1
|
Fazel R, Hassani B, Zare F, Jokar Darzi H, Khoshneviszadeh M, Poustforoosh A, Behrouz M, Sabet R, Sadeghpour H. Design, synthesis, in silico ADME, DFT, molecular dynamics simulation, anti-tyrosinase, and antioxidant activity of some of the 3-hydroxypyridin-4-one hybrids in combination with acylhydrazone derivatives. J Biomol Struct Dyn 2024; 42:9518-9528. [PMID: 37674457 DOI: 10.1080/07391102.2023.2252087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023]
Abstract
Tyrosinase is the rate-limiting enzyme in synthesizing melanin. Melanin is responsible for changing the color of fruits and vegetables and protecting against skin photo-carcinogenesis. Herein, some of the hybrids of 3-hydroxypyridine-4-one and acylhydrazones were designed and synthesized to study the anti-tyrosinase and antioxidant activities. The diphenolase activity of mushroom tyrosinase using L-DOPA assayed the inhibitory effects, and the antioxidant activity was assessed using DPPH free radical. The synthesized derivatives were confirmed using 1H-NMR, 13C-NMR, IR, and Mass spectroscopy. Among analogs, compound 5h bearing furan ring with IC50=8.94 μM was more potent than kojic acid (IC50=16.68 μM). The pharmacokinetic profile of the compounds showed that the tested compounds had suitable oral bioavailability and drug-likeness properties. The molecular docking studies showed that compound 5h was located in the tyrosinase-binding site. Also, the molecular dynamics simulation was performed on compound 5h, proving the obtained molecular docking results. At the B3LYP/6-31 + G** level of theory, the reactivity descriptors for 5 g and 5h were investigated using DFT calculations. Also, IR frequency was calculated to verify DFT results with experimental data. The electrostatic potential energy of the surface and the HOMO and LUMO molecular orbitals were also studied. It agrees with experimental results that the 5h is a soft molecule and ready for chemical reaction with other interacting molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habibollah Jokar Darzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Errante F, Sforzi L, Supuran CT, Papini AM, Rovero P. Peptide and peptidomimetic tyrosinase inhibitors. Enzymes 2024; 56:135-189. [PMID: 39304286 DOI: 10.1016/bs.enz.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Melanin, which is produced by melanocytes and spread over keratinocytes, is responsible for human skin browning. There are several processes involved in melanogenesis, mostly prompted by enzymatic activities. Tyrosinase (TYR), a copper containing metalloenzyme, is considered the main actor in melanin production, as it catalyzes two crucial steps that modify tyrosine residues in dopaquinone. For this reason, TYR inhibition has been exploited as a possible mechanism of modulation of hyper melanogenesis. There are various types of molecules used to block TYR activity, principally used as skin whitening agents in cosmetic products, e.g., tretinoin, hydroquinone, azelaic acid, kojic acid, arbutin and peptides. Peptides are highly valued for their versatile nature, making them promising candidates for various functions. Their specificity often leads to excellent safety, tolerability, and efficacy in humans, which can be considered their primary advantage over traditional small molecules. There are several examples of tyrosinase inhibitor peptides (TIPs) operating as possible hypo-pigmenting agents, which can be classified according to their origin: natural, hybrid or synthetically produced. Moreover, the possibility of variating their backbones, introducing non-canonical amino acids or modifying one or more peptide bond(s), to obtain peptidomimetic molecules, is an added value to avoid or delay proteolytic activity, while the possibility of conjugation with other bioactive peptides or organic moieties can bring other specific activity leading to dual-functional peptides.
Collapse
Affiliation(s)
- Fosca Errante
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Lucrezia Sforzi
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Anna Maria Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, Italy
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, Sesto Fiorentino, Florence, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
3
|
Sadeghian S, Zare F, Khoshneviszadeh M, Hafshejani AF, Salahshour F, Khodabakhshloo A, Saghaie L, Goshtasbi G, Sarikhani Z, Poustforoosh A, Sabet R, Sadeghpour H. Synthesis, biological evaluation, molecular docking, MD simulation and DFT analysis of new 3-hydroxypyridine-4-one derivatives as anti-tyrosinase and antioxidant agents. Heliyon 2024; 10:e35281. [PMID: 39170370 PMCID: PMC11336475 DOI: 10.1016/j.heliyon.2024.e35281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
In the present study, ten new substituted 3-hydroxypyridine-4-one derivatives were synthesized in a four-step method, and their chemical structures were confirmed using various spectroscopic techniques. Subsequently, the inhibitory activities of these derivatives against tyrosinase enzyme and their antioxidant activities were evaluated. Amongest the synthesized compounds, 6b bearing a 4-OH-3-OCH3 substitution was found to be a promising tyrosinase inhibitor with an IC50 value of 25.82 μM, which is comparable to the activity of kojic acid as control drug. Kinetic study indicated that compound 6b is a competitive inhibitor of tyrosinase enzyme, which was confirmed by molecular docking results. The molecular docking study and MD simulation showed that compound 6b was properly placed within the tyrosinase binding pocket and interacted with key residues, which is consistent with its biological activity. The DFT analysis demonstrated that compound 6b is kinetically more stable than the other compounds. In addition, compounds 6a and 6b exhibited the best antioxidant activities. The findings indicate that compound 6b could be a promising lead for further studies.
Collapse
Affiliation(s)
- Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arian Fathi Hafshejani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhang Salahshour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmadreza Khodabakhshloo
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghazal Goshtasbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sarikhani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Catechol-mimicking transition-state analogues as non-oxidizable inhibitors of tyrosinases. Eur J Med Chem 2023; 259:115672. [PMID: 37487307 DOI: 10.1016/j.ejmech.2023.115672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Tyrosinases are copper-containing metalloenzymes involved in several processes in both mammals, insects, bacteria, fungi and plants. Their phenol oxidation properties are especially responsible for human melanogenesis, potentially leading to abnormal pigmentation, and for postharvest vegetable tissue browning. Thus, targeting tyrosinases attracts interest for applications both in dermocosmetic and agrofood fields. However, a large part of the literature about tyrosinase inhibitors is dedicated to the report of copper-interacting phenolic compounds, that are more likely alternative substrates leading to undesirable toxic quinones production. To circumvent this issue, the use of catechol-mimicking copper-chelating groups that are analogues of the tyrosinase oxidation transition state appears as a valuable strategy. Relying on several non-oxidizable pyridinone, pyrone or tropolone moieties, innovative inhibitors were developed, especially within the past decade, and the best reported analogues reached IC50 values in the nanomolar range. Herein, we review the design, the activity against several tyrosinases, and the proposed binding modes of reported catechol-mimicking, non-oxidizable molecules, in light of recent structural data.
Collapse
Affiliation(s)
- Morane Beaumet
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | | | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | | |
Collapse
|
5
|
Hassani B, Zare F, Emami L, Khoshneviszadeh M, Fazel R, Kave N, Sabet R, Sadeghpour H. Synthesis of 3-hydroxypyridin-4-one derivatives bearing benzyl hydrazide substitutions towards anti-tyrosinase and free radical scavenging activities. RSC Adv 2023; 13:32433-32443. [PMID: 37942455 PMCID: PMC10629491 DOI: 10.1039/d3ra06490e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Tyrosinase is a vital enzyme in the biosynthesis of melanin, which has a significant role in skin protection. Due to the importance of the tyrosinase enzyme in the cosmetics and health industries, studies to design new tyrosinase inhibitors have been expanded. In this study, the design and synthesis of 3-dihydroxypyridine-4-one derivatives containing benzo hydrazide groups with different substitutions were carried out, and their antioxidant and anti-tyrosinase activities were also evaluated. The proposed compounds showed tyrosinase inhibitory effects (IC50) in the 25.29 to 64.13 μM range. Among all compounds, 6i showed potent anti-tyrosinase activity with an IC50 = 25.29 μM. Also, the antioxidant activity of derivatives by using DPPH radical scavenging indicates an EC50 value between 0.039 and 0.389 mM. Molecular docking studies were performed to reveal the position and interactions of 6i as the most potent inhibitor within the tyrosinase active site. The results showed that 6i binds well to the proposed binding site and forms a stable complex with the target protein. Furthermore, the physicochemical profiles of the tested compounds indicated drug-like and bioavailability properties. The kinetic assay revealed that 6i acts as a competitive inhibitor. Also, for the estimation of the reactivity of the best compound (6i), the density functional theory (DFT) was performed at the B3LYP/6-31+G**.
Collapse
Affiliation(s)
- Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Fateme Zare
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Leila Emami
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Negin Kave
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| |
Collapse
|
6
|
Vittorio S, Dank C, Ielo L. Heterocyclic Compounds as Synthetic Tyrosinase Inhibitors: Recent Advances. Int J Mol Sci 2023; 24:ijms24109097. [PMID: 37240442 DOI: 10.3390/ijms24109097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Tyrosinase is a copper-containing enzyme which is widely distributed in nature (e.g., bacteria, mammals, fungi) and involved in two consecutive steps of melanin biosynthesis. In humans, an excessive production of melanin can determine hyperpigmentation disorders as well as neurodegenerative processes in Parkinson's disease. The development of molecules able to inhibit the high activity of the enzyme remain a current topic in medicinal chemistry, because the inhibitors reported so far present several side effects. Heterocycle-bearing molecules are largely diffuse in this sense. Due to their importance as biologically active compounds, we decided to report a comprehensive review of synthetic tyrosinase inhibitors possessing heterocyclic moieties reported within the last five years. For the reader's convenience, we classified them as inhibitors of mushroom tyrosinase (Agaricus bisporus) and human tyrosinase.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, 20133 Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
7
|
Kim HD, Choi H, Abekura F, Park JY, Yang WS, Yang SH, Kim CH. Naturally-Occurring Tyrosinase Inhibitors Classified by Enzyme Kinetics and Copper Chelation. Int J Mol Sci 2023; 24:ijms24098226. [PMID: 37175965 PMCID: PMC10178891 DOI: 10.3390/ijms24098226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Currently, there are three major assaying methods used to validate in vitro whitening activity from natural products: methods using mushroom tyrosinase, human tyrosinase, and dopachrome tautomerase (or tyrosinase-related protein-2, TRP-2). Whitening agent development consists of two ways, melanin synthesis inhibition in melanocytes and downregulation of melanocyte stimulation. For melanin levels, the melanocyte cell line has been used to examine melanin synthesis with the expression levels of TRP-1 and TRP-2. The proliferation of epidermal surfaced cells and melanocytes is stimulated by cellular signaling receptors, factors, or mediators including endothelin-1, α-melanocyte-stimulating hormone, nitric oxide, histamine, paired box 3, microphthalmia-associated transcription factor, pyrimidine dimer, ceramide, stem cell factors, melanocortin-1 receptor, and cAMP. In addition, the promoter region of melanin synthetic genes including tyrosinase is upregulated by melanocyte-specific transcription factors. Thus, the inhibition of growth and melanin synthesis in gene expression levels represents a whitening research method that serves as an alternative to tyrosinase inhibition. Many researchers have recently presented the bioactivity-guided fractionation, discovery, purification, and identification of whitening agents. Melanogenesis inhibition can be obtained using three different methods: tyrosinase inhibition, copper chelation, and melanin-related protein downregulation. There are currently four different types of inhibitors characterized based on their enzyme inhibition mechanisms: competitive, uncompetitive, competitive/uncompetitive mixed-type, and noncompetitive inhibitors. Reversible inhibitor types act as suicide substrates, where traditional inhibitors are classified as inactivators and reversible inhibitors based on the molecule-recognizing properties of the enzyme. In a minor role, transcription factors can also be downregulated by inhibitors. Currently, the active site copper iron-binding inhibitors such as kojic acid and chalcone exhibit tyrosinase inhibitory activity. Because the tyrosinase catalysis site structure is important for the mechanism determination of tyrosinase inhibitors, understanding the enzyme recognition and inhibitory mechanism of inhibitors is essential for the new development of tyrosinase inhibitors. The present review intends to classify current natural products identified by means of enzyme kinetics and copper chelation to exhibit tyrosinase enzyme inhibition.
Collapse
Affiliation(s)
- Hee-Do Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon 16419, Republic of Korea
| | - Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon 16419, Republic of Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon 16419, Republic of Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Republic of Korea
- Zoonotic and Vector Borne Disease Research, Korea National Institute of Health, Cheongju 28159, Republic of Korea
| | - Woong-Suk Yang
- National Institute of Nanomaterials Technology (NINT), POSTECH, 77, Cheongam-ro, Nam-gu, Pohang-si 37676, Republic of Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo 2066, Jangan-Gu, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Zhang X, Wu YT, Wei XY, Xie YY, Zhou T. Preparation, antioxidant and tyrosinase inhibitory activities of chitosan oligosaccharide-hydroxypyridinone conjugates. Food Chem 2023; 420:136093. [PMID: 37062084 DOI: 10.1016/j.foodchem.2023.136093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Two novel chitosan oligosaccharide (COS)-hydroxypyridone (HPO) conjugates were prepared by reacting chitosan oligosaccharide with 2-chloromethyl-5-hydroxypyridone (HPO), which was synthesized by a series of reactions starting from kojic acid. The degree of substitution of COS-HPO2 reached 1.2, with a yield of 74.9%. The structure of the two conjugates (COS-HPO1 and COS-HPO2) was identified by NMR and FT-IR analysis. The two conjugates showed significantly higher free radical (DPPH•, ABTS+• and •OH) scavenging activity and reducing power than those of COS and HPO (p < 0.05). Both COS-HPO1 and COS-HPO2 possessed significantly stronger tyrosinase inhibitory activity than those of COS, with IC50 values of 0.67 and 0.28 mg/mL for monophenolase, 0.73 and 0.30 mg/mL for diphenolase, respectively. In addition, the conjugates were found to be non-toxic to RAW264.7 macrophages and MRC-5 human lung cells. This work proposes a facile method to enhance the oxidative and tyrosinase inhibitory properties of COS.
Collapse
Affiliation(s)
- Xu Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Yun-Tao Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Xiao-Yi Wei
- Department of Food Science, Faculty of Hospitality Management, Shanghai Business School, Shanghai 200235, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
9
|
Xue S, Li Z, Ze X, Wu X, He C, Shuai W, Marlow M, Chen J, Scurr D, Zhu Z, Xu J, Xu S. Design, Synthesis, and Biological Evaluation of Novel Hybrids Containing Dihydrochalcone as Tyrosinase Inhibitors to Treat Skin Hyperpigmentation. J Med Chem 2023; 66:5099-5117. [PMID: 36940414 DOI: 10.1021/acs.jmedchem.3c00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Excessive melanin deposition may lead to a series of skin disorders. The production of melanin is carried out by melanocytes, in which the enzyme tyrosinase performs a key role. In this work, we identified a series of novel tyrosinase inhibitor hybrids with a dihydrochalcone skeleton and resorcinol structure, which can inhibit tyrosinase activity and reduce the melanin content in the skin. Compound 11c possessed the most potent activity against tyrosinase, showing IC50 values at nanomolar concentration ranges, along with significant antioxidant activity and low cytotoxicity. Furthermore, in vitro permeation tests, supported by HPLC analysis and 3D OrbiSIMS imaging visualization, revealed the excellent permeation of 11c. More importantly, compound 11c reduced the melanin content on UV-induced skin pigmentation in a guinea pig model in vivo. These results suggest that compound 11c may serve as a promising potent tyrosinase inhibitor for the development of a potential therapy to treat skin hyperpigmentation.
Collapse
Affiliation(s)
- Songtao Xue
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zhiwei Li
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Xiaotong Ze
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Xiuyuan Wu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Chen He
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Wen Shuai
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Maria Marlow
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Jian Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215300, P. R. China
| | - David Scurr
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shengtao Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215300, P. R. China
| |
Collapse
|
10
|
Sathya R, Valan Arasu M, Ilavenil S, Rejiniemon T, Vijayaraghavan P. Cosmeceutical potentials of litchi fruit and its by-products for a sustainable revalorization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Bounegru AV, Apetrei C. Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:760. [PMID: 36839128 PMCID: PMC9962745 DOI: 10.3390/nano13040760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The development of enzyme biosensors has successfully overcome various challenges such as enzyme instability, loss of enzyme activity or long response time. In the electroanalytical field, tyrosinase is used to develop biosensors that exploit its ability to catalyze the oxidation of numerous types of phenolic compounds with antioxidant and neurotransmitter roles. This review critically examines the main tyrosinase immobilization techniques for the development of sensitive electrochemical biosensors. Immobilization strategies are mainly classified according to the degree of reversibility/irreversibility of enzyme binding to the support material. Each tyrosinase immobilization method has advantages and limitations, and its selection depends mainly on the type of support electrode, electrode-modifying nanomaterials, cross-linking agent or surfactants used. Tyrosinase immobilization by cross-linking is characterized by very frequent use with outstanding performance of the developed biosensors. Additionally, research in recent years has focused on new immobilization strategies involving cross-linking, such as cross-linked enzyme aggregates (CLEAs) and magnetic cross-linked enzyme aggregates (mCLEAs). Therefore, it can be considered that cross-linking immobilization is the most feasible and economical approach, also providing the possibility of selecting the reagents used and the order of the immobilization steps, which favor the enhancement of biosensor performance characteristics.
Collapse
|
12
|
Buitrago E, Faure C, Carotti M, Bergantino E, Hardré R, Maresca M, Philouze C, Vanthuyne N, Boumendjel A, Bubacco L, du Moulinet d'Hardemare A, Jamet H, Réglier M, Belle C. Exploiting HOPNO-dicopper center interaction to development of inhibitors for human tyrosinase. Eur J Med Chem 2023; 248:115090. [PMID: 36634457 DOI: 10.1016/j.ejmech.2023.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In human, Tyrosinase enzyme (TyH) is involved in the key steps of protective pigments biosynthesis (in skin, eyes and hair). The use of molecules targeting its binuclear copper active site represents a relevant strategy to regulate TyH activities. In this work, we targeted 2-Hydroxypyridine-N-oxide analogs (HOPNO, an established chelating group for the tyrosinase dicopper active site) with the aim to combine effects induced by combination with a reference inhibitor (kojic acid) or natural substrate (tyrosine). The HOPNO-MeOH (3) and the racemic amino acid HOPNO-AA compounds (11) were tested on purified tyrosinases from different sources (fungal, bacterial and human) for comparison purposes. Both compounds have more potent inhibitory activities than the parent HOPNO moiety and display strictly competitive inhibition constant, in particular with human tyrosinase. Furthermore, 11 appears to be the most active on the B16-F1 mammal melanoma cells. The investigations were completed by stereospecificity analysis. Racemic mixture of the fully protected amino acid 10 was separated by chiral HPLC into the corresponding enantiomers. Assignment of the absolute configuration of the deprotected compounds was completed, based on X-ray crystallography. The inhibition activities on melanin production were tested on lysates and whole human melanoma MNT-1 cells. Results showed significant enhancement of the inhibitory effects for the (S) enantiomer compared to the (R) enantiomer. Computational studies led to an explanation of this difference of activity based for both enantiomers on the respective position of the amino acid group versus the HOPNO plane.
Collapse
Affiliation(s)
- Elina Buitrago
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France; University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Clarisse Faure
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marcello Carotti
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Elisabetta Bergantino
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | - Renaud Hardré
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Christian Philouze
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Ahcène Boumendjel
- University of Grenoble Alpes, CNRS-UGA UMR 5063, DPM CS 40700, 38058, Grenoble, Cedex 9, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121, Padova, Italy
| | | | - Hélène Jamet
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France
| | - Marius Réglier
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Catherine Belle
- University of Grenoble Alpes, CNRS-UGA UMR 5250, DCM, CS 40700, 38058, Grenoble, Cedex 9, France.
| |
Collapse
|
13
|
Arshad JZ, Hanif M. Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of metalloenzyme inhibitors. RSC Med Chem 2022; 13:1127-1149. [PMID: 36325396 PMCID: PMC9579940 DOI: 10.1039/d2md00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 07/31/2023] Open
Abstract
The versatile structural motif of hydroxypyrone is found in natural products and can be easily converted into hydroxypyridone and hydroxythiopyridone analogues. The favourable toxicity profile and ease of functionalization to access a vast library of compounds make them an ideal structural scaffold for drug design and discovery. This versatile scaffold possesses excellent metal chelating properties that can be exploited for chelation therapy in clinics. Deferiprone [1,2-dimethyl-3-hydroxy-4(1H)-one] was the first orally active chelator to treat iron overload in thalassemia major. Metal complexes of hydroxy-(thio)pyr(id)ones have been investigated as magnetic resonance imaging contrast agents, and anticancer and antidiabetic agents. In recent years, this compound class has demonstrated potential in discovering and developing metalloenzyme inhibitors. This review article summarizes recent literature on hydroxy-(thio)pyr(id)ones as inhibitors for metalloenzymes such as histone deacetylases, tyrosinase and metallo-β-lactamase. Different approaches to the design of hydroxy-(thio)pyr(id)ones and their biological properties against selected metalloenzymes are discussed.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College Women University Sialkot Sialkot Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand (+64) 9 373 7599 ext. 87422
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
14
|
Amaral LM, Moniz T, Leite A, Oliveira A, Fernandes P, Ramos MJ, Araújo AN, Freitas M, Fernandes E, Rangel M. A combined experimental and computational study to discover novel tyrosinase inhibitors. J Inorg Biochem 2022; 234:111879. [DOI: 10.1016/j.jinorgbio.2022.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
|
15
|
Zhu YZ, Chen K, Chen YL, Zhang C, Xie YY, Hider RC, Zhou T. Design and synthesis of novel stilbene-hydroxypyridinone hybrids as tyrosinase inhibitors and their application in the anti-browning of freshly-cut apples. Food Chem 2022; 385:132730. [PMID: 35318180 DOI: 10.1016/j.foodchem.2022.132730] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
In order to develop the tyrosinase inhibitors with potential application in food industry, a series of stilbene-hydroxypyridinone hybrids were prepared. Among these compounds, 1h was found to possess the most potent tyrosinase inhibitory effect on both monophenolase and diphenolase activities, with IC50 values of 2.72 μM and 15.86 μM, respectively. The inhibitory effect of 1h on monophenolase activity was 4.6 times that of kojic acid. An inhibition kinetic assay indicated that 1h was a mixed-type and reversible inhibitor. The copper-binding and reducing ability assays, molecular docking study, intrinsic and ANS-binding fluorescence assays indicated that copper coordination and reduction is likely to be the causative mechanism for 1h-induced inhibition on tyrosinase. The results of color measurement and browning index determination indicated that treatment with 1h retarded effectively the browning of freshly-cut apples during their storage. Meanwhile, PPO and POD activities in apple slices were found to be effectively inhibited.
Collapse
Affiliation(s)
- Yu-Zhu Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Changjun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
16
|
Zilles JC, Dos Santos FL, Kulkamp-Guerreiro IC, Contri RV. Biological activities and safety data of kojic acid and its derivatives - a review. Exp Dermatol 2022; 31:1500-1521. [PMID: 35960194 DOI: 10.1111/exd.14662] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Kojic acid presents a variety of applications for human use, especially as a depigmenting agent. Its derivatives are also proposed in order to prevent chemical degradation, prevent adverse effects and improve efficacy. The aim of this study was to peer review the current scientific literature concerning the biological activities and safety data of kojic acid or its derivatives, aiming at human use, and trying to elucidate the action mechanisms. Three different databases were assessed and the word "kojic" was crossed with "toxicity", "adverse effect", "efficacy", "effect", "activity" and "safety". Articles were selected according to pre-defined criteria. Besides the depigmenting activity, kojic acid and derivatives can act as antioxidant, antimicrobial, anti-inflammatory, radioprotector, anticonvulsant and obesity management agents, and present potential as antitumor substances. Depigmenting activity is due to the molecules, after penetrating the cell, binding to tyrosinase active site, regulating melanogenesis factors, leucocytes modulation and free radical scavenging activity. Hence, polarity, size and ligands are also important factors for activity. Kojic acid and derivatives present cytotoxicity to some cancerous cell lines, including melanoma, hepatocellular carcinoma, ovarian cancer, breast cancer and colon cancer. Regarding safety, kojic acid or its derivatives are safe molecules for human use in the concentrations tested. Kojic acid and its derivatives have great potential for cosmetic, pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Júlia Capp Zilles
- Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | | | - Irene Clemes Kulkamp-Guerreiro
- Faculdade de Farmácia Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Renata Vidor Contri
- Faculdade de Farmácia Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Universidade Federal do Rio grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Xia W, Chen K, Zhu YZ, Zhang CJ, Chen YL, Wang F, Xie YY, Hider RC, Zhou T. Antioxidant and anti-tyrosinase activity of a novel stilbene analogue as an anti-browning agent. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3817-3825. [PMID: 34923627 DOI: 10.1002/jsfa.11731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tyrosinase inhibitors find potential application in food, cosmetic and medicinal products, but most of the identified tyrosinase inhibitors are not suitable for practical use because of safety regulations or other problems. For the purpose of development of novel tyrosinase inhibitors that meet the requirement for practical application, a novel stilbene analogue (SA) was designed. RESULTS SA was found to possess a potent inhibitory effect against both mono- and diphenolase activities of mushroom tyrosinase, with IC50 values of 1.56 and 7.15 μmol L-1 , respectively. Compared with a natural tyrosinase inhibitor - kojic acid - the anti-tyrosinase effect of SA was significantly improved. Analysis of inhibition kinetics indicated that SA was a reversible and competitive-noncompetitive mixed-type inhibitor. SA was also found to possess more potent antioxidant activities (DPPH, superoxide anion radical and hydroxyl radical scavenging ability) than those of kojic acid. Cell viability studies revealed that SA was non-toxic to two cell lines. Furthermore, an anti-browning test demonstrated that SA effectively delayed the blackening of shrimp. CONCLUSION SA has potential as an anti-browning agent in foods. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yu-Zhu Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Chang-Jun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| |
Collapse
|
18
|
Kojic Acid Showed Consistent Inhibitory Activity on Tyrosinase from Mushroom and in Cultured B16F10 Cells Compared with Arbutins. Antioxidants (Basel) 2022; 11:antiox11030502. [PMID: 35326152 PMCID: PMC8944748 DOI: 10.3390/antiox11030502] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Kojic acid, β-arbutin, α-arbutin, and deoxyarbutin have been reported as tyrosinase inhibitors in many articles, but some contradictions exist in their differing results. In order to provide some explanations for these contradictions and to find the most suitable compound as a positive control for screening potential tyrosinase inhibitors, the activity and inhibition type of the aforementioned compounds on monophenolase and diphenolase of mushroom tyrosinase (MTYR) were studied. Their effects on B16F10 cells melanin content, tyrosinase (BTYR) activity, and cell viability were also exposed. Results indicated that α-arbutin competitively inhibited monophenolase activity, whereas they uncompetitively activated diphenolase activity of MTYR. β-arbutin noncompetitively and competitively inhibited monophenolase activity at high molarity (4000 µM) and moderate molarity (250–1000 µM) respectively, whereas it activated the diphenolase activity of MTYR. Deoxyarbutin competitively inhibited diphenolase activity, but could not inhibit monophenolase activity and only extended the lag time. Kojic acid competitively inhibited monophenolase activity and competitive–noncompetitive mixed-type inhibited diphenolase activity of MTYR. In a cellular experiment, deoxyarbutin effectively inhibited BTYR activity and reduced melanin content, but it also potently decreased cell viability. α-arbutin and β-arbutin dose-dependently inhibited BTYR activity, reduced melanin content, and increased cell viability. Kojic acid did not affect cell viability at 43.8–700 µM, but inhibited BTYR activity and reduced melanin content in a dose-dependent manner. Therefore, kojic acid was considered as the most suitable positive control among these four compounds, because it could inhibit both monophenolase and diphenolase activity of MTYR and reduce intercellular melanin content by inhibiting BTYR activity without cytotoxicity. Some explanations for the contradictions in the reported articles were provided.
Collapse
|
19
|
Xia W, Chakka VP, Chen K, Wang F, Xie YY, Hider RC, Zhou T. A Novel Stilbene Analogue: Antioxidant Activity and Application in Controlling the Quality and Bacterial Growth of Shrimp Refrigerated at 4ºC. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2021.2024636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Vara Prasad Chakka
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Yuan-Yuan Xie
- Department of Food Engineering, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P R China
| | - Robert C. Hider
- Division of Pharmaceutical Science, King’s College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
20
|
Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 2021; 224:113744. [PMID: 34365131 DOI: 10.1016/j.ejmech.2021.113744] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Tyrosinase is a copper-containing metalloenzyme that is responsible for the rate-limiting catalytic step in the melanin biosynthesis and enzymatic browning. As a promising target, tyrosinase inhibitors can be used as skin whitening agents and food preservatives, thus having broad potential in the fields of food, cosmetics, agriculture and medicine. From 2015 to 2020, numerous synthetic inhibitors of tyrosinase have been developed to overcome the challenges of low efficacy and side effects. This review summarizes the enzyme structure and biological functions of tyrosinase and demonstrates the recent advances of synthetic tyrosinase inhibitors from the perspective of medicinal chemistry, providing a better understanding of the catalytic mechanisms and more effective tyrosinase inhibitors.
Collapse
|
21
|
He M, Fan M, Peng Z, Wang G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur J Med Chem 2021; 221:113546. [PMID: 34023737 DOI: 10.1016/j.ejmech.2021.113546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
Hydroxypyranone and hydroxypyridinone are important oxygen-containing or nitrogen-containing heterocyclic nucleus and attracted increasing attention in medicinal chemistry and drug discovery over the past decade. Previous literature reports revealed that hydroxypyranone and hydroxypyridinone derivatives exhibit a wide range of pharmacological activities such as antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, antioxidant, anticonvulsant, and anti-diabetic activities. In this review, we systematically summarized the literature reported biological activities of hydroxypyranone and hydroxypyridinone derivatives. In particular, we focus on their biological activity, structure-activity relationship (SAR), mechanism of action, and interaction mechanisms with the target. The collected information is expected to provide rational guidance for the development of clinically useful agents from these pharmacophores.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Meiyan Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.
| |
Collapse
|
22
|
Singh LR, Chen YL, Xie YY, Xia W, Gong XW, Hider RC, Zhou T. Functionality study of chalcone-hydroxypyridinone hybrids as tyrosinase inhibitors and influence on anti-tyrosinase activity. J Enzyme Inhib Med Chem 2021; 35:1562-1567. [PMID: 32746652 PMCID: PMC7470021 DOI: 10.1080/14756366.2020.1801669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In an attempt to synthesise new tyrosinase inhibitors, we designed and synthesised a series of chalcone-hydroxypyridinone hybrids as potential tyrosinase inhibitors adopting strategic modifications of kojic acid. All the newly synthesised compounds were characterised by NMR and mass spectrometry. Initial screening of the target compounds demonstrated that compounds 1a, 1d, and 1n had relatively strong inhibitory activities against tyrosinase monophenolase, with IC50 values of 3.07 ± 0.85, 2.25 ± 0.8 and 2.75 ± 1.19 μM, respectively. The inhibitory activity against monophenolase was 6- to 8-fold higher than that of kojic acid. Compounds 1a, 1d, and 1n also showed inhibition of diphenolase, with IC50 values of 17.05 ± 0.07, 11.70 ± 0.03 and 19.3 ± 0.28 μM, respectively. The inhibition kinetics of diphenolase indicates that compounds 1a and 1d induce reversible inhibition on tyrosinase. Finally, we found that copper coordination should be one of the important inhibitory mechanism of these compounds in tyrosinase.
Collapse
Affiliation(s)
- L Ravithej Singh
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China
| | - Yu-Lin Chen
- Division of Pharmaceutical Science, King's College London, London, UK
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China
| | - Xing-Wen Gong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China
| | - Robert C Hider
- Division of Pharmaceutical Science, King's College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
23
|
Ding XM, Cai SX, Wang L, Zhang YC. Electrocatalytic performance of tyrosinase detection in Penaeus vannamei based on a [(PSS/PPy)(P 2Mo 18/PPy) 5] multilayer composite film modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1392-1403. [PMID: 33650584 DOI: 10.1039/d0ay02328k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyoxometalates (POMs) are widely used in the preparation of sensors that detect the content of substances because of their excellent electron transfer capabilities. In this paper, a [(PSS/PPy)(P2Mo18/PPy)5] multilayer composite film modified electrode was prepared by the potentiostatic deposition method. The electrochemical performance of the modified electrode was studied by cyclic voltammetry under the conditions of different modified layers, different supporting electrolytes and different sweep rates. Different concentrations of tyrosinase were catalyzed by the modified electrode under a suitable supporting electrolyte, and the electrochemical sensing of tyrosinase by the modified electrode was studied. The research results show that the modified electrode has good stability and reproducibility for electrochemical sensing of tyrosinase, and the response current has a good linear relationship with the amount of tyrosinase added. Taking peak III as an example, the detection limit (S/N = 3) was 2.7649 U mL-1. It can be known from the timing ampere curve that as the concentration of tyrosinase in the reaction system continues to increase, its response current increases stepwise, providing a linear curve in the range of 3.66 U mL-1 to 26.87 U mL-1, and the minimum detection limit (S/N = 3) reaches 0.0021 U mL-1. The [(PSS/PPy)(P2Mo18/PPy)5] multilayer composite membrane modified electrode was used to detect tyrosinase in Penaeus vannamei. The spiked recovery of the sample was 96.3-100.8%, indicating that the modified electrode has high accuracy and can be used for the detection of tyrosinase in actual samples.
Collapse
Affiliation(s)
- Xiao-Mei Ding
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, P. R. China.
| | | | | | | |
Collapse
|
24
|
Peng Z, Wang G, Zeng QH, Li Y, Liu H, Wang JJ, Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit Rev Food Sci Nutr 2021; 62:4053-4094. [PMID: 33459057 DOI: 10.1080/10408398.2021.1871724] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tyrosinase is a copper-containing oxidation enzyme, which is responsible for the production of melanin. This enzyme is widely distributed in microorganisms, animals and plants, and plays an essential role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Hence, it has been recognized as a therapeutic target for the development of antibrowning agents, antibacterial agents, skin-whitening agents, insecticides, and other therapeutic agents. With great potential application in food, agricultural, cosmetic and pharmaceutical industries, a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. In this review, we systematically summarized the advances of synthetic tyrosinase inhibitors in the literatures, including their inhibitory activity, cytotoxicity, structure-activity relationship (SAR), inhibition kinetics, and interaction mechanisms with the enzyme. The collected information is expected to provide a rational guidance and effective strategy to develop novel, potent and safe tyrosinase inhibitors for better practical applications in the future.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Food Science, Foshan University, Foshan, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
25
|
Chen H, Zhang X, Zhang X, Liu W, Lei Y, Zhu C, Ma B. (5-Hydroxy-4-oxo-2-styryl-4 H-pyridin-1-yl)-acetic Acid Derivatives as Multifunctional Aldose Reductase Inhibitors. Molecules 2020; 25:E5135. [PMID: 33158254 PMCID: PMC7663616 DOI: 10.3390/molecules25215135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023] Open
Abstract
As rate-limited enzyme of polyol pathway, aldose reductase (ALR2) is one of the key inhibitory targets for alleviating diabetic complications. To reduce the toxic side effects of the inhibitors and to decrease the level of oxidative stress, the inhibitory selectivity towards ALR2 against detoxicating aldehyde reductase (ALR1) and antioxidant activity are included in the design of multifunctional ALR2 inhibitors. Hydroxypyridinone derivatives were designed, synthesized and evaluated their inhibitory behavior and antioxidant activity. Notably, {2-[2-(3,4-dihydroxy-phenyl)-vinyl]-5-hydroxy-4-oxo-4H-pyridin-1-yl}-acetic acid (7l) was the most potent, with IC50 values of 0.789 μM. Moreover, 7l showed excellent selectivity towards ALR2 with selectivity index 25.23, which was much higher than that of eparlestat (17.37), the positive control. More significantly, 7l performed powerful antioxidative action. At a concentration of 1 μM, phenolic compounds 7l scavenged DPPH radical with an inhibitory rate of 41.48%, which was much higher than that of the well-known antioxidant Trolox, at 11.89%. Besides, 7l remarkably suppressed lipid peroxidation with a rate of 88.76% at a concentration of 100 μM. The binding mode derived from molecular docking proved that the derivatives were tightly bound to the activate site, suggesting strongly inhibitory action of derivatives against ALR2. Therefore, these results provided an achievement of multifunctional ALR2 inhibitors capable with potency for both selective ALR2 inhibition and as antioxidants.
Collapse
Affiliation(s)
| | | | | | | | | | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.C.); (X.Z.); (X.Z.); (W.L.); (Y.L.)
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.C.); (X.Z.); (X.Z.); (W.L.); (Y.L.)
| |
Collapse
|
26
|
Taslimi P. Evaluation of in vitro inhibitory effects of some natural compounds on tyrosinase activity and molecular docking study: Antimelanogenesis potential. J Biochem Mol Toxicol 2020; 34:e22566. [PMID: 32614502 DOI: 10.1002/jbt.22566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 01/28/2023]
Abstract
Tyrosinase enzyme is a functional oxidase that is extensively divided in nature. It is the main enzyme in melanin synthesis and is also involved in designating the color of mammalian hair and skin. Additionally, it is accountable for the unfavorable enzymatic browning that happens in plant-derived foods, limiting the shelf-life of new-cut crops with the resultant economic harm. Recently, there has been a remarkable concern to study the inhibitory activity of the tyrosinase enzyme and some inhibitory molecules isolated from natural sources. For tyrosinase enzyme, afzelin, narcissoside, justiciresinol, thalassiolin B, carpachromene, neobavaisoflavone, and kojic acid (as standard) as natural phenols have IC50 values in the range of 2.37-7.90 µM. Theoretical methods, such as gaussian software program and molecular modeling, were used to compare the biological and chemical activity values of molecules. To compare the biochemical and chemical activity values of molecules, chemical activities with quantum chemical parameters, and biological activities against tyrosinase with the ID of 5M8L molecules were investigated.
Collapse
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| |
Collapse
|
27
|
Chen J, Li Q, Ye Y, Huang Z, Ruan Z, Jin N. Phloretin as both a substrate and inhibitor of tyrosinase: Inhibitory activity and mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117642. [PMID: 31614273 DOI: 10.1016/j.saa.2019.117642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Tyrosinase is the rate-limiting enzyme for controlling the production of melanin in the human body, and overproduction of melanin can lead to a variety of skin disorders. In this paper, the inhibitory kinetics of phloretin on tyrosinase and their binding mechanism were determined using spectroscopy, molecular docking, antioxidant assays and chromatography. The spectroscopic results indicate that phloretin reversibly inhibits tyrosinase in a mix-type manner through a multiphase kinetic process with the IC50 of 169.36 μmol/L. It is shown that phloretin has a strong ability to quench the intrinsic fluorescence of tyrosinase mainly through a static quenching procedure, suggesting that a stable phloretin-tyrosinase complex is generated. Molecular docking results suggest that the dominant conformation of phloretin binds to the gate of the active site of tyrosinase. Moreover, the antioxidant assays demonstrate that phloretin has powerful antioxidant capacity and has the ability to reduce o-dopaquinone to l-dopa just like ascorbic acid. Interestingly, the results of spectroscopy and chromatography indicate that phloretin is a substrate of tyrosinase but also an inhibitor. The possible inhibitory mechanism is proposed, which will be helpful to design and search for tyrosinase inhibitors.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China.
| | - Qinglian Li
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Yaling Ye
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Ziyao Huang
- School of Pharmacy and Medical Technology, Putian University, Fujian, China
| | - Zhipeng Ruan
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Nan Jin
- School of Pharmacy and Medical Technology, Putian University, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| |
Collapse
|
28
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 525] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Tyrosinase inhibitory effects of Vinca major and its secondary metabolites: Enzyme kinetics and in silico inhibition model of the metabolites validated by pharmacophore modelling. Bioorg Chem 2019; 92:103259. [PMID: 31518762 DOI: 10.1016/j.bioorg.2019.103259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022]
Abstract
In the present study, we aimed to identify the tyrosinase enzyme inhibitory potential of Vinca major L. extract and its secondary metabolites. The extract possessed remarkable tyrosinase enzyme inhibitory effect with IC50 value of 20.39 ± 0.44 µg/mL compared to the positive control, kojic acid (IC50 8.56 ± 0.17 µg/mL). Compounds 1 and 5 were the most potent isolates with IC50 values of 32.41 ± 0.99 and 31.34 ± 0.75 µM, they were more potent than kojic acid (IC50: 60.25 ± 0.54 µM). Compound 2 also exhibited remarkable tyrosinase inhibition with an IC50 value of 64.51 ± 1.29 µM. An enzyme kinetics analysis revealed that 1 was a mixed-type, 2 and 5 were noncompetitive inhibitors. Using molecular docking, we predicted binding affinity and interactions of the compounds, which were in good alignment with a pharmacophore hypothesis generated out of a number of known tyrosinase inhibitors. The modelling studies underlined crucial interactions with the copper ions and residues around them such as Asn260, His263, and Met280.
Collapse
|
30
|
Chen YM, Su WC, Li C, Shi Y, Chen QX, Zheng J, Tang DL, Chen SM, Wang Q. Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish. Int J Biol Macromol 2019; 123:723-731. [DOI: 10.1016/j.ijbiomac.2018.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 01/20/2023]
|
31
|
Shao LL, Zhou JM, Zhu Q, Wang XL, Hider RC, Zhou T. Enzymatic characteristics of polyphenoloxidase from shrimp ( Penaeus vannamei) and its inhibition by a novel hydroxypyridinone derivative. Food Sci Biotechnol 2019; 28:1047-1055. [PMID: 31275704 DOI: 10.1007/s10068-018-00544-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 11/26/2022] Open
Abstract
Melanosis developed in shrimp (Penaeus vannamei) is mainly initiated by polyphenoloxidase (PPO), thus understanding of the characteristics of PPO in shrimp is important for controlling the melanosis of shrimp. The shrimp cephalothorax turns black most rapidly amongst all the tissues during the chilled storage. Crude PPO extracted from this cephalothorax has an optimal pH of 6.0 and an optimal temperature of 50 °C. PPO is relatively stable under neutral and weak alkaline conditions (pH 5.5-9.0) and the temperature range of 25-35 °C. The kinetic parameters K m and V max were recorded as 3.02 mM and 54.3 U/mg of protein, respectively, using L-Dopa as a substrate. The molecular weight of PPO was estimated as 200-220 kDa by an activity staining test. A hydroxypyridinone derivative, 5-hydroxy-1-octyl-4-oxo-1,4-dihydropyridine-2-carbaldehyde O-ethyl oxime, was demonstrated to efficiently inhibit the PPO, indicating that this compound might find application as a shrimp preservative.
Collapse
Affiliation(s)
- Le-Le Shao
- 1School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, 310018 Zhejiang People's Republic of China
| | - Jia-Min Zhou
- 1School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, 310018 Zhejiang People's Republic of China
| | - Qing Zhu
- 2Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Xiao-Ling Wang
- 3Faulty of Food Science, Zhejiang Pharmaceutical College, 888 East of Yinxian Road, Ningbo, 315100 Zhejiang People's Republic of China
| | - Robert C Hider
- 4Division of Pharmaceutical Sciences, King's College London, 150 Stamford Street, London, SE1 9NH UK
| | - Tao Zhou
- 1School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, 310018 Zhejiang People's Republic of China
| |
Collapse
|
32
|
Chen K, Shao LL, Huo YF, Zhou JM, Zhu Q, Hider RC, Zhou T. Antimicrobial and antioxidant effects of a hydroxypyridinone derivative containing an oxime ether moiety and its application in shrimp preservation. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Kubglomsong S, Theerakulkait C, Reed RL, Yang L, Maier CS, Stevens JF. Isolation and Identification of Tyrosinase-Inhibitory and Copper-Chelating Peptides from Hydrolyzed Rice-Bran-Derived Albumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8346-8354. [PMID: 30016586 PMCID: PMC6431294 DOI: 10.1021/acs.jafc.8b01849] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rice-bran albumin (RBAlb), which shows higher tyrosinase-inhibitory activity than other protein fractions, was hydrolyzed with papain to improve the bioactivity. The obtained RBAlb hydrolysate (RBAlbH) was separated into 11 peptide fractions by RP-HPLC. Tyrosinase inhibition and copper chelation activities decreased with increasing retention times of the peptide fractions. RBAlbH fraction 1, which exhibited the greatest activity, contained 13 peptides whose sequences were determined by using LC-MS/MS. Most of the peptide sequences contained features of previously reported tyrosinase-inhibitory and metal-chelating peptides, especially peptide SSEYYGGEGSSSEQGYYGEG. RBAlbH fraction 1 showed more effective tyrosinase inhibition (IC50 = 1.31 mg/mL) than citric acid (IC50 = 9.38 mg/mL), but it was less effective than ascorbic acid (IC50 = 0.03 mg/mL, P ≤ 0.05). It showed copper-chelating activity (IC50 = 0.62 mg/mL) stronger than that of EDTA (IC50 = 1.06 mg/mL, P ≤ 0.05). These results suggest that RBAlbH has potential as a natural tyrosinase inhibitor and copper chelator for application in the food and cosmetic industries.
Collapse
Affiliation(s)
- Supatcha Kubglomsong
- School of Human Ecology (Program in Food, Nutrition and Applications) , Sukhothai Thammathirat Open University , Chaengwattana Road , Bangpood, Pakkret , Nonthaburi 11120 , Thailand
| | - Chockchai Theerakulkait
- Department of Food Science and Technology, Faculty of Agro-Industry , Kasetsart University , Chatuchak, Bangkok 10900 , Thailand
| | - Ralph L Reed
- Department of Pharmaceutical Sciences, College of Pharmacy and the Linus Pauling Institute , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Liping Yang
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Claudia S Maier
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, College of Pharmacy and the Linus Pauling Institute , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
34
|
Pillaiyar T, Namasivayam V, Manickam M, Jung SH. Inhibitors of Melanogenesis: An Updated Review. J Med Chem 2018; 61:7395-7418. [PMID: 29763564 DOI: 10.1021/acs.jmedchem.7b00967] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Melanins are pigment molecules that determine the skin, eye, and hair color of the human subject to its amount, quality, and distribution. Melanocytes synthesize melanin and provide epidermal protection from various stimuli, such as harmful ultraviolet radiation, through the complex process called melanogenesis. However, serious dermatological problems occur when there is excessive production of melanin in different parts of the human body. These include freckles, melasma, senile lentigo, pigmented acne scars, and cancer. Therefore, controlling the production of melanin is an important approach for the treatment of pigmentation related disorderes. In this Perspective, we focus on the inhibitors of melanogenesis that directly/indirectly target a key enzyme tyrosinase as well as its associated signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon 34134 , Korea
| |
Collapse
|
35
|
Sheng Z, Ge S, Xu X, Zhang Y, Wu P, Zhang K, Xu X, Li C, Zhao D, Tang X. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. MEDCHEMCOMM 2018; 9:853-861. [PMID: 30108974 PMCID: PMC6071719 DOI: 10.1039/c8md00099a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/23/2018] [Indexed: 01/20/2023]
Abstract
Tyrosinase is a key enzyme in melanin biosynthesis, and is also involved in the enzymatic browning of plant-derived foods. Tyrosinase inhibitors are very important in medicine, cosmetics and agriculture. In order to develop more active and safer tyrosinase inhibitors, an efficient approach is to modify natural product scaffolds. In this work, two series of novel tyrosinase inhibitors were designed and synthesized by the esterification of cinnamic acid derivatives with paeonol or thymol. Their inhibitory effects on mushroom tyrosinase were evaluated. Most of these compounds (IC50: 2.0 to 163.8 μM) are found to be better inhibitors than their parent compounds (IC50: 121.4 to 5925.0 μM). Among them, (E)-2-acetyl-5-methoxyphenyl-3-(4-hydroxyphenyl)acrylate (5a), (E)-2-acetyl-5-methoxyphenyl-3-(4-methoxyphenyl)acrylate (5g) and (E)-2-isopropyl-5-methylphenyl-3-(4-hydroxyphenyl)acrylate (6a) showed strong inhibitory activities; the IC50 values were 2.0 μM, 8.3 μM and 10.6 μM, respectively, compared to the positive control, kojic acid (IC50: 32.2 μM). Analysis of the inhibition mechanism of 5a, 5g and 6a demonstrated that their inhibitory effects on tyrosinase are reversible. The inhibition kinetics, analyzed by Lineweaver-Burk plots, revealed that 5a acts as a non-competitive inhibitor while 5g and 6a are mixed-type inhibitors. Furthermore, docking experiments were carried out to study the interactions between 6a and mushroom tyrosinase.
Collapse
Affiliation(s)
- Zhaojun Sheng
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Siyuan Ge
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
| | - Ximing Xu
- Institute of Bioinformatics and Medical Engineering , School of Electrical and Information Engineering , Jiangsu University of Technology , Changzhou 213001 , China
| | - Yan Zhang
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
| | - Panpan Wu
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Kun Zhang
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Xuetao Xu
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Chen Li
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
| | - Denggao Zhao
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
- International Healthcare Innovation Institute (Jiangmen) , Jiangmen 529020 , China
| | - Xiaowen Tang
- School of Chemical and Environmental Engineering , Wuyi University , Jiangmen 529020 , China . ;
| |
Collapse
|
36
|
Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 2017; 32:403-425. [PMID: 28097901 PMCID: PMC6010116 DOI: 10.1080/14756366.2016.1256882] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/07/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Melanogenesis is a process to synthesize melanin, which is a primary responsible for the pigmentation of human skin, eye and hair. Although numerous enzymatic catalyzed and chemical reactions are involved in melanogenesis process, the enzymes such as tyrosinase and tyrosinase-related protein-1 (TRP-1) and TRP-2 played a major role in melanin synthesis. Specifically, tyrosinase is a key enzyme, which catalyzes a rate-limiting step of the melanin synthesis, and the downregulation of tyrosinase is the most prominent approach for the development of melanogenesis inhibitors. Therefore, numerous inhibitors that target tyrosinase have been developed in recent years. The review focuses on the recent discovery of tyrosinase inhibitors that are directly involved in the inhibition of tyrosinase catalytic activity and functionality from all sources, including laboratory synthetic methods, natural products, virtual screening and structure-based molecular docking studies.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
37
|
Shao LL, Wang XL, Chen K, Dong XW, Kong LM, Zhao DY, Hider RC, Zhou T. Novel hydroxypyridinone derivatives containing an oxime ether moiety: Synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chem 2017; 242:174-181. [PMID: 29037675 DOI: 10.1016/j.foodchem.2017.09.054] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
A range of hydroxypyridinone derivatives were synthesized starting from kojic acid. Among them, 10 and 11 were found to possess the strongest inhibitory effect on monophenolase activity of mushroom tyrosinase, having IC50 values of 2.04 and 1.60μM, respectively. The IC50 values of 10 and 11 for the inhibition of diphenolase activity of mushroom tyrosinase were determined as 13.89 and 7.99μM, respectively. Investigation of the inhibitory mechanism of these two compounds indicated that the inhibition was reversible and of a competitive-uncompetitive mixed type. The KI and KIS values of 10 were determined to be 24.84 and 32.54μM, respectively, and the corresponding values for 11 being 18.07 and 21.34μM, respectively. The effect of 11 on the browning process of fresh-cut apples was evaluated by measuring the color change and browning index. The results indicated that 11 had a significant effect on controlling the browning of fresh-cut apple slices.
Collapse
Affiliation(s)
- Le-Le Shao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Xiao-Ling Wang
- Faulty of Food Science, Zhejiang Pharmaceutical College, 888 East of Yinxian Road, Ningbo, Zhejiang 315100, PR China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Xiao-Wu Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Li-Min Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - De-Yin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Robert C Hider
- Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
38
|
Chen K, Zhao DY, Chen YL, Wei XY, Li YT, Kong LM, Hider RC, Zhou T. A Novel Inhibitor Against Mushroom Tyrosinase with a Double Action Mode and Its Application in Controlling the Browning of Potato. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1976-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|