1
|
Spránitz P, Sőregi P, Hegedüs K, Igriczi B, Szakács G, Jemnitz K, Szabó P, Galushchak Y, Mykhailiuk PK, Soós T. Strain-Release-Driven Modular Synthesis of Oxetane-Based Amide Bioisosteres: Concise, Robust and Scalable Approach. Angew Chem Int Ed Engl 2024; 63:e202410554. [PMID: 38989571 DOI: 10.1002/anie.202410554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Amide bioisoterism is a widely used strategy in drug development to fine-tune physicochemical, pharmacokinetic, and metabolic properties, eliminate toxicity and gain intellectual property rights in uncharted chemical space. Of these, oxetane-amines offer particularly exciting possibilities as bioisosteres, although they are less frequently investigated than warranted due to the lack of simple and widely applicable synthetic methods. Herein, we report a two-step, practical, modular, robust, and scalable method for the construction of oxetane-containing amide bioisosteres that relies on the readily available oxetan-3-one. This operationally simple procedure exploits the enhanced reactivity of the keto group of the commercially available oxetan-3-one to form amine-benzotriazole intermediates, which springloaded adducts are then reacted with various aliphatic and aromatic organometallic reagents under mild conditions to afford various amino-oxetanes in good to high yields. The simplicity and broad applicability of the method greatly facilitates the synthesis of derivatives that were previously difficult or impossible to produce. The usefulness of this method in the field medicinal chemistry was also demonstrated by eliminating the well-known metabolic problem of ketoconazole.
Collapse
Affiliation(s)
- Péter Spránitz
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Petra Sőregi
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Kristóf Hegedüs
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Barbara Igriczi
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Gergely Szakács
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Katalin Jemnitz
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Pál Szabó
- Centre for Structural Science, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | | | - Pavel K Mykhailiuk
- Enamine Ltd, 78 Winston Churchill st. 78, 02094, Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, 64 Volodymyrska, 01601, Kyiv, Ukraine
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| |
Collapse
|
2
|
Plakas K, Hsieh CJ, Guarino DS, Hou C, Chia WK, Young A, Schmitz A, Ho YP, Weng CC, Lee H, Li S, Graham TJA, Mach RH. A Small-molecule Antagonist Radiotracer for Positron Emission Tomography Imaging of the Mu Opioid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618019. [PMID: 39415998 PMCID: PMC11482899 DOI: 10.1101/2024.10.12.618019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The opioid crisis is a catastrophic health emergency catalyzed by the misuse of opioids that target and activate the mu opioid receptor. Traditional radioligands used to study the mu opioid receptor are often tightly regulated owing to their abuse and respiratory depression potential. In the present study, we sought to design and characterize a library of 24 non-agonist ligands for the mu opioid receptor. Ligands were evaluated for the binding affinity, intrinsic activity, and predicted blood-brain barrier permeability. Several ligands demonstrated single-digit nM binding affinity for the mu opioid receptor while also demonstrating selectivity over the delta and kappa opioid receptors. The antagonist behavior of 1A and 3A at the mu opioid receptor indicate that these ligands would likely not induce opioid-dependent respiratory depression. Therefore, these ligands can enable a safer means to interrogate the endogenous opioid system. Based on binding affinity, selectivity, and potential off-target binding, [ 11 C] 1A was prepared via metallophotoredox of the aryl-bromide functional group to [ 11 C]methyl iodide. The nascent radiotracer demonstrated brain uptake in a rhesus macaque model and accumulation in the caudate and putamen. Naloxone was able to reduce [ 11 C] 1A binding, though the interactions were not as pronounced as naloxone's ability to displace [ 11 C]carfentanil. These results suggest that GSK1521498 and related congeners are amenable to radioligand design and can offer a safer way to query opioid neurobiology.
Collapse
|
3
|
Zhang Q, Soulère L, Queneau Y. Amide bioisosteric replacement in the design and synthesis of quorum sensing modulators. Eur J Med Chem 2024; 273:116525. [PMID: 38801798 DOI: 10.1016/j.ejmech.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The prevention or control of bacterial infections requires continuous search for novel approaches among which bacterial quorum sensing inhibition is considered as a complementary antibacterial strategy. Quorum sensing, used by many different bacteria, functions through a cell-to-cell communication mechanism relying on chemical signals, referred to as autoinducers, such as N-acyl homoserine lactones (AHLs) which are the most common chemical signals in this system. Designing analogs of these autoinducers is one of the possible ways to interfere with quorum sensing. Since bioisosteres are powerful tools in medicinal chemistry, targeting analogs of AHLs or other signal molecules and mimics of known QS modulators built on amide bond bioisosteres is a relevant strategy in molecular design and synthetic routes. This review highlights the application of amide bond bioisosteric replacement in the design and synthesis of novel quorum sensing inhibitors.
Collapse
Affiliation(s)
- Qiang Zhang
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, Hubei University of Education, 129 Second Gaoxin Road, Wuhan 430205, China
| | - Laurent Soulère
- INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, UMR 5246, ICBMS, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France
| | - Yves Queneau
- INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, UMR 5246, ICBMS, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France.
| |
Collapse
|
4
|
Yang Q, Fan L, Hao E, Hou X, Deng J, Xia Z, Du Z. Machine Learning Exploration of the Relationship Between Drugs and the Blood-Brain Barrier: Guiding Molecular Modification. Pharm Res 2024; 41:863-875. [PMID: 38605261 DOI: 10.1007/s11095-024-03686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/02/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE This study aimed to improve the efficiency of pharmacotherapy for CNS diseases by optimizing the ability of drug molecules to penetrate the Blood-Brain Barrier (BBB). METHODS We established qualitative and quantitative databases of the ADME properties of drugs and derived characteristic features of compounds with efficient BBB penetration. Using these insights, we developed four machine learning models to predict a drug's BBB permeability by assessing ADME properties and molecular topology. We then validated the models using the B3DB database. For acyclovir and ceftriaxone, we modified the Hydrogen Bond Donors and Acceptors, and evaluated the BBB permeability using the predictive model. RESULTS The machine learning models performed well in predicting BBB permeability on both internal and external validation sets. Reducing the number of Hydrogen Bond Donors and Acceptors generally improves BBB permeability. Modification only enhanced BBB penetration in the case of acyclovir and not ceftriaxone. CONCLUSIONS The machine learning models developed can accurately predict BBB permeability, and many drug molecules are likely to have increased BBB penetration if the number of Hydrogen Bond Donors and Acceptors are reduced. These findings suggest that molecular modifications can enhance the efficacy of CNS drugs and provide practical strategies for drug design and development. This is particularly relevant for improving drug penetration of the BBB.
Collapse
Affiliation(s)
- Qi Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Lili Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi University of Chinese Medicine (Xianhu Campus), No.13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi, China.
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study On Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi Collaborative Innovation Center for Research On Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi University of Chinese Medicine (Xianhu Campus), No.13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi, China.
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study On Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Collaborative Innovation Center for Research On Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study On Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Collaborative Innovation Center for Research On Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhongshang Xia
- Guangxi Key Laboratory of Efficacy Study On Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi Collaborative Innovation Center for Research On Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China.
- Guangxi University of Chinese Medicine (Xianhu Campus), No.13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi, China.
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study On Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Collaborative Innovation Center for Research On Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| |
Collapse
|
5
|
Pijper B, Martín R, Huertas-Alonso AJ, Linares ML, López E, Llaveria J, Díaz-Ortiz Á, Dixon DJ, de la Hoz A, Alcázar J. Fully Automated Flow Protocol for C(sp 3)-C(sp 3) Bond Formation from Tertiary Amides and Alkyl Halides. Org Lett 2024; 26:2724-2728. [PMID: 37219892 PMCID: PMC11020161 DOI: 10.1021/acs.orglett.3c01390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Herein, we present a novel C(sp3)-C(sp3) bond-forming protocol via the reductive coupling of abundant tertiary amides with organozinc reagents prepared in situ from their corresponding alkyl halides. Using a multistep fully automated flow protocol, this reaction could be used for both library synthesis and target molecule synthesis on the gram-scale starting from bench-stable reagents. Additionally, excellent chemoselectivity and functional group tolerance make it ideal for late-stage diversification of druglike molecules.
Collapse
Affiliation(s)
- Brenda Pijper
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Raúl Martín
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Alberto J. Huertas-Alonso
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Maria Lourdes Linares
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Enol López
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Josep Llaveria
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Ángel Díaz-Ortiz
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Darren J. Dixon
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford. Oxford OX1 3TA, United
Kingdom
| | - Antonio de la Hoz
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Jesús Alcázar
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| |
Collapse
|
6
|
Yang C, Sun S, Li M, Dou M, Li S. Design and Discovery of α-Oximido-arylacetamides as Novel Antifungal Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6702-6710. [PMID: 38484107 DOI: 10.1021/acs.jafc.3c08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The discovery of novel and easily accessible antifungal compounds is an imperative issue in agrochemical innovation. Our continuing research with the o-aminophenyloxazoline (NHPhOx) scaffold demonstrated the viability of introducing phenylacetamides for identifying novel antifungal leads. An antifungal function-oriented molecular evaluation was conducted for the previously identified lead R-LE008. Fine-tuning of the α-position and scaffold hopping of acid segment and NHPhOx enables α-oximido-arylacetamide as a novel antifungal model. The concomitant function-oriented diversification produces a panel of antifungal leads CN19, CN21b, CN28, and CN31 against Sclerotinia sclerotiorum and Botrytis cinerea. The crucial and multidimensional effect of the configuration of the acquired amides on the antifungal performance is demonstrated specifically by the separable CN21 isomers. The Z-isomer (CN21b), with an EC50 value of 0.97 μM against B. cinerea, is significantly more potent than its E-isomer (CN21a) and the positive control boscalid. More importantly, compound CN21b can efficiently inhibit resistant B. cinerea strains. CN21b demonstrates a better in vivo preventative effect (82.1%) than those of CN21a (48.1%) and boscalid (55.1%) at 100 μM. CN21b showed a distinct binding model from those of the boscalid and CN21a in the molecular docking simulation. A further morphological investigation by scanning electron microscopy revealed the different mycelia shrinkage of B. cinerea treated by CN21 isomers. The easy accessibility and cost-effectiveness demonstrated the practical potential of α-oximido-phenylacetamide containing NHPhOx as a new model for agrochemical innovation.
Collapse
Affiliation(s)
- Chen Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mengyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Menglan Dou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Kijewska M, Wołczański G, Kosson P, Wieczorek R, Lisowski M, Stefanowicz P. Stapling of leu-enkephalin analogs with bifunctional reagents for prolonged analgesic activity. Chem Commun (Camb) 2024; 60:3023-3026. [PMID: 38356394 DOI: 10.1039/d3cc06345c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The design and synthesis of leu-enkephalin analogs by replacing the glycine residues with N-(2-thioethyl)glycines and opening the cyclisation potential is presented. The cyclization (stapling) was achieved using bifunctional reagents (hexafluorobenzene and trithiocyanuric acid derivatives). The CD conformational studies of the stapled analogs suggest that the peptides adopt the type I β-turn conformation, which is in agreement with the theoretical analysis. The analog containing a trithiocyanuric acid derivative with a benzyl substituent shows potent analgesic activity.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Grzegorz Wołczański
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Piotr Kosson
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warszawa, Poland
| | - Robert Wieczorek
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Marek Lisowski
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
8
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
9
|
Shablykin OV, Brovarets VS, Shablykina OV. Recyclization of 5-Amino- oxazoles as a Route to new Functionalized Heterocycles (Developments of V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine). CHEM REC 2024; 24:e202300264. [PMID: 37882374 DOI: 10.1002/tcr.202300264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
The recyclizations of 5-amino- and 5-hydrazine-1,3-oxazoles mainly with electron-withdrawing group in 4th position are considered. The chemical behavior of these heterocycles is due to the presence of two hidden amide fragments; therefore, the recyclization processes include a stage of nucleophile attack on 2nd or 5th position of the oxazole cycle. When the nitrile group is present in 4th position, it is often involved in the recyclization forming α-aminoazoles. 5-Amino/hydrazine-1,3-oxazoles undergo recyclization both in nucleophilic (amines, hydrazine, thionating agents) and electrophilic medium ((trifluoro)acetic acid, other acylating agents). The numerous types of functionalized heterocycles can be easily obtained with the usage of these recyclizations, such as the derivatives of 3-amino-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole, imidazolidine-2,4-dione, 1H-pyrazole-3,4,5-triamine, 5,6-diamino-2,3-diphenylpyrimidin-4(3H)-one, 2-(2-R-7-oxo-5-(trifluoromethyl)oxazolo[5,4-d]pyrimidin-6(7H)-yl)acetic acid, 2-R-4-(5-R'-1,3,4-oxadiazol-2-yl)oxazol-5-amine, (amino(5-amino-1,3,4-thiadiazol-2-yl)methyl)phosphonate.
Collapse
Affiliation(s)
- Oleh V Shablykin
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Academician Kukhar str., 1, Kyiv, Ukraine
- Enamine Ltd. (www.enamine.net), Winston Churchill str., 78, Kyiv, Ukraine
| | - Volodymyr S Brovarets
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Academician Kukhar str., 1, Kyiv, Ukraine
| | - Olga V Shablykina
- Department of chemistry of bioactive nitrogen-containing heterocyclic bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Academician Kukhar str., 1, Kyiv, Ukraine
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str., 60, Kyiv, Ukraine
| |
Collapse
|
10
|
Qiang C, Zhang T, Feng Z, Liu P, Sun P. Direct Amino-α-C-H Heteroarylation of Amides under Electrochemical Conditions. Org Lett 2024. [PMID: 38191300 DOI: 10.1021/acs.orglett.3c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
An electrochemical hydrogen atom transfer (HAT) strategy for the direct amino-α-C-H heteroarylation of amides is described. The cheap TMSN3 acts as a hydrogen atom transfer reagent. A series of heteroarenes including quinoxalin-2(1H)-ones, 4-methylquinoline, isoquinoline, 2-methylquinoxaline, benzothiazole, etc., and various readily available amides/lactams were suitable. The reaction has the characteristics of a wide range of substrates, good regioselectivity, chemical oxidant-free conditions, etc.
Collapse
Affiliation(s)
- Congcong Qiang
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Tan Zhang
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Zhaoyue Feng
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Ke S, Gao Z, Zhang Z, Liu F, Wen S, Wang Y, Huang D. Discovery of Novel Carboxamide Derivatives Containing Biphenyl Pharmacophore as Potential Fungicidal Agents Used for Resistance Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14505-14516. [PMID: 37754847 DOI: 10.1021/acs.jafc.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Natural products are one of the main sources of drug and agrochemicals discovery. Biphenyls skeleton are ubiquitous structures in many classes of natural products, which indicate extensive biological activities. So, in order to investigate the potential applications for natural biphenyl derivatives, a series of novel carboxamide derivatives with diverse substituent patterns were designed and synthesized based on active pharmacophore from natural biphenyl lignans, and their in vitro antifungal activities against several typical plant pathogens belonging to oomycetes, ascomycete, deuteromycetes, and basidiomycetes were fully investigated. The highly potential compounds were further tested in vivo assay against Botrytis cinerea Pers. of cucumber to demonstrate a practical application for controlling common plant diseases, which indicated four compounds could effectively control the resistant strains of carbendazim, rutamycin, and pyrazolidide. The potential modes of action for compound B12 against B. cinerea were also explored using molecular docking, microscopic technology, and label-free quantitative proteomics analysis. The results show that compound B12 may be a potential novel fungicidal agent used for gray mold resistance control, which can influence the protein synthesis of B. cinerea. These findings can provide a certain theoretical basis for the development of novel biphenyl derivatives as potential green antifungal agents.
Collapse
Affiliation(s)
- Shaoyong Ke
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zilin Gao
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhigang Zhang
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Liu
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaohua Wen
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yueying Wang
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Daye Huang
- Key Lab of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
12
|
Perković I, Poljak T, Savijoki K, Varmanen P, Maravić-Vlahoviček G, Beus M, Kučević A, Džajić I, Rajić Z. Synthesis and Biological Evaluation of New Quinoline and Anthranilic Acid Derivatives as Potential Quorum Sensing Inhibitors. Molecules 2023; 28:5866. [PMID: 37570836 PMCID: PMC10420644 DOI: 10.3390/molecules28155866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Inhibiting quorum sensing (QS), a central communication system, is a promising strategy to combat bacterial pathogens without antibiotics. Here, we designed novel hybrid compounds targeting the PQS (Pseudomonas quinolone signal)-dependent quorum sensing (QS) of Pseudomonas aeruginosa that is one of the multidrug-resistant and highly virulent pathogens with urgent need of new antibacterial strategies. We synthesized 12 compounds using standard procedures to combine halogen-substituted anthranilic acids with 4-(2-aminoethyl/4-aminobuthyl)amino-7-chloroquinoline, linked via 1,3,4-oxadiazole. Their antibiofilm activities were first pre-screened using Gram-negative Chromobacterium violaceum-based reporter, which identified compounds 15-19 and 23 with the highest anti-QS and minimal bactericidal effects in a single experiment. These five compounds were then evaluated against P. aeruginosa PAO1 to assess their ability to prevent biofilm formation, eradicate pre-formed biofilms, and inhibit virulence using pyocyanin as a representative marker. Compound 15 displayed the most potent antibiofilm effect, reducing biofilm formation by nearly 50% and pre-formed biofilm masses by 25%. On the other hand, compound 23 exhibited the most significant antivirulence effect, reducing pyocyanin synthesis by over 70%. Thus, our study highlights the potential of 1,3,4-oxadiazoles 15 and 23 as promising scaffolds to combat P. aeruginosa. Additionally, interactive QS systems should be considered to achieve maximal anti-QS activity against this clinically relevant species.
Collapse
Affiliation(s)
- Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| | | | - Kirsi Savijoki
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
| | - Pekka Varmanen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
| | - Gordana Maravić-Vlahoviček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| | - Maja Beus
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| | - Anja Kučević
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| | - Ivan Džajić
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (G.M.-V.); (M.B.); (A.K.); (Z.R.)
| |
Collapse
|
13
|
Hocine S, Duchamp E, Mishra A, Fourquez JM, Hanessian S. Synthesis of Aza-Bridged Perhydroazulene Chimeras of Tropanes and Hederacine A. J Org Chem 2023; 88:4675-4686. [PMID: 36940388 DOI: 10.1021/acs.joc.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
We report the synthesis of two novel azaperhydroazulene tropane-hederacine chimeras A and B, which contain an 8-azabicyclo[3.2.1]octane ring and a 7-azabicyclo[4.1.1]octane ring, respectively. The synthesis of both chimeras was achieved by epoxide ring opening and was governed by the stereochemistry of the hydroxy-epoxide unit. Finally, a density functional theory study was conducted to explain the regioselectivity of the cyclization and the importance of the stereochemistry of the hydroxyl group.
Collapse
Affiliation(s)
- Sofiane Hocine
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| | - Edouard Duchamp
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| | - Akash Mishra
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| | | | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
14
|
Ivanova EE, Shabalin DA, Ushakov IA, Vashchenko AV, Schmidt EY, Trofimov BA. Diastereoselective synthesis of tetrahydropyrrolo[1,2- d]oxadiazoles from functionalized Δ 1-pyrrolines and in situ generated nitrile oxides. Org Biomol Chem 2023; 21:1725-1736. [PMID: 36723150 DOI: 10.1039/d2ob02230c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tetrahydropyrrolo[1,2-d]oxadiazoles have been synthesized in good-to-excellent yields via the cycloaddition of nitrile oxides (in situ generated from aldoximes) to readily accessible functionalized Δ1-pyrrolines. The reaction proceeds smoothly at room temperature in a two-phase system in the presence of sodium hypochloride as an oxidant to diastereoselectively afford pharmaceutically prospective 1,2,4-oxadiazolines fused with a five-membered ring. The reaction tolerates a broad range of substrates, including those with oxidant-sensitive functional groups and competitive reaction sites.
Collapse
Affiliation(s)
- Evgeniya E Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Igor' A Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Alexander V Vashchenko
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Elena Yu Schmidt
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| | - Boris A Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St., Irkutsk, 664033, Russian Federation.
| |
Collapse
|
15
|
Xin X, Wang Y, Zhang L, Zhang D, Sha L, Zhu Z, Huang X, Mao W, Zhang J. Development and therapeutic potential of adaptor-associated kinase 1 inhibitors in human multifaceted diseases. Eur J Med Chem 2023; 248:115102. [PMID: 36640459 DOI: 10.1016/j.ejmech.2023.115102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Adaptor-Associated Kinase 1 (AAK1), a Ser/Thr protein kinase, responsible for regulating clathrin-mediated endocytosis, is ubiquitous in the central nervous system (CNS). AAK1 plays an important role in neuropathic pain and a variety of other human diseases, including viral invasion, Alzheimer's disease, Parkinson's syndrome, etc. Therefore, targeting AAK1 is a promising therapeutic strategy. However, although small molecule AAK1 inhibitors have been vigorously developed, only BMS-986176/LX-9211 has entered clinical trials. Simultaneously, new small molecule inhibitors, including BMS-911172 and LP-935509, exhibited excellent druggability. This review elaborates on the structure, biological function, and disease relevance of AAK1. We emphatically analyze the structure-activity relationships (SARs) of small molecule AAK1 inhibitors based on different binding modalities and discuss prospective strategies to provide insights into novel AAK1 therapeutic agents for clinical practice.
Collapse
Affiliation(s)
- Xin Xin
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yue Wang
- Leling Traditional Chinese Medicine Hospital, Leling, 253600, Shandong, China
| | - Lele Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Leihao Sha
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziyu Zhu
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoyi Huang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wuyu Mao
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Esmaeilzadeh A, Heshmatpour F. Design, Synthesis and Characterization of Strontium and Cerium-Co-Doped TiO 2-HAp as an Efficient Nanocomposite: Investigation of Its Photocatalytic and Catalytic Applications. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2164017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alireza Esmaeilzadeh
- Department of Inorganic Chemistry, Faculty of Chemistry, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
| | - Felora Heshmatpour
- Department of Inorganic Chemistry, Faculty of Chemistry, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
| |
Collapse
|
17
|
Huang R, Wang M, Deng H, Xu J, Yan H, Zhao Y, Shi Z. Stereospecific nickel-catalyzed [4+2] heteroannulation of alkynes with aminophosphanes. SCIENCE ADVANCES 2023; 9:eade8638. [PMID: 36638162 PMCID: PMC9839338 DOI: 10.1126/sciadv.ade8638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Enantioenriched phosphorus compounds play crucial roles in many fields ranging from catalyst to materials science to drug development. Despite advances in the construction of phosphacycles, incorporation of a P-chirogenic center into heterocycles remains challenging. Here, we report an effective method for the preparation of phosphacycles through nickel-catalyzed [4+2] heteroannulation of internal alkynes with aminophosphanes derived from o-haloanilines. Notably, chiral 2-λ5-phosphaquinolines can be prepared from P-stereogenic substrates via NH/PH tautomeric equilibrium without loss of stereochemical integrity. The strategy is found to exhibit a broad scope in terms of both reaction components, enabling modular construction of libraries of 2-λ5-phosphaquinolines with different steric and electronic properties for fine-tuning photophysical properties, where some of these compounds showed distinct fluorescence with high quantum yields. A series of mechanistic studies further shed light on the pathway of the heteroannulation and reasons for stereospecificity.
Collapse
Affiliation(s)
- Ronghui Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Deng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
18
|
Travis CR, Francis DY, Williams DC, Waters ML. Evaluation of acyllysine isostere interactions with the aromatic pocket of the AF9 YEATS domain. Protein Sci 2023; 32:e4533. [PMID: 36482045 PMCID: PMC9793969 DOI: 10.1002/pro.4533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Amide-π interactions, in which an amide interacts with an aromatic group, are ubiquitous in biology, yet remain understudied relative to other noncovalent interactions. Recently, we demonstrated that an electrostatically tunable amide-π interaction is key to recognition of histone acyllysine by the AF9 YEATS domain, a reader protein which has emerged as a therapeutic target due to its dysregulation in cancer. Amide isosteres are commonly employed in drug discovery, often to prevent degradation by proteases, and have proven valuable in achieving selectivity when targeting epigenetic proteins. However, like amide-π interactions, interactions of amide isosteres with aromatic rings have not been thoroughly studied despite widespread use. Herein, we evaluate the recognition of a series of amide isosteres by the AF9 YEATS domain using genetic code expansion to evaluate the amide isostere-π interaction. We show that compared to the amide-π interaction with the native ligand, each isostere exhibits similar electrostatic tunability with an aromatic residue in the binding pocket, demonstrating that the isosteres maintain similar interactions with the aromatic residue. We identify a urea-containing ligand that binds with enhanced affinity for the AF9 YEATS domain, offering a promising starting point for inhibitor development. Furthermore, we demonstrate that carbamate and urea isosteres of crotonyllysine are resistant to enzymatic removal by SIRT1, a protein that cleaves acyl post-translational modifications, further indicating the potential of amide isosteres in YEATS domain inhibitor development. These results also provide experimental precedent for interactions of these common drug discovery moieties with aromatic rings that can inform computational methods.
Collapse
Affiliation(s)
- Christopher R. Travis
- Department of Chemistry, CB 3290University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Denver Y. Francis
- Department of Chemistry, CB 3290University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - David C. Williams
- Department of Pathology and Laboratory Medicine, CB 7525University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Marcey L. Waters
- Department of Chemistry, CB 3290University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
19
|
Du B, Chan CM, Ouyang Y, Chan K, Lin Z, Yu WY. NiH-catalyzed anti-Markovnikov hydroamidation of unactivated alkenes with 1,4,2-dioxazol-5-ones for the direct synthesis of N-alkyl amides. Commun Chem 2022; 5:176. [PMID: 36697972 PMCID: PMC9814879 DOI: 10.1038/s42004-022-00791-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The addition of a nitrogen-based functional group to alkenes via a direct catalytic method is an attractive way of synthesizing value-added amides. The regioselective hydroamidation of unactivated alkenes is considered one of the easiest ways to achieve this goal. Herein, we report the NiH-catalyzed anti-Markovnikov intermolecular hydroamidation of unactivated alkenes enabled by using 2,9-dibutylphenathroline (diBuphen) as the ligand. This protocol provides a platform for the direct synthesis of over 90 structurally diverse N-alkyl amides using dioxazolones, which can be easily derived from abundant carboxylic acid feedstocks. This method succeeds for both terminal and internal unactivated alkenes and some natural products. Mechanistic studies including DFT calculations reveal an initial reversible insertion/elimination of the [NiH] to the alkene, followed by the irreversible amidation to furnish the N-alkyl amides. By crossover experiments and deuterium labeling studies, the observed anti-Markovnikov regioselectivities are suggested to be controlled by the sterical environment of the coupling reaction.
Collapse
Affiliation(s)
- Bingnan Du
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Chun-Ming Chan
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yuxin Ouyang
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Kalok Chan
- grid.24515.370000 0004 1937 1450Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Zhenyang Lin
- grid.24515.370000 0004 1937 1450Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Wing-Yiu Yu
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| |
Collapse
|
20
|
Liu X, Shi F, Jin C, Liu B, Lei M, Tan J. Stereospecific synthesis of monofluoroalkenes and their deuterated analogues via Ag-catalyzed decarboxylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Newell BD, McMillen CD, Lee JP. N-(2,3,5,6-Tetrafluoropyridin-4-yl)formamide. IUCRDATA 2022; 7:x220804. [PMID: 36340979 PMCID: PMC9635414 DOI: 10.1107/s2414314622008045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
The title compound, C6H2F4N2O, displays amide bond lengths of 1.218 (3) Å and 1.366 (3) Å for the C=O and C-N bonds, respectively. The Cp-N-C-O (p = pyridine) torsion angle of 179.0 (2)° indicates an anti-conformation for the grouping. Inter-molecular hydrogen bonding is observed between the amine N-H group and the carbonyl O atom, which generates chains of mol-ecules propagating along the b-axis direction.
Collapse
Affiliation(s)
- Bailey D. Newell
- The University of Tennessee at Chattanooga, Department of Chemistry and Physics, #2252, 615 McCallie Avenue, Chattanooga, TN 37403, USA
| | | | - John P. Lee
- The University of Tennessee at Chattanooga, Department of Chemistry and Physics, #2252, 615 McCallie Avenue, Chattanooga, TN 37403, USA
| |
Collapse
|
22
|
Podversnik H, Jha S, Macheroux P, Breinbauer R. Design and synthesis of efficient fluororethylene-peptidomimetic inhibitors of dipeptidyl peptidase III (DPP3). Bioorg Med Chem 2022; 67:116831. [PMID: 35623134 DOI: 10.1016/j.bmc.2022.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
Dipeptidyl peptidase III (DPP3) is a ubiquitously expressed zinc-dependent peptide cutting enzyme and selectively hydrolyses amide bonds to cleave N-terminal dipeptide fragments off of physiologically important oligopeptides. DPP3 has been found in a multitude of different types of cells and appears to be involved in various physiological processes (e.g. nociception, blood pressure control, protein turnover). Using the slowly converted peptide substrate tynorphin (VVYPW) as starting point, we have replaced the scissile bond with a fluoroethylene bioisostere to design ground state inhibitors, which led to the so far most effective peptide-based inhibitor of DPP3.
Collapse
Affiliation(s)
- Harald Podversnik
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 10-12, A-8010 Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 10-12, A-8010 Graz, Austria; BIOTECHMED, Graz A-8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria; BIOTECHMED, Graz A-8010, Austria.
| |
Collapse
|
23
|
Ghosh S, Pyne P, Ghosh A, Hajra A. Ortho C-H Functionalizations of 2-Aryl-2H-Indazoles. CHEM REC 2022; 22:e202200158. [PMID: 35866505 DOI: 10.1002/tcr.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
C-H Functionalization is ubiquitously considered as a powerful, efficient and handy tool for installing various functional groups in complex organic heterocycles in an easier and step-economic way. Similarly, indazole is endowed as a potent heterocycle and is eminent for its profound impact in biological, medicinal and industrial chemistry. In this scenario, C-H functionalization at the selective ortho position of 2-arylindazole in assistance of a metal catalyst is also becoming an appealing approach in synthetic organic chemistry. This review addressed the recent findings and developments on ortho C-H functionalization of 2-aryl-2H-indazazoles with literature coverage extending from 2018 to May 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
24
|
Ke S, Huang W, Zhang Z, Wang Y, Zhang Y, Wu Z, Fang W, Wan Z, Gong Y, Yang J, Wang K, Shi L. Diarylamine-Guided Carboxamide Derivatives: Synthesis, Biological Evaluation, and Potential Mechanism of Action. Front Chem 2022; 10:953523. [PMID: 35903190 PMCID: PMC9315260 DOI: 10.3389/fchem.2022.953523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Diarylamines are a class of important skeleton widely existing in drugs or natural products. To discover novel diarylamine analogues as potential drugs, two series of diamide and carboxamide derivatives containing diarylamine scaffold were designed, synthesized and evaluated for their potential cytotoxic activities. The bioassay results indicated that some of the obtained compounds (C5, C6, C7, C11) exhibited good cytotoxic effect on cancer cell lines (SGC-7901, A875, HepG2), especially, compound C11 present significantly selective proliferation inhibition activity on cancer and normal cell lines (MARC145). In addition, the possible apoptosis induction for highly potential molecules was investigated, which present compound C11 could be used as novel lead compound for discovery of promising anticancer agents.
Collapse
Affiliation(s)
- Shaoyong Ke
- *Correspondence: Shaoyong Ke, ; Kaimei Wang, ; Liqiao Shi,
| | | | | | | | | | | | | | | | | | | | - Kaimei Wang
- *Correspondence: Shaoyong Ke, ; Kaimei Wang, ; Liqiao Shi,
| | - Liqiao Shi
- *Correspondence: Shaoyong Ke, ; Kaimei Wang, ; Liqiao Shi,
| |
Collapse
|
25
|
Landry ML, Trager R, Broccatelli F, Crawford JJ. When Cofactors Aren't X Factors: Functional Groups That Are Labile in Human Liver Microsomes in the Absence of NADPH. ACS Med Chem Lett 2022; 13:727-733. [PMID: 35450376 PMCID: PMC9014494 DOI: 10.1021/acsmedchemlett.2c00071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
The metabolic stability of compounds is often assessed at an early stage in drug discovery programs by profiling with hepatic microsomes. Exclusion of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) in these assays provides insight into non-cytochrome P450 (CYP)-mediated metabolism. This report uses a matched molecular pair (MMP) application to assess which chemical substituents are commonly susceptible to non-NADPH-mediated metabolism by microsomes. The analysis found the overall prevalence of metabolism in the absence of NADPH to be low, with esters, amides, aldehydes, and oxetanes being among the most commonly susceptible functional groups. Given that non-CYP enzymes, such as esterases, may be expressed extrahepatically and lead to lower confidence in predicted pharmacokinetic profiles, an awareness of the functional groups that commonly undergo non-NADPH-mediated metabolism-as well as options for their replacement based on experimental MMP data-may help researchers derisk metabolic stability issues at an earlier stage in drug discovery.
Collapse
Affiliation(s)
- Matthew L. Landry
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Trager
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Fabio Broccatelli
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - James J. Crawford
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
26
|
Li D, Sloman DL, Achab A, Zhou H, McGowan MA, White C, Gibeau C, Zhang H, Pu Q, Bharathan I, Hopkins B, Liu K, Ferguson H, Fradera X, Lesburg CA, Martinot TA, Qi J, Song ZJ, Yin J, Zhang H, Song L, Wan B, DAddio S, Solban N, Miller JR, Zamlynny B, Bass A, Freeland E, Ykoruk B, Hilliard C, Ferraro J, Zhai J, Knemeyer I, Otte KM, Vincent S, Sciammetta N, Pasternak A, Bennett DJ, Han Y. Oxetane Promise Delivered: Discovery of Long-Acting IDO1 Inhibitors Suitable for Q3W Oral or Parenteral Dosing. J Med Chem 2022; 65:6001-6016. [PMID: 35239336 DOI: 10.1021/acs.jmedchem.1c01670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3,3-Disubstituted oxetanes have been utilized as bioisosteres for gem-dimethyl and cyclobutane functionalities. We report the discovery of a novel class of oxetane indole-amine 2,3-dioxygenase (IDO1) inhibitors suitable for Q3W (once every 3 weeks) oral and parenteral dosing. A diamide class of IDO inhibitors was discovered through an automated ligand identification system (ALIS). Installation of an oxetane and fluorophenyl dramatically improved the potency. Identification of a biaryl moiety as an unconventional amide isostere addressed the metabolic liability of amide hydrolysis. Metabolism identification (Met-ID)-guided target design and the introduction of polarity resulted in the discovery of potent IDO inhibitors with excellent pharmacokinetic (PK) profiles in multiple species. To enable rapid synthesis of the key oxetane intermediate, a novel oxetane ring cyclization was also developed, as well as optimization of a literature route on kg scale. These IDO inhibitors may enable unambiguous proof-of-concept testing for the IDO1 inhibition mechanism for oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Huangguang Zhang
- Pharmaron Beijing Co., Ltd., No.6 Taihe Road, Beijing 100176, China
| | - Licheng Song
- Pharmaron Beijing Co., Ltd., No.6 Taihe Road, Beijing 100176, China
| | - Baoqiang Wan
- WuXi AppTec Co., Ltd., No. 1 Building, #288 FuTe ZhongLu, WaiGaoQiao Free Trade Zone, Shanghai 100176, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Hartz RA, Ahuja VT, Nara SJ, Kumar CMV, Manepalli RKVLP, Sarvasiddhi SK, Honkhambe S, Patankar V, Dasgupta B, Rajamani R, Muckelbauer JK, Camac DM, Ghosh K, Pokross M, Kiefer SE, Brown JM, Hunihan L, Gulianello M, Lewis M, Lippy JS, Surti N, Hamman BD, Allen J, Kostich WA, Bronson JJ, Macor JE, Dzierba CD. Bicyclic Heterocyclic Replacement of an Aryl Amide Leading to Potent and Kinase-Selective Adaptor Protein 2-Associated Kinase 1 Inhibitors. J Med Chem 2022; 65:4121-4155. [PMID: 35171586 DOI: 10.1021/acs.jmedchem.1c01966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adaptor protein 2-associated kinase 1 (AAK1) is a serine/threonine kinase that was identified as a therapeutic target for the potential treatment of neuropathic pain. Inhibition of AAK1 in the central nervous system, particularly within the spinal cord, was found to be the relevant site for achieving an antinociceptive effect. We previously reported that compound 7 is a brain-penetrant, AAK1 inhibitor that showed efficacy in animal models for neuropathic pain. One approach we took to improve upon the potency of 7 involved tying the amide back into the neighboring phenyl ring to form a bicyclic heterocycle. Investigation of the structure-activity relationships (SARs) of substituents on the resultant quinazoline and quinoline ring systems led to the identification of (S)-31, a brain-penetrant, AAK1-selective inhibitor with improved enzyme and cellular potency compared to 7. The synthesis, SAR, and in vivo evaluation of a series of quinazoline and quinoline-based AAK1 inhibitors are described herein.
Collapse
Affiliation(s)
- Richard A Hartz
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Vijay T Ahuja
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Susheel J Nara
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - C M Vijaya Kumar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Raju K V L P Manepalli
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sarat Kumar Sarvasiddhi
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Swarnamba Honkhambe
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Vidya Patankar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Bireshwar Dasgupta
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ramkumar Rajamani
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jodi K Muckelbauer
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Daniel M Camac
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kaushik Ghosh
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Matthew Pokross
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Susan E Kiefer
- Department of Protein Science, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jeffrey M Brown
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lisa Hunihan
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael Gulianello
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Martin Lewis
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jonathan S Lippy
- Department of Lead Evaluation, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Neha Surti
- Department of Lead Evaluation, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Brian D Hamman
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Jason Allen
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Walter A Kostich
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joanne J Bronson
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E Macor
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Carolyn D Dzierba
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
29
|
Rojas JJ, Croft RA, Sterling AJ, Briggs EL, Antermite D, Schmitt DC, Blagojevic L, Haycock P, White AJP, Duarte F, Choi C, Mousseau JJ, Bull JA. Amino-oxetanes as amide isosteres by an alternative defluorosulfonylative coupling of sulfonyl fluorides. Nat Chem 2022; 14:160-169. [PMID: 35087220 DOI: 10.1038/s41557-021-00856-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023]
Abstract
Bioisosteres provide valuable design elements that medicinal chemists can use to adjust the structural and pharmacokinetic characteristics of bioactive compounds towards viable drug candidates. Aryl oxetane amines offer exciting potential as bioisosteres for benzamides-extremely common pharmacophores-but are rarely examined due to the lack of available synthetic methods. Here we describe a class of reactions for sulfonyl fluorides to form amino-oxetanes by an alternative pathway to the established SuFEx (sulfonyl-fluoride exchange) click reactivity. A defluorosulfonylation forms planar oxetane carbocations simply on warming. This disconnection, comparable to a typical amidation, will allow the application of vast existing amine libraries. The reaction is tolerant to a wide range of polar functionalities and is suitable for array formats. Ten oxetane analogues of bioactive benzamides and marketed drugs are prepared. Kinetic and computational studies support the formation of an oxetane carbocation as the rate-determining step, followed by a chemoselective nucleophile coupling step.
Collapse
Affiliation(s)
- Juan J Rojas
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Rosemary A Croft
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Alistair J Sterling
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Edward L Briggs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Daniele Antermite
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Daniel C Schmitt
- Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - Luka Blagojevic
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Peter Haycock
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Fernanda Duarte
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Chulho Choi
- Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - James J Mousseau
- Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK.
| |
Collapse
|
30
|
Zhang LY, Wang NX, Wu YH, Yan Z, Gao XW, Feng K, Xu BC, Xing Y, Wang PJ, Zhang Y, Gao LL. Copper-Catalyzed Aldehyde Exchanged Amidation. Org Lett 2021; 24:658-662. [PMID: 34968066 DOI: 10.1021/acs.orglett.1c04107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of bioactive amides has been the pursuit of chemists. Herein secondary amides incorporated with an aldehyde group were first generated using aldehydes and secondary amines. Various (hetero)aryl aldehydes and even aliphatic aldehydes (>40 examples) were converted into the desired products in moderate to excellent yields (up to 89%). A plausible mechanism involving a Cu(I/II/III) catalytic cycle combined with radical rearrangement was proposed and confirmed with four key intermediates detected by high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue-Hua Wu
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhan Yan
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue-Wang Gao
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Feng
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Bao-Cai Xu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey,Wayne, New Jersey 07470, United States
| | - Pei-Jia Wang
- Baotou Rare Earth Research and Development Center, Chinese Academy of Sciences, Baotou 014010, China
| | - Yao Zhang
- Baotou Rare Earth Research and Development Center, Chinese Academy of Sciences, Baotou 014010, China
| | - Le-Le Gao
- Baotou Rare Earth Research and Development Center, Chinese Academy of Sciences, Baotou 014010, China
| |
Collapse
|
31
|
Lloyd M, Huckvale R, Cheung KMJ, Rodrigues MJ, Collie GW, Pierrat OA, Gatti Iou M, Carter M, Davis OA, McAndrew PC, Gunnell E, Le Bihan YV, Talbot R, Henley AT, Johnson LD, Hayes A, Bright MD, Raynaud FI, Meniconi M, Burke R, van Montfort RLM, Rossanese OW, Bellenie BR, Hoelder S. Into Deep Water: Optimizing BCL6 Inhibitors by Growing into a Solvated Pocket. J Med Chem 2021; 64:17079-17097. [PMID: 34846884 PMCID: PMC8667045 DOI: 10.1021/acs.jmedchem.1c00946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/14/2022]
Abstract
We describe the optimization of modestly active starting points to potent inhibitors of BCL6 by growing into a subpocket, which was occupied by a network of five stably bound water molecules. Identifying potent inhibitors required not only forming new interactions in the subpocket but also perturbing the water network in a productive, potency-increasing fashion while controlling the physicochemical properties. We achieved this goal in a sequential manner by systematically probing the pocket and the water network, ultimately achieving a 100-fold improvement of activity. The most potent compounds displaced three of the five initial water molecules and formed hydrogen bonds with the remaining two. Compound 25 showed a promising profile for a lead compound with submicromolar inhibition of BCL6 in cells and satisfactory pharmacokinetic (PK) properties. Our work highlights the importance of finding productive ways to perturb existing water networks when growing into solvent-filled protein pockets.
Collapse
Affiliation(s)
| | | | - Kwai-Ming J. Cheung
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Matthew J. Rodrigues
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Gavin W. Collie
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivier A. Pierrat
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Mahad Gatti Iou
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Michael Carter
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Owen A. Davis
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - P. Craig McAndrew
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Emma Gunnell
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Yann-Vaï Le Bihan
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rachel Talbot
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Louise D. Johnson
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Michael D. Bright
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Florence I. Raynaud
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Mirco Meniconi
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Olivia W. Rossanese
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Benjamin R. Bellenie
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| | - Swen Hoelder
- Cancer
Research UK Cancer Therapeutics Unit and Division of Structural Biology, The Institute of Cancer Research, London SM2 5NG, U.K.
| |
Collapse
|
32
|
D’Orsi R, Funicello M, Laurita T, Lupattelli P, Berti F, Chiummiento L. The Pseudo-Symmetric N-benzyl Hydroxyethylamine Core in a New Series of Heteroarylcarboxyamide HIV-1 Pr Inhibitors: Synthesis, Molecular Modeling and Biological Evaluation. Biomolecules 2021; 11:1584. [PMID: 34827582 PMCID: PMC8615997 DOI: 10.3390/biom11111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Here, we report the synthesis, enzyme inhibition and structure-activity relationship studies of a new potent class of HIV-1 protease inhibitors, which contain a pseudo-symmetric hydroxyethylamine core and heteroarylcarboxyamide moieties. The simple synthetic pathway furnished nine compounds in a few steps with high yields. The compounds were designed taking into account our previous results on other series of inhibitors with different substituents at P' and P'' and different ways of linking them to the inhibitor core. Potent inhibitory activity was obtained with nanomolar IC50 values measured with a standard fluorimetric test in 100 mM MES buffer, pH 5.5, containing 400 mM NaCl, 1 mM EDTA, 1 mM DTT and 1 mg/ml BSA. Compounds 9a-c, containing the indole ring in P1, exhibited an HIV-1 protease inhibitory activity more powerful than darunavir in the same assay. To obtain molecular insight into the binding properties of these compounds, docking analysis was performed, and their binding properties were also compared.
Collapse
Affiliation(s)
- Rosarita D’Orsi
- Dipartimento di Scienze, Università della Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy; (R.D.); (M.F.); (T.L.); (P.L.)
| | - Maria Funicello
- Dipartimento di Scienze, Università della Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy; (R.D.); (M.F.); (T.L.); (P.L.)
| | - Teresa Laurita
- Dipartimento di Scienze, Università della Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy; (R.D.); (M.F.); (T.L.); (P.L.)
| | - Paolo Lupattelli
- Dipartimento di Scienze, Università della Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy; (R.D.); (M.F.); (T.L.); (P.L.)
| | - Federico Berti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Lucia Chiummiento
- Dipartimento di Scienze, Università della Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy; (R.D.); (M.F.); (T.L.); (P.L.)
| |
Collapse
|
33
|
Lutter FH, Jouffroy M. Facile Conversion of Molecularly Complex (Hetero)aryl Carboxylic Acids into Alkynes for Accelerated SAR Exploration. Chemistry 2021; 27:14816-14820. [PMID: 34460121 DOI: 10.1002/chem.202102130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/10/2022]
Abstract
1,2,3-Triazoles are well-established bioisosteres for amides, often installed as a result of structure-activity-relationship (SAR) exploration. A straightforward approach to assess the effect of the replacement of an amide by a triazole would start from the carboxylic acid and the amine used for the formation of a given amide and convert them into the corresponding alkyne and azide for cyclization by copper-catalyzed alkyne-azide cycloaddition (CuAAC). Herein, we report a functional-group-tolerant and operationally simple decarbonylative alkynylation that allows the conversion of complex (hetero)aryl carboxylic acids into alkynes. Furthermore, the utility of this method was demonstrated in the preparation of a triazolo analog of the commercial drug moclobemide. Lastly, mechanistic investigations using labeled carboxylic acid derivatives clearly show the decarbonylative nature of this transformation.
Collapse
Affiliation(s)
- Ferdinand H Lutter
- Chemical Process R&D, Discovery Process Research, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Matthieu Jouffroy
- Chemical Process R&D, Discovery Process Research, Janssen Pharmaceutica N.V., Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
34
|
Krzywik J, Nasulewicz-Goldeman A, Mozga W, Wietrzyk J, Huczyński A. Novel Double-Modified Colchicine Derivatives Bearing 1,2,3-Triazole: Design, Synthesis, and Biological Activity Evaluation. ACS OMEGA 2021; 6:26583-26600. [PMID: 34661013 PMCID: PMC8515607 DOI: 10.1021/acsomega.1c03948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/15/2021] [Indexed: 05/08/2023]
Abstract
A series of 1,4-disubstituted 1,2,3-triazoles having 10-demethoxy-10-N-methylaminocolchicine core were designed and synthesized via the Cu(I)-catalyzed "click" reaction and screened for their in vitro cytotoxicity against four cancer cell lines (A549, MCF-7, LoVo, LoVo/DX) and one noncancerous cell line (BALB/3T3). Indexes of resistance (RI) and selectivity (SI) were also determined to assess the potential of the analogues to break drug resistance of the LoVo/DX cells and to verify their selectivity toward killing cancer cells over normal cells. The compounds with an ester or amide moiety in the fourth position of 1,2,3-triazole of 10-N-methylaminocolchicine turned out to have the greatest therapeutic potential (low IC50 values and favorable SI values), much better than that of unmodified colchicine or doxorubicin and cisplatin. Thus, they make a valuable clue for the further search for a drug having a colchicine scaffold.
Collapse
Affiliation(s)
- Julia Krzywik
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- TriMen
Chemicals, Piłsudskiego
141, 92-318 Łódź, Poland
| | - Anna Nasulewicz-Goldeman
- Hirszfeld
Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Witold Mozga
- TriMen
Chemicals, Piłsudskiego
141, 92-318 Łódź, Poland
| | - Joanna Wietrzyk
- Hirszfeld
Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Adam Huczyński
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- . Tel: +48618291673
| |
Collapse
|
35
|
Rahman MT, Decker AM, Laudermilk L, Maitra R, Ma W, Ben Hamida S, Darcq E, Kieffer BL, Jin C. Evaluation of Amide Bioisosteres Leading to 1,2,3-Triazole Containing Compounds as GPR88 Agonists: Design, Synthesis, and Structure-Activity Relationship Studies. J Med Chem 2021; 64:12397-12413. [PMID: 34387471 PMCID: PMC8395584 DOI: 10.1021/acs.jmedchem.1c01075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The orphan receptor GPR88 has been implicated in a number of striatal-associated disorders, yet its endogenous ligand has not been discovered. We have previously reported that the amine functionality in the 2-AMPP-derived GPR88 agonists can be replaced with an amide (e.g., 4) without losing activity. Later, we have found that the amide can be replaced with a bioisosteric 1,3,4-oxadiazole with improved potency. Here, we report a further study of amide bioisosteric replacement with a variety of azoles containing three heteroatoms, followed by a focused structure-activity relationship study, leading to the discovery of a series of novel 1,4-disubstituted 1H-1,2,3-triazoles as GPR88 agonists. Collectively, our medicinal chemistry efforts have resulted in a potent, efficacious, and brain-penetrant GPR88 agonist 53 (cAMP EC50 = 14 nM), which is a suitable probe to study GPR88 functions in the brain.
Collapse
Affiliation(s)
- Md Toufiqur Rahman
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Ann M Decker
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Lucas Laudermilk
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Rangan Maitra
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Weiya Ma
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
| | - Sami Ben Hamida
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
- INSERM U1114, University of Strasbourg, Strasbourg 67085, France
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
- INSERM U1114, University of Strasbourg, Strasbourg 67085, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec H4H 1R3, Canada
- INSERM U1114, University of Strasbourg, Strasbourg 67085, France
| | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
36
|
Alves L, Santos DA, Cendron R, Rocho FR, Matos TKB, Leitão A, Montanari CA. Nitrile-based peptoids as cysteine protease inhibitors. Bioorg Med Chem 2021; 41:116211. [PMID: 33991733 DOI: 10.1016/j.bmc.2021.116211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
Peptidomimetics of the class of dipeptidyl nitrile analog peptoids were synthesized as inhibitors of mammalian cysteine proteases of the papain superfamily. The dipeptidyl nitrile side chains were attached to the peptide backbone's nitrogen atom, not to the α-carbons. Synthesized nitrile-based peptoid analogs that lack the hydrogen amide at P2-P3 are responsible for many of the secondary structure elements in peptides and proteins, making them resistant to proteolysis. The designed peptoids would lose a hydrogen bond with cruzain Asp161 decreasing the affinity toward the enzyme. A structure-activity relationship and matched molecular pair-based analysis between the dipeptidyl nitrile Neq0409 and its peptoid 4a yielded the following cruzain affinities: pKiNeq0409 = 6.5 and pKi4a = 5.2. respectively. A retrosynthetic matched molecular pair cliff (RMMP-cliff) analysis with a ΔpKiNeq0409-4a of 1.3 log is found for this transformation. These novel peptoids were then optimized, leading to compound 4i, with high cruzain inhibition (pKi = 6.8). Cross-class cathepsin activity was observed for some of these novel compounds against cathepsins K, L and S, while other compounds presented a selective inhibition of cathepsin K (4b, 4c, 4k) over ten times higher than the other enzymes. The putative mode of binding was determined by using covalent docking, which also aided to describe the structure-activity relationship (SAR). Interestingly, none of the peptoids inhibited CatB to any appreciable extent. These results provide guidance to identify novel bioactive nitrile-based peptoids.
Collapse
Affiliation(s)
- Luana Alves
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Deborah A Santos
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil.
| | - Rodrigo Cendron
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Fernanda R Rocho
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Thiago K B Matos
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil.
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group (NEQUIMED), Institute of Chemistry of São Carlos, University of São Paulo, São Carlos/SP, Brazil
| |
Collapse
|
37
|
Marzo L. Recent Advances in Organic Synthesis Using Light‐Mediated N‐Heterocyclic Carbene Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Leyre Marzo
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid C/Francisco Tomás y Valiente, 7 Cantoblanco 28049 Madrid Spain
| |
Collapse
|
38
|
Lugiņina J, Linden M, Bazulis M, Kumpiņš V, Mishnev A, Popov SA, Golubeva TS, Waldvogel SR, Shults EE, Turks M. Electrosynthesis of Stable Betulin‐Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupane‐Type Triterpenoid‐Isoxazole Conjugates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jevgeņija Lugiņina
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Martin Linden
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Māris Bazulis
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Viktors Kumpiņš
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis Aizkraukles Str. 21 Riga 1006 Latvia
| | - Sergey A. Popov
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Tatiana S. Golubeva
- The Federal Research Center Institute of Cytology and Genetics Acad. Lavrentyev Ave., 10 Novosibirsk 630090 Russia
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Elvira E. Shults
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| |
Collapse
|
39
|
Bhela IP, Serafini M, Del Grosso E, Tron GC, Pirali T. Tritylamine as an Ammonia Surrogate in the Ugi Reaction Provides Access to Unprecedented 5-Sulfamido Oxazoles Using Burgess-type Reagents. Org Lett 2021; 23:3610-3614. [PMID: 33913716 PMCID: PMC8289289 DOI: 10.1021/acs.orglett.1c01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Starting from a wide
range of α-acylamino amide substructures
synthesized using tritylamine as an ammonia surrogate in the Ugi reaction,
Burgess-type reagents enable cyclodehydration and afford unprecedented
oxazole scaffolds with four points of diversity, including a sulfamide
moiety in the 5-position. The synthetic procedure employs readily
available starting materials and proceeds smoothly under mild reaction
conditions with good tolerance for a variety of functional groups,
coming to fill a gap in the field of oxazole compounds.
Collapse
Affiliation(s)
- Irene Preet Bhela
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Marta Serafini
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Erika Del Grosso
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy
| | - Tracey Pirali
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, Novara 28100, Italy.,ChemICare S.r.l., Enne3, Corso Trieste 15/A, Novara 28100, Italy
| |
Collapse
|
40
|
Grob N, Schibli R, Béhé M, Valverde IE, Mindt TL. 1,5-Disubstituted 1,2,3-Triazoles as Amide Bond Isosteres Yield Novel Tumor-Targeting Minigastrin Analogs. ACS Med Chem Lett 2021; 12:585-592. [PMID: 33859799 PMCID: PMC8040048 DOI: 10.1021/acsmedchemlett.0c00636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
1,5-Disubstituted 1,2,3-triazoles (1,5-Tz) are considered bioisosteres of cis-amide bonds. However, their use for enhancing the pharmacological properties of peptides or proteins is not yet well established. Aiming to illustrate their utility, we chose the peptide conjugate [Nle15]MG11 (DOTA-dGlu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2) as a model compound since it is known that the cholecystokinin-2 receptor (CCK2R) is able to accommodate turn conformations. Analogs of [Nle15]MG11 incorporating 1,5-Tz in the backbone were synthesized and radiolabeled with lutetium-177, and their pharmacological properties (cell internalization, receptor binding affinity and specificity, plasma stability, and biodistribution) were evaluated and compared with [Nle15]MG11 as well as their previously reported analogs bearing 1,4-disubstituted 1,2,3-triazoles. Our investigations led to the discovery of novel triazole-modified analogs of [Nle15]MG11 with nanomolar CCK2R-binding affinity and 2-fold increased tumor uptake. This study illustrates that substitution of amides by 1,5-disubstituted 1,2,3-triazoles is an effective strategy to enhance the pharmacological properties of biologically active peptides.
Collapse
Affiliation(s)
- Nathalie
M. Grob
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zürich, Switzerland
| | - Roger Schibli
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, 8093 Zürich, Switzerland
- Center
for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Béhé
- Center
for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Ibai E. Valverde
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR CNRS 6302, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Thomas L. Mindt
- Ludwig
Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, 1090 Vienna, Austria
- Department
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department
of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
41
|
Li D, Deng Y, Achab A, Bharathan I, Hopkins BA, Yu W, Zhang H, Sanyal S, Pu Q, Zhou H, Liu K, Lim J, Fradera X, Lesburg CA, Lammens A, Martinot TA, Cohen RD, Doty AC, Ferguson H, Nickbarg EB, Cheng M, Spacciapoli P, Geda P, Song X, Smotrov N, Abeywickrema P, Andrews C, Chamberlin C, Mabrouk O, Curran P, Richards M, Saradjian P, Miller JR, Knemeyer I, Otte KM, Vincent S, Sciammetta N, Pasternak A, Bennett DJ, Han Y. Carbamate and N-Pyrimidine Mitigate Amide Hydrolysis: Structure-Based Drug Design of Tetrahydroquinoline IDO1 Inhibitors. ACS Med Chem Lett 2021; 12:389-396. [PMID: 33738066 PMCID: PMC7957919 DOI: 10.1021/acsmedchemlett.0c00525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Indoleamine-2,3-dioxygenase-1 (IDO1) has emerged as an attractive target for cancer immunotherapy. An automated ligand identification system screen afforded the tetrahydroquinoline class of novel IDO1 inhibitors. Potency and pharmacokinetic (PK) were key issues with this class of compounds. Structure-based drug design and strategic incorporation of polarity enabled the rapid improvement on potency, solubility, and oxidative metabolic stability. Metabolite identification studies revealed that amide hydrolysis in the D-pocket was the key clearance mechanism for this class. Strategic survey of amide isosteres revealed that carbamates and N-pyrimidines, which maintained exquisite potencies, mitigated the amide hydrolysis issue and led to an improved rat PK profile. The lead compound 28 is a potent IDO1 inhibitor, with clean off-target profiles and the potential for quaque die dosing in humans.
Collapse
Affiliation(s)
- Derun Li
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Yongqi Deng
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Abdelghani Achab
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Indu Bharathan
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Brett Andrew Hopkins
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Wensheng Yu
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Hongjun Zhang
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Sulagna Sanyal
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Qinglin Pu
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Hua Zhou
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Kun Liu
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Jongwon Lim
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Xavier Fradera
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Charles A. Lesburg
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Alfred Lammens
- Proteros
Biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Theodore A. Martinot
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Ryan D. Cohen
- Analytical
Research & Development, Merck &
Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065 United States
| | - Amy C. Doty
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Heidi Ferguson
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Elliott B. Nickbarg
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Mangeng Cheng
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Peter Spacciapoli
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Prasanthi Geda
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Xuelei Song
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Nadya Smotrov
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Pravien Abeywickrema
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Christine Andrews
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Chad Chamberlin
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Omar Mabrouk
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Patrick Curran
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew Richards
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Peter Saradjian
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - J. Richard Miller
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Ian Knemeyer
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Karin M. Otte
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Stella Vincent
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Nunzio Sciammetta
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Alexander Pasternak
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - David Jonathan Bennett
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| | - Yongxin Han
- Departments of Discovery Chemistry, Pharmacokinetics, Pharmacodynamics,
and Drug Metabolism, Computational and Structural Chemistry, Discovery Process Chemistry, Discovery Pharmaceutical
Science, and Quantitative Biosciences, Merck & Co.,
Inc., 33 Avenue Louis
Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
42
|
Ma W, Xu B, Sun R, Xu YJ, Ge JF. The application of amide units in the construction of neutral functional dyes for mitochondrial staining. J Mater Chem B 2021; 9:2524-2531. [DOI: 10.1039/d0tb02885a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To develop a new class of neutral fluorescent dyes with mitochondrial staining capacity, a series of functional dyes were obtained from Nile red (2a–e) and coumarin (3a–e) with different amide compounds via Suzuki coupling reactions.
Collapse
Affiliation(s)
- Wei Ma
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou 215123
- China
| | - Bing Xu
- Technology School of Radiation Medicine and Protection
- Medical College of Soochow University
- School for Radiological and Interdisciplinary Sciences (RAD-X)
- Soochow University
- Suzhou 215123
| | - Ru Sun
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou 215123
- China
| | - Yu-Jie Xu
- Technology School of Radiation Medicine and Protection
- Medical College of Soochow University
- School for Radiological and Interdisciplinary Sciences (RAD-X)
- Soochow University
- Suzhou 215123
| | - Jian-Feng Ge
- College of Chemistry
- Chemical Engineering and Material Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
43
|
Murthy Bandaru SS, Bhilare S, Schulzke C, Kapdi AR. 1,3,5-Triaza-7-phosphaadamantane (PTA) Derived Caged Phosphines for Palladium-Catalyzed Selective Functionalization of Nucleosides and Heteroarenes. CHEM REC 2020; 21:188-203. [PMID: 33231365 DOI: 10.1002/tcr.202000109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
Phosphines have, in combination with transition metals, played a pivotal role in the rapid development of efficient catalytic processes. Caged phosphines constitute a class of three-dimensional scaffolds providing unique control over steric and electronic properties. The versatility of the caged phosphine ligands has been demonstrated elegantly by the groups of Verkade, Gonzalvi as well as Stradiotto. Our research group has also been working extensively for the past several years in the development of 1,3,5-triaza-7-phosphaadamantane-based caged ligands and in this personal note we have summarized these applications pertaining to the modification of biologically useful nucleosides and heteroarenes.
Collapse
Affiliation(s)
- Siva Sankar Murthy Bandaru
- Institute fur Biochemie, University of Greifswald, Felix-Hausdorff-Strasse 4, D-17487, Greifswald, Germany
| | - Shatrughn Bhilare
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| | - Carola Schulzke
- Institute fur Biochemie, University of Greifswald, Felix-Hausdorff-Strasse 4, D-17487, Greifswald, Germany
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Matunga, Mumbai, 400019, India
| |
Collapse
|
44
|
Liu MS, Shu W. Catalytic, Metal-Free Amide Synthesis from Aldehydes and Imines Enabled by a Dual-Catalyzed Umpolung Strategy under Redox-Neutral Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming-Shang Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People’s Republic of China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People’s Republic of China
| |
Collapse
|
45
|
Garcı́a-Cárceles J, Bahou KA, Bower JF. Recent Methodologies That Exploit Oxidative Addition of C–N Bonds to Transition Metals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03341] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Karim A. Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
46
|
Upadhyay R, Kumar R, Jangra M, Rana R, Nayal OS, Nandanwar H, Maurya SK. Synthesis of Bioactive Complex Small Molecule-Ciprofloxacin Conjugates and Evaluation of Their Antibacterial Activity. ACS COMBINATORIAL SCIENCE 2020; 22:440-445. [PMID: 32691584 DOI: 10.1021/acscombsci.0c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conjugates between pharmaceuticals and small molecules enable access to a vast chemical space required for the discovery of new lead molecules with modified therapeutic potential. However, the dearth of specific chemical reactions that are capable of functionalizing drugs and bioactive natural products presents a formidable challenge for preparing their conjugates. Here, we report a support-free CuI-nanoparticle-catalyzed strategy for conjugating electron-deficient and electron-rich terminal alkynes with a ciprofloxacin methyl ester. Our conjugation technique exploits the late-stage functionalization of bioactive natural products such as tocopherol, vasicinone, amino acids, and pharmaceuticals such as aspirin and paracetamol to provide conjugates in excellent yields under mild and green conditions. This protocol also enabled the synthesis of (hetero)arene-ciprofloxacin 1,4-disubstituted 1,2,3-triazoles in good yields and high regioselectivities. These synthesized ciprofloxacin conjugates were evaluated in vitro for their antibacterial activity against a panel of relevant bacteria. A significant number of conjugates showed comparable activity against Gram-positive and Gram-negative bacteria. Moreover, some conjugates exhibited less toxicity than ciprofloxacin against two mammalian cell lines, suggesting the utility for the future investigation of these compounds for in vivo efficacy and pharmacokinetic studies.
Collapse
Affiliation(s)
- Rahul Upadhyay
- Medicinal Chemistry and Chemical Biology Laboratory, Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rahul Kumar
- Medicinal Chemistry and Chemical Biology Laboratory, Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh 201 002, India
| | - Manoj Jangra
- Clinical Microbiology and Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Rohit Rana
- Medicinal Chemistry and Chemical Biology Laboratory, Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh 201 002, India
| | - Onkar S. Nayal
- Medicinal Chemistry and Chemical Biology Laboratory, Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh 201 002, India
| | - Hemraj Nandanwar
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh 201 002, India
- Clinical Microbiology and Bioactive Screening Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160 036, India
| | - Sushil K. Maurya
- Medicinal Chemistry and Chemical Biology Laboratory, Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
47
|
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J Med Chem 2020; 63:12290-12358. [PMID: 32686940 DOI: 10.1021/acs.jmedchem.0c00530] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amide functional group plays a key role in the composition of biomolecules, including many clinically approved drugs. Bioisosterism is widely employed in the rational modification of lead compounds, being used to increase potency, enhance selectivity, improve pharmacokinetic properties, eliminate toxicity, and acquire novel chemical space to secure intellectual property. The introduction of a bioisostere leads to structural changes in molecular size, shape, electronic distribution, polarity, pKa, dipole or polarizability, which can be either favorable or detrimental to biological activity. This approach has opened up new avenues in drug design and development resulting in more efficient drug candidates introduced onto the market as well as in the clinical pipeline. Herein, we review the strategic decisions in selecting an amide bioisostere (the why), synthetic routes to each (the how), and success stories of each bioisostere (the implementation) to provide a comprehensive overview of this important toolbox for medicinal chemists.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
48
|
Ertl P, Altmann E, McKenna JM. The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time. J Med Chem 2020; 63:8408-8418. [DOI: 10.1021/acs.jmedchem.0c00754] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peter Ertl
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Jeffrey M. McKenna
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|