1
|
Missiego-Beltrán J, Beltrán-Velasco AI. The Role of Microbial Metabolites in the Progression of Neurodegenerative Diseases-Therapeutic Approaches: A Comprehensive Review. Int J Mol Sci 2024; 25:10041. [PMID: 39337526 PMCID: PMC11431950 DOI: 10.3390/ijms251810041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The objective of this review is to provide a comprehensive examination of the role of microbial metabolites in the progression of neurodegenerative diseases, as well as to investigate potential therapeutic interventions targeting the microbiota. A comprehensive literature search was conducted across the following databases: PubMed, Scopus, Web of Science, ScienceDirect, and Wiley. Key terms related to the gut microbiota, microbial metabolites, neurodegenerative diseases, and specific metabolic products were used. The review included both preclinical and clinical research articles published between 2000 and 2024. Short-chain fatty acids have been demonstrated to play a crucial role in modulating neuroinflammation, preserving the integrity of the blood-brain barrier, and influencing neuronal plasticity and protection. Furthermore, amino acids and their derivatives have been demonstrated to exert a significant influence on CNS function. These microbial metabolites impact CNS health by regulating intestinal permeability, modulating immune responses, and directly influencing neuroinflammation and oxidative stress, which are integral to neurodegenerative diseases. Therapeutic strategies, including prebiotics, probiotics, dietary modifications, and fecal microbiota transplantation have confirmed the potential to restore microbial balance and enhance the production of neuroprotective metabolites. Furthermore, novel drug developments based on microbial metabolites present promising therapeutic avenues. The gut microbiota and its metabolites represent a promising field of research with the potential to advance our understanding of and develop treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ana Isabel Beltrán-Velasco
- NBC Group, Psychology Department, School of Life and Nature Sciences, Nebrija University, 28015 Madrid, Spain;
| |
Collapse
|
2
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
3
|
Wu S, Zhao Y, Wang D, Chen Z. Mode of Action of Heat Shock Protein (HSP) Inhibitors against Viruses through Host HSP and Virus Interactions. Genes (Basel) 2023; 14:genes14040792. [PMID: 37107550 PMCID: PMC10138296 DOI: 10.3390/genes14040792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Misfolded proteins after stress-induced denaturation can regain their functions through correct re-folding with the aid of molecular chaperones. As a molecular chaperone, heat shock proteins (HSPs) can help client proteins fold correctly. During viral infection, HSPs are involved with replication, movement, assembly, disassembly, subcellular localization, and transport of the virus via the formation of macromolecular protein complexes, such as the viral replicase complex. Recent studies have indicated that HSP inhibitors can inhibit viral replication by interfering with the interaction of the virus with the HSP. In this review, we describe the function and classification of HSPs, the transcriptional mechanism of HSPs promoted by heat shock factors (HSFs), discuss the interaction between HSPs and viruses, and the mode of action of HSP inhibitors at two aspects of inhibiting the expression of HSPs and targeting the HSPs, and elaborate their potential use as antiviral agents.
Collapse
|
4
|
Ricci A, Roviello GN. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life (Basel) 2023; 13:402. [PMID: 36836758 PMCID: PMC9966545 DOI: 10.3390/life13020402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A complex network of processes inside the human immune system provides resistance against a wide range of pathologies. These defenses form an innate and adaptive immunity, in which certain immune components work together to counteract infections. In addition to inherited variables, the susceptibility to diseases may be influenced by factors such as lifestyle choices and aging, as well as environmental determinants. It has been shown that certain dietary chemical components regulate signal transduction and cell morphologies which, in turn, have consequences on pathophysiology. The consumption of some functional foods may increase immune cell activity, defending us against a number of diseases, including those caused by viruses. Here, we investigate a range of functional foods, often marketed as immune system boosters, in an attempt to find indications of their potential protective role against diseases caused by viruses, such as the influenza viruses (A and B), herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in some cases mediated by gut microbiota. We also discuss the molecular mechanisms that govern the protective effects of some functional foods and their molecular constituents. The main message of this review is that discovering foods that are able to strengthen the immune system can be a winning weapon against viral diseases. In addition, understanding how the dietary components function can aid in the development of novel strategies for maintaining human bodily health and keeping our immune systems strong.
Collapse
Affiliation(s)
- Andrea Ricci
- Studio Nutrizione e Benessere, Via Giuseppe Verdi 1, 84043 Agropoli, Italy
| | - Giovanni N. Roviello
- Italian National Council for Research (IBB-CNR), Area Di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Mathpal S, Sharma P, Joshi T, Joshi T, Pande V, Chandra S. Screening of potential bio-molecules from Moringa olifera against SARS-CoV-2 main protease using computational approaches. J Biomol Struct Dyn 2022; 40:9885-9896. [PMID: 34151733 DOI: 10.1080/07391102.2021.1936183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
COVID-19 caused by SARS-CoV-2 is responsible for the deaths of millions of people worldwide. It is having devastating effects on the people of all countries. In this regard, the phytochemicals of medicinal plants could be explored to prevent this disease. M. oleifera is a miracle plant with antibacterial, antiviral, and antioxidant properties because of its high content of flavonoids, glucosides and glucosinolates. Therefore, we constructed a library of 294 phytochemicals of M. oleifera and filtered it through the FAF-Drugs4. Further, molecular docking studies of filtered phytochemicals were performed with Mpro enzyme to investigate the binding interactions. Drug likeness properties, ADMET prediction were analyzed to determine the therapeutic aspect of these compounds. Based on the binding energy score of the top 4 compounds, the results indicate that Vicenin-2 has the highest binding affinity (-8.6 kcal mol-1) as compared to the reference molecule (-8.4 kcal mol-1). ADMET result reveals that all top four compounds have minimal toxic effects and good absorption. Further, 500 ns molecular dynamics simulation of the top four compounds showed that Kaempferol-3-O-rutinoside and Vitexin have good stability with Mpro. These two compounds were then subjected for MMPBSA (last 50 ns) calculation to analyze the protein-ligand stability and dynamic behavior. Kaempferol-3-O-rutinoside and Vitexin showed very good binding free energy i.e. -40.136 kJ mol-1 and -26.784 kJ mol-1, respectively. Promising outcomes from MD simulations evidence the worth of these compounds for future drug development to combat coronavirus disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shalini Mathpal
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Priyanka Sharma
- Department of Botany, Kumaun University, Nainital, Uttarakhand, India
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Tanuja Joshi
- Department of Botany, Kumaun University, Nainital, Uttarakhand, India.,Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India.,Department of Botany, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Subhash Chandra
- Department of Botany, Kumaun University, Nainital, Uttarakhand, India.,Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India.,Department of Botany, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| |
Collapse
|
6
|
Dharmapalan BT, Biswas R, Sankaran S, Venkidasamy B, Thiruvengadam M, George G, Rebezov M, Zengin G, Gallo M, Montesano D, Naviglio D, Shariati MA. Inhibitory Potential of Chromene Derivatives on Structural and Non-Structural Proteins of Dengue Virus. Viruses 2022; 14:v14122656. [PMID: 36560664 PMCID: PMC9787897 DOI: 10.3390/v14122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease that has become a serious health issue across the globe. It is caused by a virus of the Flaviviridae family, and it comprises five different serotypes (DENV-1 to DENV-5). As there is no specific medicine or effective vaccine for controlling dengue fever, there is an urgent need to develop potential inhibitors against it. Traditionally, various natural products have been used to manage dengue fever and its co-morbid conditions. A detailed analysis of these plants revealed the presence of various chromene derivatives as the major phytochemicals. Inspired by these observations, authors have critically analyzed the anti-dengue virus potential of various 4H chromene derivatives. Further, in silico, in vitro, and in vivo reports of these scaffolds against the dengue virus are detailed in the present manuscript. These analogues exerted their activity by interfering with various stages of viral entry, assembly, and replications. Moreover, these analogues mainly target envelope protein, NS2B-NS3 protease, and NS5 RNA-dependent RNA polymerase, etc. Overall, chromene-containing analogues exerted a potent activity against the dengue virus and the present review will be helpful for the further exploration of these scaffolds for the development of novel antiviral drug candidates.
Collapse
Affiliation(s)
- Babitha Thekkiniyedath Dharmapalan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Raja Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sathianarayanan Sankaran
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Karpagam University, Pollachi Main Road, Eachanari Post, Coimbatore 641021, India
- Correspondence: (S.S.); (G.G.); (M.G.)
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
- Correspondence: (S.S.); (G.G.); (M.G.)
| | - Maksim Rebezov
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., 127550 Moscow, Russia
- Faculty of Biotechnology and Food Engineering, Ural State Agricultural University, 42 Karl Liebknecht Str., 620075 Yekaterinburg, Russia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (S.S.); (G.G.); (M.G.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., 127550 Moscow, Russia
| |
Collapse
|
7
|
Guo Y, Ma A, Wang X, Yang C, Chen X, Li G, Qiu F. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships. Front Chem 2022; 10:1005360. [PMID: 36311429 PMCID: PMC9596788 DOI: 10.3389/fchem.2022.1005360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Viruses spread rapidly and are well-adapted to changing environmental events. They can infect the human body readily and trigger fatal diseases. A limited number of drugs are available for specific viral diseases, which can lead to non-efficacy against viral variants and drug resistance, so drugs with broad-spectrum antiviral activity are lacking. In recent years, a steady stream of new viral diseases has emerged, which has prompted development of new antiviral drugs. Natural products could be employed to develop new antiviral drugs because of their innovative structures and broad antiviral activities. This review summarizes the progress of natural products in antiviral research and their bright performance in drug resistance issues over the past 2 decades. Moreover, it fully discusses the effect of different structural types of natural products on antiviral activity in terms of structure–activity relationships. This review could provide a foundation for the development of antiviral drugs.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anna Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- School of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjfin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Discovery of Bispecific Lead Compounds from Azadirachta indica against ZIKA NS2B-NS3 Protease and NS5 RNA Dependent RNA Polymerase Using Molecular Simulations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082562. [PMID: 35458761 PMCID: PMC9025849 DOI: 10.3390/molecules27082562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022]
Abstract
Zika virus (ZIKV) has been characterized as one of many potential pathogens and placed under future epidemic outbreaks by the WHO. However, a lack of potential therapeutics can result in an uncontrolled pandemic as with other human pandemic viruses. Therefore, prioritized effective therapeutics development has been recommended against ZIKV. In this context, the present study adopted a strategy to explore the lead compounds from Azadirachta indica against ZIKV via concurrent inhibition of the NS2B-NS3 protease (ZIKVpro) and NS5 RNA dependent RNA polymerase (ZIKVRdRp) proteins using molecular simulations. Initially, structure-based virtual screening of 44 bioflavonoids reported in Azadirachta indica against the crystal structures of targeted ZIKV proteins resulted in the identification of the top four common bioflavonoids, viz. Rutin, Nicotiflorin, Isoquercitrin, and Hyperoside. These compounds showed substantial docking energy (−7.9 to −11.01 kcal/mol) and intermolecular interactions with essential residues of ZIKVpro (B:His51, B:Asp75, and B:Ser135) and ZIKVRdRp (Asp540, Ile799, and Asp665) by comparison to the reference compounds, O7N inhibitor (ZIKVpro) and Sofosbuvir inhibitor (ZIKVRdRp). Besides, long interval molecular dynamics simulation (500 ns) on the selected docked poses reveals stability of the respective docked poses contributed by intermolecular hydrogen bonds and hydrophobic interactions. The predicted complex stability was further supported by calculated end-point binding free energy using molecular mechanics generalized born surface area (MM/GBSA) method. Consequently, the identified common bioflavonoids are recommended as promising therapeutic inhibitors of ZIKVpro and ZIKVRdRp against ZIKV for further experimental assessment.
Collapse
|
9
|
Khan M, Rauf W, Habib FE, Rahman M, Iqbal S, Shehzad A, Iqbal M. Hesperidin identified from Citrus extracts potently inhibits HCV genotype 3a NS3 protease. BMC Complement Med Ther 2022; 22:98. [PMID: 35366855 PMCID: PMC8976278 DOI: 10.1186/s12906-022-03578-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Hepatitis C virus infection is the main cause of liver ailments across the globe. Several HCV genotypes have been identified in different parts of the world. Effective drugs for combating HCV infections are available but not affordable, particularly to infected individuals from resource-limited countries. Hence, cost-effective drugs need to be developed against important HCV drug targets. As Citrus fruits naturally contain bioactive compounds with antiviral activities, the current study was designed to identify antiviral inhibitors from Citrus fruit extracts against an important drug target, NS3 protease, of HCV genotype 3a which is found predominantly in South Asian countries. Methods The full-length NS3 protease alone and the NS3 protease domain in fusion with the cognate NS4A cofactor were expressed in Escherichia coli, and purified by chromatographic techniques. Using the purified protein as a drug target, Citrus extracts were evaluated in a FRET assay, and active ingredients, identified using ESI–MS/MS, were docked to observe the interaction with active site residues of NS3. The best interacting compound was further confirmed through the FRET assay as the inhibitor of NS3 protease. Results Fusion of the NS3 protease domain to the NS4A cofactor significantly improved the purification yield, and NS3-NS4A was functionally more active than the full-length NS3 alone. The purified protein (NS3-NS4A) was successfully employed in a validated FRET assay to evaluate 14 Citrus fruit extracts, revealing that the mesocarp extract of Citrus paradisi, and whole fruit extracts of C. sinesis, C. aurantinum, and C. reticulata significantly inhibited the protease activity of HCV NS3 protease (IC50 values of 5.79 ± 1.44 µg/mL, 37.19 ± 5.92 µg/mL, 42.62 ± 6.89 µg/mL, and 57.65 ± 3.81 µg/mL, respectively). Subsequent ESI-MSn analysis identified a flavonoid, hesperidin, abundantly present in all the afore-mentioned Citrus extracts. Importantly, docking studies suggested that hesperidin interacts with active site residues, and acts as a potent inhibitor of NS3 protease, exhibiting an IC50 value of 11.34 ± 3.83 µg/mL. Conclusions A FRET assay was developed using NS3-NS4A protease, which was successfully utilized for the evaluation of Citrus fruit extracts. Hesperidin, a compound present in the Citrus extracts, was identified as the main flavonoid, which can serve as a cost-effective potent inhibitor of NS3 protease, and could be developed as a drug for antiviral therapy against HCV genotype 3a. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03578-1.
Collapse
|
10
|
Mbikay M, Chrétien M. Isoquercetin as an Anti-Covid-19 Medication: A Potential to Realize. Front Pharmacol 2022; 13:830205. [PMID: 35308240 PMCID: PMC8924057 DOI: 10.3389/fphar.2022.830205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Isoquercetin and quercetin are secondary metabolites found in a variety of plants, including edible ones. Isoquercetin is a monoglycosylated derivative of quercetin. When ingested, isoquercetin accumulates more than quercetin in the intestinal mucosa where it is converted to quercetin; the latter is absorbed into enterocytes, transported to the liver, released in circulation, and distributed to tissues, mostly as metabolic conjugates. Physiologically, isoquercetin and quercetin exhibit antioxidant, anti-inflammatory, immuno-modulatory, and anticoagulant activities. Generally isoquercetin is less active than quercetin in vitro and ex vivo, whereas it is equally or more active in vivo, suggesting that it is primarily a more absorbable precursor to quercetin, providing more favorable pharmacokinetics to the latter. Isoquercetin, like quercetin, has shown broad-spectrum antiviral activities, significantly reducing cell infection by influenza, Zika, Ebola, dengue viruses among others. This ability, together with their other physiological properties and their safety profile, has led to the proposition that administration of these flavonols could prevent infection by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), or arrest the progression to severity and lethality of resulting coronavirus disease of 2019 (Covid-19). In silico screening of small molecules for binding affinity to proteins involved SARS-CoV-2 life cycle has repeatedly situated quercetin and isoquercetin near to top of the list of likely effectors. If experiments in cells and animals confirm these predictions, this will provide additional justifications for the conduct of clinical trials to evaluate the prophylactic and therapeutic efficacy of these flavonols in Covid-19.
Collapse
Affiliation(s)
- Majambu Mbikay
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Michel Chrétien
- Functional Endoproteolysis Laboratory, Montreal Clinical Research Institute, Montreal, QC, Canada
| |
Collapse
|
11
|
Di Petrillo A, Orrù G, Fais A, Fantini MC. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res 2021; 36:266-278. [PMID: 34709675 PMCID: PMC8662201 DOI: 10.1002/ptr.7309] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023]
Abstract
Quercetin, widely distributed in fruits and vegetables, is a flavonoid known for its antioxidant, antiviral, antimicrobial, and antiinflammatory properties. Several studies highlight the potential use of quercetin as an antiviral, due to its ability to inhibit the initial stages of virus infection, to be able to interact with proteases important for viral replication, and to reduce inflammation caused by infection. Quercetin could also be useful in combination with other drugs to potentially enhance the effects or synergistically interact with them, in order to reduce their side effects and related toxicity. Since there is no comprehensive compilation about antiviral activities of quercetin and derivates, the aim of this review is providing a summary of their antiviral activities on a set of human viral infections along with mechanisms of action. Thus, the following family of viruses are examined: Flaviviridae, Herpesviridae, Orthomyxoviridae, Coronaviridae, Hepadnaviridae, Retroviridae, Picornaviridae, Pneumoviridae, and Filoviridae.
Collapse
Affiliation(s)
- Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Massimo C Fantini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Yang Z, Zheng Y, Tursumamat N, Zhu M. Synthesis of 3'-O-Alkyl Homologues and a Biotin Probe of Isorhamnetin and Evaluation of Cytotoxic Efficacy on Cancer Cells. Chem Biodivers 2021; 18:e2100301. [PMID: 34561940 DOI: 10.1002/cbdv.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022]
Abstract
Isorhamnetin is a natural flavonoid which shows a variety of biological activities such as antioxidant, anti-inflammatory and antitumor. In order to identify the cellular binding protein of isorhamnetin as potential anti-cancer target, we first synthesized 3'-O-substituted quercetin as isorhamnetin homologues and evaluated the growth inhibitory activity of these derivatives on breast, colon and prostate cancer cell lines. The preliminary results showed that the 3'-O modification did not affect the cytotoxic activity of the scaffold. Analysis of the co-crystal structure and the docking pose of isorhamnetin with reported binding protein of isorhamnetin or quercetin indicated the 3'-O-substitution groups located outside of the binding pocket, which is in accordance with activity of 3'-O derivatives. Then a biotin conjugate of isorhamnetin with a tetraethylene glycol (PEG)4 linker at the 3' position was synthesized and the resulting probe retained the anti-proliferative activity on cancer cell lines, while the cellular fluorescence analysis showed the distribution of probe inside the cells which indicated the probe had limited cell permeability. Finally, pull down assay both in situ inside cells and in the cell lysates indicated the isorhamnetin biotin probe was capable of protein labeling in cell lysates. These findings provide the isorhamnetin 3'-O-biotin probe as a tool to reveal the target proteins of isorhamnetin.
Collapse
Affiliation(s)
- Zhuojin Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yi Zheng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Nafisa Tursumamat
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Mingyan Zhu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
13
|
Saakre M, Mathew D, Ravisankar V. Perspectives on plant flavonoid quercetin-based drugs for novel SARS-CoV-2. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 10:21. [PMID: 33782651 PMCID: PMC7989718 DOI: 10.1186/s43088-021-00107-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background The world pandemic COVID-19 caused by SARS-CoV-2 is currently claiming thousands of lives. Flavonoids abundantly present in the fruits and vegetables, especially quercetin, are shown to have antiviral activities. Main text This paper reviews the capability of the plant flavonoid quercetin to fight the novel coronavirus and the possibility for drug development based on this. The mode of action explaining the known pathways through which this molecule succeeds in the antiviral activity, action of quercetin on SARS-CoV-2 main protease 3CLpro, antiviral activities of its derivatives on human viruses, effect of combination of zinc co-factor along with quercetin in the COVID-19 treatment, and the regulation of miRNA genes involved in the viral pathogenesis are discussed. Proof for this concept is provided following the virtual screening using ten key enzymes of SARS-CoV-2 and assessing their interactions. Active residues in the 3D structures have been predicted using CASTp and were docked against quercetin. Key proteins 3CLpro, spike glycoprotein/ human ACE2-BOAT1 complex, RNA-dependent RNA polymerase, main peptidase, spike glycoprotein, RNA replicase, RNA binding protein, papain-like protease, SARS papain-like protease/ deubiquitinase, and complex of main peptidase with an additional Ala at the N-terminus of each protomer, have shown the binding energies ranging between − 6.71 and − 3.37 kcal/ Mol, showing that quercetin is a potential drug candidate inhibiting multiple SARS-CoV-2 enzymes. Conclusion The antiviral properties of flavonoid and the molecular mechanisms involved are reviewed. Further, proof for this concept is given by docking of key proteins from SARS-CoV-2 with quercetin. Graphical abstract ![]()
Collapse
Affiliation(s)
- Manjesh Saakre
- National Institute for Plant Biotechnology, Indian Agricultural Research Institute, Pusa, New Delhi, 110 012 India
| | - Deepu Mathew
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680 656 India
| | - V Ravisankar
- Bioinformatics Centre, Kerala Agricultural University, Thrissur, 680 656 India
| |
Collapse
|
14
|
Mehrbod P, Hudy D, Shyntum D, Markowski J, Łos MJ, Ghavami S. Quercetin as a Natural Therapeutic Candidate for the Treatment of Influenza Virus. Biomolecules 2020; 11:E10. [PMID: 33374214 PMCID: PMC7824064 DOI: 10.3390/biom11010010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The medical burden caused by respiratory manifestations of influenza virus (IV) outbreak as an infectious respiratory disease is so great that governments in both developed and developing countries have allocated significant national budget toward the development of strategies for prevention, control, and treatment of this infection, which is seemingly common and treatable, but can be deadly. Frequent mutations in its genome structure often result in resistance to standard medications. Thus, new generations of treatments are critical to combat this ever-evolving infection. Plant materials and active compounds have been tested for many years, including, more recently, active compounds like flavonoids. Quercetin is a compound belonging to the flavonols class and has shown therapeutic effects against influenza virus. The focus of this review includes viral pathogenesis as well as the application of quercetin and its derivatives as a complementary therapy in controlling influenza and its related symptoms based on the targets. We also touch on the potential of this class of compounds for treatment of SARS-COV-2, the cause of new pandemic.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Dorota Hudy
- Department of Laryngology, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (D.H.); (J.M.)
| | - Divine Shyntum
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (D.H.); (J.M.)
| | - Marek J. Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland;
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
15
|
Sun Y, Yang AWH, Hung A, Lenon GB. Screening for a Potential Therapeutic Agent from the Herbal Formula in the 4 th Edition of the Chinese National Guidelines for the Initial-Stage Management of COVID-19 via Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3219840. [PMID: 33381197 PMCID: PMC7759025 DOI: 10.1155/2020/3219840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND COVID-19 caused by SARS-CoV-2 infection has been spreading through many countries since the end of 2019. The 4th edition of the national guidelines for the management of COVID-19 provides an herbal formula with 9 herbs for its management. Aim of Study. We aimed to predict the mechanism of binding of SARS-CoV-2 and SARS-CoV spike glycoproteins with angiotensin-converting enzyme 2 (ACE2) to provide a molecular-level explanation of the higher pathogenicity of SARS-CoV-2 and to identify protein sites which may be targeted by therapeutic agents to disrupt virus-host interactions. Subsequently, we aimed to investigate the formula for the initial-stage management to identify a therapeutic agent with the most likely potential to become pharmaceutical candidate for the management of this disease. MATERIALS AND METHODS GenBank and SWISS-MODEL were applied for model creation. ClusPro was used for protein-protein docking. PDBePISA was applied for identification of possible binding sites. TCMSP was employed for identification of the chemical compounds. AutoDock Vina together with PyRx was used for the prediction and evaluation of binding pose and affinity to ACE2. SwissADME and PreADME were applied to screening and prediction of the pharmacokinetic properties of the identified chemical compounds. PyMOL was used to visualise the structural models of SARS-CoV-2 and SARS-CoV spike glycoproteins complexed to ACE2 and to examine their interactions. RESULTS SARS-CoV-2 had two chains (labelled chains B and C) which were predicted to bind with ACE2. In comparison, the SARS-CoV had only one chain (labelled chain C) predicted to bind with ACE2. The spike glycoproteins of both viruses were predicted to bind with ACE2 via position 487. Molecular docking screening and pharmacokinetic property prediction of the herbal compounds indicated that atractylenolide III (-9.1 kcal/mol) from Atractylodes lancea (Thunb.) Dc. (Cangzhu) may be a candidate therapeutic agent for initial-stage management. CONCLUSIONS Atractylenolide III is predicted to have a strong binding affinity with ACE2 and eligible pharmacokinetic properties, anti-inflammatory effects and antiviral effects in in vitro study, and high distribution on the lungs in in vivo study.
Collapse
Affiliation(s)
- Yue Sun
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne 3083, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
16
|
Zhang Z, Morris‐Natschke SL, Cheng Y, Lee K, Li R. Development of anti‐influenza agents from natural products. Med Res Rev 2020; 40:2290-2338. [DOI: 10.1002/med.21707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi‐Jun Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Susan L. Morris‐Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Yung‐Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kuo‐Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Chinese Medicine Research and Development Center China Medical University and Hospital Taichung Taiwan
| | - Rong‐Tao Li
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| |
Collapse
|
17
|
Cadena-Velandia ZG, Montenegro-Alarcón JC, Marquínez-Casas X, Mora-Huertas CE. Quercetin-loaded alginate microparticles: A contribution on the particle structure. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Li H, Li M, Xu R, Wang S, Zhang Y, Zhang L, Zhou D, Xiao S. Synthesis, structure activity relationship and in vitro anti-influenza virus activity of novel polyphenol-pentacyclic triterpene conjugates. Eur J Med Chem 2019; 163:560-568. [DOI: 10.1016/j.ejmech.2018.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 01/11/2023]
|
19
|
Nanotherapeutic Anti-influenza Solutions: Current Knowledge and Future Challenges. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Antiviral Activities of Mulberry ( Morus alba) Juice and Seed against Influenza Viruses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2606583. [PMID: 30515232 PMCID: PMC6236660 DOI: 10.1155/2018/2606583] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
Antiviral activities of Morus alba (MA) juice and seed were examined using time-of-addition plaque assays against influenza viruses, A/Brisbane/59/2007 (H1N1) (BR59), pandemic A/Korea/01/2009(H1N1) (KR01), A/Brisbane/10/2007(H3N2) (BR10), and B/Florida/4/2006 (FL04). MA juice (MAJ) showed much higher antiviral activity than MA seed (MAS). In the pre- and cotreatment of virus, MAJ showed antiviral effects against BR59, KR01, and FL04 in a dose-dependent manner. In particular, MAJ at 4% concentration exhibited 1.3 log inhibition in the pre- and cotreatment of the virus against FL04, a type B virus. However, little or weak inhibition was observed in the posttreatment of MAJ. GSH levels in the virus-infected cells were also examined. The decreased levels by the viral infection were restored significantly by the addition of MAJ. MAJ also exhibited significant DPPH radical scavenging and ferric ion-reducing activities in a dose-dependent manner. Cyanidin-3-rutinoside, the most abundant polyphenol compound of MAJ identified by LC-MS in this study, showed weak inhibitory effects against FL04 in the pretreatment, whereas gallic acid, a minor compound of MAJ, revealed significant antiviral effect. These results suggest that MAJ can be developed as a novel plant-derived antiviral against influenza viruses.
Collapse
|
21
|
Negrebetsky VV, Vorobyev SV, Kramarova EP, Shipov AG, Shmigol TA, Baukov YI, Lagunin AA, Korlyukov AA, Arkhipov DE. Lactamomethyl derivatives of diphenols: synthesis, structure, and potential biological activity. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2250-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
|
23
|
Kim Y, Chang KO. Protein disulfide isomerases as potential therapeutic targets for influenza A and B viruses. Virus Res 2018; 247:26-33. [PMID: 29382552 PMCID: PMC5831498 DOI: 10.1016/j.virusres.2018.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 01/03/2023]
Abstract
Seasonal flu as well as potential pandemic flu outbreaks continuously underscores the importance of the preventive and therapeutic measures against influenza viruses. During screening of natural and synthetic small molecules against influenza A and B virus, we identified juniferdin as a highly effective inhibitor against both viruses in cells. Since juniferdin is known to inhibit protein disulfide isomerases (PDIs), multiple PDI inhibitors were tested against these viruses. Among PDI inhibitors, 16F16, PACMA31, isoquercetin, epigallocatechin-3-gallate or nitazoxanide significantly reduced the replication of influenza A and B viruses in MDCK and A549 cells. Furthermore, siRNAs specific to three PDI family members (PDI1, PDIA3 or PDIA4) also significantly reduced the replication of influenza A and B viruses in cells. These results suggest that PDIs may serve as excellent targets for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Pathobiology and Preventive Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Kyeong-Ok Chang
- Department of Pathobiology and Preventive Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
24
|
Almond Skin Extracts Abrogate HSV-1 Replication by Blocking Virus Binding to the Cell. Viruses 2017; 9:v9070178. [PMID: 28698509 PMCID: PMC5537670 DOI: 10.3390/v9070178] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022] Open
Abstract
The aim of the present research was to determine the effect of almond skin extracts on herpes simplex virus 1 (HSV-1) replication. Drug-resistant strains of HSV frequently develop following therapeutic treatment. Therefore, the discovery of novel anti-HSV drugs deserves great effort. Here, we tested both natural (NS) and blanched (BS) polyphenols-rich almond skin extracts against HSV-1. HPLC analysis showed that the prevalent compounds in NS and BS extracts contributing to their antioxidant activity were quercetin, epicatechin and catechin. Results of cell viability indicated that NS and BS extracts were not toxic to cultured Vero cells. Furthermore, NS extracts were more potent inhibitors of HSV-1 than BS extracts, and this trend was in agreement with different concentrations of flavonoids. The plaque forming assay, Western blot and real-time PCR were used to demonstrate that NS extracts were able to block the production of infectious HSV-1 particles. In addition, the viral binding assay demonstrated that NS extracts inhibited HSV-1 adsorption to Vero cells. Our conclusion is that natural products from almond skin extracts are an extraordinary source of antiviral agents and provide a novel treatment against HSV-1 infections.
Collapse
|
25
|
Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 2017; 105:223-240. [DOI: 10.1016/j.fct.2017.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
|
26
|
Gansukh E, Muthu M, Paul D, Ethiraj G, Chun S, Gopal J. Nature nominee quercetin's anti-influenza combat strategy-Demonstrations and remonstrations. Rev Med Virol 2017; 27:e1930. [PMID: 31211498 DOI: 10.1002/rmv.1930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/21/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
Nature's providences are rather the choicest remedies for human health and welfare. One such is quercetin, which is nature's nominee for cancer cure and recently demonstrated against influenza attack. Quercetin is highly recognized for its anticancer applications. This review emphasizes on yet another gift that this compound has to offer for mankind, which is none other than combating the deadly evasive influenza virus. The chemistry of this natural bioflavonoid and its derivatives and its modus operandi against influenza virus is consolidated into this review. The advancements and achievements made in the anti-influenza clinical history are also documented. Further, the challenges facing the progress of this compound to emerge as a predominant anti-influenza drug are discussed, and the future perspective for breaking its limitations through integration with nanoplatforms is envisioned.
Collapse
Affiliation(s)
- Enkhtaivan Gansukh
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Manikandan Muthu
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Diby Paul
- Environmental Microbiology, Department of Environmental Engineering, Konkuk University, Seoul, South Korea
| | - Gopal Ethiraj
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Sechul Chun
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| | - Judy Gopal
- Department of Bioresource and Food Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
27
|
Khatkar A, Nanda A, Kumar P, Narasimhan B. Synthesis, antimicrobial evaluation and QSAR studies of gallic acid derivatives. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
28
|
Roubalová L, Biedermann D, Papoušková B, Vacek J, Kuzma M, Křen V, Ulrichová J, Dinkova-Kostova AT, Vrba J. Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells. Chem Biol Interact 2016; 260:58-66. [PMID: 27777014 PMCID: PMC5148792 DOI: 10.1016/j.cbi.2016.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 01/06/2023]
Abstract
The natural flavonoid quercetin is known to activate the transcription factor Nrf2, which regulates the expression of cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, a novel semisynthetic flavonoid 7-O-galloylquercetin (or quercetin-7-gallate, 3) was prepared by direct galloylation of quercetin, and its effect on the Nrf2 pathway was examined. A luciferase reporter assay showed that 7-O-galloylquercetin, like quercetin, significantly activated transcription via the antioxidant response element in a stably transfected human AREc32 reporter cell line. In addition, 7-O-galloylquercetin caused the accumulation of Nrf2 and induced the expression of HO-1 at both the mRNA and protein levels in murine macrophage RAW264.7 cells. The induction of HO-1 by 7-O-galloylquercetin was significantly suppressed by N-acetyl-l-cysteine and SB203580, indicating the involvement of reactive oxygen species and p38 mitogen-activated protein kinase activity, respectively. HPLC/MS analyses also showed that 7-O-galloylquercetin was not degalloylated to quercetin, but it was conjugated with glucuronic acid and/or methylated in RAW264.7 cells. Furthermore, 7-O-galloylquercetin was found to increase the protein levels of Nrf2 and HO-1, and also the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. Taken together, we conclude that 7-O-galloylquercetin increases Nrf2 activity and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells.
Collapse
Affiliation(s)
- Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 77146, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic.
| |
Collapse
|
29
|
Schepetkin IA, Ramstead AG, Kirpotina LN, Voyich JM, Jutila MA, Quinn MT. Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed). Phytother Res 2016; 30:1287-97. [PMID: 27215200 DOI: 10.1002/ptr.5648] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/27/2016] [Accepted: 04/29/2016] [Indexed: 01/27/2023]
Abstract
Epilobium angustifolium is a medicinal plant used around the world in traditional medicine for the treatment of many disorders and ailments. Experimental studies have demonstrated that Epilobium extracts possess a broad range of pharmacological and therapeutic effects, including antioxidant, anti-proliferative, anti-inflammatory, antibacterial, and anti-aging properties. Flavonoids and ellagitannins, such as oenothein B, are among the compounds considered to be the primary biologically active components in Epilobium extracts. In this review, we focus on the biological properties and the potential clinical usefulness of oenothein B, flavonoids, and other polyphenols derived from E. angustifolium. Understanding the biochemical properties and therapeutic effects of polyphenols present in E. angustifolium extracts will benefit further development of therapeutic treatments from this plant. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Andrew G Ramstead
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Mark A Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
30
|
Chiu HH, Hsieh YC, Chen YH, Wang HY, Lu CY, Chen CJ, Li YK. Three important amino acids control the regioselectivity of flavonoid glucosidation in glycosyltransferase-1 from Bacillus cereus. Appl Microbiol Biotechnol 2016; 100:8411-24. [DOI: 10.1007/s00253-016-7536-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/27/2016] [Accepted: 04/05/2016] [Indexed: 01/30/2023]
|
31
|
Bahramsoltani R, Sodagari HR, Farzaei MH, Abdolghaffari AH, Gooshe M, Rezaei N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev Anti Infect Ther 2015; 14:57-80. [PMID: 26567957 DOI: 10.1586/14787210.2016.1120670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Influenza virus belongs to orthomyxoviridae family. This virus is a major public health problems, with high rates of morbidity and mortality. Despite a wide range of pharmacotherapeutic choices inhibiting specific sequences of pathological process of influenza, developing more effective therapeutic options is an immediate challenge. In this paper, a comprehensively review of natural polyphenolic products used worldwide for the management of influenza infection is presented. Cellular and molecular mechanisms of the natural polyphenols on influenza infection including suppressing virus replication cycle, viral hemagglutination, viral adhesion and penetration into the host cells, also intracellular transductional signaling pathways have been discussed in detail. Based on cellular, animal, and human evidence obtained from several studies, the current paper demonstrates that natural polyphenolic compounds possess potential effects on both prevention and treatment of influenza, which can be used as adjuvant therapy with conventional chemical drugs for the management of influenza and its complications.
Collapse
Affiliation(s)
| | - Hamid Reza Sodagari
- b Young Researchers and Elite Club , Karaj Branch, Islamic Azad University , Karaj , Iran
| | - Mohammad Hosein Farzaei
- c Pharmaceutical Sciences Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,d Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Amir Hossein Abdolghaffari
- e Medicinal Plants Research Center , Institute of Medicinal Plants, ACECR , Karaj , Iran.,f International Campus, ICTUMS, Tehran University of Medical Sciences , Tehran , Iran
| | - Maziar Gooshe
- g Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- h Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,i Molecular Immunology Research Center and Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,j Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
32
|
Lipson SM, Ozen FS, Louis S, Karthikeyan L. Comparison of α-glucosyl hesperidin of citrus fruits and epigallocatechin gallate of green tea on the Loss of Rotavirus Infectivity in Cell Culture. Front Microbiol 2015; 6:359. [PMID: 25972850 PMCID: PMC4413797 DOI: 10.3389/fmicb.2015.00359] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/09/2015] [Indexed: 12/02/2022] Open
Abstract
A number of secondary plant metabolites (e.g., flavonoids) possess antiviral/antimicrobial activity. Most flavonoids, however, are difficult to study, as they are immiscible in water-based systems. The relatively new semisynthetic α-glucosyl hesperitin (GH), and the natural plant product epigallocatechin gallate (EGCG) are unique among most flavonoids, as these flavonoids are highly soluble. The antiviral activity of these plant metabolites were investigated using the rotavirus as a model enteric virus system. Direct loss of virus structural integrity in cell-free suspension and titration of amplified RTV in host cell cultures was measured by a quantitative enzyme-linked immunosorbent assay (qEIA). After 30 min. 100 × 10(3) μg/ml GH reduced RTV antigen levels by ca. 90%. The same compound reduced infectivity (replication in cell culture) by a similar order of magnitude 3 to 4 days post inoculation. After 3 days in culture, EGCG concentrations of 80, 160, and 320 μg/ml reduced RTV infectivity titer levels to ca. 50, 20, and 15% of the control, respectively. Loss of RTV infectivity titers occurred following viral treatment by parallel testing of both GH and EGCG, with the latter, markedly more effective. Cytotoxicity testing showed no adverse effects by the phenolic concentrations used in this study. The unique chemical structure of each flavonoid rather than each phenolic's inherent solubility may be ascribed to those marked differences between each molecule's antiviral (anti-RTV) effects. The solubility of EGCG and GH obviated our need to use potentially confounding or obfuscating carrier molecules (e.g., methanol, ethanol, DMSO) denoting our use of a pure system environ. Our work further denotes the need to address the unique chemical nature of secondary plant metabolites before any broad generalizations in flavonoid (antiviral) activity may be proposed.
Collapse
Affiliation(s)
- Steven M. Lipson
- Department of Biology and Health Promotions, St. Francis College, BrooklynNY, USA
| | - Fatma S. Ozen
- Department of Biology and Health Promotions, St. Francis College, BrooklynNY, USA
| | - Samantha Louis
- Department of Biology and Health Promotions, St. Francis College, BrooklynNY, USA
| | - Laina Karthikeyan
- Department of Biology, New York City College of Technology, The City University of New YorkBrooklyn, NY, USA
| |
Collapse
|
33
|
Vargas JE, Puga R, Poloni JDF, Saraiva Macedo Timmers LF, Porto BN, Norberto de Souza O, Bonatto D, Condessa Pitrez PM, Tetelbom Stein R. A network flow approach to predict protein targets and flavonoid backbones to treat respiratory syncytial virus infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301635. [PMID: 25879022 PMCID: PMC4386546 DOI: 10.1155/2015/301635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/11/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is the major cause of respiratory disease in lower respiratory tract in infants and young children. Attempts to develop effective vaccines or pharmacological treatments to inhibit RSV infection without undesired effects on human health have been unsuccessful. However, RSV infection has been reported to be affected by flavonoids. The mechanisms underlying viral inhibition induced by these compounds are largely unknown, making the development of new drugs difficult. METHODS To understand the mechanisms induced by flavonoids to inhibit RSV infection, a systems pharmacology-based study was performed using microarray data from primary culture of human bronchial cells infected by RSV, together with compound-proteomic interaction data available for Homo sapiens. RESULTS After an initial evaluation of 26 flavonoids, 5 compounds (resveratrol, quercetin, myricetin, apigenin, and tricetin) were identified through topological analysis of a major chemical-protein (CP) and protein-protein interacting (PPI) network. In a nonclustered form, these flavonoids regulate directly the activity of two protein bottlenecks involved in inflammation and apoptosis. CONCLUSIONS Our findings may potentially help uncovering mechanisms of action of early RSV infection and provide chemical backbones and their protein targets in the difficult quest to develop new effective drugs.
Collapse
Affiliation(s)
- José Eduardo Vargas
- Centro Infant, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Avenue Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Renato Puga
- Clinical Research Center, Hospital Israelita Albert Einstein (HIAE), São Paulo, Brazil
| | - Joice de Faria Poloni
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul (UFRGS), 90619-900 Porto Alegre, RS, Brazil
| | - Luis Fernando Saraiva Macedo Timmers
- Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619-900 Porto Alegre, RS, Brazil
| | - Barbara Nery Porto
- Centro Infant, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Avenue Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Osmar Norberto de Souza
- Faculty of Informatics, Laboratory for Bioinformatics, Modelling & Simulation of Biosystems, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 90619-900 Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul (UFRGS), 90619-900 Porto Alegre, RS, Brazil
| | - Paulo Márcio Condessa Pitrez
- Centro Infant, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Avenue Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Renato Tetelbom Stein
- Centro Infant, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Avenue Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Synthesis, Characterization, DNA Interaction, and Antitumor Activities of La (III) Complex with Schiff Base Ligand Derived from Kaempferol and Diethylenetriamine. Bioinorg Chem Appl 2014; 2014:354138. [PMID: 25371657 PMCID: PMC4209760 DOI: 10.1155/2014/354138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 11/18/2022] Open
Abstract
A novel La (III) complex, [LaL(H2O)3]NO3·3H2O, with Schiff base ligand L derived from kaempferol and diethylenetriamine, has been synthesized and characterized by elemental analysis, IR, UV-visible, 1H NMR, thermogravimetric analysis, and molar conductance measurements. The fluorescence spectra, circular dichroism spectra, and viscosity measurements and gel electrophoresis experiments indicated that the ligand L and La (III) complex could bind to CT-DNA presumably via intercalative mode and the La (III) complex showed a stronger ability to bind and cleave DNA than the ligand L alone. The binding constants (Kb) were evaluated from fluorescence data and the values ranged from 0.454 to 0.659 × 105 L mol−1 and 1.71 to 17.3 × 105 L mol−1 for the ligand L and La (III) complex, respectively, in the temperature range of 298–310 K. It was also found that the fluorescence quenching mechanism of EB-DNA by ligand L and La (III) complex was a static quenching process. In comparison to free ligand L, La (III) complex exhibited enhanced cytotoxic activities against tested tumor cell lines HL-60 and HepG-2, which may correlate with the enhanced DNA binding and cleaving abilities of the La (III) complex.
Collapse
|
35
|
Shahzad H, Giribabu N, Muniandy S, Salleh N. Quercetin induces morphological and proliferative changes of rat's uteri under estrogen and progesterone influences. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5484-5494. [PMID: 25337190 PMCID: PMC4203161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/23/2014] [Indexed: 06/04/2023]
Abstract
This study investigated the effect of 10 or 100 mg/kg/day quercetin on the uterus of ovariectomized adult female rats receiving sex-steroid replacement regime mimicking changes in hormonal profiles during the reproductive cycle. Following seven days of treatment with estrogen and progesterone with or without quercetin, uteri were harvested for histological and proliferative cell nuclear antigen (PCNA) protein and mRNA expression and PCNA protein distribution analyses. Our findings indicated that co-administration of 10 mg/kg/day quercetin with estrogen and progesterone caused a significant decrease in the size of uterine lumen and epithelial heights with lower PCNA protein and mRNA expression as compared to estrogen plus progesterone-only treatment (P < 0.05). Concomitant treatment with estrogen and progesterone with 100 mg/kg/day quercetin resulted in a marked increase in the number of glands with increased PCNA protein and mRNA expression. Significantly higher PCNA distribution was observed in the stroma and glands as compared to estrogen plus progesterone-only treatment (P < 0.05). In conclusion, at 10 mg/kg/day, quercetin affects uterine morphology but not proliferation, however at 100 mg/kg/day, quercetin induced significant stromal and glandular proliferation which could predispose the uterus towards neoplastic development.
Collapse
Affiliation(s)
- Huma Shahzad
- Department of Physiology, Faculty of Medicine, University of MalayaLembah Pantai 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of MalayaLembah Pantai 50603, Kuala Lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of MalayaLembah Pantai 50603, Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of MalayaLembah Pantai 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
|
37
|
Deberardinis AM, Madden DJ, Banerjee U, Sail V, Raccuia DS, De Carlo D, Lemieux SM, Meares A, Hadden MK. Structure-activity relationships for vitamin D3-based aromatic a-ring analogues as hedgehog pathway inhibitors. J Med Chem 2014; 57:3724-36. [PMID: 24730984 DOI: 10.1021/jm401812d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A structure-activity relationship study for a series of vitamin D3-based (VD3) analogues that incorporate aromatic A-ring mimics with varying functionality has provided key insight into scaffold features that result in potent, selective Hedgehog (Hh) pathway inhibition. Three analogue subclasses containing (1) a single substitution at the ortho or para position of the aromatic A-ring, (2) a heteroaryl or biaryl moiety, or (3) multiple substituents on the aromatic A-ring were prepared and evaluated. Aromatic A-ring mimics incorporating either single or multiple hydrophilic moieties on a six-membered ring inhibited the Hh pathway in both Hh-dependent mouse embryonic fibroblasts and cultured cancer cells (IC50 values 0.74-10 μM). Preliminary studies were conducted to probe the cellular mechanisms through which VD3 and 5, the most active analogue, inhibit Hh signaling. These studies suggested that the anti-Hh activity of VD3 is primarily attributed to the vitamin D receptor, whereas 5 affects Hh inhibition through a separate mechanism.
Collapse
Affiliation(s)
- Albert M Deberardinis
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
dos Santos AE, Kuster RM, Yamamoto KA, Salles TS, Campos R, de Meneses MDF, Soares MR, Ferreira D. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. Parasit Vectors 2014; 7:130. [PMID: 24678592 PMCID: PMC3973022 DOI: 10.1186/1756-3305-7-130] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 01/24/2023] Open
Abstract
Background The arthropod-borne Mayaro virus (MAYV) causes ‘Mayaro fever’, a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. Methods Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Results The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90 = 104.9), while guaijaverin and quercitrin did not show significant antiviral activity. Conclusions B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Davis Ferreira
- Microbiology Institute, Virology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
The Effectiveness and Mechanism of Toona sinensis Extract Inhibit Attachment of Pandemic Influenza A (H1N1) Virus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:479718. [PMID: 24073006 PMCID: PMC3773900 DOI: 10.1155/2013/479718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/13/2013] [Accepted: 07/23/2013] [Indexed: 12/18/2022]
Abstract
TSL-1 is a fraction of the aqueous extract from the tender leaf of Toona sinensis Roem, a nutritious vegetable. The pandemic influenza A (H1N1) virus is a recently described, rapidly contagious respiratory pathogen which can cause acute respiratory distress syndrome (ARDS) and poses a major public health threat. In this study, we found that TSL-1 inhibited viral yields on MDCK plaque formation by pandemic influenza A (H1N1) virus on infected A549 cells with high selectivity index. Meanwhile, TSL-1 also suppressed viral genome loads in infected A549 cells, quantified by qRT-PCR. This study further demonstrated that TSL-1 inhibited pandemic influenza A (H1N1) virus activity through preventing attachment of A549 cells but not penetration. TSL-1 inhibited viral attachment through significant downregulation of adhesion molecules and chemokines (VCAM-1, ICAM-1, E-selectin, IL-8, and fractalkine) compared to Amantadine. Our results suggest that TSL-1 may be used as an alternative treatment and prophylaxis against pandemic influenza A (H1N1) virus.
Collapse
|
40
|
LC-MS metabolic study on quercetin and taxifolin galloyl esters using human hepatocytes as toxicity and biotransformation in vitro cell model. J Pharm Biomed Anal 2013; 86:135-42. [PMID: 24008144 DOI: 10.1016/j.jpba.2013.07.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 11/21/2022]
Abstract
Galloyl esters of quercetin and taxifolin have been recently prepared semisynthetically as part of work towards modifying the solubility and modulating the biological activity of these natural flavonoids. In this paper we focused on the liquid chromatography-mass spectrometry (LC-MS) profiling of metabolites of 3-O-galloylquercetin and 7-O-galloyltaxifolin using human hepatocytes as the in vitro cell model. A subtoxic concentration (50μM) was used for both compounds and the formation of metabolites was monitored for 2h in hepatocytes and cultivation medium separately. Using negative electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QqTOF MS), we identified different biotransformation patterns for the studied compounds. 3-O-Galloylquercetin is metabolized directly to glucuronides and methyl derivatives. In contrast, 7-O-galloyltaxifolin is oxidized to 7-O-galloylquercetin or cleaved to taxifolin, and consequently the products formed are sulfated or glucuronidated. The oxidative biotransformation of 3-O-galloylquercetin and 7-O-galloyltaxifolin is also accompanied by ester bond cleavage presumably by cellular enzymes (esterases) in a nonspecific manner. Our results provide fundamental insights into the biotransformation of monogalloyl esters of flavonoids and can be applied in investigations of the pharmaceutical potential of other galloylated polyphenolic substances.
Collapse
|
41
|
Korshin EE, Zakharova LG, Levin YA, Shulaeva MP, Pozdeev OK. Anti-influenza active and low toxic N-phenyl-substituted β-amidoamidines structurally related to natural antibiotic amidinomycin. Bioorg Med Chem Lett 2013; 23:2357-61. [PMID: 23489622 DOI: 10.1016/j.bmcl.2013.02.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
A set of racemic N-phenyl-substituted β-amidoamidines hydrochlorides 4, which are structurally related to natural antiviral agent amidinomycin (1), was synthesized in four steps starting from methacryloyl anilide (5). In the final step of the synthetic route, an uncommon monoacylation of β-aminoamidine 8 at the less reactive β-phenylamino-group took place. To rationalize this result, a mechanism which involves initial acylation at the more active amidine-function followed by intramolecular acyl-group transfer to β-phenylamino-group was suggested. All three β-amidoamidines 4d-f bearing long linear aliphatic chain (from n-C8H17 to n-C12H25) revealed significant in vitro activity against influenza A virus (H3N2) and modest cytotoxicity. The in vitro antiviral potency of 4d,e is 6-20 times greater than that of commercial rimantadine with lower EC50 values and higher therapeutic index. The non-toxic in vivo compounds 4d-f showed a beneficial protective effect in influenza A (H3N2) infected mice.
Collapse
Affiliation(s)
- Edward E Korshin
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
42
|
Zhang Y, Hays A, Noblett A, Thapa M, Hua DH, Hagenbuch B. Transport by OATP1B1 and OATP1B3 enhances the cytotoxicity of epigallocatechin 3-O-gallate and several quercetin derivatives. JOURNAL OF NATURAL PRODUCTS 2013; 76:368-73. [PMID: 23327877 PMCID: PMC3606651 DOI: 10.1021/np3007292] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Organic anion transporting polypeptides (OATPs) 1B1 and 1B3 are transporters that are expressed selectively in human hepatocytes under normal conditions. OATP1B3 is also expressed in certain cancers. Flavonoids such as green tea catechins and quercetin glycosides have been shown to modulate the function of some OATPs. In the present study, the extent to which six substituted quercetin derivatives (1-6) affected the function of OATP1B1 and OATP1B3 was investigated. Uptake of the radiolabeled model substrates estradiol 17β-glucuronide, estrone 3-sulfate, and dehydroepiandrosterone sulfate (DHEAS) was determined in the absence and presence of compounds 1-6 using Chinese hamster ovary (CHO) cells stably expressing either OATP1B1 or OATP1B3. Several of compounds 1-6 inhibited OATP-mediated uptake of all three model substrates, suggesting that they could also be potential substrates. Compound 6 stimulated OATP1B3-mediated estradiol 17β-glucuronide uptake by increasing the apparent affinity of OATP1B3 for its substrate. Cytotoxicity assays demonstrated that epigallocatechin 3-O-gallate (EGCG) and most of compounds 1-6 killed preferentially OATP-expressing CHO cells. EGCG, 1, and 3 were the most potent cytotoxic compounds, with EGCG and 3 selectively killing OATP1B3-expressing cells. Given that OATP1B3 is expressed in several cancers, EGCG and some of the quercetin derivatives studied might be promising lead compounds for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Amanda Hays
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Alexander Noblett
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506
| | - Mahendra Thapa
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506
| | - Duy H. Hua
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160
- The University of Kansas Cancer Center, Kansas City, Kansas 66160
- To whom correspondence should be addressed:*Tel: +01-913-588-0028. Fax: +01-913-588-7501.
| |
Collapse
|
43
|
Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrob Agents Chemother 2013; 57:2231-42. [PMID: 23459490 DOI: 10.1128/aac.02335-12] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The nucleoprotein (NP) binds the viral RNA genome and associates with the polymerase in a ribonucleoprotein complex (RNP) required for transcription and replication of influenza A virus. NP has no cellular counterpart, and the NP sequence is highly conserved, which led to considering NP a hot target in the search for antivirals. We report here that monomeric nucleoprotein can be inhibited by a small molecule binding in its RNA binding groove, resulting in a novel antiviral against influenza A virus. We identified naproxen, an anti-inflammatory drug that targeted the nucleoprotein to inhibit NP-RNA association required for NP function, by virtual screening. Further docking and molecular dynamics (MD) simulations identified in the RNA groove two NP-naproxen complexes of similar levels of interaction energy. The predicted naproxen binding sites were tested using the Y148A, R152A, R355A, and R361A proteins carrying single-point mutations. Surface plasmon resonance, fluorescence, and other in vitro experiments supported the notion that naproxen binds at a site identified by MD simulations and showed that naproxen competed with RNA binding to wild-type (WT) NP and protected active monomers of the nucleoprotein against proteolytic cleavage. Naproxen protected Madin-Darby canine kidney (MDCK) cells against viral challenges with the H1N1 and H3N2 viral strains and was much more effective than other cyclooxygenase inhibitors in decreasing viral titers of MDCK cells. In a mouse model of intranasal infection, naproxen treatment decreased the viral titers in mice lungs. In conclusion, naproxen is a promising lead compound for novel antivirals against influenza A virus that targets the nucleoprotein in its RNA binding groove.
Collapse
|
44
|
Abstract
Collaborative research projects between chemists, biologists, and medical scientists have inevitably produced many useful drugs, biosensors, and medical instrumentation. Organic chemistry lies at the heart of drug discovery and development. The current range of organic synthetic methodologies allows for the construction of unlimited libraries of small organic molecules for drug screening. In translational research projects, we have focused on the discovery of lead compounds for three major diseases: Alzheimer's disease (AD), breast cancer, and viral infections. In the AD project, we have taken a rational-design approach and synthesized a new class of tricyclic pyrone (TP) compounds that preserve memory and motor functions in amyloid precursor protein (APP)/presenilin-1 (PS1) mice. TPs could protect neuronal death through several possible mechanisms, including their ability to inhibit the formation of both intraneuronal and extracellular amyloid β (Aβ) aggregates, to increase cholesterol efflux, to restore axonal trafficking, and to enhance long-term potentiation (LTP) and restored LTP following treatment with Aβ oligomers. We have also synthesized a new class of gap-junction enhancers, based on substituted quinolines, that possess potent inhibitory activities against breast-cancer cells in vitro and in vivo. Although various antiviral drugs are available, the emergence of viral resistance to existing antiviral drugs and various understudied viral infections, such as norovirus and rotavirus, emphasizes the demand for the development of new antiviral agents against such infections and others. Our laboratories have undertaken these projects for the discovery of new antiviral inhibitors. The discussion of these aforementioned projects may shed light on the future development of drug candidates in the fields of AD, cancer, and viral infections.
Collapse
Affiliation(s)
- Duy H Hua
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506-040, USA.
| |
Collapse
|
45
|
Yang XB, Wang Q, Huang Y, Fu PH, Zhang JS, Zeng RQ. Synthesis, DNA interaction and antimicrobial activities of copper (II) complexes with Schiff base ligands derived from kaempferol and polyamines. INORG CHEM COMMUN 2012. [DOI: 10.1016/j.inoche.2012.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
De Clercq E. Human viral diseases: what is next for antiviral drug discovery? Curr Opin Virol 2012; 2:572-9. [PMID: 22846888 DOI: 10.1016/j.coviro.2012.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/10/2012] [Indexed: 01/30/2023]
Abstract
For the treatment of human immunodeficiency virus (HIV) infections for which there are ample drugs available, the immediate future lies in a once-daily combination pill containing three or four active ingredients. This strategy may also be envisaged for the treatment of hepatitis C virus (HCV) infections as soon as we have at hand the appropriate direct-acting antiviral agents (DAAs) to be combined. A combination drug therapy is generally not entertained for other viruses. Yet, new drugs are at the horizon for the treatment of herpes simplex virus (HSV), varicella-zoster virus (VZV), poxvirus, hepatitis B virus (HBV), influenza and enveloped viruses-at-large.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|