1
|
Pokhriyal A, Kapoor N, Negi S, Sharma G, Chandra S, Gambhir L, Douglas Melo Coutinho H. Endophytic Fungi: Cellular factories of novel medicinal chemistries. Bioorg Chem 2024; 150:107576. [PMID: 38901278 DOI: 10.1016/j.bioorg.2024.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inflammation and associated disorders have been a major contributing factor to mortality worldwide. The augmented mortality rate and emerging resistance against the approved therapeutics necessitate the discovery of novel chemistries destined for multiple clinical settings. Cellular factories including endophytic fungi have been tapped for chemical diversity with therapeutic potential. The emerging evidence has suggested the potential of bioactive compounds isolated from the endophytic fungi as putative agents to combat inflammation-associated disorders. The review summarizesand assists the readers in comprehending the structural and functional aspects of the medicinal chemistries identified from endophytic fungi as anticancer, antiobesity, antigout, and immunomodulatory agents.
Collapse
Affiliation(s)
- Ankita Pokhriyal
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur 302015, India
| | - Sanskriti Negi
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur 302015, India
| | - Subhash Chandra
- Department of Pharmaceutical Chemistry, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India.
| | - Lokesh Gambhir
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India.
| | | |
Collapse
|
2
|
Dong JY, Tang MC, Liu L. α-Pyrone Derivatives from Calcarisporium arbuscula Discovered by Genome Mining. JOURNAL OF NATURAL PRODUCTS 2023; 86:2496-2501. [PMID: 37924510 DOI: 10.1021/acs.jnatprod.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
A highly reducing polyketide synthase (HRPKS) gene cluster from the genome of Calcarisporium arbuscula was identified through genome mining. Heterologous expression of this cluster led to the production of four new α-pyrone compounds, calcapyrones A (1) and B (2), along with their biosynthetic intermediates calcapyrones C (3) and D (4). The structures of these compounds were elucidated on the basis of extensive spectroscopic experiments, and the absolute configurations of the 7,8-diol moieties in 1 and 2 were assigned using Snatzke's method. The biosynthetic pathway of 1 and 2 was established through in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Jia-Yu Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Man-Cheng Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| |
Collapse
|
3
|
Rai M, Zimowska B, Gade A, Ingle P. Phoma spp. an untapped treasure of cytotoxic compounds: current status and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12635-9. [PMID: 37401998 DOI: 10.1007/s00253-023-12635-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
The genus Phoma has been explored for a wide range of secondary metabolites signifying a huge range of bioactivities. Phoma sensu lato is a major group that secretes several secondary metabolites. The genus Phoma mainly includes Phoma macrostoma, P. multirostrata, P. exigua, P. herbarum, P. betae, P. bellidis, P. medicaginis, P. tropica, and many more species from the genus that are continuously being identified for their potential secondary metabolites. The metabolite spectrum includes bioactive compounds like phomenon, phomin, phomodione, cytochalasins, cercosporamide, phomazines, and phomapyrone reported from various Phoma spp. These secondary metabolites show a broad range of activities including antimicrobial, antiviral, antinematode, and anticancer. The present review is aimed to emphasize the importance of Phoma sensu lato fungi, as a natural source of biologically active secondary metabolites, and their cytotoxic activities. So far, cytotoxic activities of Phoma spp. have not been reviewed; hence, this review will be novel and useful for the readers to develop Phoma-derived anticancer agents. KEY POINTS: • Different Phoma spp. contain a wide variety of bioactive metabolites. • These Phoma spp. also secrete cytotoxic and antitumor compounds. • The secondary metabolites can be used for the development of anticancer agents.
Collapse
Affiliation(s)
- Mahendra Rai
- Biotechnology Department, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India.
- Department of Microbiology, Nicolaus Copernicus University, 87-100, Torun, Poland.
| | - Beata Zimowska
- Department of Plant Protection, University of Life Sciences in Lublin, Poland7 K. St. Leszczyńskiego Street, 20-069, Lublin, Poland
| | - Aniket Gade
- Biotechnology Department, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Matunga, 400019, Mumbai, India
| | - Pramod Ingle
- Biotechnology Department, Sant Gadge Baba Amravati University, Amravati, 444 602, Maharashtra, India
| |
Collapse
|
4
|
Mulyani Y, Sinaga SE, Supratman U. Phytochemistry and Biological Activities of Endophytic Fungi from the Meliaceae Family. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020778. [PMID: 36677833 PMCID: PMC9863112 DOI: 10.3390/molecules28020778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Meliaceae plants are found worldwide in tropical or subtropical climates. They are important ethnobotanically as sources of traditional medicine, with 575 species and 51 genera. Previous research found that microorganisms are plant pioneers to produce secondary metabolites with diverse compound structures and bioactivities. Several plants of the Meliaceae family contain secondary metabolites isolated from endophytic fungi. Furthermore, related articles from 2002 to 2022 were collected from SciFinder, Google Scholar, and PubMed. About 276 compounds were isolated from endophytic fungi such as terpenoids, polyketides, lactones, pyrones, quinone, anthraquinones, xanthones, coumarines, isocoumarines, resorcylic acid lactones, cytochalasins, aromatics, ester, quinols, alkaloids, nitro compound, fatty acids, and sugars with bioactivities such as antioxidant, antibacterial, antifungal, anti-influenza, neuroprotective activities, anti-HIV, cytotoxic, allelopathic, anti-inflammatory, antifeedant effects, and BSLT toxicity. Meanwhile, secondary metabolites isolated from endophytic fungi were reported as one of the sources of active compounds for medicinal chemistry. This comprehensive review summarizes the ethnobotanical uses and secondary metabolites derived from Meliaceae endophytic fungi.
Collapse
Affiliation(s)
- Yeni Mulyani
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Unang Supratman
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: ; Tel.: +62-22-779-4391
| |
Collapse
|
5
|
Yu C, Nian Y, Chen H, Liang S, Sun M, Pei Y, Wang H. Pyranone Derivatives With Antitumor Activities, From the Endophytic Fungus Phoma sp. YN02-P-3. Front Chem 2022; 10:950726. [PMID: 35873041 PMCID: PMC9300907 DOI: 10.3389/fchem.2022.950726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Two new pyranone derivatives phomapyrone A (2) and phomapyrone B (3), one new coumarin 11S, 13R-(+)-phomacumarin A (1), three known pyranones (4–6), together with three known amide alkaloids fuscoatramides A-C (7–9), as well as 9S, 11R-(+)-ascosalitoxin (10) were isolated from the endophytic fungus Phoma sp. YN02-P-3, which was isolated from the healthy leaf tissue of a Paulownia tree in Yunnan Province, China. Their structures were elucidated using extensive NMR spectroscopic and HRESIMS data and by comparing the information with literature data. In addition, all compounds were tested for their cytotoxicity activity against human tumor cell lines, and the results showed that new compounds 1-3 showed moderate inhibitory activity against the HL-60 cell line with IC50 values of 31.02, 34.62, and 27.90 μM, respectively.
Collapse
Affiliation(s)
- Chong Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yin Nian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shuwen Liang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Mengyang Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuehu Pei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, HarBin, China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Haifeng Wang,
| |
Collapse
|
6
|
Sun SF, Cao HY, Yi C, Zhu S, Qin ZM, Liu YB. Secondary metabolites with diversified structures from an endophytic fungus Colletotrichum gloeosporioides associated with a toxic medicinal plant Tylophora ovata. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:468-482. [PMID: 35118925 DOI: 10.1080/10286020.2021.1993832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Six new secondary metabolites, including two new nor-triterpenes (1 and 2), one new sesquiterpene (4), two new α-pyrone derivatives (6 and 7), and one new natural product (5) along with two known compounds (3 and 8) were isolated from an endophytic fungus Colletotrichum gloeosporioides obtained from a toxic medicinal plant Tylophora ovata. Their structures were elucidated by spectroscopic data analyses, while their absolute configurations were determined by CD and X-ray diffraction analyses. The in vitro anti-inflammatory activities of these compounds were evaluated.
Collapse
Affiliation(s)
- Sen-Feng Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Yan Cao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng Yi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhi-Min Qin
- Medical School of Zhengzhou University, Zhengzhou 450000, China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Shevkar C, Pradhan P, Armarkar A, Pandey K, Kalia K, Paranagama P, Kate AS. Exploration of Potent Cytotoxic Molecules from Fungi in Recent Past to Discover Plausible Anticancer Scaffolds. Chem Biodivers 2022; 19:e202100976. [PMID: 35315213 DOI: 10.1002/cbdv.202100976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Fungi are known to produce diverse scaffolds possessing unique biological activities, however, to date, no molecule discovered from a fungal source has reached the market as an anti-cancer drug. Every year number of cytotoxic molecules of fungal origin are getting published and critical analysis of those compounds is necessary to identify the potent ones. A review mentioning the best cytotoxic fungal metabolites and their status in the drug development was published in 2014. In this report, we have included 176 cytotoxic molecules isolated from fungi after 2014 and categorized them according to their potencies such as IC50 values below 1 μM, 1-5 μM, and 5-10 μM. The emphasis was given to those 42 molecules which have shown IC50 less than 1 μM and discussed to a great extent. This review shall provide potent scaffolds of fungal origin which can be given priority in the development as a drug candidate for cancer therapeutics.
Collapse
Affiliation(s)
- Chaitrali Shevkar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Pranali Pradhan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Ashwini Armarkar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Komal Pandey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Priyani Paranagama
- Department of Chemistry, University of Kelaniya, Dalugama, Kelaniya, 11600, Sri Lanka
| | - Abhijeet S Kate
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| |
Collapse
|
8
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Prajapati J, Goswami D, Rawal RM. Endophytic fungi: A treasure trove of novel anticancer compounds. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100050. [PMID: 34909676 PMCID: PMC8663939 DOI: 10.1016/j.crphar.2021.100050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer is a multifactorial disease with a convoluted genesis and progression. The emergence of multidrug resistance to presently be offered drug and relapse is by far, the most critical concern to tackle this deteriorating disease. Henceforth, there is undeniably an inflated necessity for safe, promising, and less harmful new anticancer drugs. Natural compounds from various sources like plants, animals, and microorganisms have occupied a center stage in drug discovery due to their tremendous chemical diversity and potential as therapeutic agents. Endophytic microbes are symbiotically associated with plants and have been proven to produce novel or analogues of host bioactive metabolites exhibiting a variety of biological activities including anticancer activity. This review emphasizes on structurally diverse unprecedented anticancer natural compounds that have been reported exclusively from endophytic fungi from 2016 to 2020. It covers chemical nature of metabolites, its fungal source associated with terrestrial, as well as marine plants and anticancer activity based on their cytotoxicity profile against various cancer cell lines. Many of these fungal metabolites with promising anticancer activity can be used as lead molecules for in silico experiments and deserve special attention from scientists for further in vitro and clinical research.
Collapse
Affiliation(s)
- Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh M. Rawal
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
10
|
Belkadi A, Kenouche S, Melkemi N, Daoud I, Djebaili R. K-means clustering analysis, ADME/pharmacokinetic prediction, MEP, and molecular docking studies of potential cytotoxic agents. Struct Chem 2021. [DOI: 10.1007/s11224-021-01796-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Chaves Neto JR, Nascimento dos Santos MS, Mazutti MA, Zabot GL, Tres MV. Phoma dimorpha phytotoxic activity potentialization for bioherbicide production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zhang Q, Ma WG, Zhao Q, Zhao YY, Huang ZP, Xu YX, Zhu DF, Li JC, Zhang XM. α-pyrone derivatives from endophytic fungus Diaporthe sp. RJ-41. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2020.104198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Elsbaey M, Tanaka C, Miyamoto T. Allantopyrone E, a rare α-pyrone metabolite from the mangrove derived fungus Aspergillus versicolor. Nat Prod Res 2020; 36:760-764. [PMID: 32762459 DOI: 10.1080/14786419.2020.1803309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new α-pyrone derivative, with a rare substitution pattern, was isolated from the solid rice media of the fungal endophyte Aspergillus versicolor associated with the fruit of the mangrove Avicennia marina. It was named allantopyrone E, after allantopyrones C and D. The aforementioned three are the only diaryl-substituted α-pyrones to be reported from nature. The unique structure was elucidated based on one- and two dimensional NMR data as well as high resolution mass spectroscopy. A biosynthetic scheme was proposed for the new compound. Furthermore, allantopyrone E showed cytotoxic effect on HeLa cells with IC50= 50.97 μM.
Collapse
Affiliation(s)
- Marwa Elsbaey
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiaki Tanaka
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomofumi Miyamoto
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Sebhaoui J, El Bakri Y, Lai CH, Karthikeyan S, Anouar EH, Mague JT, Essassi EM. Unexpected synthesis of novel 2-pyrone derivatives: crystal structures, Hirshfeld surface analysis and computational studies. J Biomol Struct Dyn 2020; 39:4859-4877. [PMID: 32571166 DOI: 10.1080/07391102.2020.1780943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Here we report synthesis of three new compounds namely, 1-acetyl-1H-benzimidazolo-2(3H)-one (I), N-(5-acetyl-6-methyl-2-oxo-2H-pyran-4-yl)-N-(2-acetamidophenyl)acetamide (II) and N-(2-acetamidophenyl)-N-2-oxo-2H-pyran-4-yl)acetamide (III) have been synthesized and characterized by single crystal X-ray diffraction. Compounds I and II crystallize in the monoclinic space groups P21/n, and P21/c, respectively, while III crystallizes in the triclinic space group P-1. The theoretical parameters of I-III have been calculated through density functional theory (DFT) by using the hybrid functional B3LYP and basis set 6-311++G**. These theoretical parameters have been compared with the experimental ones obtained by XRD. The significant intermolecular interactions arising in crystal packing are rationalized by means of the Hirshfeld surface analysis method. The major intermolecular contacts in the Hirshfeld surfaces of I-III are from H…H contacts. In addition, binding modes of I-III within Tyrosine-protein kinase JAK2 were investigated using molecular docking and molecular dynamics simulation studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jihad Sebhaoui
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - Youness El Bakri
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco.,South Ural State University, Chelyabinsk, Russian Federation
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Subramani Karthikeyan
- Organic Chemistry Department, Science Faculty, RUDN University, Moscow, Russian Federation
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - El Mokhtar Essassi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| |
Collapse
|
15
|
Wu JS, Shi XH, Zhang YH, Yu JY, Fu XM, Li X, Chen KX, Guo YW, Shao CL, Wang CY. Co-cultivation With 5-Azacytidine Induced New Metabolites From the Zoanthid-Derived Fungus Cochliobolus lunatus. Front Chem 2019; 7:763. [PMID: 31781545 PMCID: PMC6857680 DOI: 10.3389/fchem.2019.00763] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
The zoanthid-derived fungus Cochliobolus lunatus (TA26-46) has been proven to be a source of bioactive 14-membered resorcylic acid lactones (RALs). In the present study, chemical epigenetic manipulation was applied to this fungal strain with a DNA methyltransferase inhibitor resulting in the significant changes of the secondary metabolites. Cultivation of C. lunatus (TA26-46) with 10 μM 5-azacytidine in Czapek-Dox liquid medium led to the isolation of new types of metabolites, including two α-pyrones, cochliobopyrones A (1) and B (2), along with three isocoumarins (3–5) and one chromone (6). The planar structures of the new compounds (1–2) were elucidated by comprehensive analyses of NMR and HRESIMS data. Their challenging relative configurations were established by a combination of acetonide reaction, coupling constants and NOESY correlations analysis, and DP4+ probability calculation. Their absolute configurations were determined by comparing with the ECD calculation data of the fragment molecules, 6-(1,2-dihydroxypropyl)-4-methoxy-2H-pyran-2-ones. It is the first time to obtain α-pyrone compounds with the epoxy ring or bromine atom on the seven-numbered side chain. It could be concluded that chemical epigenetic agents could induce C. lunatus to produce new types of secondary metabolites differing from its original products (RALs).
Collapse
Affiliation(s)
- Jing-Shuai Wu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Hui Shi
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ya-Hui Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-Yin Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Mei Fu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
16
|
Gao H, Li G, Peng XP, Lou HX. Fupyrones A and B, two new α-pyrones from an endophytic fungus, Fusarium sp. F20. Nat Prod Res 2019; 34:335-340. [DOI: 10.1080/14786419.2018.1531405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Han Gao
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
| | - Xiao-Ping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
| | - Hong-Xiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
17
|
Kim JW, Choi HG, Song JH, Kang KS, Shim SH. Bioactive secondary metabolites from an endophytic fungus Phoma sp. PF2 derived from Artemisia princeps Pamp. J Antibiot (Tokyo) 2018; 72:174-177. [PMID: 30542160 DOI: 10.1038/s41429-018-0131-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023]
Abstract
Two new isochromanone derivatives, (3S,4S)-3,8-dihydroxy-6-methoxy-3,4,5-trimethylisochroman-1-one (1) and methyl (S)-8-hydroxy-6-methoxy-5-methyl-4a-(3-oxobutan-2-yl)benzoate (2), together with six known compounds (3‒8) were isolated from the cultures of an endophytic fungus Phoma sp. PF2 obtained from Artemisia princeps. The chemical structures of the isolated compounds were elucidated by interpretation of spectroscopic data (1D, 2D NMR, HRESIMS, and CD) and calculation of ECD. All the isolated compounds (1‒8) showed moderate inhibitory activities on nitric oxide levels in lipopolysaccharide-induced RAW264.7 machrophage cells.
Collapse
Affiliation(s)
- Jung Wha Kim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Hyun Gyu Choi
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Ji Hoon Song
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sang Hee Shim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea.
| |
Collapse
|
18
|
Li SJ, Zhang X, Wang XH, Zhao CQ. Novel natural compounds from endophytic fungi with anticancer activity. Eur J Med Chem 2018; 156:316-343. [PMID: 30015071 DOI: 10.1016/j.ejmech.2018.07.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022]
Abstract
Plant endophytes are microorganisms that live in healthy plant tissues in part or all of their life history without causing obvious symptoms of infection in the host plants. Endophytes, a new type of microbial resource that can produce a variety of biological constituents, have great values for research and broad prospects for development. This article reviewed the research and development progress of endophytic fungi with cytotoxic activity between 2014 and 2017, including endophytic fungi sources, microbial taxonomy, compound classification and cytotoxic activity. The results showed that the 109 strains of endophytic fungi belong to 3 phyla, 7 classes and 50 genera. The secondary metabolites mainly contained alkaloids, terpenes, steroids, polyketides, quinones, isocoumarins, esters etc. The results of this study provide references for the development of new antitumor drugs and endophytes resources.
Collapse
Affiliation(s)
- Shou-Jie Li
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Xuan Zhang
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Xiang-Hua Wang
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Chang-Qi Zhao
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|