost-intensive and precious metal catalysts. In sharp contrast, we herein disclose a versatile C-H alkylation using a non-toxic, low-cost iron catalyst for the synthesis of substituted indoles with two chiral elements. The key for achieving excellent diastereo- and enantioselectivity was substitution on a chiral N-heterocyclic carbene ligand providing steric hindrance and extra represented by noncovalent interaction for the concomitant generation of C-N axial chirality and C-stereogenic center. Experimental and computational mechanistic studies have unraveled the origin of the catalytic efficacy and stereoselectivity.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Nicolas Jacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France
| | - Shilpa Bhatia
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Philipp Boos
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Joshua C DeMuth
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Michael L Neidig
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France.
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Holtzman MJ, Zhang Y, Wu K, Romero AG. Mitogen-activated protein kinase-guided drug discovery for post-viral and related types of lung disease. Eur Respir Rev 2024; 33:230220. [PMID: 38417971 PMCID: PMC10900067 DOI: 10.1183/16000617.0220-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 03/01/2024] Open
Abstract
Respiratory viral infections are a major public health problem, with much of their morbidity and mortality due to post-viral lung diseases that progress and persist after the active infection is cleared. This paradigm is implicated in the most common forms of chronic lung disease, such as asthma and COPD, as well as other virus-linked diseases including progressive and long-term coronavirus disease 2019. Despite the impact of these diseases, there is a lack of small-molecule drugs available that can precisely modify this type of disease process. Here we will review current progress in understanding the pathogenesis of post-viral and related lung disease with characteristic remodelling phenotypes. We will also develop how this data leads to mitogen-activated protein kinase (MAPK) in general and MAPK13 in particular as key druggable targets in this pathway. We will also explore recent advances and predict the future breakthroughs in structure-based drug design that will provide new MAPK inhibitors as drug candidates for clinical applications. Each of these developments point to a more effective approach to treating the distinct epithelial and immune cell based mechanisms, which better account for the morbidity and mortality of post-viral and related types of lung disease. This progress is vital given the growing prevalence of respiratory viruses and other inhaled agents that trigger stereotyped progression to acute illness and chronic disease.
Collapse
Affiliation(s)
- Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- NuPeak Therapeutics Inc., St. Louis, MO, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Arthur G Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Keeler SP, Wu K, Zhang Y, Mao D, Li M, Iberg CA, Austin SR, Glaser SA, Yantis J, Podgorny S, Brody SL, Chartock JR, Han Z, Byers DE, Romero AG, Holtzman MJ. A potent MAPK13-14 inhibitor prevents airway inflammation and mucus production. Am J Physiol Lung Cell Mol Physiol 2023; 325:L726-L740. [PMID: 37847710 PMCID: PMC11068410 DOI: 10.1152/ajplung.00183.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively downregulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.NEW & NOTEWORTHY This study describes the discovery of a potent mitogen-activated protein kinase 13-14 (MAPK13-14) inhibitor and its effectiveness in models of respiratory airway disease. The findings thereby provide a scheme for pathogenesis and therapy of lung diseases [e.g., asthma, chronic obstructive pulmonary disease (COPD), Covid-19, postviral, and allergic respiratory disease] and related conditions that implicate MAPK13-14 function. The findings also refine a hypothesis for epithelial and immune cell functions in respiratory disease that features MAPK13 as a possible component of this disease process.
Collapse
Affiliation(s)
- Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Dailing Mao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ming Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Courtney A Iberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | | | - Samuel A Glaser
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jennifer Yantis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Stephanie Podgorny
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joshua R Chartock
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Zhenfu Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Arthur G Romero
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
- NuPeak Therapeutics Inc., St. Louis, Missouri, United States
| |
Collapse
|
8
|
Keeler SP, Wu K, Zhang Y, Mao D, Li M, Iberg CA, Austin SR, Glaser SA, Yantis J, Podgorny S, Brody SL, Chartock JR, Han Z, Byers DE, Romero AG, Holtzman MJ. A potent MAPK13-14 inhibitor prevents airway inflammation and mucus production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542451. [PMID: 37292761 PMCID: PMC10246002 DOI: 10.1101/2023.05.26.542451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Common respiratory diseases continue to represent a major public health problem, and much of the morbidity and mortality is due to airway inflammation and mucus production. Previous studies indicated a role for mitogen-activated protein kinase 14 (MAPK14) in this type of disease, but clinical trials are unsuccessful to date. Our previous work identified a related but distinct kinase known as MAPK13 that is activated in respiratory airway diseases and is required for mucus production in human cell-culture models. Support for MAPK13 function in these models came from effectiveness of MAPK13 versus MAPK14 gene-knockdown and from first-generation MAPK13-14 inhibitors. However, these first-generation inhibitors were incompletely optimized for blocking activity and were untested in vivo. Here we report the next generation and selection of a potent MAPK13-14 inhibitor (designated NuP-3) that more effectively down-regulates type-2 cytokine-stimulated mucus production in air-liquid interface and organoid cultures of human airway epithelial cells. We also show that NuP-3 treatment prevents respiratory airway inflammation and mucus production in new minipig models of airway disease triggered by type-2 cytokine challenge or respiratory viral infection. The results thereby provide the next advance in developing a small-molecule kinase inhibitor to address key features of respiratory disease.
Collapse
Affiliation(s)
- Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A. Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Samuel A. Glaser
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephanie Podgorny
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua R. Chartock
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhenfu Han
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E. Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G. Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
9
|
González L, Díaz L, Pous J, Baginski B, Duran-Corbera A, Scarpa M, Brun-Heath I, Igea A, Martin-Malpartida P, Ruiz L, Pallara C, Esguerra M, Colizzi F, Mayor-Ruiz C, Biondi RM, Soliva R, Macias MJ, Orozco M, Nebreda AR. Characterization of p38α autophosphorylation inhibitors that target the non-canonical activation pathway. Nat Commun 2023; 14:3318. [PMID: 37308482 DOI: 10.1038/s41467-023-39051-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
p38α is a versatile protein kinase that can control numerous processes and plays important roles in the cellular responses to stress. Dysregulation of p38α signaling has been linked to several diseases including inflammation, immune disorders and cancer, suggesting that targeting p38α could be therapeutically beneficial. Over the last two decades, numerous p38α inhibitors have been developed, which showed promising effects in pre-clinical studies but results from clinical trials have been disappointing, fueling the interest in the generation of alternative mechanisms of p38α modulation. Here, we report the in silico identification of compounds that we refer to as non-canonical p38α inhibitors (NC-p38i). By combining biochemical and structural analyses, we show that NC-p38i efficiently inhibit p38α autophosphorylation but weakly affect the activity of the canonical pathway. Our results demonstrate how the structural plasticity of p38α can be leveraged to develop therapeutic opportunities targeting a subset of the functions regulated by this pathway.
Collapse
Affiliation(s)
- Lorena González
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, 08034, Barcelona, Spain
| | - Joan Pous
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Blazej Baginski
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Anna Duran-Corbera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Margherita Scarpa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Ana Igea
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | | | | | - Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Department of Marine Biology and Oceanography, Institute of Marine Sciences ICM-CSIC, 08003, Barcelona, Spain
| | - Cristina Mayor-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
10
|
Song J, Kim A, Hong I, Kim S, Byun WS, Lee HS, Kim HS, Lee SK, Kwon Y. Synthesis and biological evaluation of atropisomeric tetrahydroisoquinolines overcoming docetaxel resistance in triple-negative human breast cancer cells. Bioorg Chem 2023; 137:106573. [PMID: 37229969 DOI: 10.1016/j.bioorg.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Herein, atropisomeric 8-aryltetrahydroisoquinolines have been synthesized and biologically evaluated. Based on our structure-activity relationship study, a highly bioactive racemic compound has been produced, and it exhibited high antiproliferative activities against various cancer cell lines, including docetaxel-resistant breast cancer cell lines. Each enantiomer can be synthesized in an enantioselective manner by employing the chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler cyclization. An axially (R)-configured enantiomer showed a higher biological activity compared with the axially (S)-configured enantiomer. Further biological studies suggested that the (R)-enantiomer overcomes docetaxel resistance via the downregulation of signal transducer and activator of transcription 3 activation and consequently induces cellular apoptosis in docetaxel-resistant triple-negative breast cancer cell lines.
Collapse
Affiliation(s)
- Jayoung Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Intaek Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangji Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
11
|
Su J, Yan Z, Sun J. Rhodium-Catalyzed N-Arylation of 2-Pyridones Enabled by 1,6-Acyl Migratory Rearrangement of 2-Oxypyridines. Org Lett 2023; 25:1974-1977. [PMID: 36920185 DOI: 10.1021/acs.orglett.3c00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An efficient rhodium-catalyzed dearomative rearrangement of 2-oxypyridines with quinone diazides has been developed for the direct synthesis of N-arylated pyridones, in which a novel 1,6-O-to-O rather than 1,4-O-to-C acyl rearrangement has been achieved under mild reaction conditions.
Collapse
Affiliation(s)
- Jiahui Su
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zichun Yan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
12
|
Dan Y, Radic N, Gay M, Fernández-Torras A, Arauz G, Vilaseca M, Aloy P, Canovas B, Nebreda A. Characterization of p38α signaling networks in cancer cells using quantitative proteomics and phosphoproteomics. Mol Cell Proteomics 2023; 22:100527. [PMID: 36894123 PMCID: PMC10105487 DOI: 10.1016/j.mcpro.2023.100527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
p38α (encoded by MAPK14) is a protein kinase that regulates cellular responses to almost all types of environmental and intracellular stresses. Upon activation, p38α phosphorylates many substrates both in the cytoplasm and nucleus, allowing this pathway to regulate a wide variety of cellular processes. While the role of p38α in the stress response has been widely investigated, its implication in cell homeostasis is less understood. To investigate the signaling networks regulated by p38α in proliferating cancer cells, we performed quantitative proteomic and phosphoproteomic analyses in breast cancer cells in which this pathway had been either genetically targeted or chemically inhibited. Our study identified with high confidence 35 proteins and 82 phosphoproteins (114 phosphosites) that are modulated by p38α, and highlighted the implication of various protein kinases, including MK2 and mTOR, in the p38α-regulated signaling networks. Moreover, functional analyses revealed an important contribution of p38α to the regulation of cell adhesion, DNA replication and RNA metabolism. Indeed, we provide experimental evidence supporting that p38α facilitates cancer cell adhesion, and showed that this p38α function is likely mediated by the modulation of the adaptor protein ArgBP2. Collectively, our results illustrate the complexity of the p38α regulated signaling networks, provide valuable information on p38α-dependent phosphorylation events in cancer cells, and document a mechanism by which p38α can regulate cell adhesion.
Collapse
Affiliation(s)
- Yuzhen Dan
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Nevenka Radic
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Adrià Fernández-Torras
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gianluca Arauz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Begoña Canovas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - AngelR Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
13
|
Wang Z, Meng L, Liu X, Zhang L, Yu Z, Wu G. Recent progress toward developing axial chirality bioactive compounds. Eur J Med Chem 2022; 243:114700. [DOI: 10.1016/j.ejmech.2022.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
|
14
|
Rodríguez‐Salamanca P, Fernández R, Hornillos V, Lassaletta JM. Asymmetric Synthesis of Axially Chiral C-N Atropisomers. Chemistry 2022; 28:e202104442. [PMID: 35191558 PMCID: PMC9314733 DOI: 10.1002/chem.202104442] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Molecules with restricted rotation around a single bond or atropisomers are found in a wide number of natural products and bioactive molecules as well as in chiral ligands for asymmetric catalysis and smart materials. Although most of these compounds are biaryls and heterobiaryls displaying a C-C stereogenic axis, there is a growing interest in less common and more challenging axially chiral C-N atropisomers. This review offers an overview of the various methodologies available for their asymmetric synthesis. A brief introduction is initially given to contextualize these axially chiral skeletons, including a historical background and examples of natural products containing axially chiral C-N axes. The preparation of different families of C-N based atropisomers is then presented from anilides to chiral five- and six-membered ring heterocycles. Special emphasis has been given to modern catalytic asymmetric strategies over the past decade for the synthesis of these chiral scaffolds. Applications of these methods to the preparation of natural products and biologically active molecules will be highlighted along the text.
Collapse
Affiliation(s)
- Patricia Rodríguez‐Salamanca
- Instituto de Investigaciones Químicas (CSIC-US) and Centro deInnovación en Química Avanzada (ORFEO-CINQA)C/ Américo Vespucio, 4941092SevillaSpain
| | - Rosario Fernández
- Departamento de Química OrgánicaUniversidad de Sevilla) and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González, 141012SevillaSpain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro deInnovación en Química Avanzada (ORFEO-CINQA)C/ Américo Vespucio, 4941092SevillaSpain
- Departamento de Química OrgánicaUniversidad de Sevilla) and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González, 141012SevillaSpain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro deInnovación en Química Avanzada (ORFEO-CINQA)C/ Américo Vespucio, 4941092SevillaSpain
| |
Collapse
|
15
|
Mohanty SR, Prusty N, Nanda T, Banjare SK, Ravikumar PC. Pyridone Directed Ru-Catalyzed Olefination of sp2(C-H) Bond Using Michael Acceptors: Creation of Drug Analogues. J Org Chem 2022; 87:6189-6201. [PMID: 35467333 DOI: 10.1021/acs.joc.2c00428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, the ruthenium-catalyzed regioselective sp2(C-H) monoalkenylation of N-arylpyridones has been demonstrated, where the pyridone was utilized as a weakly coordinating directing group. Importantly, the current methodology has been effectively applied to the synthesis of many drug analogues such as pirfenidone, naproxen, ibuprofen, geraniol, umbelliferone, pregnenolone, and estrone. This methodology tolerates a wide range of functional groups and yields up to 93% yield. A six-membered ruthenium complex was also detected by HRMS.
Collapse
Affiliation(s)
- Smruti Ranjan Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050 Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Namrata Prusty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050 Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050 Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050 Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050 Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
16
|
Denny WA. Inhibitors and Activators of the p38 Mitogen- Activated MAP Kinase (MAPK) Family as Drugs to Treat Cancer and Inflammation. Curr Cancer Drug Targets 2022; 22:209-220. [PMID: 35168519 DOI: 10.2174/1568009622666220215142837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/27/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
The p38 MAP kinases are a sub-family of the broad group of mitogen-activated serine-threonine protein kinases. The best-characterised, most widely expressed, and most targeted by drugs is p38α MAP kinase. This review briefly summarises the place of p38α MAP kinase in cellular signalling and discusses the structures and activity profiles of representative examples of the major classes of inhibitors and activators (both synthetic compounds and natural products) of this enzyme. Primary screening was primarily direct in vitro inhibition of isolated p38α enzyme.
Collapse
Affiliation(s)
- William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
17
|
Wang Y, Xiang S, Tan B. Application in Drugs and Materials. AXIALLY CHIRAL COMPOUNDS 2021:297-315. [DOI: 10.1002/9783527825172.ch11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Pasqua E, Hamblin N, Edwards C, Baker-Glenn C, Hurley C. Developing inhaled drugs for respiratory diseases: A medicinal chemistry perspective. Drug Discov Today 2021; 27:134-150. [PMID: 34547449 DOI: 10.1016/j.drudis.2021.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/11/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
Despite the devastating impact of many lung diseases on human health, there is still a significant unmet medical need in respiratory diseases, for which inhaled delivery represents a crucial strategy. More guidance on how to design and carry out multidisciplinary inhaled projects is needed. When designing inhaled drugs, the medicinal chemist must carefully balance the physicochemical properties of the molecule to achieve optimal target engagement in the lung. Although the medicinal chemistry strategy is unique for each project, and will change depending on multiple factors, such as the disease, target, systemic risk, delivery device, and formulation, general guidelines aiding inhaled drug design can be applied and are summarised in this review.
Collapse
Affiliation(s)
- Elisa Pasqua
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK.
| | - Nicole Hamblin
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK; Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Christine Edwards
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| | - Charles Baker-Glenn
- Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Chris Hurley
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| |
Collapse
|
19
|
Igawa K, Asano S, Yoshida Y, Kawasaki Y, Tomooka K. Analysis of Stereochemical Stability of Dynamic Chiral Molecules Using an Automated Microflow Measurement System. J Org Chem 2021; 86:9651-9657. [PMID: 34232638 DOI: 10.1021/acs.joc.1c00914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An automated microflow measurement system for the kinetic study of racemization of dynamic chiral molecules was developed. This system facilitated the analysis of fast racemization within several seconds at elevated temperatures owing to its rapid heating ability, high performance for controlling short residence times, and ease of connection to HPLC systems for direct measurement of the enantiomeric purity. A more precise analysis was realized by combination of microflow and common batch measurements over a broad range of temperatures.
Collapse
|
20
|
Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021; 22:ijms22084183. [PMID: 33920735 PMCID: PMC8073329 DOI: 10.3390/ijms22084183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.
Collapse
|
21
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
22
|
Foley TL, Burchett W, Chen Q, Flanagan ME, Kapinos B, Li X, Montgomery JI, Ratnayake AS, Zhu H, Peakman MC. Selecting Approaches for Hit Identification and Increasing Options by Building the Efficient Discovery of Actionable Chemical Matter from DNA-Encoded Libraries. SLAS DISCOVERY 2021; 26:263-280. [PMID: 33412987 DOI: 10.1177/2472555220979589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, the toolbox for discovering small-molecule therapeutic starting points has expanded considerably. Pharmaceutical researchers can now choose from technologies that, in addition to traditional high-throughput knowledge-based and diversity screening, now include the screening of fragment and fragment-like libraries, affinity selection mass spectrometry, and selection against DNA-encoded libraries (DELs). Each of these techniques has its own unique combination of advantages and limitations that makes them more, or less, suitable for different target classes or discovery objectives, such as desired mechanism of action. Layered on top of this are the constraints of the drug-hunters themselves, including budgets, timelines, and available platform capacity; each of these can play a part in dictating the hit identification strategy for a discovery program. In this article, we discuss some of the factors that we use to govern our building of a hit identification roadmap for a program and describe the increasing role that DELs are playing in our discovery strategy. Furthermore, we share our learning during our initial exploration of DEL and highlight the approaches we have evolved to maximize the value returned from DEL selections. Topics addressed include the optimization of library design and production, reagent validation, data analysis, and hit confirmation. We describe how our thinking in these areas has led us to build a DEL platform that has begun to deliver tractable matter to our global discovery portfolio.
Collapse
Affiliation(s)
| | | | - Qiuxia Chen
- Lead Generation Unit, HitGen Inc., Chengdu, Shuangliu District, China
| | | | | | - Xianyang Li
- Lead Generation Unit, HitGen Inc., Chengdu, Shuangliu District, China
| | | | | | - Hongyao Zhu
- Simulation and Modelling Sciences, Pfizer Inc., Groton, CT, USA
| | | |
Collapse
|
23
|
Hwang S, Wang X, Rodrigues RM, Ma J, He Y, Seo W, Park SH, Kim SJ, Feng D, Gao B. Protective and Detrimental Roles of p38α Mitogen-Activated Protein Kinase in Different Stages of Nonalcoholic Fatty Liver Disease. Hepatology 2020; 72:873-891. [PMID: 32463484 PMCID: PMC7704563 DOI: 10.1002/hep.31390] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Neutrophil infiltration is a hallmark of nonalcoholic steatohepatitis (NASH), but how this occurs during the progression from steatosis to NASH remains obscure. Human NASH features hepatic neutrophil infiltration and up-regulation of major neutrophil-recruiting chemokines (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1] and interleukin [IL]-8). However, mice fed a high-fat diet (HFD) only develop fatty liver without significant neutrophil infiltration or elevation of chemokines. The aim of this study was to determine why mice are resistant to NASH development and the involvement of p38 mitogen-activated protein kinase (p38) activated by neutrophil-derived oxidative stress in the pathogenesis of NASH. APPROACH AND RESULTS Inflamed human hepatocytes attracted neutrophils more effectively than inflamed mouse hepatocytes because of the greater induction of CXCL1 and IL-8 in human hepatocytes. Hepatic overexpression of Cxcl1 and/or IL-8 promoted steatosis-to-NASH progression in HFD-fed mice by inducing liver inflammation, injury, and p38 activation. Pharmacological inhibition of p38α/β or hepatocyte-specific deletion of p38a (a predominant form in the liver) attenuated liver injury and fibrosis in the HFD+Cxcl1 -induced NASH model that is associated with strong hepatic p38α activation. In contrast, hepatocyte-specific deletion of p38a in HFD-induced fatty liver where p38α activation is relatively weak exacerbated steatosis and liver injury. Mechanistically, weak p38α activation in fatty liver up-regulated the genes involved in fatty acid β-oxidation through peroxisome proliferator-activated receptor alpha phosphorylation, thereby reducing steatosis. Conversely, strong p38α activation in NASH promoted caspase-3 cleavage, CCAAT-enhancer-binding proteins homologous protein expression, and B cell lymphoma 2 phosphorylation, thereby exacerbating hepatocyte death. CONCLUSIONS Genetic ablation of hepatic p38a increases simple steatosis but ameliorates oxidative stress-driven NASH, indicating that p38α plays distinct roles depending on the disease stages, which may set the stage for investigating p38α as a therapeutic target for the treatment of NASH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bin Gao
- Corresponding author: Bin Gao, M.D., Ph.D., Laboratory of Liver Diseases, NIAAA/NIH, 5625 Fishers Lane, Bethesda, MD 20892; Tel: 301-443-3998.
| |
Collapse
|
24
|
Wilkes MC, Siva K, Chen J, Varetti G, Youn MY, Chae H, Ek F, Olsson R, Lundbäck T, Dever DP, Nishimura T, Narla A, Glader B, Nakauchi H, Porteus MH, Repellin CE, Gazda HT, Lin S, Serrano M, Flygare J, Sakamoto KM. Diamond Blackfan anemia is mediated by hyperactive Nemo-like kinase. Nat Commun 2020; 11:3344. [PMID: 32620751 PMCID: PMC7334220 DOI: 10.1038/s41467-020-17100-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/26/2020] [Indexed: 01/30/2023] Open
Abstract
Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome associated with ribosomal gene mutations that lead to ribosomal insufficiency. DBA is characterized by anemia, congenital anomalies, and cancer predisposition. Treatment for DBA is associated with significant morbidity. Here, we report the identification of Nemo-like kinase (NLK) as a potential target for DBA therapy. To identify new DBA targets, we screen for small molecules that increase erythroid expansion in mouse models of DBA. This screen identified a compound that inhibits NLK. Chemical and genetic inhibition of NLK increases erythroid expansion in mouse and human progenitors, including bone marrow cells from DBA patients. In DBA models and patient samples, aberrant NLK activation is initiated at the Megakaryocyte/Erythroid Progenitor (MEP) stage of differentiation and is not observed in non-erythroid hematopoietic lineages or healthy erythroblasts. We propose that NLK mediates aberrant erythropoiesis in DBA and is a potential target for therapy. Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome that is associated with anemia. Here, the authors examine the role of Nemo-like kinase (NLK) in erythroid cells in the pathogenesis of DBA and as a potential target for therapy.
Collapse
Affiliation(s)
- M C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - K Siva
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - J Chen
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - G Varetti
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08028, Spain
| | - M Y Youn
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - H Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - F Ek
- Chemical Biology and Therapeutics Group, Department of Medical Science, Lund University, Lund, 22184, Sweden
| | - R Olsson
- Chemical Biology and Therapeutics Group, Department of Medical Science, Lund University, Lund, 22184, Sweden
| | - T Lundbäck
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - D P Dever
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - T Nishimura
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - A Narla
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - B Glader
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - H Nakauchi
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - M H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - C E Repellin
- Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - H T Gazda
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - S Lin
- Department of Molecular, Cell and Development Biology, University of California, Los Angeles, CA, 90095, USA
| | - M Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08028, Spain
| | - J Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - K M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Donoghue C, Cubillos-Rojas M, Gutierrez-Prat N, Sanchez-Zarzalejo C, Verdaguer X, Riera A, Nebreda AR. Optimal linker length for small molecule PROTACs that selectively target p38α and p38β for degradation. Eur J Med Chem 2020; 201:112451. [PMID: 32634680 DOI: 10.1016/j.ejmech.2020.112451] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/25/2022]
Abstract
We report the design of hetero-bifunctional small molecules that selectively target p38α and p38β for degradation. These proteolysis targeted chimeras (PROTACs) are based on an ATP competitive inhibitor of p38α and p38β, which is linked to thalidomide analogues to recruit the Cereblon E3 ubiquitin ligase complex. Compound synthesis was facilitated by the use of a copper catalyzed "click" reaction. We show that optimization of the linker length and composition is crucial for the degradation-inducing activity of these PROTACs. We provide evidence that these chemical compounds can induce degradation of p38α and p38β but no other related kinases at nanomolar concentrations in several mammalian cell lines. Accordingly, the PROTACs inhibit stress and cytokine-induced p38α signaling. Our compounds contribute to understanding the development of PROTACs, and provide a useful tool to investigate functions of the p38 MAPK pathway and its involvement in diseases.
Collapse
Affiliation(s)
- Craig Donoghue
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Nuria Gutierrez-Prat
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Carolina Sanchez-Zarzalejo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Dept. Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Dept. Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
26
|
Frey J, Malekafzali A, Delso I, Choppin S, Colobert F, Wencel-Delord J. Enantioselective Synthesis of N-C Axially Chiral Compounds by Cu-Catalyzed Atroposelective Aryl Amination. Angew Chem Int Ed Engl 2020; 59:8844-8848. [PMID: 32157781 DOI: 10.1002/anie.201914876] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Indexed: 12/18/2022]
Abstract
N-C axially chiral compounds have emerged recently as appealing motifs for drug design. However, the enantioselective synthesis of such molecules is still poorly developed and surprisingly no metal-catalyzed atroposelective N-arylations have been described. Herein, we disclose an unprecedented Cu-catalyzed atroposelective N-C coupling that proceeds at room temperature. Such mild reaction conditions, which are a crucial parameter for atropostability of the newly generated products, are operative thanks to the use of hypervalent iodine reagents as a highly reactive coupling partners. A large panel of the N-C axially chiral compounds was afforded with very high enantioselectivity (up to >99 % ee) and good yields (up to 76 %). Post-modifications of thus accessed atropisomeric compounds allows further expansion of the diversity of these appealing compounds.
Collapse
Affiliation(s)
- Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Alaleh Malekafzali
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Isabel Delso
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Sabine Choppin
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Françoise Colobert
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087, Strasbourg, France
| |
Collapse
|
27
|
Enantioselective Synthesis of N–C Axially Chiral Compounds by Cu‐Catalyzed Atroposelective Aryl Amination. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914876] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Kumar S, Principe DR, Singh SK, Viswakarma N, Sondarva G, Rana B, Rana A. Mitogen-Activated Protein Kinase Inhibitors and T-Cell-Dependent Immunotherapy in Cancer. Pharmaceuticals (Basel) 2020; 13:E9. [PMID: 31936067 PMCID: PMC7168889 DOI: 10.3390/ph13010009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling networks serve to regulate a wide range of physiologic and cancer-associated cell processes. For instance, a variety of oncogenic mutations often lead to hyperactivation of MAPK signaling, thereby enhancing tumor cell proliferation and disease progression. As such, several components of the MAPK signaling network have been proposed as viable targets for cancer therapy. However, the contributions of MAPK signaling extend well beyond the tumor cells, and several MAPK effectors have been identified as key mediators of the tumor microenvironment (TME), particularly with respect to the local immune infiltrate. In fact, a blockade of various MAPK signals has been suggested to fundamentally alter the interaction between tumor cells and T lymphocytes and have been suggested a potential adjuvant to immune checkpoint inhibition in the clinic. Therefore, in this review article, we discuss the various mechanisms through which MAPK family members contribute to T-cell biology, as well as circumstances in which MAPK inhibition may potentiate or limit cancer immunotherapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Daniel R. Principe
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; (S.K.); (D.R.P.); (S.K.S.); (N.V.); (G.S.); (B.R.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Development of a validated UPLC-MS/MS method for quantification of p38 MAPK inhibitor PH-797804: Application to a pharmacokinetic study in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1134-1135:121877. [PMID: 31785533 DOI: 10.1016/j.jchromb.2019.121877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 01/14/2023]
Abstract
PH-797804 is a selective p38 MAPK inhibitor currently evaluated in clinical trials. This study described a validated UPLC-MS/MS combined with one-step protein precipitation extraction method for determination of PH-797804 in rat plasma. After protein precipitation with acetonitrile, the plasma sample was analyzed by a Waters Acquity UPLC BEH C18 column, with acetonitrile/0.1% formic acid (70:30) as the mobile phase. Mass spectrometric detection was conducted with a Waters TQ-S mass spectrometer via electrospray, positive-mode ionization, with target quantitative ion pairs of m/z 476.895 → 126.860 for PH-797804, and 482.726 → 269.707 for regorafenib (internal standard). The assay showed a good linearity over the range of 1.0-1600 ng/mL, with acceptable accuracy (RE from -7.8% to 8.5%) and precision (RSD within 8.4%) values. Recovery from plasma was 81.4-90.2% and matrix effect was negligible (93.3-95.4%). The validated method presented a quantification method of PH-797804 in detail for the first time and utilized for a pharmacokinetic study at three dose concentrations after oral administration in Wistar rats. The pharmacokinetic profiles of PH-797804 showed a linear relationship between drug concentration and dose, which provided dosage and safety information on further clinical studies.
Collapse
|
30
|
Melekhina VG, Komogortsev AN, Lichitsky BV, Mityanov VS, Fakhrutdinov AN, Dudinov AA, Migulin VA, Nelyubina YV, Melnikova EK, Krayushkin MM. One-pot synthesis of substituted pyrrolo[3,4- b]pyridine-4,5-diones based on the reaction of N-(1-(4-hydroxy-6-methyl-2-oxo-2 H-pyran-3-yl)-2-oxo-2-arylethyl)acetamide with amines. Beilstein J Org Chem 2019; 15:2840-2846. [PMID: 31839829 PMCID: PMC6902885 DOI: 10.3762/bjoc.15.277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
The condensation of primary amines with N-(1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-2-oxo-2-arylethyl)acetamides was explored. Thus, a previously unknown recyclization of the starting material was observed in acidic ethanol in the presence of an amine, which provided the corresponding dihydropyrrolone derivative as the major reaction product. Based on this transformation, a practical and convenient one-pot synthetic method for substituted pyrrolo[3,4-b]pyridin-5-ones could be devised.
Collapse
Affiliation(s)
- Valeriya G Melekhina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Andrey N Komogortsev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Boris V Lichitsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Vitaly S Mityanov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow 119991, Russian Federation.,Department of Fine Organic Synthesis and Chemistry of Dyes, D. Mendeleyev University of Chemical Technology of Russia, Miusskaya Sq., 9, Moscow 125047, Russian Federation
| | - Artem N Fakhrutdinov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Arkady A Dudinov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Vasily A Migulin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Vavilova St., 28, Moscow 119991, Russian Federation
| | - Elizaveta K Melnikova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Vavilova St., 28, Moscow 119991, Russian Federation.,Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Michail M Krayushkin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow 119991, Russian Federation
| |
Collapse
|
31
|
Hedström U, Norberg M, Evertsson E, Lever SR, Munck Af Rosenschöld M, Lönn H, Bold P, Käck H, Berntsson P, Vinblad J, Liu J, Welinder A, Karlsson J, Snijder A, Pardali K, Andersson U, Davis AM, Mogemark M. An Angle on MK2 Inhibition-Optimization and Evaluation of Prevention of Activation Inhibitors. ChemMedChem 2019; 14:1701-1709. [PMID: 31325352 DOI: 10.1002/cmdc.201900303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Indexed: 12/15/2022]
Abstract
The mitogen-activated protein kinase p38α pathway has been an attractive target for the treatment of inflammatory conditions such as rheumatoid arthritis. While a number of p38α inhibitors have been taken to the clinic, they have been limited by their efficacy and toxicological profile. A lead identification program was initiated to selectively target prevention of activation (PoA) of mitogen-activated protein kinase-activated protein kinase 2 (MK2) rather than mitogen- and stress-activated protein kinase 1 (MSK1), both immediate downstream substrates of p38α, to improve the efficacy/safety profile over direct p38α inhibition. Starting with a series of pyrazole amide PoA MK2 inhibitor leads, and guided by structural chemistry and rational design, a highly selective imidazole 9 (2-(3'-(2-amino-2-oxoethyl)-[1,1'-biphenyl]-3-yl)-N-(5-(N,N-dimethylsulfamoyl)-2-methylphenyl)-1-propyl-1H-imidazole-5-carboxamide) and the orally bioavailable imidazole 18 (3-methyl-N-(2-methyl-5-sulfamoylphenyl)-2-(o-tolyl)imidazole-4-carboxamide) were discovered. The PoA concept was further evaluated by protein immunoblotting, which showed that the optimized PoA MK2 compounds, despite their biochemical selectivity against MSK1 phosphorylation, behaved similarly to p38 inhibitors in cellular signaling. This study highlights the importance of selective tool compounds in untangling complex signaling pathways, and although 9 and 18 were not differentiated from p38α inhibitors in a cellular context, they are still useful tools for further research directed to understand the role of MK2 in the p38α signaling pathway.
Collapse
Affiliation(s)
- Ulf Hedström
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Monica Norberg
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Emma Evertsson
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Sarah R Lever
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Magnus Munck Af Rosenschöld
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Hans Lönn
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Peter Bold
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Helena Käck
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Pia Berntsson
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Johanna Vinblad
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Jianming Liu
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anette Welinder
- Pharmaceutical Technology and Development, Operations, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Johan Karlsson
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Arjan Snijder
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Katerina Pardali
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Ulf Andersson
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Andrew M Davis
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| |
Collapse
|
32
|
Oliva J, Galasinski S, Richey A, Campbell AE, Meyers MJ, Modi N, Zhong JW, Tawil R, Tapscott SJ, Sverdrup FM. Clinically Advanced p38 Inhibitors Suppress DUX4 Expression in Cellular and Animal Models of Facioscapulohumeral Muscular Dystrophy. J Pharmacol Exp Ther 2019; 370:219-230. [PMID: 31189728 PMCID: PMC6652132 DOI: 10.1124/jpet.119.259663] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by misexpression of the double homeobox 4 (DUX4) developmental transcription factor in mature skeletal muscle, where it is responsible for muscle degeneration. Preventing expression of DUX4 mRNA is a disease-modifying therapeutic strategy with the potential to halt or reverse the course of disease. We previously reported that agonists of the β-2 adrenergic receptor suppress DUX4 expression by activating adenylate cyclase to increase cAMP levels. Efforts to further explore this signaling pathway led to the identification of p38 mitogen-activated protein kinase as a major regulator of DUX4 expression. In vitro experiments demonstrate that clinically advanced p38 inhibitors suppress DUX4 expression in FSHD type 1 and 2 myoblasts and differentiating myocytes in vitro with exquisite potency. Individual small interfering RNA-mediated knockdown of either p38α or p38β suppresses DUX4 expression, demonstrating that each kinase isoform plays a distinct requisite role in activating DUX4 Finally, p38 inhibitors effectively suppress DUX4 expression in a mouse xenograft model of human FSHD gene regulation. These data support the repurposing of existing clinical p38 inhibitors as potential therapeutics for FSHD. The surprise finding that p38α and p38β isoforms each independently contribute to DUX4 expression offers a unique opportunity to explore the utility of p38 isoform-selective inhibitors to balance efficacy and safety in skeletal muscle. We propose p38 inhibition as a disease-modifying therapeutic strategy for FSHD. SIGNIFICANCE STATEMENT: Facioscapulohumeral muscular dystrophy (FSHD) currently has no treatment options. This work provides evidence that repurposing a clinically advanced p38 inhibitor may provide the first disease-modifying drug for FSHD by suppressing toxic DUX4 expression, the root cause of muscle degeneration in this disease.
Collapse
Affiliation(s)
- Jonathan Oliva
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Scott Galasinski
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amelia Richey
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Amy E Campbell
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Marvin J Meyers
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Neal Modi
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Jun Wen Zhong
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Rabi Tawil
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Stephen J Tapscott
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| | - Francis M Sverdrup
- Departments of Biochemistry and Molecular Biology (J.O., A.R., N.M., F.M.S.) and Chemistry (M.J.M.), Saint Louis University, St. Louis, Missouri; Ultragenyx Pharmaceutical Inc., Novato, California (S.G.); Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (A.E.C., J.W.Z., S.J.T.); Department of Neurology, University of Rochester Medical Center, Rochester, New York (R.T.); and Department of Neurology, University of Washington, Seattle, Washington (S.J.T.)
| |
Collapse
|
33
|
Hillenbrand J, Ham WS, Ritter T. C–H Pyridonation of (Hetero-)Arenes by Pyridinium Radical Cations. Org Lett 2019; 21:5363-5367. [DOI: 10.1021/acs.orglett.9b02054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julius Hillenbrand
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
| | - Won Seok Ham
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
34
|
Martín-Segura A, Casadomé-Perales Á, Fazzari P, Mas JM, Artigas L, Valls R, Nebreda AR, Dotti CG. Aging Increases Hippocampal DUSP2 by a Membrane Cholesterol Loss-Mediated RTK/p38MAPK Activation Mechanism. Front Neurol 2019; 10:675. [PMID: 31293510 PMCID: PMC6603139 DOI: 10.3389/fneur.2019.00675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/10/2019] [Indexed: 01/22/2023] Open
Abstract
Numerous studies suggest that the increased activity of p38MAPK plays an important role in the abnormal immune and inflammatory response observed in the course of neurodegenerative diseases such as Alzheimer's disease. On the other hand, high levels of p38MAPK are present in the brain during normal aging, suggesting the existence of mechanisms that keep the p38MAPK-regulated pro-inflammatory activity within physiological limits. In this study, we show that high p38MAPK activity in the hippocampus of old mice is in part due to the reduction in membrane cholesterol that constitutively occurs in the aging brain. Mechanistically, membrane cholesterol reduction increases p38MAPK activity through the stimulation of a subset of tyrosine kinase receptors (RTKs). In turn, activated p38MAPK increases the expression and activity of the phosphatase DUSP2, which is known to reduce the activity of different MAPKs, including p38MAPK. These results suggest that the loss of membrane cholesterol that constitutively occurs with age takes part in a negative-feedback loop that keeps p38MAPK activity levels within physiological range. Thus, conditions that increase p38MAPK activity such as cellular stressors or that inhibit DUSP2 will amplify inflammatory activity with its consequent deleterious functional changes.
Collapse
Affiliation(s)
- Adrián Martín-Segura
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain.,Albert Einstein College of Medicine, Bronx, NY, United States
| | - Álvaro Casadomé-Perales
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Pietro Fazzari
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain.,Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Carlos G Dotti
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| |
Collapse
|
35
|
Young RJ, Leeson PD. Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. J Med Chem 2018; 61:6421-6467. [DOI: 10.1021/acs.jmedchem.8b00180] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Robert J. Young
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul D. Leeson
- Paul Leeson Consulting Ltd., The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K
| |
Collapse
|
36
|
Maudens P, Seemayer CA, Pfefferlé F, Jordan O, Allémann E. Nanocrystals of a potent p38 MAPK inhibitor embedded in microparticles: Therapeutic effects in inflammatory and mechanistic murine models of osteoarthritis. J Control Release 2018. [PMID: 29524442 DOI: 10.1016/j.jconrel.2018.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study aimed to formulate nanocrystal-polymer particles (NPPs) containing the potent p38α/β MAPK inhibitor PH-797804 (PH-NPPs) and to test their extended-release properties over months in comparison to those of conventional PH microparticles for the intra-articular treatment of inflammatory and mechanistic murine models mirroring aspects of human osteoarthritis (OA). The steps of the study were (i) to formulate PH nanocrystals (wet milling), (ii) to encapsulate a high payload of PH nanocrystals in fluorescent particles (spray drying), (iii) to assess in vitro drug release, (iv) to evaluate PH-NPP toxicity to human OA synoviocytes (MTT test), (v) to investigate the in vivo bioactivity of the particles in mice in an inflammatory antigen-induced arthritis (AIA) model (using histology and RT-qPCR) and (vi) to investigate the in vivo bioactivity of the particles in the OA model obtained by mechanistic surgical destabilization of the medial meniscus (DMM) (using histology, micro-CT, and multiplex ELISA). The PH nanocrystals stabilized with vitamin E TPGS had a monomodal size distribution. The PH-NPPs had a mean diameter of 14.2 μm and drug loading of ~31.5% (w/w), and ~20% of the PH was released over 3 months. The NPPs did not exhibit toxicity to cultured human OA synoviocytes at 100 × IC50. Finally, in vivo studies showed good retention of PH-NPPs in the joint and adjacent tissues for up to 2 months, and the PH-NPPs exhibited good functional relevance by significantly reducing inflammation and joint destruction and by inhibiting several biomarkers (e.g., IL-1β). In conclusion, local treatment with PH-NPPs, used as an extended-release drug delivery system, improved inflammation and joint degradation in two distinct mouse models, indicating treatment potential for human OA.
Collapse
Affiliation(s)
- Pierre Maudens
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland
| | | | | | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
37
|
Jones DS, Jenney AP, Joughin BA, Sorger PK, Lauffenburger DA. Inflammatory but not mitogenic contexts prime synovial fibroblasts for compensatory signaling responses to p38 inhibition. Sci Signal 2018; 11:11/520/eaal1601. [PMID: 29511118 DOI: 10.1126/scisignal.aal1601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder that causes joint pain, swelling, and loss of function. Development of effective new drugs has proven challenging in part because of the complexities and interconnected nature of intracellular signaling networks that complicate the effects of pharmacological interventions. We characterized the kinase signaling pathways that are activated in RA and evaluated the multivariate effects of targeted inhibitors. Synovial fluids from RA patients activated the kinase signaling pathways JAK, JNK, p38, and MEK in synovial fibroblasts (SFs), a stromal cell type that promotes RA progression. Kinase inhibitors enhanced signaling of "off-target" pathways in a manner dependent on stimulatory context. Inhibitors of p38, which have been widely explored in clinical trials for RA, resulted in undesirable increases in nuclear factor κB (NF-κB), JNK, and MEK signaling in SFs in inflammatory, but not mitogenic, contexts. This was mediated by the transcription factor CREB, which functions in part within a negative feedback loop in MAPK signaling. CREB activation was induced predominately by p38 in response to inflammatory stimuli, but by MEK in response to mitogenic stimuli; hence, the effects of drugs targeting p38 or MEK were markedly different in SFs cultured under mitogenic or inflammatory conditions. Together, these findings illustrate how stimulatory context can alter dominance in pathway cross-talk even for a fixed network topology, thereby providing a rationale for why p38 inhibitors deliver limited benefits in RA and demonstrating the need for careful consideration of p38-targeted drugs in inflammation-related disorders.
Collapse
Affiliation(s)
- Douglas S Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Laboratory of Systems Pharmacology, Library of Integrated Network-based Cellular Signatures Center, Harvard Medical School, Boston, MA 02115, USA
| | - Anne P Jenney
- Laboratory of Systems Pharmacology, Library of Integrated Network-based Cellular Signatures Center, Harvard Medical School, Boston, MA 02115, USA
| | - Brian A Joughin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Library of Integrated Network-based Cellular Signatures Center, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Koch Institute for Integrative Cancer Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
38
|
Kaieda A, Takahashi M, Takai T, Goto M, Miyazaki T, Hori Y, Unno S, Kawamoto T, Tanaka T, Itono S, Takagi T, Hamada T, Shirasaki M, Okada K, Snell G, Bragstad K, Sang BC, Uchikawa O, Miwatashi S. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors. Bioorg Med Chem 2018; 26:647-660. [PMID: 29291937 DOI: 10.1016/j.bmc.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/25/2022]
Abstract
We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group.
Collapse
Affiliation(s)
- Akira Kaieda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takafumi Takai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Goto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiro Miyazaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuri Hori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoko Unno
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Kawamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimasa Tanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sachiko Itono
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Terufumi Takagi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Teruki Hamada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mikio Shirasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kengo Okada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Gyorgy Snell
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Ken Bragstad
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Bi-Ching Sang
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Osamu Uchikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Seiji Miwatashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
39
|
Glunz PW. Recent encounters with atropisomerism in drug discovery. Bioorg Med Chem Lett 2018; 28:53-60. [DOI: 10.1016/j.bmcl.2017.11.050] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
|
40
|
Cicenas J, Zalyte E, Rimkus A, Dapkus D, Noreika R, Urbonavicius S. JNK, p38, ERK, and SGK1 Inhibitors in Cancer. Cancers (Basel) 2017; 10:cancers10010001. [PMID: 29267206 PMCID: PMC5789351 DOI: 10.3390/cancers10010001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAP kinases) are a family of kinases that regulates a range of biological processes implicated in the response to growth factors like latelet-derived growth factor (PDGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and stress, such as ultraviolet irradiation, heat shock, and osmotic shock. The MAP kinase family consists of four major subfamilies of related proteins (extracellular regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, and extracellular regulated kinase 5 (ERK5)) and regulates numerous cellular activities, such as apoptosis, gene expression, mitosis, differentiation, and immune responses. The deregulation of these kinases is shown to be involved in human diseases, such as cancer, immune diseases, inflammation, and neurodegenerative disorders. The awareness of the therapeutic potential of the inhibition of MAP kinases led to a thorough search for small-molecule inhibitors. Here, we discuss some of the most well-known MAP kinase inhibitors and their use in cancer research.
Collapse
Affiliation(s)
- Jonas Cicenas
- Department for Microbiology, Immunbiology und Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna AT-1030, Austria.
- Proteomics Centre, Institute of Biochemistry, Vilnius University, 01513 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland.
| | - Egle Zalyte
- Proteomics Centre, Institute of Biochemistry, Vilnius University, 01513 Vilnius, Lithuania.
| | - Arnas Rimkus
- Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania.
| | - Dalius Dapkus
- Department of Biology and Chemistry, Lithuanian University of Educational Sciences, 08106 Vilnius, Lithuania.
| | - Remigijus Noreika
- Department of Biology and Chemistry, Lithuanian University of Educational Sciences, 08106 Vilnius, Lithuania.
| | - Sigitas Urbonavicius
- Cardiovascular Research Centre, Viborg Hospital, Heibergs Alle 4, 8800 Viborg, Denmark.
| |
Collapse
|
41
|
Kojonazarov B, Novoyatleva T, Boehm M, Happe C, Sibinska Z, Tian X, Sajjad A, Luitel H, Kriechling P, Posern G, Evans SM, Grimminger F, Ghofrani HA, Weissmann N, Bogaard HJ, Seeger W, Schermuly RT. p38 MAPK Inhibition Improves Heart Function in Pressure-Loaded Right Ventricular Hypertrophy. Am J Respir Cell Mol Biol 2017; 57:603-614. [PMID: 28657795 DOI: 10.1165/rcmb.2016-0374oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although p38 mitogen-activated protein kinase (MAPK) is known to have a role in ischemic heart disease and many other diseases, its contribution to the pathobiology of right ventricular (RV) hypertrophy and failure is unclear. Therefore, we sought to investigate the role of p38 MAPK in the pathophysiology of pressure overload-induced RV hypertrophy and failure. The effects of the p38 MAPK inhibitor PH797804 were investigated in mice with RV hypertrophy/failure caused by exposure to hypoxia or pulmonary artery banding. In addition, the effects of p38 MAPK inhibition or depletion (by small interfering RNA) were studied in isolated mouse RV fibroblasts. Echocardiography, invasive hemodynamic measurements, immunohistochemistry, collagen assays, immunofluorescence staining, and Western blotting were performed. Expression of phosphorylated p38 MAPK was markedly increased in mouse and human hypertrophied/failed RVs. In mice, PH797804 improved RV function and inhibited cardiac fibrosis compared with placebo. In isolated RV fibroblasts, p38 MAPK inhibition reduced transforming growth factor (TGF)-β-induced collagen production as well as stress fiber formation. Moreover, p38 MAPK inhibition/depletion suppressed TGF-β-induced SMAD2/3 phosphorylation and myocardin-related transcription factor A (MRTF-A) nuclear translocation, and prevented TGF-β-induced cardiac fibroblast transdifferentiation. Moreover, p38 MAPK inhibition in mice exposed to pulmonary artery banding led to diminished nuclear levels of MRTF-A and phosphorylated SMAD3 in RV fibroblasts. Together, our data indicate that p38 MAPK inhibition significantly improves RV function and inhibits RV fibrosis. Inhibition of p38 MAPK in RV cardiac fibroblasts, resulting in coordinated attenuation of MRTF-A cytoplasmic-nuclear translocation and SMAD3 deactivation, indicates that p38 MAPK signaling contributes to distinct disease-causing mechanisms.
Collapse
Affiliation(s)
- Baktybek Kojonazarov
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Tatyana Novoyatleva
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Mario Boehm
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Chris Happe
- 2 VU University Medical Center, Amsterdam, the Netherlands
| | - Zaneta Sibinska
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Xia Tian
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Amna Sajjad
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Himal Luitel
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Philipp Kriechling
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Guido Posern
- 3 Institute of Physiological Chemistry, Halle, Germany
| | - Steven M Evans
- 4 Pfizer Worldwide Research and Development, Cambridge, Massachusetts; and
| | - Friedrich Grimminger
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Hossein A Ghofrani
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Norbert Weissmann
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Harm J Bogaard
- 2 VU University Medical Center, Amsterdam, the Netherlands
| | - Werner Seeger
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany.,5 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
42
|
Menon R, Papaconstantinou J. p38 Mitogen activated protein kinase (MAPK): a new therapeutic target for reducing the risk of adverse pregnancy outcomes. Expert Opin Ther Targets 2016; 20:1397-1412. [PMID: 27459026 DOI: 10.1080/14728222.2016.1216980] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Spontaneous preterm birth (PTB) and preterm premature rupture of the membranes (pPROM) remain as a major clinical and therapeutic problem for intervention and management. Current strategies, based on our knowledge of pathways of preterm labor, have only been effective, in part, due to major gaps in our existing knowledge of risks and risk specific pathways. Areas covered: Recent literature has identified physiologic aging of fetal tissues as a potential mechanistic feature of normal parturition. This process is affected by telomere dependent and p38 mitogen activated protein kinase (MAPK) induced senescence activation. Pregnancy associated risk factors can cause pathologic activation of this pathway that can cause oxidative stress induced p38 MAPK activation leading to senescence and premature aging of fetal tissues. Premature aging is associated with sterile inflammation capable of triggering preterm labor or preterm premature rupture of membranes. Preterm activation of p38MAPK can be considered as a key contributor to adverse pregnancies. Expert opinion: This review considers p38MAPK activation as a potential target for therapeutic interventions to prevent adverse pregnancy outcomes mediated by stress factors. In this review, we propose multiple strategies to prevent p38MAPK activation.
Collapse
Affiliation(s)
- Ramkumar Menon
- a Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - John Papaconstantinou
- b Department of Biochemistry and Molecular Biology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| |
Collapse
|
43
|
García-Cano J, Roche O, Cimas FJ, Pascual-Serra R, Ortega-Muelas M, Fernández-Aroca DM, Sánchez-Prieto R. p38MAPK and Chemotherapy: We Always Need to Hear Both Sides of the Story. Front Cell Dev Biol 2016; 4:69. [PMID: 27446920 PMCID: PMC4928511 DOI: 10.3389/fcell.2016.00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
The p38MAPK signaling pathway was initially described as a stress response mechanism. In fact, during previous decades, it was considered a pathway with little interest in oncology especially in comparison with other MAPKs such as ERK1/2, known to be target of oncogenes like Ras. However, its involvement in apoptotic cell death phenomena makes this signaling pathway more attractive for many cancer research laboratories. This apoptotic role allows to establish a link between p38MAPK and regular chemotherapeutic agents such as Cisplatin or base analogs (Cytarabine, Gemcitabine or 5-Fluorouracil) which are currently used in hospitals across the world. In fact, and more recently, p38MAPK has also been connected with targeted therapies like tyrosine kinase inhibitors (vg. Imatinib, Sorafenib) and, to a lesser extent, with monoclonal antibodies. In addition, the oncogenic or tumor suppressor potential of this signaling pathway has aroused the interest of the scientific community in evaluating p38MAPK as a novel target for cancer therapy. In this review, we will summarize the role of p38MAPK in chemotherapy as well as the potential that p38MAPK inhibition can bring to cancer therapy. All the evidences suggest that p38MAPK could be a double-edged sword and that the search for the most appropriate candidate patients, depending on their pathology and treatment, will lead to a more rational use of this new therapeutic tool.
Collapse
Affiliation(s)
- Jesús García-Cano
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Olga Roche
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Raquel Pascual-Serra
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Marta Ortega-Muelas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Diego M Fernández-Aroca
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla-La Mancha/PCTCLM Albacete, Spain
| |
Collapse
|
44
|
Kraus GA, Wanninayake UK, Bottoms J. Triacetic acid lactone as a common intermediate for the synthesis of 4-hydroxy-2-pyridones and 4-amino-2-pyrones. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Onions ST, Ito K, Charron CE, Brown RJ, Colucci M, Frickel F, Hardy G, Joly K, King-Underwood J, Kizawa Y, Knowles I, Murray PJ, Novak A, Rani A, Rapeport G, Smith A, Strong P, Taddei DM, Williams JG. Discovery of Narrow Spectrum Kinase Inhibitors: New Therapeutic Agents for the Treatment of COPD and Steroid-Resistant Asthma. J Med Chem 2016; 59:1727-46. [PMID: 26800309 DOI: 10.1021/acs.jmedchem.5b01029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The discovery of a novel series of therapeutic agents that has been designed and optimized for treating chronic obstructive pulmonary disease is reported. The pharmacological strategy was based on the identification of compounds that inhibit a defined subset of kinase enzymes modulating inflammatory processes that would be effective against steroid refractory disease and exhibit a sustained duration of action after inhaled delivery.
Collapse
Affiliation(s)
- Stuart T Onions
- Sygnature Discovery Limited, Biocity , Nottingham NG1 1GF, United Kingdom
| | - Kazuhiro Ito
- RespiVert Limited , 2 Royal College Street, The London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Catherine E Charron
- RespiVert Limited , 2 Royal College Street, The London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Richard J Brown
- Sygnature Discovery Limited, Biocity , Nottingham NG1 1GF, United Kingdom
| | - Marie Colucci
- Sygnature Discovery Limited, Biocity , Nottingham NG1 1GF, United Kingdom
| | - Fritz Frickel
- RespiVert Limited , 2 Royal College Street, The London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - George Hardy
- RespiVert Limited , 2 Royal College Street, The London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Kevin Joly
- Sygnature Discovery Limited, Biocity , Nottingham NG1 1GF, United Kingdom
| | - John King-Underwood
- CompChem Resource , Old Cottage Hospital, Homend, Ledbury, Herefordshire HR8 1ED, United Kingdom
| | - Yasuo Kizawa
- Department of Physiology and Anatomy, Nihon University School of Pharmacy , 7-7-1, Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Ian Knowles
- Pneumolabs UK Limited , Harrow, Middlesex HA1 3UJ, United Kingdom
| | - P John Murray
- RespiVert Limited , 2 Royal College Street, The London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Andrew Novak
- Sygnature Discovery Limited, Biocity , Nottingham NG1 1GF, United Kingdom
| | - Anjna Rani
- Sygnature Discovery Limited, Biocity , Nottingham NG1 1GF, United Kingdom
| | - Garth Rapeport
- RespiVert Limited , 2 Royal College Street, The London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Alun Smith
- Sygnature Discovery Limited, Biocity , Nottingham NG1 1GF, United Kingdom
| | - Peter Strong
- RespiVert Limited , 2 Royal College Street, The London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - David M Taddei
- Sygnature Discovery Limited, Biocity , Nottingham NG1 1GF, United Kingdom
| | | |
Collapse
|
46
|
Astolfi A, Iraci N, Manfroni G, Barreca ML, Cecchetti V. A Comprehensive Structural Overview of p38α MAPK in Complex with Type I Inhibitors. ChemMedChem 2015; 10:957-69. [PMID: 26012502 DOI: 10.1002/cmdc.201500030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/05/2015] [Indexed: 12/12/2022]
Abstract
p38α mitogen-activated protein kinase (MAPK) is a well-recognized therapeutic target for the treatment of autoimmune and inflammatory diseases. Over the past two decades, tremendous efforts have been focused on the discovery and development of small-molecule p38α MAPK inhibitors, although currently no drugs targeting this protein are clinically available. Therefore, the identification of novel chemotypes that are able to inhibit p38α MAPK function is still of great therapeutic significance. With the objective to support drug discovery programs aimed at identifying new immunomodulators acting on p38α MAPK, herein we present a complete overview of the available crystal structures of this protein in complex with ATP-site type I inhibitors. The 85 available complexes are classified by chemotype and experimental binding mode, and the ligand-protein interactions are discussed using the most representative inhibitors. The type and frequency of key inhibitor features are analyzed to give a final summary of the chemical requirements of promising p38α MAPK inhibitors. The proposed pharmacophore can be exploited to enhance the opportunities to identify novel type I inhibitors of p38α MAPK.
Collapse
Affiliation(s)
- Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia (Italy)
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia (Italy)
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia (Italy)
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia (Italy).
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia (Italy)
| |
Collapse
|
47
|
Cookson R, Barrett TN, Barrett AGM. β-Keto-dioxinones and β,δ-diketo-dioxinones in biomimetic resorcylate total synthesis. Acc Chem Res 2015; 48:628-42. [PMID: 25689674 DOI: 10.1021/ar5004169] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resorcylates are a large group of bioactive natural products that are biosynthesized from acetate and malonate units via the intermediacy of polyketides. These polyketides undergo cyclization reactions to introduce the aromatic core. The bioactivities of the resorcylates including resorcylate macrocyclic lactones include anticancer, antimalarial, mycotoxicity, antifungal, and antibiotic properties, and several compounds in the series are already in use in medicine. Examples are prodrugs derived from mycophenolic acid as immunosuppressants and the Hsp-90 inhibitor, AT13387, which is in phase-II clinical trials for the treatment of small cell lung cancer and melanoma. In consequence of these biological activities, methods for the concise synthesis of diverse resorcylates are of considerable importance. In natural product chemistry, biomimetic total synthesis can have significant advantages including functional group tolerance in key steps, the minimization of the use of protection and deprotection reactions and the shortening of the total number of synthetic steps. This Account provides a description of our adaption of the dioxinone chemistry of Hyatt, Clemens, and Feldman for the synthesis and retro-Diels-Alder reactions of diketo-dioxinones. Such dioxinones, which were synthesized by a range of C-acylation reactions, were found to undergo retro-Diels-Alder reactions on heating to provide the corresponding triketo-ketenes with the loss of acetone. The ketene reactive intermediates were rapidly trapped both inter- and intramolecularly with alcohols to provide the corresponding β,δ,ζ-triketo-esters. These compounds, which consist of keto-enol mixtures, readily undergo cycloaromatization to produce resorcylate esters and macrocyclic lactones. We have established the use of diketo-dioxinones as key general intermediates for the synthesis of diverse resorcylate natural products and for the synthesis of new classes of compounds for the generation of medicinal chemistry lead structures. Many of the methods used were found to be tolerant of multiple sensitive functional groups. These include enolate C-acylations with acyl chlorides, 1-acyl-benzotriazoles, acyl imidazolides, or Weinreb amides to prepare diketo-dioxinones and their subsequent use to prepare β,δ,ζ-triketo-esters and lactones and hence resorcylates. In addition, in most cases, phenol protection was avoided. As an alternative to the synthesis of β,δ,ζ-triketo-esters, diketo-dioxinones were also found to undergo cycloaromatization with retention of the ketal entity via a nonketene pathway. Finally, diketo-dioxinones with an allyl, prenyl, geranyl, or other 2-alkenyl carboxylate esters at the γ-carbon underwent decarboxylative rearrangement with tetrakis(triphenylphosphine)palladium catalysis to produce α-substituted diketo-dioxinones and resorcylates with 3-allyl, prenyl, geranyl, or other 2-alkenyl groups. Such diketo-dioxinone chemistry was used in the total synthesis of natural products including aigialomycin, cruentaren A, and the oligomeric resorcylate antibiotics ent-W1278 A, B, and C. Additionally, tandem use of the decarboxylative rearrangement process and cycloaromatization was used in the total synthesis of natural products including the methyl ester of cristatic acid, mycophenolic acid, and hongoquercin B. The methodology was also applied to the synthesis of 9,10-anthraquinones, o-aminoalkyl resorcylates, dihydroxyisoindolinones, oligomers, and resorcinamides. The development of this methodology is described in this Account, showcasing its applicability and versatility for the synthesis of complex resorcylate products.
Collapse
Affiliation(s)
- Rosa Cookson
- Department of Chemistry, Imperial College London, London SW7 2AZ, England
| | - Tim N. Barrett
- Department of Chemistry, Imperial College London, London SW7 2AZ, England
| | | |
Collapse
|
48
|
He L, Dai R, Zhang XR, Gao SY, He YY, Wang LB, Gao X, Yang LQ. Ligand-based 3D pharmacophore design, virtual screening and molecular docking for novel p38 MAPK inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1158-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
|
50
|
Ostenfeld T, Krishen A, Lai RY, Bullman J, Baines AJ, Green J, Anand P, Kelly M. Analgesic efficacy and safety of the novel p38 MAP kinase inhibitor, losmapimod, in patients with neuropathic pain following peripheral nerve injury: a double-blind, placebo-controlled study. Eur J Pain 2012; 17:844-57. [PMID: 23239139 DOI: 10.1002/j.1532-2149.2012.00256.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Inhibitors of p38 mitogen-activated protein kinase are undergoing evaluation as a novel class of anti-rheumatic drugs, by virtue of their ability to suppress the production of pro-inflammatory cytokines. Emerging data suggests that they may also attenuate peripheral or central sensitization in neuropathic pain. A double-blind, placebo-controlled study was undertaken to evaluate the analgesic efficacy of losmapimod (GW856553), a novel p38α/β inhibitor, in subjects with neuropathic pain following traumatic peripheral nerve injury. METHODS One hundred and sixty-eight subjects with pain of at least moderate intensity (average daily score ≥4 on an 11-point pain intensity numeric rating scale; PI-NRS) at baseline were randomized to receive oral losmapimod, 7.5 mg BID or placebo for 28 days. Efficacy and safety assessments were undertaken at weekly clinic visits. RESULTS The mean treatment difference for the change in average daily pain score from baseline to week 4 of treatment based on the PI-NRS was -0.22 (95% CI -0.73, 0.28) in favour of losmapimod over placebo (p = 0.39). There were no statistically significant or clinically meaningful differences between the treatment groups over the 4-week dosing period for either the primary or secondary efficacy variables. There were no unexpected safety or tolerability findings following dosing with losmapimod. CONCLUSIONS Losmapimod could not be differentiated from placebo in terms of a primary analgesia response in patients with pain following peripheral nerve injury. The lack of response could reflect inadequate exposure at central sites of action or differences between rodent and human with respect to the target or neuropathic pain mechanisms.
Collapse
Affiliation(s)
- T Ostenfeld
- Neurosciences Discovery Medicine Unit, GlaxoSmithKline R&D, Harlow, UK.
| | | | | | | | | | | | | | | |
Collapse
|