1
|
Kos J, Langiu M, Hellyer SD, Gregory KJ. Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. ACS Pharmacol Transl Sci 2024; 7:3671-3690. [PMID: 39698283 PMCID: PMC11651194 DOI: 10.1021/acsptsci.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu5) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified. mGlu5 negative allosteric modulators (NAMs) are promising novel therapeutics for developmental, neuropsychiatric and neurodegenerative disorders (e.g., Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, autism spectrum disorders, substance use disorders, stroke, anxiety and depression) and show promise in ameliorating adverse effects induced by other medications (e.g., L-dopa induced dyskinesia in Parkinson's Disease). However, despite preclinical success, mGlu5 NAMs are yet to reach the market due to poor safety and efficacy profiles in clinical trials. Herein, we review the physiology and signal transduction of mGlu5. We provide a comprehensive critique of therapeutic options with respect to mGlu5 inhibitors, spanning from orthosteric antagonists to NAMs. Finally, we address the challenges associated with drug development and highlight future directions to guide rational drug discovery of safe and effective novel therapeutics.
Collapse
Affiliation(s)
- Jackson
A. Kos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Shane D. Hellyer
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Oliveira TPD, Gonçalves BDC, Oliveira BS, de Oliveira ACP, Reis HJ, Ferreira CN, Aguiar DC, de Miranda AS, Ribeiro FM, Vieira EML, Palotás A, Vieira LB. Negative Modulation of the Metabotropic Glutamate Receptor Type 5 as a Potential Therapeutic Strategy in Obesity and Binge-Like Eating Behavior. Front Neurosci 2021; 15:631311. [PMID: 33642987 PMCID: PMC7902877 DOI: 10.3389/fnins.2021.631311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is a multifactorial disease, which in turn contributes to the onset of comorbidities, such as diabetes and atherosclerosis. Moreover, there are only few options available for treating obesity, and most current pharmacotherapy causes severe adverse effects, while offering minimal weight loss. Literature shows that metabotropic glutamate receptor 5 (mGluR5) modulates central reward pathways. Herein, we evaluated the effect of VU0409106, a negative allosteric modulator (NAM) of mGluR5 in regulating feeding and obesity parameters. Diet-induced obese C57BL/6 mice were treated for 14 days with VU0409106, and food intake, body weight, inflammatory/hormonal levels, and behavioral tests were performed. Our data suggest reduction of feeding, body weight, and adipose tissue inflammation in mice treated with high-fat diet (HFD) after chronic treatment with VU0409106. Furthermore, a negative modulation of mGluR5 also reduces binge-like eating, the most common type of eating disorder. Altogether, our results pointed out mGluR5 as a potential target for treating obesity, as well as related disorders.
Collapse
Affiliation(s)
- Tadeu P. D. Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno D. C. Gonçalves
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna S. Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio Carlos P. de Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helton J. Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Claudia N. Ferreira
- Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniele C. Aguiar
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline S. de Miranda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M. Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erica M. L. Vieira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), Szeged, Hungary
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Luciene B. Vieira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
4
|
Ricart-Ortega M, Berizzi AE, Catena J, Malhaire F, Muñoz L, Serra C, Lebon G, Goudet C, Llebaria A. Development and validation of a mass spectrometry binding assay for mGlu5 receptor. Anal Bioanal Chem 2020; 412:5525-5535. [PMID: 32564119 DOI: 10.1007/s00216-020-02772-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
Mass spectrometry (MS) binding assays are a label-free alternative to radioligand or fluorescence binding assays, so the readout is based on direct mass spectrometric detection of the test ligand. The study presented here describes the development and validation of a highly sensitive, rapid, and robust MS binding assay for the quantification of the binding of the metabotropic glutamate 5 (mGlu5) negative allosteric modulator (NAM), MPEP (2-methyl-6-phenylethynylpyridine) at the mGlu5 allosteric binding site. The LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometric) analytical method was established and validated with a deuterated analogue of MPEP as an internal standard. The developed MS binding assay described here allowed for the determination of MS binding affinity estimates that were in agreement with affinity estimates obtained from a tritiated MPEP radioligand saturation binding assay, indicating the suitability of this methodology for determining affinity estimates for compounds that target mGlu5 allosteric binding sites. Graphical abstract.
Collapse
Affiliation(s)
- Maria Ricart-Ortega
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.,IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France
| | - Alice E Berizzi
- IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France
| | - Juanlo Catena
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Fanny Malhaire
- IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France
| | - Lourdes Muñoz
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.,SIMchem, Service of Synthesis of High Added Value Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Carmen Serra
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.,SIMchem, Service of Synthesis of High Added Value Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Guillaume Lebon
- IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, University of Montpellier, 34094, Montpellier, France.
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain. .,SIMchem, Service of Synthesis of High Added Value Molecules, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
5
|
Zhao Y, Chen J, Liu Q, Li Y. Profiling the Structural Determinants of Aryl Benzamide Derivatives as Negative Allosteric Modulators of mGluR5 by In Silico Study. Molecules 2020; 25:molecules25020406. [PMID: 31963723 PMCID: PMC7024197 DOI: 10.3390/molecules25020406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 11/16/2022] Open
Abstract
Glutamate plays a crucial role in the treatment of depression by interacting with the metabotropic glutamate receptor subtype 5 (mGluR5), whose negative allosteric modulators (NAMs) are thus promising antidepressants. At present, to explore the structural features of 106 newly synthesized aryl benzamide series molecules as mGluR5 NAMs, a set of ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses were firstly carried out applying comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. In addition, receptor-based analysis, namely molecular docking and molecular dynamics (MD) simulations, were performed to further elucidate the binding modes of mGluR5 NAMs. As a result, the optimal CoMSIA model obtained shows that cross-validated correlation coefficient Q2 = 0.70, non-cross-validated correlation coefficient R2ncv = 0.89, predicted correlation coefficient R2pre = 0.87. Moreover, we found that aryl benzamide series molecules bind as mGluR5 NAMs at Site 1, which consists of amino acids Pro655, Tyr659, Ile625, Ile651, Ile944, Ser658, Ser654, Ser969, Ser965, Ala970, Ala973, Trp945, Phe948, Pro903, Asn907, Val966, Leu904, and Met962. This site is the same as that of other types of NAMs; mGluR5 NAMs are stabilized in the "linear" and "arc" configurations mainly through the H-bonds interactions, π-π stacking interaction with Trp945, and hydrophobic contacts. We hope that the models and information obtained will help understand the interaction mechanism of NAMs and design and optimize NAMs as new types of antidepressants.
Collapse
Affiliation(s)
- Yujing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (J.C.)
| | - Jiabin Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (J.C.)
| | - Qilei Liu
- Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (J.C.)
- Correspondence: ; Tel.: +86-15640888728
| |
Collapse
|
6
|
Sengmany K, Hellyer SD, Albold S, Wang T, Conn PJ, May LT, Christopoulos A, Leach K, Gregory KJ. Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology. Neuropharmacology 2019; 149:83-96. [PMID: 30763654 DOI: 10.1016/j.neuropharm.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have been proposed as potential therapies for various CNS disorders. These ligands bind to sites distinct from the orthosteric (or endogenous) ligand, often with improved subtype selectivity and spatio-temporal control over receptor responses. We recently revealed that mGlu5 allosteric agonists and positive allosteric modulators exhibit biased agonism and/or modulation. To establish whether negative allosteric modulators (NAMs) engender similar bias, we rigorously characterized the pharmacology of eight diverse mGlu5 NAMs. Radioligand inhibition binding studies revealed novel modes of interaction with mGlu5 for select NAMs, with biphasic or incomplete inhibition of the radiolabeled NAM, [3H]methoxy-PEPy. We assessed mGlu5-mediated intracellular Ca2+ (iCa2+) mobilization and inositol phosphate (IP1) accumulation in HEK293A cells stably expressing low levels of mGlu5 (HEK293A-rat mGlu5-low) and mouse embryonic cortical neurons. The apparent affinity of acetylenic NAMs, MPEP, MTEP and dipraglurant, was dependent on the signaling pathway measured, agonist used, and cell type (HEK293A-rat mGlu5-low versus mouse cortical neurons). In contrast, the acetylenic partial NAM, M-5MPEP, and structurally distinct NAMs (VU0366248, VU0366058, fenobam), had similar affinity estimates irrespective of the assay or cellular background. Biased modulation was evident for VU0366248 in mouse cortical neurons where it was a NAM for DHPG-mediated iCa2+ mobilization, but neutral with DHPG in IP1 accumulation assays. Overall, this study highlights the inherent complexity in mGlu5 NAM pharmacology that we hypothesize may influence interpretation when translating into preclinical models and beyond in the design and development of novel therapeutics for neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Kathy Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Taide Wang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Xu Y, Li Z. Imaging metabotropic glutamate receptor system: Application of positron emission tomography technology in drug development. Med Res Rev 2019; 39:1892-1922. [DOI: 10.1002/med.21566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Youwen Xu
- Independent Consultant and Contractor, Radiopharmaceutical Development, Validation and Bio-Application; Philadelphia Pennsylvania
| | - Zizhong Li
- Pharmaceutical Research and Development, SOFIE Biosciences; Somerset New Jersey
| |
Collapse
|
8
|
Felts AS, Bollinger KA, Brassard CJ, Rodriguez AL, Morrison RD, Scott Daniels J, Blobaum AL, Niswender CM, Jones CK, Conn PJ, Emmitte KA, Lindsley CW. Discovery of 4-alkoxy-6-methylpicolinamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 2019; 29:47-50. [PMID: 30446311 PMCID: PMC6295259 DOI: 10.1016/j.bmcl.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023]
Abstract
This letter describes the further chemical optimization of VU0424238 (auglurant), an mGlu5 NAM clinical candidate that failed in non-human primate (NHP) 28 day toxicology due to accumulation of a species-specific aldehyde oxidase (AO) metabolite of the pyrimidine head group. Here, we excised the pyrimidine moiety, identified the minimum pharmacophore, and then developed a new series of saturated ether head groups that ablated any AO contribution to metabolism. Putative back-up compounds in this novel series provided increased sp3 character, uniform CYP450-mediated metabolism across species, good functional potency and high CNS penetration. Key to the optimization was a combination of matrix and iterative libraries that allowed rapid surveillance of multiple domains of the allosteric ligand.
Collapse
Affiliation(s)
- Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katrina A Bollinger
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christopher J Brassard
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Biased agonism and allosteric modulation of metabotropic glutamate receptor 5. Clin Sci (Lond) 2018; 132:2323-2338. [PMID: 30389826 DOI: 10.1042/cs20180374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Metabotropic glutamate receptors belong to class C G-protein-coupled receptors and consist of eight subtypes that are ubiquitously expressed throughout the central nervous system. In recent years, the metabotropic glutamate receptor subtype 5 (mGlu5) has emerged as a promising target for a broad range of psychiatric and neurological disorders. Drug discovery programs targetting mGlu5 are primarily focused on development of allosteric modulators that interact with sites distinct from the endogenous agonist glutamate. Significant efforts have seen mGlu5 allosteric modulators progress into clinical trials; however, recent failures due to lack of efficacy or adverse effects indicate a need for a better understanding of the functional consequences of mGlu5 allosteric modulation. Biased agonism is an interrelated phenomenon to allosterism, describing how different ligands acting through the same receptor can differentially influence signaling to distinct transducers and pathways. Emerging evidence demonstrates that allosteric modulators can induce biased pharmacology at the level of intrinsic agonism as well as through differential modulation of orthosteric agonist-signaling pathways. Here, we present key considerations in the discovery and development of mGlu5 allosteric modulators and the opportunities and pitfalls offered by biased agonism and modulation.
Collapse
|
10
|
Brown DG, Boström J. Where Do Recent Small Molecule Clinical Development Candidates Come From? J Med Chem 2018; 61:9442-9468. [DOI: 10.1021/acs.jmedchem.8b00675] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dean G. Brown
- Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jonas Boström
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Gothenburg SE-431 83, Sweden
| |
Collapse
|
11
|
Felts AS, Rodriguez AL, Morrison RD, Blobaum AL, Byers FW, Daniels JS, Niswender CM, Conn PJ, Lindsley CW, Emmitte KA. Discovery of 6-(pyrimidin-5-ylmethyl)quinoline-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 2018; 28:1679-1685. [PMID: 29705142 DOI: 10.1016/j.bmcl.2018.04.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 11/16/2022]
Abstract
Based on previous work that established fused heterocycles as viable alternatives for the picolinamide core of our lead series of mGlu5 negative allosteric modulators (NAMs), we designed a novel series of 6-(pyrimidin-5-ylmethyl)quinoline-8-carboxamide mGlu5 NAMs. These new quinoline derivatives also contained carbon linkers as replacements for the diaryl ether oxygen atom common to our previously published chemotypes. Compounds were evaluated in a cell-based functional mGlu5 assay, and an exemplar analog 27 was >60-fold selective versus the other seven mGlu receptors. Selected compounds were also studied in metabolic stability assays in rat and human S9 hepatic fractions and exhibited a mixture of P450- and non-P450-mediated metabolism.
Collapse
Affiliation(s)
- Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Crouch RD, Blobaum AL, Felts AS, Conn PJ, Lindsley CW. Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu5-Negative Allosteric Modulator VU0424238 (Auglurant). Drug Metab Dispos 2017; 45:1245-1259. [DOI: 10.1124/dmd.117.077552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/20/2017] [Indexed: 01/10/2023] Open
|
13
|
Felts AS, Rodriguez AL, Morrison RD, Bollinger KA, Venable DF, Blobaum AL, Byers FW, Thompson Gray A, Daniels JS, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of imidazo[1,2-a]-, [1,2,4]triazolo[4,3-a]-, and [1,2,4]triazolo[1,5-a]pyridine-8-carboxamide negative allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 2017; 27:4858-4866. [PMID: 28958625 DOI: 10.1016/j.bmcl.2017.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/01/2022]
Abstract
Based on a hypothesis that an intramolecular hydrogen bond was present in our lead series of picolinamide mGlu5 NAMs, we reasoned that an inactive nicotinamide series could be modified through introduction of a fused heterocyclic core to generate potent mGlu5 NAMs. In this Letter, we describe the synthesis and evaluation of compounds that demonstrate the viability of that approach. Selected analogs were profiled in a variety of in vitro assays, and two compounds were evaluated in rat pharmacokinetic studies and a mouse model of obsessive-compulsive disorder. Ancillary pharmacology screening revealed that members of this series exhibited moderate inhibition of the dopamine transporter (DAT), and SAR was developed that expanded the selectivity for mGlu5 versus DAT.
Collapse
Affiliation(s)
- Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Katrina A Bollinger
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Daryl F Venable
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Analisa Thompson Gray
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
David TK, Prashanth NK, Rajendraswami M, Pallalu D, Castelhano AL, Kates MJ, Blobaum AL, Jones CK, Emmitte KA, Conn PJ, Lindsley CW. Development and kilogram-scale synthesis of mGlu5 negative allosteric modulator VU0424238 (auglurant). Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Felts AS, Rodriguez AL, Blobaum AL, Morrison RD, Bates BS, Thompson Gray A, Rook JM, Tantawy MN, Byers FW, Chang S, Venable DF, Luscombe VB, Tamagnan GD, Niswender CM, Daniels JS, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of N-(5-Fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide (VU0424238): A Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Selected for Clinical Evaluation. J Med Chem 2017; 60:5072-5085. [PMID: 28530802 PMCID: PMC5484149 DOI: 10.1021/acs.jmedchem.7b00410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Preclinical evidence in support of
the potential utility of mGlu5 NAMs for the treatment of
a variety of psychiatric and neurodegenerative
disorders is extensive, and multiple such molecules have entered clinical
trials. Despite some promising results from clinical studies, no small
molecule mGlu5 NAM has yet to reach market. Here we present
the discovery and evaluation of N-(5-fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide
(27, VU0424238), a compound selected for clinical evaluation.
Compound 27 is more than 900-fold selective for mGlu5 versus the other mGlu receptors, and binding studies established
a Ki value of 4.4 nM at a known allosteric
binding site. Compound 27 had a clearance of 19.3 and
15.5 mL/min/kg in rats and cynomolgus monkeys, respectively. Imaging
studies using a known mGlu5 PET ligand demonstrated 50%
receptor occupancy at an oral dose of 0.8 mg/kg in rats and an intravenous
dose of 0.06 mg/kg in baboons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mohammed N Tantawy
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | | | | | | | - Gilles D Tamagnan
- Molecular NeuroImaging, a Division of inviCRO , New Haven, Connecticut 06510, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Emmitte KA. mGlu5negative allosteric modulators: a patent review (2013 - 2016). Expert Opin Ther Pat 2017; 27:691-706. [DOI: 10.1080/13543776.2017.1280466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
17
|
Gould RW, Amato RJ, Bubser M, Joffe ME, Nedelcovych MT, Thompson AD, Nickols HH, Yuh JP, Zhan X, Felts AS, Rodriguez AL, Morrison RD, Byers FW, Rook JM, Daniels JS, Niswender CM, Conn PJ, Emmitte KA, Lindsley CW, Jones CK. Partial mGlu₅ Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects. Neuropsychopharmacology 2016; 41:1166-78. [PMID: 26315507 PMCID: PMC4748441 DOI: 10.1038/npp.2015.265] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 11/09/2022]
Abstract
Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Russell J Amato
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael T Nedelcovych
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Analisa D Thompson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hilary H Nickols
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Division of Neuropathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Johannes P Yuh
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaoyan Zhan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alice L Rodriguez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan D Morrison
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank W Byers
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerri M Rook
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John S Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A Emmitte
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Computer-aided design of negative allosteric modulators of metabotropic glutamate receptor 5 (mGluR5): Comparative molecular field analysis of aryl ether derivatives. Bioorg Med Chem Lett 2016; 26:1140-4. [PMID: 26826734 DOI: 10.1016/j.bmcl.2016.01.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/27/2023]
Abstract
The metabotropic glutamate receptors (mGlu receptors) have emerged as attractive targets for number of neurological and psychiatric disorders. Recently, mGluR5 negative allosteric modulators (NAMs) have gained considerable attention in pharmacological research. Comparative molecular field analysis (CoMFA) was performed on 73 analogs of aryl ether which were reported as mGluR5 NAMs. The study produced a statistically significant model with high correlation coefficient and good predictive abilities.
Collapse
|
19
|
Nickols HH, Yuh JP, Gregory KJ, Morrison RD, Bates BS, Stauffer SR, Emmitte KA, Bubser M, Peng W, Nedelcovych MT, Thompson A, Lv X, Xiang Z, Daniels JS, Niswender CM, Lindsley CW, Jones CK, Conn PJ. VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy. J Pharmacol Exp Ther 2015; 356:123-36. [PMID: 26503377 DOI: 10.1124/jpet.115.226597] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022] Open
Abstract
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models.
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Joannes P Yuh
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Karen J Gregory
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Ryan D Morrison
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Brittney S Bates
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Shaun R Stauffer
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Kyle A Emmitte
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Michael Bubser
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Weimin Peng
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Michael T Nedelcovych
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Analisa Thompson
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Xiaohui Lv
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Zixiu Xiang
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - J Scott Daniels
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Colleen M Niswender
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Craig W Lindsley
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Carrie K Jones
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - P Jeffrey Conn
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| |
Collapse
|
20
|
Engers JL, Rodriguez AL, Konkol LC, Morrison RD, Thompson AD, Byers FW, Blobaum AL, Chang S, Venable DF, Loch MT, Niswender CM, Daniels JS, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of a Selective and CNS Penetrant Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 3 with Antidepressant and Anxiolytic Activity in Rodents. J Med Chem 2015; 58:7485-500. [PMID: 26335039 DOI: 10.1021/acs.jmedchem.5b01005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous preclinical work has demonstrated the therapeutic potential of antagonists of the group II metabotropic glutamate receptors (mGlus). Still, compounds that are selective for the individual group II mGlus (mGlu2 and mGlu3) have been scarce. There remains a need for such compounds with the balance of properties suitable for convenient use in a wide array of rodent behavioral studies. We describe here the discovery of a selective mGlu3 NAM 106 (VU0650786) suitable for in vivo work. Compound 106 is a member of a series of 5-aryl-6,7-dihydropyrazolo[1,5-a]pyrazine-4(5H)-one compounds originally identified as a mGlu5 positive allosteric modulator (PAM) chemotype. Its suitability for use in rodent behavioral models has been established by extensive in vivo PK studies, and the behavioral experiments presented here with compound 106 represent the first examples in which an mGlu3 NAM has demonstrated efficacy in models where prior efficacy had previously been noted with nonselective group II antagonists.
Collapse
Affiliation(s)
- Julie L Engers
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Leah C Konkol
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Analisa D Thompson
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Daryl F Venable
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Matthew T Loch
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States.,Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| |
Collapse
|
21
|
Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A, Marshall FH, Okrasa K, Serrano-Vega MJ, Tehan BG, Wiggin GR, Congreve M. Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 2015. [PMID: 26225459 DOI: 10.1021/acs.jmedchem.5b00892] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragment screening of a thermostabilized mGlu5 receptor using a high-concentration radioligand binding assay enabled the identification of moderate affinity, high ligand efficiency (LE) pyrimidine hit 5. Subsequent optimization using structure-based drug discovery methods led to the selection of 25, HTL14242, as an advanced lead compound for further development. Structures of the stabilized mGlu5 receptor complexed with 25 and another molecule in the series, 14, were determined at resolutions of 2.6 and 3.1 Å, respectively.
Collapse
Affiliation(s)
- John A Christopher
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Sarah J Aves
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Kirstie A Bennett
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S Doré
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C Errey
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Ali Jazayeri
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H Marshall
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Maria J Serrano-Vega
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Benjamin G Tehan
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Giselle R Wiggin
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Miles Congreve
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| |
Collapse
|
22
|
Rook JM, Tantawy MN, Ansari MS, Felts AS, Stauffer SR, Emmitte KA, Kessler RM, Niswender CM, Daniels JS, Jones CK, Lindsley CW, Conn PJ. Relationship between in vivo receptor occupancy and efficacy of metabotropic glutamate receptor subtype 5 allosteric modulators with different in vitro binding profiles. Neuropsychopharmacology 2015; 40:755-65. [PMID: 25241804 PMCID: PMC4289965 DOI: 10.1038/npp.2014.245] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 11/09/2022]
Abstract
Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have exciting potential as therapeutic agents for multiple brain disorders. Translational studies with mGlu5 modulators have relied on mGlu5 allosteric site positron emission tomography (PET) radioligands to assess receptor occupancy in the brain. However, recent structural and modeling studies suggest that closely related mGlu5 allosteric modulators can bind to overlapping but not identical sites, which could complicate interpretation of in vivo occupancy data, even when PET ligands and drug leads are developed from the same chemical scaffold. We now report that systemic administration of the novel mGlu5 positive allosteric modulator VU0092273 displaced the structurally related mGlu5 PET ligand, [(18)F]FPEB, with measures of in vivo occupancy that closely aligned with its in vivo efficacy. In contrast, a close analog of VU0092273 and [(18)F]FPEB, VU0360172, provided robust efficacy in rodent models in the absence of detectable occupancy. Furthermore, a structurally unrelated mGlu5 negative allosteric modulator, VU0409106, displayed measures of in vivo occupancy that correlated well with behavioral effects, despite the fact that VU0409106 is structurally unrelated to [(18)F]FPEB. Interestingly, all three compounds inhibit radioligand binding to the prototypical MPEP/FPEB allosteric site in vitro. However, VU0092273 and VU0409106 bind to this site in a fully competitive manner, whereas the interaction of VU0360172 is noncompetitive. Thus, while close structural similarity between PET ligands and drug leads does not circumvent issues associated with differential binding to a given target, detailed molecular pharmacology analysis accurately predicts utility of ligand pairs for in vivo occupancy studies.
Collapse
Affiliation(s)
- Jerri M Rook
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad S Ansari
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S Felts
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shaun R Stauffer
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A Emmitte
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert M Kessler
- Department of Radiology, University of Alabama, Birmingham, AL, USA
| | - Colleen M Niswender
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Scott Daniels
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, 1215D Light Hall, 2215-B Garland Avenue, Nashville, TN 37232-0697, USA, Tel: +1 615 936 2478, Fax: +1 615 343 3088, E-mail:
| |
Collapse
|
23
|
Structures of mGluRs shed light on the challenges of drug development of allosteric modulators. Curr Opin Pharmacol 2015; 20:1-7. [DOI: 10.1016/j.coph.2014.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/24/2014] [Accepted: 09/27/2014] [Indexed: 01/06/2023]
|
24
|
Bates BS, Rodriguez AL, Felts AS, Morrison RD, Venable DF, Blobaum AL, Byers FW, Lawson KP, Daniels JS, Niswender CM, Jones CK, Conn PJ, Lindsley CW, Emmitte KA. Discovery of VU0431316: a negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety. Bioorg Med Chem Lett 2014; 24:3307-14. [PMID: 24969015 DOI: 10.1016/j.bmcl.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of pyrazine analog VU0431316 is described in this Letter. VU0431316 is a potent and selective non-competitive antagonist of mGlu5 that binds at a known allosteric binding site. VU0431316 demonstrates an attractive DMPK profile, including moderate clearance and good bioavailability in rats. Intraperitoneal (IP) dosing of VU0431316 in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists and other anxiolytics, produced dose proportional effects.
Collapse
Affiliation(s)
- Brittney S Bates
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daryl F Venable
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kera P Lawson
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Gregory KJ, Nguyen ED, Malosh C, Mendenhall JL, Zic JZ, Bates BS, Noetzel MJ, Squire EF, Turner EM, Rook JM, Emmitte KA, Stauffer SR, Lindsley CW, Meiler J, Conn PJ. Identification of specific ligand-receptor interactions that govern binding and cooperativity of diverse modulators to a common metabotropic glutamate receptor 5 allosteric site. ACS Chem Neurosci 2014; 5:282-95. [PMID: 24528109 DOI: 10.1021/cn400225x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A common metabotropic glutamate receptor 5 (mGlu5) allosteric site is known to accommodate diverse chemotypes. However, the structural relationship between compounds from different scaffolds and mGlu5 is not well understood. In an effort to better understand the molecular determinants that govern allosteric modulator interactions with mGlu5, we employed a combination of site-directed mutagenesis and computational modeling. With few exceptions, six residues (P654, Y658, T780, W784, S808, and A809) were identified as key affinity determinants across all seven allosteric modulator scaffolds. To improve our interpretation of how diverse allosteric modulators occupy the common allosteric site, we sampled the wealth of mGlu5 structure-activity relationship (SAR) data available by docking 60 ligands (actives and inactives) representing seven chemical scaffolds into our mGlu5 comparative model. To spatially and chemically compare binding modes of ligands from diverse scaffolds, the ChargeRMSD measure was developed. We found a common binding mode for the modulators that placed the long axes of the ligands parallel to the transmembrane helices 3 and 7. W784 in TM6 not only was identified as a key NAM cooperativity determinant across multiple scaffolds, but also caused a NAM to PAM switch for two different scaffolds. Moreover, a single point mutation in TM5, G747V, altered the architecture of the common allosteric site such that 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (VU29) was noncompetitive with the common allosteric site. Our findings highlight the subtleties of allosteric modulator binding to mGlu5 and demonstrate the utility in incorporating SAR information to strengthen the interpretation and analyses of docking and mutational data.
Collapse
Affiliation(s)
- Karen J. Gregory
- Drug Discovery
Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Finlay C, Duty S. Therapeutic potential of targeting glutamate receptors in Parkinson's disease. J Neural Transm (Vienna) 2014; 121:861-80. [PMID: 24557498 DOI: 10.1007/s00702-014-1176-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/05/2014] [Indexed: 12/28/2022]
Abstract
Glutamate plays a complex role in many aspects of Parkinson's disease including the loss of dopaminergic neurons, the classical motor symptoms as well as associated non-motor symptoms and the treatment-related side effect, L-DOPA-induced dyskinesia. This widespread involvement opens up possibilities for glutamate-based therapies to provide a more rounded approach to treatment than is afforded by current dopamine replacement therapies. Beneficial effects of blocking postsynaptic glutamate transmission have already been noted in a range of preclinical studies using antagonists of NMDA receptors or negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu5), while positive allosteric modulators of mGlu4 in particular, although at an earlier stage of investigation, also look promising. This review addresses each of the key features of Parkinson's disease in turn, summarising the contribution glutamate makes to that feature and presenting an up-to-date account of the potential for drugs acting at ionotropic or metabotropic glutamate receptors to provide relief. Whilst only a handful of these have progressed to clinical trials to date, notably NMDA and NR2B antagonists against motor symptoms and L-DOPA-induced dyskinesia, with mGlu5 negative allosteric modulators also against L-DOPA-induced dyskinesia, the mainly positive outcomes of these trials, coupled with supportive preclinical data for other strategies in animal models of Parkinson's disease and L-DOPA-induced dyskinesia, raise cautious optimism that a glutamate-based therapeutic approach will have significant impact on the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Clare Finlay
- Wolfson Centre for Age-Related Diseases, King's College London, WW1.28. Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|