1
|
Kang H, Strong AL, Sun Y, Guo L, Juan C, Bancroft AC, Choi JH, Pagani CA, Fernandes AA, Woodard M, Lee J, Ramesh S, James AW, Hudson D, Dalby KN, Xu L, Tower RJ, Levi B. The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair. Bone Res 2024; 12:17. [PMID: 38472175 PMCID: PMC10933265 DOI: 10.1038/s41413-024-00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
While hypoxic signaling has been shown to play a role in many cellular processes, its role in metabolism-linked extracellular matrix (ECM) organization and downstream processes of cell fate after musculoskeletal injury remains to be determined. Heterotopic ossification (HO) is a debilitating condition where abnormal bone formation occurs within extra-skeletal tissues. Hypoxia and hypoxia-inducible factor 1α (HIF-1α) activation have been shown to promote HO. However, the underlying molecular mechanisms by which the HIF-1α pathway in mesenchymal progenitor cells (MPCs) contributes to pathologic bone formation remain to be elucidated. Here, we used a proven mouse injury-induced HO model to investigate the role of HIF-1α on aberrant cell fate. Using single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics analyses of the HO site, we found that collagen ECM organization is the most highly up-regulated biological process in MPCs. Zeugopod mesenchymal cell-specific deletion of Hif1α (Hoxa11-CreERT2; Hif1afl/fl) significantly mitigated HO in vivo. ScRNA-seq analysis of these Hoxa11-CreERT2; Hif1afl/fl mice identified the PLOD2/LOX pathway for collagen cross-linking as downstream of the HIF-1α regulation of HO. Importantly, our scRNA-seq data and mechanistic studies further uncovered that glucose metabolism in MPCs is most highly impacted by HIF-1α deletion. From a translational aspect, a pan-LOX inhibitor significantly decreased HO. A newly screened compound revealed that the inhibition of PLOD2 activity in MPCs significantly decreased osteogenic differentiation and glycolytic metabolism. This suggests that the HIF-1α/PLOD2/LOX axis linked to metabolism regulates HO-forming MPC fate. These results suggest that the HIF-1α/PLOD2/LOX pathway represents a promising strategy to mitigate HO formation.
Collapse
Affiliation(s)
- Heeseog Kang
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Amy L Strong
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuxiao Sun
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Conan Juan
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Alec C Bancroft
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Ji Hae Choi
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Chase A Pagani
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Aysel A Fernandes
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Michael Woodard
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Juhoon Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David Hudson
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Robert J Tower
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Benjamin Levi
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Lee J, Guo HF, Wang S, Maghsoud Y, Vázquez-Montelongo EA, Jing Z, Sammons RM, Cho EJ, Ren P, Cisneros GA, Kurie JM, Dalby KN. Unleashing the Potential of 1,3-Diketone Analogues as Selective LH2 Inhibitors. ACS Med Chem Lett 2023; 14:1396-1403. [PMID: 37849534 PMCID: PMC10577891 DOI: 10.1021/acsmedchemlett.3c00305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Lysyl hydroxylase 2 (LH2) catalyzes the formation of highly stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), thus promoting lung cancer metastasis through its capacity to modulate specific types of collagen cross-links within the tumor stroma. Using 1 and 2 from our previous high-throughput screening (HTS) as lead probes, we prepared a series of 1,3-diketone analogues, 1-18, and identified 12 and 13 that inhibit LH2 with IC50's of approximately 300 and 500 nM, respectively. Compounds 12 and 13 demonstrate selectivity for LH2 over LH1 and LH3. Quantum mechanics/molecular mechanics (QM/MM) modeling indicates that the selectivity of 12 and 13 may stem from noncovalent interactions like hydrogen bonding between the morpholine/piperazine rings with the LH2-specific Arg661. Treatment of 344SQ WT cells with 13 resulted in a dose-dependent reduction in their migration potential, whereas the compound did not impede the migration of the same cell line with an LH2 knockout (LH2KO).
Collapse
Affiliation(s)
- Juhoon Lee
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Hou-fu Guo
- Department
of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, United States
| | - Shike Wang
- Department
of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yazdan Maghsoud
- Department
of Chemistry and Biochemistry, The University
of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erik Antonio Vázquez-Montelongo
- Department
of Physical Medicine and Rehabilitation, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zhifeng Jing
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Rae M. Sammons
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Eun Jeong Cho
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - G. Andrés Cisneros
- Department
of Chemistry and Biochemistry, The University
of Texas at Dallas, Richardson, Texas 75080, United States
- Department
of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jonathan M. Kurie
- Department
of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Kevin N. Dalby
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Hu Z, Yang K, Hu Z, Li M, Wei H, Tang Z, Chen B, Su C, Cai D, Xu J. Determining the association between hypertension and bone metabolism markers in osteoporotic patients. Medicine (Baltimore) 2021; 100:e26276. [PMID: 34128860 PMCID: PMC8213284 DOI: 10.1097/md.0000000000026276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 05/23/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of the case study is to examine the association between hypertension and the level of bone metabolism markers in newly diagnosed osteoporotic patients.A cross-sectional study of 518 subjects was done to see the association between hypertension and the level of osteocalcin (OC), bone-specific alkaline phosphatase (B-ALP), Tartrate-resistant acid phosphatase (TRAP.5B), and 25-hydroxy vitamin D (25-OHD). There were 243 (46.9%) osteoporosis patients with hypertension. Both univariate and multivariate analysis have suggested that lower OC and 25-OHD levels were associated with hypertension. The potential confounders-adjusted OC level was significantly lower in hypertensive female group than that in the female without hypertension group [β = -0.20, 95% confidence interval (95% CI) = -0.37 to -0.03, P = .02 in final adjust model]. The potential confounders-adjusted 25-OHD level was significantly lower in hypertensive male group than that in male without hypertension group (β = -0.34, 95% CI = -0.58 to -0.10, P = .01 in final adjust model). The B-ALP and TRACP.5B levels were positively associated with hypertension in all patients or subgroup analysis. However, all the correlations had no statistical significance for the B-ALP and TRACP.5B.In conclusion, the hypertension was associated with low level of OC and 25-OHD. Hypertension probably led to low bone turnover, which may be one of the mechanisms of hypertension-related osteoporosis.
Collapse
Affiliation(s)
- Zhuoqing Hu
- Department of Cardiovascular Internal Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University
| | - Kevin Yang
- Dept of Cardiology, Sun Yat-sen University, Guangzhou
| | | | | | - Hao Wei
- Guangdong Medical University
| | | | | | - Chengbiao Su
- Department of Cardiovascular Internal Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - De Cai
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinrong Xu
- Department of Cardiovascular Internal Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang
| |
Collapse
|
4
|
Xu F, Li W, Yang X, Na L, Chen L, Liu G. The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol 2021; 8:619301. [PMID: 33569383 PMCID: PMC7868402 DOI: 10.3389/fcell.2020.619301] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a metabolic disease characterized by decreased bone mineral density and the destruction of bone microstructure, which can lead to increased bone fragility and risk of fracture. In recent years, with the deepening of the research on the pathological mechanism of osteoporosis, the research on epigenetics has made significant progress. Epigenetics refers to changes in gene expression levels that are not caused by changes in gene sequences, mainly including DNA methylation, histone modification, and non-coding RNAs (lncRNA, microRNA, and circRNA). Epigenetics play mainly a post-transcriptional regulatory role and have important functions in the biological signal regulatory network. Studies have shown that epigenetic mechanisms are closely related to osteogenic differentiation, osteogenesis, bone remodeling and other bone metabolism-related processes. Abnormal epigenetic regulation can lead to a series of bone metabolism-related diseases, such as osteoporosis. Considering the important role of epigenetic mechanisms in the regulation of bone metabolism, we mainly review the research progress on epigenetic mechanisms (DNA methylation, histone modification, and non-coding RNAs) in the osteogenic differentiation and the pathogenesis of osteoporosis to provide a new direction for the treatment of bone metabolism-related diseases.
Collapse
Affiliation(s)
- Fei Xu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Li
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiao Yang
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linjun Chen
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guobin Liu
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Canelón SP, Wallace JM. Substrate Strain Mitigates Effects of β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking. Calcif Tissue Int 2019; 105:660-669. [PMID: 31482192 PMCID: PMC7161703 DOI: 10.1007/s00223-019-00603-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/21/2019] [Indexed: 01/22/2023]
Abstract
Enzymatic crosslinks stabilize type I collagen and are catalyzed by lysyl oxidase (LOX), a step interrupted through β-aminopropionitrile (BAPN) exposure. This study evaluated dose-dependent effects of BAPN on osteoblast gene expression of type I collagen, LOX, and genes associated with crosslink formation. The second objective was to characterize collagen produced in vitro after exposure to BAPN, and to explore changes to collagen properties under continuous cyclical substrate strain. To evaluate dose-dependent effects, osteoblasts were exposed to a range of BAPN dosages (0-10 mM) for gene expression analysis and cell proliferation. Results showed significant upregulation of BMP-1, POST, and COL1A1 and change in cell proliferation. Results also showed that while the gene encoding LOX was unaffected by BAPN treatment, other genes related to LOX activation and matrix production were upregulated. For the loading study, the combined effects of BAPN and mechanical loading were assessed. Gene expression was quantified, atomic force microscopy was used to extract elastic properties of the collagen matrix, and Fourier Transform infrared spectroscopy was used to assess collagen secondary structure for enzymatic crosslinking analysis. BAPN upregulated BMP-1 in static samples and BAPN combined with mechanical loading downregulated LOX when compared to control-static samples. Results showed a higher indentation modulus in BAPN-loaded samples compared to control-loaded samples. Loading increased the mature-to-immature crosslink ratios in control samples, and BAPN increased the height ratio in static samples. In summary, effects of BAPN (upregulation of genes involved in crosslinking, mature/immature crosslinking ratios, upward trend in collagen elasticity) were mitigated by mechanical loading.
Collapse
Affiliation(s)
- Silvia P Canelón
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA.
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Ida T, Kaku M, Kitami M, Terajima M, Rosales Rocabado JM, Akiba Y, Nagasawa M, Yamauchi M, Uoshima K. Extracellular matrix with defective collagen cross-linking affects the differentiation of bone cells. PLoS One 2018; 13:e0204306. [PMID: 30252876 PMCID: PMC6155528 DOI: 10.1371/journal.pone.0204306] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Fibrillar type I collagen, the predominant organic component in bone, is stabilized by lysyl oxidase (LOX)-initiated covalent intermolecular cross-linking, an important determinant of bone quality. However, the impact of collagen cross-linking on the activity of bone cells and subsequent tissue remodeling is not well understood. In this study, we investigated the effect of collagen cross-linking on bone cellular activities employing a loss-of-function approach, using a potent LOX inhibitor, β-aminopropionitrile (BAPN). Osteoblastic cells (MC3T3-E1) were cultured for 2 weeks in the presence of 0–2 mM BAPN to obtain low cross-linked collagen matrices. The addition of BAPN to the cultures diminished collagen cross-links in a dose-dependent manner and, at 1 mM level, none of the major cross-links were detected without affecting collagen production. After the removal of cellular components from these cultures, MC3T3-E1, osteoclasts (RAW264.7), or mouse primary bone marrow-derived stromal cells (BMSCs) were seeded. MC3T3-E1 cells grown on low cross-link matrices showed increased alkaline phosphatase (ALP) activity. The number of multinucleate tartrate-resistant acid phosphatase (TRAP)-positive cells increased in RAW264.7 cells. Initial adhesion, proliferation, and ALP activity of BMSCs also increased. In the animal experiments, 4-week-old C57BL/6 mice were fed with BAPN-containing diet for 8 weeks. At this point, biochemical analysis of bone demonstrated that collagen cross-links decreased without affecting collagen content. Then, the diet was changed to a control diet to minimize the direct effect of BAPN. At 2 and 4 weeks after the change, histological samples were prepared. Histological examination of femur samples at 4 weeks showed a significant increase in the number of bone surface osteoblasts, while the bone volume and surface osteoclast numbers were not significantly affected. These results clearly demonstrated that the extent of collagen cross-linking of bone matrix affected the differentiation of bone cells, underscoring the importance of collagen cross-linking in the regulation of cell behaviors and tissue remodeling in bone. Characterization of collagen cross-linking in bone may be beneficial to obtain insight into not only bone mechanical property, but also bone cellular activities.
Collapse
Affiliation(s)
- Takako Ida
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Megumi Kitami
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Terajima
- North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | | | - Yosuke Akiba
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
7
|
Álvarez-Sánchez N, Álvarez-Ríos AI, Guerrero JM, García-García FJ, Rodríguez-Mañas L, Cruz-Chamorro I, Lardone PJ, Carrillo-Vico A. Homocysteine levels are associated with bone resorption in pre-frail and frail Spanish women: The Toledo Study for Healthy Aging. Exp Gerontol 2018; 108:201-208. [DOI: 10.1016/j.exger.2018.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 10/17/2022]
|
8
|
Yuan Y, Li M, Chen Q, Me R, Yu Y, Gu Q, Shi G, Ke B. Crosslinking Enzyme Lysyl Oxidase Modulates Scleral Remodeling in Form-Deprivation Myopia. Curr Eye Res 2017; 43:200-207. [PMID: 29135319 DOI: 10.1080/02713683.2017.1390770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Scleral remodeling causes the excessive ocular elongation that underlies myopia. Lysyl oxidase (LOX), a copper-containing amine oxidase, can catalyze collagen and elastin crosslinking. The purpose of this study was to investigate the role of LOX in scleral remodeling in form-deprivation myopia (FDM). METHODS Seventy-five guinea pigs were randomly divided into five groups as follows: a normal control group, an FDM group, an FDM plus β-aminopropionitrile (BAPN) group, an FDM plus TGF-β1 (TGF-β1) group, and an FDM plus vehicle group. A translucent diffuser was used to induce FDM, and intravitreal injection was used to administer BAPN, TGF-β1 or vehicle. The scleral LOX and collagen gene and protein levels and the posterior scleral ultrastructure and biomechanics were measured. RESULTS In the FDM group, both the scleral LOX and collagen gene and protein levels were significantly lower than those in the control eyes. The collagen fibril diameters were significantly decreased in the FDM group compared with the diameters in the control group. A significant decrease in LOX gene and protein expression was observed after BAPN injection, and an increase was observed after TGF-β1 treatment compared with the levels in the FDM group. Additionally, the scleral collagen fibrils were significantly decreased in the BAPN-treated eyes but increased in the TGF-β1-treated eyes compared with the FDM eyes. The ultimate stress and Young's modulus of the sclera were lowest in the BAPN group, followed by the FDM group and the TGF-β1 group. The ultimate strain (%) of the sclera was lowest in the TGF-β1 group, followed by the FDM group and the BAPN group. CONCLUSION LOX expression was significantly lowered in myopic sclera. Modulating LOX expression induced a change in both the scleral collagen fibril diameter and the scleral biomechanics. Therefore, LOX may play a key role in the myopia scleral remodeling procedure.
Collapse
Affiliation(s)
- Ying Yuan
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China.,c Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai , China
| | - Min Li
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China.,c Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai , China
| | - Qingzhong Chen
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China.,c Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai , China
| | - Rao Me
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China.,c Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai , China
| | - Yunjie Yu
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China.,c Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai , China
| | - Qing Gu
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China.,c Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai , China
| | - Guangsen Shi
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China.,c Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai , China
| | - Bilian Ke
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China.,c Shanghai Engineering Center for Visual Science and Photomedicine , Shanghai , China
| |
Collapse
|
9
|
Farzaneh K, Thaler R, Paradise CR, Deyle DR, Julio MKD, Galindo M, Gordon JA, Stein GS, Dudakovic A, van Wijnen AJ. Histone H4 Methyltransferase Suv420h2 Maintains Fidelity of Osteoblast Differentiation. J Cell Biochem 2017; 118:1262-1272. [PMID: 27862226 PMCID: PMC5357582 DOI: 10.1002/jcb.25787] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Osteogenic lineage commitment and progression is controlled by multiple signaling pathways (e.g., WNT, BMP, FGF) that converge on bone-related transcription factors. Access of osteogenic transcription factors to chromatin is controlled by epigenetic regulators that generate post-translational modifications of histones ("histone code"), as well as read, edit and/or erase these modifications. Our understanding of the biological role of epigenetic regulators in osteoblast differentiation remains limited. Therefore, we performed next-generation RNA sequencing (RNA-seq) and established which chromatin-related proteins are robustly expressed in mouse bone tissues (e.g., fracture callus, calvarial bone). These studies also revealed that cells with increased osteogenic potential have higher levels of the H4K20 methyl transferase Suv420h2 compared to other methyl transferases (e.g., Suv39h1, Suv39h2, Suv420h1, Ezh1, Ezh2). We find that all six epigenetic regulators are transiently expressed at different stages of osteoblast differentiation in culture, with maximal mRNAs levels of Suv39h1 and Suv39h2 (at day 3) preceding maximal expression of Suv420h1 and Suv420h2 (at day 7) and developmental stages that reflect, respectively, early and later collagen matrix deposition. Loss of function analysis of Suv420h2 by siRNA depletion shows loss of H4K20 methylation and decreased expression of bone biomarkers (e.g., alkaline phosphatase/Alpl) and osteogenic transcription factors (e.g., Sp7/Osterix). Furthermore, Suv420h2 is required for matrix mineralization during osteoblast differentiation. We conclude that Suv420h2 controls the H4K20 methylome of osteoblasts and is critical for normal progression of osteoblastogenesis. J. Cell. Biochem. 118: 1262-1272, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Khani Farzaneh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Mario Galindo
- Millennium Institute on Immunology and Immunotherapy, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jonathan A. Gordon
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Corresponding author: Andre J. van Wijnen, Ph.D., Mayo Clinic, 200 First Street SW, Rochester, MN 55905, Phone: 507- 293-2105, Fax: 507-284-5075,
| |
Collapse
|
10
|
PLOD2 in cancer research. Biomed Pharmacother 2017; 90:670-676. [PMID: 28415047 DOI: 10.1016/j.biopha.2017.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Collagen is not only the most abundant protein providing the scaffold for assembly of the extracellular matrix (ECM), but also considered to be the "highway" for cancer cell migration and invasion depending on the different collagen organizations. The accumulation of stabilized collagen is enhanced by different covalent collagen cross-links, lysyl hydroxylases 2 (encoded by the PLOD2 gene) is the key enzyme mediating the formation of the stabilized collagen cross-link. Interestingly, PLOD2 is overexpressed in different cancers and closely related to a poor prognosis. To the best of our knowledge, only the mechanisms of PLOD2 regulated by HIF-1α, TGF-β and microRNA-26a/b have been elaborated. In addition, several pharmacologic inhibitors of PLOD2 have been confirmed to have an anti-metastasis effect. However, there have been no reviews about PLOD2 in cancer research published thus far. In brief, this review about PLOD2 will describe the function, regulatory mechanism, and the inhibitors of PLOD2 in cancer, suggesting the credible clinical evaluation of a prognostic signature in pathological examination and the possible development of therapeutic strategies targeting PLOD2 in the future.
Collapse
|
11
|
Kanazawa I, Tomita T, Miyazaki S, Ozawa E, Yamamoto LA, Sugimoto T. Bazedoxifene Ameliorates Homocysteine-Induced Apoptosis and Accumulation of Advanced Glycation End Products by Reducing Oxidative Stress in MC3T3-E1 Cells. Calcif Tissue Int 2017; 100:286-297. [PMID: 27832315 DOI: 10.1007/s00223-016-0211-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/03/2016] [Indexed: 12/23/2022]
Abstract
Elevated plasma homocysteine (Hcy) level increases the risk of osteoporotic fracture by deteriorating bone quality. However, little is known about the effects of Hcy on osteoblast and collagen cross-links. This study aimed to investigate whether Hcy induces apoptosis of osteoblastic MC3T3-E1 cells as well as affects enzymatic and nonenzymatic collagen cross-links and to determine the effects of bazedoxifene, a selective estrogen receptor modulator, on the Hcy-induced apoptosis and deterioration of collagen cross-links in the cells. Hcy treatments (300 μM, 3 mM, and 10 mM) increased intracellular reactive oxygen species (ROS) production in a dose-dependent manner. Propidium iodide staining showed that 3 and 10 mM Hcy induced apoptosis of MC3T3-E1 cells. Moreover, the activities of caspases-8, 9, and 3 were increased by 3 mM Hcy. The detrimental effects of 3 mM Hcy on apoptosis and ROS production were partly reversed by bazedoxifene and 17β estradiol. In addition, real-time PCR, immunostaining and Western blot showed that 300 μM Hcy decreased the expression of lysyl oxidase (Lox). Furthermore, 300 μM Hcy increased extracellular accumulation of pentosidine, an advanced glycation end product. Treatment with bazedoxifene ameliorated Hcy-induced suppression of Lox expression and increase in pentosidine accumulation. These findings suggest that high-dose Hcy induces apoptosis of osteoblasts by increasing oxidative stress, and low-dose Hcy decreases enzymatic collagen cross-links and increases pentosidine accumulation, resulting in the deterioration of bone quality. Bazedoxifene treatment effectively prevents the Hcy-induced detrimental reactions of osteoblasts. Thus, bazedoxifene may be a potent therapeutic drug for preventing Hcy-induced bone fragility.
Collapse
Affiliation(s)
- Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Shimane, Japan.
| | | | | | - Eiji Ozawa
- Timelapse Vision Inc., Shiki, Saitama, Japan
| | | | - Toshitsugu Sugimoto
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
12
|
Canelón SP, Wallace JM. β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking Causes In Vitro Changes in Collagen Morphology and Molecular Composition. PLoS One 2016; 11:e0166392. [PMID: 27829073 PMCID: PMC5102343 DOI: 10.1371/journal.pone.0166392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 01/04/2023] Open
Abstract
Type I collagen morphology can be characterized using fibril D-spacing, a metric which describes the periodicity of repeating bands of gap and overlap regions of collagen molecules arranged into collagen fibrils. This fibrillar structure is stabilized by enzymatic crosslinks initiated by lysyl oxidase (LOX), a step which can be disrupted using β-aminopropionitrile (BAPN). Murine in vivo studies have confirmed effects of BAPN on collagen nanostructure and the objective of this study was to evaluate the mechanism of these effects in vitro by measuring D-spacing, evaluating the ratio of mature to immature crosslinks, and quantifying gene expression of type I collagen and LOX. Osteoblasts were cultured in complete media, and differentiated using ascorbic acid, in the presence or absence of 0.25mM BAPN-fumarate. The matrix produced was imaged using atomic force microscopy (AFM) and 2D Fast Fourier transforms were performed to extract D-spacing from individual fibrils. The experiment was repeated for quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Fourier Transform infrared spectroscopy (FTIR) analyses. The D-spacing distribution of collagen produced in the presence of BAPN was shifted toward higher D-spacing values, indicating BAPN affects the morphology of collagen produced in vitro, supporting aforementioned in vivo experiments. In contrast, no difference in gene expression was found for any target gene, suggesting LOX inhibition does not upregulate the LOX gene to compensate for the reduction in aldehyde formation, or regulate expression of genes encoding type I collagen. Finally, the mature to immature crosslink ratio decreased with BAPN treatment and was linked to a reduction in peak percent area of mature crosslink hydroxylysylpyridinoline (HP). In conclusion, in vitro treatment of osteoblasts with low levels of BAPN did not induce changes in genes encoding LOX or type I collagen, but led to an increase in collagen D-spacing as well as a decrease in mature crosslinks.
Collapse
Affiliation(s)
- Silvia P. Canelón
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph M. Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, United States of America
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Liu Y, Zhang XL, Chen L, Lin X, Xiong D, Xu F, Yuan LQ, Liao EY. Epigenetic mechanisms of bone regeneration and homeostasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:85-92. [DOI: 10.1016/j.pbiomolbio.2016.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
|
14
|
The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int J Mol Sci 2016; 17:ijms17101733. [PMID: 27775595 PMCID: PMC5085763 DOI: 10.3390/ijms17101733] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/12/2016] [Accepted: 10/08/2016] [Indexed: 12/13/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid derived in methionine metabolism. The increased level of Hcy in plasma, hyperhomocysteinemia, is considered to be an independent risk factor for cardio and cerebrovascular diseases. However, it is still not clear if Hcy is a marker or a causative agent of diseases. More and more research data suggest that Hcy is an important indicator for overall health status. This review represents the current understanding of molecular mechanism of Hcy metabolism and its link to hyperhomocysteinemia-related pathologies in humans. The aberrant Hcy metabolism could lead to the redox imbalance and oxidative stress resulting in elevated protein, nucleic acid and carbohydrate oxidation and lipoperoxidation, products known to be involved in cytotoxicity. Additionally, we examine the role of Hcy in thiolation of proteins, which results in their molecular and functional modifications. We also highlight the relationship between the imbalance in Hcy metabolism and pathogenesis of diseases, such as cardiovascular diseases, neurological and psychiatric disorders, chronic kidney disease, bone tissue damages, gastrointestinal disorders, cancer, and congenital defects.
Collapse
|
15
|
One carbon metabolism and bone homeostasis and remodeling: A review of experimental research and population studies. Biochimie 2016; 126:115-23. [DOI: 10.1016/j.biochi.2016.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/08/2016] [Indexed: 01/22/2023]
|
16
|
Sato N, Ichikawa J, Wako M, Ohba T, Saito M, Sato H, Koyama K, Hagino T, Schoenecker JG, Ando T, Haro H. Thrombin induced by the extrinsic pathway and PAR-1 regulated inflammation at the site of fracture repair. Bone 2016; 83:23-34. [PMID: 26475502 DOI: 10.1016/j.bone.2015.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/30/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023]
Abstract
Thrombin (coagulation factor IIa) is a serine protease encoded by the F2 gene. Pro-thrombin (coagulation factor II) is cut to generate thrombin in the coagulation cascade that results in a reduction of blood loss. Procoagulant states that lead to activation of thrombin are common in bone fracture sites. However, its physiological roles and relationship with osteoblasts in bone fractures are largely unknown. We herein report various effects of thrombin on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed proteinase-activated receptor 1 (PAR1), also known as the coagulation factor II receptor. They also produced monocyte chemoattractant protein (MCP-1), tissue factor (TF), MCSF and IL-6 upon thrombin stimulation through the PI3K-Akt and MEK-Erk1/2 pathways. Furthermore, MCP-1 obtained from thrombin-stimulated MC3T3-E1 cells induced migration by macrophage RAW264 cells. All these effects of thrombin on MC3T3-E1 cells were abolished by the selective non-peptide thrombin receptor inhibitor SCH79797. We also found that thrombin, PAR-1, MCP-1, TF as well as phosphorylated AKT and p42/44 were significantly expressed at the fracture site of mouse femoral bone. Collectively, thrombin/PAR-1 interaction regulated MCP-1, TF, MCSF and IL-6 production by MC3T3-E1 cells. Furthermore, MCP-1 induced RAW264 cell migration. Thrombin may thus be a novel cytokine that regulates several aspects of osteoblast function and fracture healing.
Collapse
Affiliation(s)
- Nobutaka Sato
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Masanori Wako
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Tetsuro Ohba
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Masanori Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Hironao Sato
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Kensuke Koyama
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Tetsuo Hagino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan; The Sports Medicine and Knee Center, Kofu National Hospital, 11-35 Tenjincho, Kofu, Yamanashi 400-8533, Japan
| | - Jonathan G Schoenecker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Orthopaedics, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Center for Bone Biology, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Pharmacology, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States
| | - Takashi Ando
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan.
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
17
|
Kaku M, Rosales Rocabado JM, Kitami M, Ida T, Akiba Y, Yamauchi M, Uoshima K. Mechanical Loading Stimulates Expression of Collagen Cross-Linking Associated Enzymes in Periodontal Ligament. J Cell Physiol 2015; 231:926-33. [DOI: 10.1002/jcp.25184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Masaru Kaku
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | | | - Megumi Kitami
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Takako Ida
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Yosuke Akiba
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Katsumi Uoshima
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| |
Collapse
|
18
|
|
19
|
Mieczkowska A, Bouvard B, Chappard D, Mabilleau G. Glucose-dependent insulinotropic polypeptide (GIP) directly affects collagen fibril diameter and collagen cross-linking in osteoblast cultures. Bone 2015; 74:29-36. [PMID: 25582623 DOI: 10.1016/j.bone.2015.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/19/2014] [Accepted: 01/05/2015] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is absolutely crucial in order to obtain optimal bone strength and collagen quality. However, as the GIPR is expressed in several tissues other than bone, it is difficult to ascertain whether the observed modifications of collagen maturity, reported in animal studies, were due to direct effects on osteoblasts or indirect through regulation of signals originating from other tissues. The aims of the present study were to investigate whether GIP can directly affect collagen biosynthesis and processing in osteoblast cultures and to decipher which molecular pathways were necessary for such effects. MC3T3-E1 cells were cultured in the presence of GIP ranged between 10 and 100pM. Collagen fibril diameter was investigated by electron microscopy whilst collagen maturity was determined by Fourier transform infra-red microspectroscopy (FTIRM). GIP treatment resulted in dose-dependent increases in lysyl oxidase activity and collagen maturity. Furthermore, GIP treatment shifted the collagen fiber diameter towards lower value but did not significantly affect collagen heterogeneity. GIP acted directly on osteoblasts by activating the adenylyl cyclase-cAMP pathway. This study provides evidences that GIP acts directly on osteoblasts and is capable of improving collagen maturity and fibril diameter.
Collapse
Affiliation(s)
- Aleksandra Mieczkowska
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France
| | - Beatrice Bouvard
- Service de Rhumatologie, CHU d'Angers, 49933 Angers Cedex, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France
| | - Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux-LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 Angers Cedex, France.
| |
Collapse
|
20
|
Thaler R, Sturmlechner I, Spitzer S, Riester SM, Rumpler M, Zwerina J, Klaushofer K, van Wijnen AJ, Varga F. Acute-phase protein serum amyloid A3 is a novel paracrine coupling factor that controls bone homeostasis. FASEB J 2014; 29:1344-59. [PMID: 25491310 DOI: 10.1096/fj.14-265512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/17/2014] [Indexed: 11/11/2022]
Abstract
Serum amyloid A (A-SAA/Saa3) was shown before to affect osteoblastic metabolism. Here, using RT-quantitative PCR and/or immunoblotting, we show that expression of mouse Saa3 and human SAA1 and SAA2 positively correlates with increased cellular maturation toward the osteocyte phenotype. Expression is not detected in C3H10T1/2 embryonic fibroblasts but is successively higher in preosteoblastic MC3T3-E1 cells, late osteoblastic MLO-A5 cells, and MLO-Y4 osteocytes, consistent with findings using primary bone cells from newborn mouse calvaria. Recombinant Saa3 protein functionally inhibits osteoblast differentiation as reflected by reductions in the expression of osteoblast markers and decreased mineralization in newborn mouse calvaria. Yet, Saa3 protein enhances osteoclastogenesis in mouse macrophages/monocytes based on the number of multinucleated and tartrate-resistant alkaline phosphatase-positive cells and Calcr mRNA expression. Depletion of Saa3 in MLO osteocytes results in the loss of the mature osteocyte phenotype. Recombinant osteocalcin, which is reciprocally regulated with Saa3 at the osteoblast/osteocyte transition, attenuates Saa3 expression in MLO-Y4 osteocytes. Mechanistically, Saa3 produced by MLO-Y4 osteocytes is integrated into the extracellular matrix of MC3T3-E1 osteoblasts, where it associates with the P2 purinergic receptor P2rx7 to stimulate Mmp13 expression via the P2rx7/MAPK/ERK/activator protein 1 axis. Our data suggest that Saa3 may function as an important coupling factor in bone development and homeostasis.
Collapse
Affiliation(s)
- Roman Thaler
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ines Sturmlechner
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Silvia Spitzer
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott M Riester
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Monika Rumpler
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jochen Zwerina
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Klaus Klaushofer
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre J van Wijnen
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Franz Varga
- *Ludwig Boltzmann Institute of Osteology, Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt, Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; and Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Abstract
Diabetes increases risk of fracture, although type 2 diabetes is characterized by normal or high bone mineral density (BMD) compared with the patients without diabetes. The fracture risk of type 1 diabetes as well as type 2 diabetes increases beyond an explained by a decrease of BMD. Thus, diabetes may reduce bone strength without change in BMD. Whole bone strength is determined by bone density, structure, and quality, which encompass the micro-structural and tissue material properties. Recent literature showed that diabetes reduces bone material properties rather than BMD. Collagen intermolecular cross-linking plays an important role in the expression of bone strength. Collagen cross-links can be divided into beneficial enzymatic immature divalent and mature trivalent cross-links and disadvantageous nonenzymatic cross-links (Advanced glycation end products: AGEs) induced by glycation and oxidation. The formation pathway and biological function are quite different. Not only hyperglycemia, but also oxidative stress induces the reduction in enzymatic cross-links and the formation of AGEs. In this review, we describe the mechanism of low bone quality in diabetes and the usefulness of the measurement of plasma or urinary level of AGEs for estimation of fracture risk.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan,
| | | | | | | |
Collapse
|
22
|
Nave AH, Mižíková I, Niess G, Steenbock H, Reichenberger F, Talavera ML, Veit F, Herold S, Mayer K, Vadász I, Weissmann N, Seeger W, Brinckmann J, Morty RE. Lysyl oxidases play a causal role in vascular remodeling in clinical and experimental pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 2014; 34:1446-58. [PMID: 24833797 DOI: 10.1161/atvbaha.114.303534] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Pulmonary vascular remodeling, the pathological hallmark of pulmonary arterial hypertension, is attributed to proliferation, apoptosis resistance, and migration of vascular cells. A role of dysregulated matrix cross-linking and stability as a pathogenic mechanism has received little attention. We aimed to assess whether matrix cross-linking enzymes played a causal role in experimental pulmonary hypertension (PH). APPROACH AND RESULTS All 5 lysyl oxidases were detected in concentric and plexiform vascular lesions of patients with idiopathic pulmonary arterial hypertension. Lox, LoxL1, LoxL2, and LoxL4 expression was elevated in lungs of patients with idiopathic pulmonary arterial hypertension, whereas LoxL2 and LoxL3 expression was elevated in laser-capture microdissected vascular lesions. Lox expression was hypoxia-responsive in pulmonary artery smooth muscle cells and adventitial fibroblasts, whereas LoxL1 and LoxL2 expression was hypoxia-responsive in adventitial fibroblasts. Lox expression was increased in lungs from hypoxia-exposed mice and in lungs and pulmonary artery smooth muscle cells of monocrotaline-treated rats, which developed PH. Pulmonary hypertensive mice exhibited increased muscularization and perturbed matrix structures in vessel walls of small pulmonary arteries. Hypoxia exposure led to increased collagen cross-linking, by dihydroxylysinonorleucine and hydroxylysinonorleucine cross-links. Administration of the lysyl oxidase inhibitor β-aminopropionitrile attenuated the effect of hypoxia, limiting perturbations to right ventricular systolic pressure, right ventricular hypertrophy, and vessel muscularization and normalizing collagen cross-linking and vessel matrix architecture. CONCLUSIONS Lysyl oxidases are dysregulated in clinical and experimental PH. Lysyl oxidases play a causal role in experimental PH and represent a candidate therapeutic target. Our proof-of-principle study demonstrated that modulation of lung matrix cross-linking can affect pulmonary vascular remodeling associated with PH.
Collapse
Affiliation(s)
- Alexander H Nave
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Ivana Mižíková
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Gero Niess
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Heiko Steenbock
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Frank Reichenberger
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - María L Talavera
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Florian Veit
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Susanne Herold
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Konstantin Mayer
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - István Vadász
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Norbert Weissmann
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Werner Seeger
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Jürgen Brinckmann
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany
| | - Rory E Morty
- From the Division of Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany (A.H.N., I.M., G.N., F.R., M.L.T., F.V., S.H., K.M., I.V., N.W., W.S., R.E.M.); Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (A.H.N., I.M., G.N., W.S., R.E.M.); and the Department of Dermatology (J.B.) and Institute of Virology and Cell Biology (J.B., H.S.), University of Lübeck, Lübeck, Germany.
| |
Collapse
|
23
|
Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, Du J, Ambudkar IS, Shi S. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 2014; 15:66-78. [PMID: 24726192 DOI: 10.1016/j.stem.2014.03.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/14/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
Abstract
Gaseous signaling molecules such as hydrogen sulfide (H2S) are produced endogenously and mediate effects through diverse mechanisms. H2S is one such gasotransmitters that regulates multiple signaling pathways in mammalian cells, and abnormal H2S metabolism has been linked to defects in bone homeostasis. Here, we demonstrate that bone marrow mesenchymal stem cells (BMMSCs) produce H2S in order to regulate their self-renewal and osteogenic differentiation, and H2S deficiency results in defects in BMMSC differentiation. H2S deficiency causes aberrant intracellular Ca(2+) influx because of reduced sulfhydration of cysteine residues on multiple Ca(2+) TRP channels. This decreased Ca(2+) flux downregulates PKC/Erk-mediated Wnt/β-catenin signaling which controls osteogenic differentiation of BMMSCs. Consistently, H2S-deficient mice display an osteoporotic phenotype that can be rescued by small molecules that release H2S. These results demonstrate that H2S regulates BMMSCs and that restoring H2S levels via nontoxic donors may provide treatments for diseases such as osteoporosis that can arise from H2S deficiencies.
Collapse
Affiliation(s)
- Yi Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA; Department of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li Number 4, Beijing 100050, China.
| | - Ruili Yang
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Xibao Liu
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Yu Zhou
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Cunye Qu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Takashi Kikuiri
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Songlin Wang
- Department of Periodontics, Capital Medical University School of Stomatology, Tian Tan Xi Li Number 4, Beijing 100050, China
| | - Ebrahim Zandi
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Indu S Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Songtao Shi
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| |
Collapse
|
24
|
Rumpler M, Würger T, Roschger P, Zwettler E, Sturmlechner I, Altmann P, Fratzl P, Rogers MJ, Klaushofer K. Osteoclasts on bone and dentin in vitro: mechanism of trail formation and comparison of resorption behavior. Calcif Tissue Int 2013; 93:526-39. [PMID: 24022329 PMCID: PMC3827903 DOI: 10.1007/s00223-013-9786-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 08/20/2013] [Indexed: 11/26/2022]
Abstract
The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 lm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm²) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.
Collapse
Affiliation(s)
- M. Rumpler
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center, Hanusch-Krankenhaus, Pav. III, UG, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - T. Würger
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center, Hanusch-Krankenhaus, Pav. III, UG, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - P. Roschger
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center, Hanusch-Krankenhaus, Pav. III, UG, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - E. Zwettler
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center, Hanusch-Krankenhaus, Pav. III, UG, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - I. Sturmlechner
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center, Hanusch-Krankenhaus, Pav. III, UG, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - P. Altmann
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center, Hanusch-Krankenhaus, Pav. III, UG, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - P. Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - M. J. Rogers
- The Garvan Institute of Medical Research, Darlinghurst, NSW Australia
| | - K. Klaushofer
- 1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center, Hanusch-Krankenhaus, Pav. III, UG, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| |
Collapse
|
25
|
Aoki C, Uto K, Honda K, Kato Y, Oda H. Advanced glycation end products suppress lysyl oxidase and induce bone collagen degradation in a rat model of renal osteodystrophy. J Transl Med 2013; 93:1170-83. [PMID: 23979426 DOI: 10.1038/labinvest.2013.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 01/22/2023] Open
Abstract
Renal osteodystrophy (ROD) is a major problem in patients with renal insufficiency. The present study was designed to elucidate the role of bone collagen changes and osteoblast differentiation in a rat model of ROD pathogenesis induced by adenine. Typical characteristics of renal failure, including increased serum urea nitrogen, creatinine, inorganic phosphorus, and intact parathyroid hormone levels, and decreased serum calcium and 1,25(OH)2D3 levels, were observed in adenine-induced rats. Micro-computed tomography analysis of the femur in adenine-induced rats showed decreased bone mineral density and osteoporotic changes, confirmed by the three-point bending test. The cancellous bone histomorphometric parameters of the tibia showed increased osteoblast number, decreased osteoclast surface with peritrabecular fibrosis, and increased osteoid tissue, indicating a severe mineralization disorder similar to clinical ROD. Scanning and transmission electron microscopy revealed irregular alignment and increased diameter of bone collagen fibrils in adenine-induced rats. Protein expression analysis showed greater accumulation of advanced glycation end products (AGEs) in peritrabecular osteoblasts of adenine-induced rats than in the controls. In contrast, suppressed expression of runt-related transcription factor 2, alkaline phosphatase, secreted phosphoprotein 1 (Spp1), and lysyl oxidase (Lox) mRNA levels, particularly the amount of active LOX protein, were observed. In in-vitro experiments, mineralizing MC3T3-E1 osteoblastic cells stimulated with AGE-modified bovine serum albumin had attenuated the expression of Spp1 mRNA levels and active LOX protein, with a decrease in extracellular nodules of mineralization. These observations provide clues to ROD pathogenesis, as they indicate that the suppression of osteoblast differentiation and decreased active LOX protein associated with accumulation of AGEs in osteoblasts caused structural abnormalities of bone collagen fibrils and a severe mineralization disorder, leading to bone fragility.
Collapse
Affiliation(s)
- Chiharu Aoki
- 1] Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan [2] Department of Orthopedics, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Holstein JH, Schmalenbach J, Herrmann M, Ölkü I, Garcia P, Histing T, Herrmann W, Menger MD, Pohlemann T, Claes L. Excess dietary methionine does not affect fracture healing in mice. Med Sci Monit 2013. [PMID: 23197225 PMCID: PMC3560796 DOI: 10.12659/msm.883590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background An elevated serum concentration of homocysteine (hyperhomocysteinemia) has been shown to disturb fracture healing. As the essential amino acid, methionine, is a precursor of homocysteine, we aimed to investigate whether excess methionine intake affects bone repair. Material/Methods We analyzed bone repair in 2 groups of mice. One group was fed a methionine-rich diet (n=13), and the second group received an equicaloric control diet without methionine supplementation (n=12). Using a closed femoral fracture model, bone repair was analyzed by histomorphometry and biomechanical testing at 4 weeks after fracture. Blood was sampled to measure serum concentrations of homocysteine, the bone formation marker osteocalcin, and the bone resorption marker collagen I C-terminal crosslaps Results Serum concentrations of homocysteine were significantly higher in the methionine group than in the control group, while serum markers of bone turnover did not differ significantly between the 2 groups. Histomorphometry revealed no significant differences in size and tissue composition of the callus between animals fed the methionine-enriched diet and those receiving the control diet. Accordingly, animals of the 2 groups showed a comparable bending stiffness of the healing bones. Conclusions We conclude that excess methionine intake causes hyperhomocysteinemia, but does not affect fracture healing in mice.
Collapse
Affiliation(s)
- Joerg H Holstein
- Department of Trauma, Hand and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Perturbations in methyl group metabolism and homocysteine balance have emerged over the past few decades as having defining roles in a number of pathological conditions. Numerous nutritional, hormonal, and genetic factors that are characterized by elevations in circulating homocysteine concentrations are also associated with specific pathological conditions, including cancer development, autoimmune diseases, vascular dysfunction, and neurodegenerative disease. Although much remains to be explored, our understanding of the relationship between disease, methyl balance, and epigenetic control of gene expression has steadily progressed. However, homocysteine balance and its role in health and disease are not as clearly understood. This review presents our current understanding of homocysteine metabolism and its link to specific pathologies.
Collapse
Affiliation(s)
- Kevin L Schalinske
- Department of Food Science and Human Nutrition, Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA.
| | | |
Collapse
|
28
|
Thaler R, Zwerina J, Rumpler M, Spitzer S, Gamsjaeger S, Paschalis EP, Klaushofer K, Varga F. Homocysteine induces serum amyloid A3 in osteoblasts via unlocking RGD-motifs in collagen. FASEB J 2012; 27:446-63. [PMID: 23085993 DOI: 10.1096/fj.12-208058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hyperhomocysteinemia is a risk factor for osteoporotic fractures. Homocysteine (Hcys) inhibits collagen cross-linking and consequently decreases bone extracellular matrix (ECM) quality. Serum amyloid A (A-SAA), an acute-phase protein family, plays an important role in chronic and inflammatory diseases and up-regulates MMP13, which plays an important role in bone development and remodeling. Here, we investigate the effect of Hcys on expression of SAA3, a member of the A-SAA gene family, in osteoblasts characterizing underlying mechanisms and possible consequences on bone metabolism. MC3T3-E1 osteoblast-like cells were cultured up to 21 d with Hcys (low millimolar range) or reseeded onto ECM resulting from untreated or Hcys-treated MC3T3-E1 cells. Fourier-transformed infrared spectroscopy and a discriminative antibody were used to characterize the resulting ECM. Gene expression and signaling pathways were analyzed by gene chip, quantitative RT-PCR, and immunoblotting. Transcriptional regulation of Saa3 was studied by promoter transfection assays, chromatin immunoprecipitation, and immunofluorescence microscopy. Hcys treatment resulted in reduced collagen cross-linking, uncovering of RGD-motifs, and activation of the PTK2-PXN-CTNNB1 pathway followed by RELA activation. These signaling events led to increased SAA3 expression followed by the production of MMP13 and several chemokines, including Ccl5, Ccl2, Cxcl10, and Il6. Our data suggest Saa3 as link between hyperhomocysteinemia and development of osteoporosis.
Collapse
Affiliation(s)
- Roman Thaler
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Wiener Gebietskrankenkasse and Allgemeine Unfallversicherungsanstalt Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu T, Zhou H, Hong Y, Li J, Jiang X, Huang H. miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 2012; 287:7503-11. [PMID: 22253433 DOI: 10.1074/jbc.m111.292722] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
miRNAs are endogenously expressed 18- to 25-nucleotide RNAs that regulate gene expression through translational repression by binding to a target mRNA. Recently, it has been indicated that miRNAs are closely related to osteogenesis. Our previous data suggested that miR-30 family members might be important regulators during the biomineralization process. However, whether and how they modulate osteogenic differentiation have not been explored. In this study, we demonstrated that miR-30 family members negatively regulate BMP-2-induced osteoblast differentiation by targeting Smad1 and Runx2. Evidentially, overexpression of miR-30 family members led to a decrease of alkaline phosphatase activity, whereas knockdown of them increased the activity. Then bioinformatic analysis identified potential target sites of the miR-30 family located in the 3' untranslated regions of Smad1 and Runx2. Western blot analysis and quantitative RT-PCR assays demonstrated that miR-30 family members inhibit Smad1 gene expression on the basis of repressing its translation. Furthermore, dual-luciferase reporter assays confirmed that Smad1 is a direct target of miR-30 family members. Rescue experiments that overexpress Smad1 and Runx2 significantly eliminated the inhibitory effect of miR-30 on osteogenic differentiation and provided strong evidence that miR-30 mediates the inhibition of osteogenesis by targeting Smad1 and Runx2. Also, the inhibitory effects of the miR-30 family were validated in mouse bone marrow mesenchymal stem cells. Therefore, our study uncovered that miR-30 family members are key negative regulators of BMP-2-mediated osteogenic differentiation.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, 639 Zhi Zaoju Road, Shanghai 200011, China
| | | | | | | | | | | |
Collapse
|
30
|
Paschalis E, Tatakis D, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey A, Dall'Ara E, Varga P, Zysset P, Klaushofer K, Roschger P. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 2011; 49:1232-41. [PMID: 21920485 PMCID: PMC3229977 DOI: 10.1016/j.bone.2011.08.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 12/17/2022]
Abstract
In the present study a rat animal model of lathyrism was employed to decipher whether anatomically confined alterations in collagen cross-links are sufficient to influence the mechanical properties of whole bone. Animal experiments were performed under an ethics committee approved protocol. Sixty-four female (47 day old) rats of equivalent weights were divided into four groups (16 per group): Controls were fed a semi-synthetic diet containing 0.6% calcium and 0.6% phosphorus for 2 or 4 weeks and β-APN treated animals were fed additionally with β-aminopropionitrile (0.1% dry weight). At the end of this period the rats in the four groups were sacrificed, and L2-L6 vertebra were collected. Collagen cross-links were determined by both biochemical and spectroscopic (Fourier transform infrared imaging (FTIRI)) analyses. Mineral content and distribution (BMDD) were determined by quantitative backscattered electron imaging (qBEI), and mineral maturity/crystallinity by FTIRI techniques. Micro-CT was used to describe the architectural properties. Mechanical performance of whole bone as well as of bone matrix material was tested by vertebral compression tests and by nano-indentation, respectively. The data of the present study indicate that β-APN treatment changed whole vertebra properties compared to non-treated rats, including collagen cross-links pattern, trabecular bone volume to tissue ratio and trabecular thickness, which were all decreased (p<0.05). Further, compression tests revealed a significant negative impact of β-APN treatment on maximal force to failure and energy to failure, while stiffness was not influenced. Bone mineral density distribution (BMDD) was not altered either. At the material level, β-APN treated rats exhibited increased Pyd/Divalent cross-link ratios in areas confined to a newly formed bone. Moreover, nano-indentation experiments showed that the E-modulus and hardness were reduced only in newly formed bone areas under the influence of β-APN, despite a similar mineral content. In conclusion the results emphasize the pivotal role of collagen cross-links in the determination of bone quality and mechanical integrity. However, in this rat animal model of lathyrism, the coupled alterations of tissue structural properties make it difficult to weigh the contribution of the anatomically confined material changes to the overall mechanical performance of whole bone. Interestingly, the collagen cross-link ratio in bone forming areas had the same profile as seen in actively bone forming trabecular surfaces in human iliac crest biopsies of osteoporotic patients.
Collapse
Affiliation(s)
- E.P. Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
- Corresponding author at: Ludwig Boltzmann Institute of Osteology, Hanusch Krankenhaus, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| | - D.N. Tatakis
- Division of Periodontology, The Ohio State University, Columbus, OH, USA
- Visiting Professor, King Saud University, Riyadh, Saudi Arabia
| | - S. Robins
- Matrix Biochemistry, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, UK
| | - P. Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - I. Manjubala
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - R. Zoehrer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - S. Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - B. Buchinger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - A. Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - R. Phipps
- Dept. of Pharmacology, Husson University, ME, USA
| | - A.L. Boskey
- Hospital for Special Surgery, New York, NY, USA
| | - E. Dall'Ara
- Institut für Leichtbau und Struktur-Biomechanik, TU Wien, Vienna, Austria
| | - P. Varga
- Institut für Leichtbau und Struktur-Biomechanik, TU Wien, Vienna, Austria
| | - P. Zysset
- Institut für Leichtbau und Struktur-Biomechanik, TU Wien, Vienna, Austria
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - P. Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| |
Collapse
|
31
|
Abstract
BACKGROUND Bone strength depends on both bone quantity and quality. The former is routinely estimated in clinical settings through bone mineral density measurements but not the latter. Bone quality encompasses the structural and material properties of bone. Although its importance is appreciated, its contribution in determining bone strength has been difficult to precisely quantify partly because it is multifactorial and requires investigation of all bone hierarchical levels. Fourier transform infrared spectroscopy provides one way to explore these levels. QUESTIONS/PURPOSES The purposes of our review were to (1) provide a brief overview of Fourier transform infrared spectroscopy as a way to establish bone quality, (2) review the major bone material parameters determined from Fourier transform infrared spectroscopy, and (3) review the role of Fourier transform infrared microspectroscopic analysis in establishing bone quality. METHODS We used the ISI Web of Knowledge database initially to identify articles containing the Boolean term "infrared" AND "bone." We then focused on articles on infrared spectroscopy in bone-related journals. RESULTS Infrared spectroscopy provides information on bone material properties. Their microspectroscopic versions allow one to establish these properties as a function of anatomic location, mineralization extent, and bone metabolic activity. It provides answers pertaining to the contribution of mineral to matrix ratio, mineral maturity, mineral carbonate substitution, and collagen crosslinks to bone strength. Alterations of bone material properties have been identified in disease (especially osteoporosis) not attainable by other techniques. CONCLUSIONS Infrared spectroscopic analysis is a powerful tool for establishing the important material properties contributing to bone strength and thus has helped better understand changes in fragile bone.
Collapse
Affiliation(s)
- Eleftherios P. Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK (Viennese Sickness Insurance Funds), and AUVA (Austrian Social Insurance for Occupational Risks) Trauma Centre Meidling, Vienna, Austria
| | | | - Adele L. Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY USA
| |
Collapse
|
32
|
Guan XX, Zhou Y, Li JY. Reciprocal roles of angiotensin II and Angiotensin II Receptors Blockade (ARB) in regulating Cbfa1/RANKL via cAMP signaling pathway: possible mechanism for hypertension-related osteoporosis and antagonistic effect of ARB on hypertension-related osteoporosis. Int J Mol Sci 2011; 12:4206-13. [PMID: 21845073 PMCID: PMC3155346 DOI: 10.3390/ijms12074206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/20/2011] [Accepted: 06/14/2011] [Indexed: 01/11/2023] Open
Abstract
Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB) on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway.
Collapse
Affiliation(s)
- Xiao-Xu Guan
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; E-Mails: (X.-X.G.); (Y.Z.)
| | - Yi Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China; E-Mails: (X.-X.G.); (Y.Z.)
| | - Ji-Yao Li
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-28-85501439; Fax: +86-28-85527829
| |
Collapse
|
33
|
Lv H, Ma X, Che T, Chen Y. Methylation of the promoter A of estrogen receptor alpha gene in hBMSC and osteoblasts and its correlation with homocysteine. Mol Cell Biochem 2011; 355:35-45. [PMID: 21523370 DOI: 10.1007/s11010-011-0836-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 04/15/2011] [Indexed: 01/16/2023]
Abstract
Recent studies have shown that adult osteoporosis could be induced by ageing and estrogen deficiency and homocysteine (Hcy) is an independent risk factor of fracture in osteoporosis patients. In this study, we found hypermethylation of the promoter A region in the estrogen receptor alpha (ERα) gene, and methylation in 70.59% of 68 post-menopausal women, whose methylation degree was significantly higher than the pre-menopausal women (P < 0.05). Their methylation frequency was detected only 26.67% in 30 subjects. An obvious correlation between the degree of methylation in ERα gene and the level of Hcy (r = 0.809, P < 0.05) was explored. The cultured human bone marrow strom cells (hBMSC) and osteoblasts treated by Hcy resulted in de novo methylation of the promoter A region in the ERα gene and suppressed proliferation and differentiation with time and dose dependence. Meanwhile, ERα gene mRNA in osteoblast-like cells treated by Hcy was much lower than the control group (P < 0.05). Thus, both in vivo and in vitro data showed that Hcy could promote hypermethylation of the promoter A region and reduce ERα mRNA transcription, which may be an important mechanism for the pathogenesis of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Haihong Lv
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Thaler R, Agsten M, Spitzer S, Paschalis EP, Karlic H, Klaushofer K, Varga F. Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. J Biol Chem 2010; 286:5578-88. [PMID: 21148317 DOI: 10.1074/jbc.m110.166181] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Elevated homocysteine (Hcys) serum levels represent a risk factor for several chronic pathologies, including cardiovascular disease, atherosclerosis, and chronic renal failure, and affect bone development, quality, and homeostasis. Hcys influences the formation of a stable bone matrix directly through the inhibition of the collagen cross-linking enzyme lysyl oxidase (Lox) and, as we have shown recently, by repressing its mRNA expression. The aim of this study was to investigate the mechanisms involved in this process. Through evaluation of gene arrays, quantitative RT-PCR, immunoblots, and ELISA, we identified a Hcys-dependent stimulation of interleukin 6 (IL-6) and genes involved in IL-6/Janus kinase 2 (JAK2)-dependent signal transduction pathways in pre-osteoblastic MC3T3-E1 cells. Moreover, up-regulation of genes essential for epigenetic DNA methylation (DNA (cytosine-5)-methyltransferases and helicase lymphoid-specific (Hells) was observed. Further investigations demonstrated that Hcys increased via IL-6/JAK2 the expression of Fli1 (Friend leukemia virus integration 1), a transcription factor, which we found essential for IL-6-dependent Dnmt1 stimulation. CpG methylation analysis of CpG-rich Lox proximal promoter revealed an increased CpG methylation status after treatment of the cells with Hcys indicating an epigenetic origin for Hcys-dependent Lox repression. Inhibition of the IL-6/JAK2 pathway or of CpG methylation reversed the repressive effect of Hcys on Lox expression. In conclusion, we demonstrate that Hcys stimulates IL-6 synthesis in osteoblasts, which is known to affect bone metabolism via osteoclasts. Furthermore, IL-6 stimulation results via JAK2, Fli1, and Dnmt1 in down-regulation of Lox expression by epigenetic CpG methylation revealing a new mechanism negatively affecting bone matrix formation.
Collapse
Affiliation(s)
- Roman Thaler
- 1st Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology, Hanusch Hospital, Wiener Gebietskrankenkasse and AUVA Trauma Center Meidling, 1140 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
35
|
Varga F, Rumpler M, Zoehrer R, Turecek C, Spitzer S, Thaler R, Paschalis E, Klaushofer K. T3 affects expression of collagen I and collagen cross-linking in bone cell cultures. Biochem Biophys Res Commun 2010; 402:180-5. [PMID: 20707983 PMCID: PMC3025330 DOI: 10.1016/j.bbrc.2010.08.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 11/16/2022]
Abstract
Thyroid hormones (T3, T4) have a broad range of effects on bone, however, its role in determining the quality of bone matrix is poorly understood. In-vitro, the immortalized mouse osteoblast-like cell line MC3T3-E1 forms a tissue like structure, consisting of several cell layers, whose formation is affected by T3 significantly. In this culture system, we investigated the effects of T3 on cell multiplication, collagen synthesis, expression of genes related to the collagen cross-linking process and on the formation of cross-links. T3 compared to controls modulated cell multiplication, up-regulated collagen synthesis time and dose dependently, and stimulated protein synthesis. T3 increased mRNA expressions of procollagen-lysine-1,2-oxoglutarate 5-dioxygenase 2 (Plod2) and of lysyloxidase (Lox), both genes involved in post-translational modification of collagen. Moreover, it stimulated mRNA expression of bone morphogenetic protein 1 (Bmp1), the processing enzyme of the lysyloxidase-precursor and of procollagen. An increase in the collagen cross-link-ratio Pyr/deDHLNL indicates, that T3 modulated cross-link maturation in the MC3T3-E1 culture system. These results demonstrate that T3 directly regulates collagen synthesis and collagen cross-linking by up-regulating gene expression of the specific cross-link related enzymes, and underlines the importance of a well-balanced concentration of thyroid hormones for maintenance of bone quality.
Collapse
Affiliation(s)
- F. Varga
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | - M. Rumpler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | - R. Zoehrer
- Flinders University, School of Chemistry and Physics, Australia
| | - C. Turecek
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | - S. Spitzer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | - R. Thaler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | - E.P. Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 4th Medical Department, Hanusch Hospital, Vienna, Austria
- Corresponding author. Address: Ludwig Boltzmann Institute of Osteology, 4th Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, A-1140 Vienna, Austria. Fax: +43 1 91021 86929.
| |
Collapse
|