1
|
James R, Subramanyam KN, Payva F, E AP, Tv VK, Sivaramakrishnan V, Ks S. In-silico analysis predicts disruption of normal angiogenesis as a causative factor in osteoporosis pathogenesis. BMC Genom Data 2024; 25:85. [PMID: 39379846 PMCID: PMC11460074 DOI: 10.1186/s12863-024-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Angiogenesis-osteogenesis coupling is critical for proper functioning and maintaining the health of bones. Any disruption in this coupling, associated with aging and disease, might lead to loss of bone mass. Osteoporosis (OP) is a debilitating bone metabolic disorder that affects the microarchitecture of bones, gradually leading to fracture. Computational analysis revealed that normal angiogenesis is disrupted during the progression of OP, especially postmenopausal osteoporosis (PMOP). The genes associated with OP and PMOP were retrieved from the DisGeNET database. Hub gene analysis and molecular pathway enrichment were performed via the Cytoscape plugins STRING, MCODE, CytoHubba, ClueGO and the web-based tool Enrichr. Twenty-eight (28) hub genes were identified, eight of which were transcription factors (HIF1A, JUN, TP53, ESR1, MYC, PPARG, RUNX2 and SOX9). Analysis of SNPs associated with hub genes via the gnomAD, I-Mutant2.0, MUpro, ConSurf and COACH servers revealed the substitution F201L in IL6 as the most deleterious. The IL6 protein was modeled in the SWISS-MODEL server and the substitution was analyzed via the YASARA FoldX plugin. A positive ΔΔG (1.936) of the F201L mutant indicates that the mutated structure is less stable than the wild-type structure is. Thirteen hub genes, including IL6 and the enriched molecular pathways were found to be profoundly involved in angiogenesis/endothelial function and immune signaling. Mechanical loading of bones through weight-bearing exercises can activate osteoblasts via mechanotransduction leading to increased bone formation. The present study suggests proper mechanical loading of bone as a preventive strategy for PMOP, by which angiogenesis and the immune status of the bone can be maintained. This in silico analysis could be used to understand the molecular etiology of OP and to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Remya James
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India.
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India.
| | - Koushik Narayan Subramanyam
- Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Puttaparthi, Andhra Pradesh, 515134, India
| | - Febby Payva
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India
| | - Amrisa Pavithra E
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India
| | - Vineeth Kumar Tv
- Department of Zoology, The Cochin College, Kochi, Kerala, 682002, India.
| | - Venketesh Sivaramakrishnan
- School of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - Santhy Ks
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India.
| |
Collapse
|
2
|
Qiu M, Chang L, Tang G, Ye W, Xu Y, Tulufu N, Dan Z, Qi J, Deng L, Li C. Activation of the osteoblastic HIF-1α pathway partially alleviates the symptoms of STZ-induced type 1 diabetes mellitus via RegIIIγ. Exp Mol Med 2024; 56:1574-1590. [PMID: 38945950 PMCID: PMC11297314 DOI: 10.1038/s12276-024-01257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The hypoxia-inducible factor-1α (HIF-1α) pathway coordinates skeletal bone homeostasis and endocrine functions. Activation of the HIF-1α pathway increases glucose uptake by osteoblasts, which reduces blood glucose levels. However, it is unclear whether activating the HIF-1α pathway in osteoblasts can help normalize glucose metabolism under diabetic conditions through its endocrine function. In addition to increasing bone mass and reducing blood glucose levels, activating the HIF-1α pathway by specifically knocking out Von Hippel‒Lindau (Vhl) in osteoblasts partially alleviated the symptoms of streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), including increased glucose clearance in the diabetic state, protection of pancreatic β cell from STZ-induced apoptosis, promotion of pancreatic β cell proliferation, and stimulation of insulin secretion. Further screening of bone-derived factors revealed that islet regeneration-derived protein III gamma (RegIIIγ) is an osteoblast-derived hypoxia-sensing factor critical for protection against STZ-induced T1DM. In addition, we found that iminodiacetic acid deferoxamine (SF-DFO), a compound that mimics hypoxia and targets bone tissue, can alleviate symptoms of STZ-induced T1DM by activating the HIF-1α-RegIIIγ pathway in the skeleton. These data suggest that the osteoblastic HIF-1α-RegIIIγ pathway is a potential target for treating T1DM.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Leilei Chang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, 388 Zuchongzhi Road, Kunshan, 215300, Jiangsu, China
| | - Wenkai Ye
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yiming Xu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Nijiati Tulufu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhou Dan
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jin Qi
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Lianfu Deng
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
3
|
Da W, Chen Q, Shen B. The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration. Biol Res 2024; 57:37. [PMID: 38824571 PMCID: PMC11143644 DOI: 10.1186/s40659-024-00494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 06/03/2024] Open
Abstract
It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Quan Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Tang X, Huang Y, Fang X, Tong X, Yu Q, Zheng W, Fu F. Cornus officinalis: a potential herb for treatment of osteoporosis. Front Med (Lausanne) 2023; 10:1289144. [PMID: 38111697 PMCID: PMC10725965 DOI: 10.3389/fmed.2023.1289144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decline in bone mass, bone mineral density, and deterioration of bone microstructure. It is prevalent among the elderly, particularly postmenopausal women, and poses a substantial burden to patients and society due to the high incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine (TCM) has long been utilized for OP prevention and treatment. In contrast to conventional approaches such as hormone replacement therapy, TCM offers distinct advantages such as minimal side effects, low toxicity, excellent tolerability, and suitability for long-term administration. Extensive experimental evidence supports the efficacy of kidney-tonifying TCM, exemplified by formulations based on the renowned herb Cornus officinalis and its bioactive constituents, including morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this review, we provide a comprehensive elucidation of the underlying pathological principles governing OP, with particular emphasis on bone marrow mesenchymal stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of vascular and immune systems, all of which critically influence bone homeostasis. Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM formulations and Cornus officinalis-derived active constituents are discussed. In conclusion, this review aims to enhance understanding of the pharmacological mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, specifically focusing on Cornus officinalis, and seeks to explore more efficacious and safer treatment strategies for OP.
Collapse
Affiliation(s)
- Xinyun Tang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuxin Huang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuanying Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qian Yu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
5
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
6
|
Wang X, Li H, Long L, Song C, Chen R, Pan H, Qiu J, Liu B, Liu Z. Mechanism of Liuwei Dihuang Pills in treating osteoporosis based on network pharmacology. Medicine (Baltimore) 2023; 102:e34773. [PMID: 37861542 PMCID: PMC10589576 DOI: 10.1097/md.0000000000034773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 10/21/2023] Open
Abstract
Osteoporosis is a prevalent age-related disease that poses a significant public health concern as the population continues to age. While current treatments have shown some therapeutic benefits, their long-term clinical efficacy is limited by a lack of stable curative effects and significant adverse effects. Traditional Chinese Medicine has gained attention due to its positive curative effects and fewer side effects. Liuwei Dihuang Pill has been found to enhance bone mineral density in patients with osteoporosis and rats, but the underlying mechanism is not yet clear. To shed more light on this problem, this study aims to explore the pharmacological mechanism of Liuwei Dihuang Pill in treating osteoporosis using network pharmacology and molecular docking. The findings indicate that Liuwei Dihuang Pills treat osteoporosis through various targets and channels. Specifically, it mainly involves TNF, IL17, and HIF-1 signaling pathways and helps regulate biological processes such as angiogenesis, apoptosis, hypoxia, and gene expression. Furthermore, molecular docking demonstrates excellent binding properties between the drug components and key targets. Therefore, this study offers a theoretical foundation for understanding the pharmacological mechanism and clinical application of Liuwei Dihuang Pills in treating osteoporosis more comprehensively.
Collapse
Affiliation(s)
- Xiqoqiang Wang
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Hongtao Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Hongyu Pan
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Junjie Qiu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Bing Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, China
- Luzhou Longmatan District People’s Hospital, Luzhou, China
| |
Collapse
|
7
|
Zhou C, Shen S, Zhang M, Luo H, Zhang Y, Wu C, Zeng L, Ruan H. Mechanisms of action and synergetic formulas of plant-based natural compounds from traditional Chinese medicine for managing osteoporosis: a literature review. Front Med (Lausanne) 2023; 10:1235081. [PMID: 37700771 PMCID: PMC10493415 DOI: 10.3389/fmed.2023.1235081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease prevalent in older adults, characterized by substantial bone loss and deterioration of microstructure, resulting in heightened bone fragility and risk of fracture. Traditional Chinese Medicine (TCM) herbs have been widely employed in OP treatment owing to their advantages, such as good tolerance, low toxicity, high efficiency, and minimal adverse reactions. Increasing evidence also reveals that many plant-based compounds (or secondary metabolites) from these TCM formulas, such as resveratrol, naringin, and ginsenoside, have demonstrated beneficial effects in reducing the risk of OP. Nonetheless, the comprehensive roles of these natural products in OP have not been thoroughly clarified, impeding the development of synergistic formulas for optimal OP treatment. In this review, we sum up the pathological mechanisms of OP based on evidence from basic and clinical research; emphasis is placed on the in vitro and preclinical in vivo evidence-based anti-OP mechanisms of TCM formulas and their chemically active plant constituents, especially their effects on imbalanced bone homeostasis regulated by osteoblasts (responsible for bone formation), osteoclasts (responsible for bone resorption), bone marrow mesenchymal stem cells as well as bone microstructure, angiogenesis, and immune system. Furthermore, we prospectively discuss the combinatory ingredients from natural products from these TCM formulas. Our goal is to improve comprehension of the pharmacological mechanisms of TCM formulas and their chemically active constituents, which could inform the development of new strategies for managing OP.
Collapse
Affiliation(s)
- Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shuchao Shen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Muxin Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lingfeng Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
8
|
Watanabe H, Maishi N, Hoshi-Numahata M, Nishiura M, Nakanishi-Kimura A, Hida K, Iimura T. Skeletal-Vascular Interactions in Bone Development, Homeostasis, and Pathological Destruction. Int J Mol Sci 2023; 24:10912. [PMID: 37446097 DOI: 10.3390/ijms241310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Bone is a highly vascularized organ that not only plays multiple roles in supporting the body and organs but also endows the microstructure, enabling distinct cell lineages to reciprocally interact. Recent studies have uncovered relevant roles of the bone vasculature in bone patterning, morphogenesis, homeostasis, and pathological bone destruction, including osteoporosis and tumor metastasis. This review provides an overview of current topics in the interactive molecular events between endothelial cells and bone cells during bone ontogeny and discusses the future direction of this research area to find novel ways to treat bone diseases.
Collapse
Affiliation(s)
- Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Nako Maishi
- Department of Vascular Biology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Marie Hoshi-Numahata
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Mai Nishiura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Atsuko Nakanishi-Kimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Kyoko Hida
- Department of Vascular Biology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7, Sapporo 060-8586, Hokkaido, Japan
| |
Collapse
|
9
|
Qiu M, Li C, Cai Z, Li C, Yang K, Tulufu N, Chen B, Cheng L, Zhuang C, Liu Z, Qi J, Cui W, Deng L. 3D Biomimetic Calcified Cartilaginous Callus that Induces Type H Vessels Formation and Osteoclastogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207089. [PMID: 36999832 PMCID: PMC10238192 DOI: 10.1002/advs.202207089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Indexed: 06/04/2023]
Abstract
The formation of a calcified cartilaginous callus (CACC) is crucial during bone repair. CACC can stimulate the invasion of type H vessels into the callus to couple angiogenesis and osteogenesis, induce osteoclastogenesis to resorb the calcified matrix, and promote osteoclast secretion of factors to enhance osteogenesis, ultimately achieving the replacement of cartilage with bone. In this study, a porous polycaprolactone/hydroxyapatite-iminodiacetic acid-deferoxamine (PCL/HA-SF-DFO) 3D biomimetic CACC is developed using 3D printing. The porous structure can mimic the pores formed by the matrix metalloproteinase degradation of the cartilaginous matrix, HA-containing PCL can mimic the calcified cartilaginous matrix, and SF anchors DFO onto HA for the slow release of DFO. The in vitro results show that the scaffold significantly enhances angiogenesis, promotes osteoclastogenesis and resorption by osteoclasts, and enhances the osteogenic differentiation of bone marrow stromal stem cells by promoting collagen triple helix repeat-containing 1 expression by osteoclasts. The in vivo results show that the scaffold significantly promotes type H vessels formation and the expression of coupling factors to promote osteogenesis, ultimately enhancing the regeneration of large-segment bone defects in rats and preventing dislodging of the internal fixation screw. In conclusion, the scaffold inspired by biological bone repair processes effectively promotes bone regeneration.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Changwei Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Cuidi Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Kai Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Nijiati Tulufu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Bo Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liang Cheng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Chengyu Zhuang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhihong Liu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
10
|
Mendoza SV, Genetos DC, Yellowley CE. Hypoxia-Inducible Factor-2α Signaling in the Skeletal System. JBMR Plus 2023; 7:e10733. [PMID: 37065626 PMCID: PMC10097641 DOI: 10.1002/jbm4.10733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/13/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent heterodimeric transcription factors that mediate molecular responses to reductions in cellular oxygen (hypoxia). HIF signaling involves stable HIF-β subunits and labile, oxygen-sensitive HIF-α subunits. Under hypoxic conditions, the HIF-α subunit is stabilized, complexes with nucleus-confined HIF-β subunit, and transcriptionally regulates hypoxia-adaptive genes. Transcriptional responses to hypoxia include altered energy metabolism, angiogenesis, erythropoiesis, and cell fate. Three isoforms of HIF-α-HIF-1α, HIF-2α, and HIF-3α-are found in diverse cell types. HIF-1α and HIF-2α serve as transcriptional activators, whereas HIF-3α restricts HIF-1α and HIF-2α. The structure and isoform-specific functions of HIF-1α in mediating molecular responses to hypoxia are well established across a wide range of cell and tissue types. The contributions of HIF-2α to hypoxic adaptation are often unconsidered if not outrightly attributed to HIF-1α. This review establishes what is currently known about the diverse roles of HIF-2α in mediating the hypoxic response in skeletal tissues, with specific focus on development and maintenance of skeletal fitness. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah V Mendoza
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| |
Collapse
|
11
|
Wang J, Zhao B, Che J, Shang P. Hypoxia Pathway in Osteoporosis: Laboratory Data for Clinical Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3129. [PMID: 36833823 PMCID: PMC9963321 DOI: 10.3390/ijerph20043129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 05/29/2023]
Abstract
The hypoxia pathway not only regulates the organism to adapt to the special environment, such as short-term hypoxia in the plateau under normal physiological conditions, but also plays an important role in the occurrence and development of various diseases such as cancer, cardiovascular diseases, osteoporosis. Bone, as a special organ of the body, is in a relatively low oxygen environment, in which the expression of hypoxia-inducible factor (HIF)-related molecules maintains the necessary conditions for bone development. Osteoporosis disease with iron overload endangers individuals, families and society, and bone homeostasis disorder is linked to some extent with hypoxia pathway abnormality, so it is urgent to clarify the hypoxia pathway in osteoporosis to guide clinical medication efficiently. Based on this background, using the keywords "hypoxia/HIF, osteoporosis, osteoblasts, osteoclasts, osteocytes, iron/iron metabolism", a matching search was carried out through the Pubmed and Web Of Science databases, then the papers related to this review were screened, summarized and sorted. This review summarizes the relationship and regulation between the hypoxia pathway and osteoporosis (also including osteoblasts, osteoclasts, osteocytes) by arranging the references on the latest research progress, introduces briefly the application of hyperbaric oxygen therapy in osteoporosis symptoms (mechanical stimulation induces skeletal response to hypoxic signal activation), hypoxic-related drugs used in iron accumulation/osteoporosis model study, and also puts forward the prospects of future research.
Collapse
Affiliation(s)
- Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jingmin Che
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China
| |
Collapse
|
12
|
The role of PIWI-interacting RNA in naringin pro-angiogenesis by targeting HUVECs. Chem Biol Interact 2023; 371:110344. [PMID: 36623717 DOI: 10.1016/j.cbi.2023.110344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Angiogenesis is a biological process in which resting endothelial cells start proliferating, migrating and forming new blood vessels. Angiogenesis is particularly important in the repair of bone tissue defects. Naringin (NG) is the main active monomeric component of traditional Chinese medicine, which has various biological activities, such as anti-osteoporosis, anti-inflammatory, blood activation and microcirculation improvement. At present, the mechanism of naringin in the process of angiogenesis is not clear. PIWI protein-interacting RNA (piRNA) is a small noncoding RNA (sncRNA) that has the functions of regulating protein synthesis, regulating the structure of chromatin and the genome, stabilizing mRNA and others. Several studies have demonstrated that piRNAs can mediate the angiogenesis process. Whether naringin can interfere with the process of angiogenesis by regulating piRNAs and related target genes deserves further exploration. Thus, the purpose of this study was to validate the potential angiogenic and bone regeneration properties and related mechanisms of naringin both in vivo and in vitro.
Collapse
|
13
|
Li L, Li A, Gan L, Zuo L. Roxadustat improves renal osteodystrophy by dual regulation of bone remodeling. Endocrine 2023; 79:180-189. [PMID: 36184719 DOI: 10.1007/s12020-022-03199-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Renal osteodystrophy (ROD), a component of chronic kidney disease-mineral and bone disorder (CKD-MBD) can lead to bone loss increasing fracture risks in CKD patients. Therefore, it is important to prevent and treat ROD. Activation of hypoxia-inducible factor-1α (HIF-1α) signaling was reported to prevent osteoporotic bone loss. Roxadustat, which is used to treat renal anemia in the clinic, is a novel HIF stabilizer. In our study, we aimed to investigate the effects of roxadustat on ROD. METHODS We established an adenine-induced CKD rat model. Roxadustat was administered intragastrically to normal and CKD rats for 4 weeks. Hemoglobin concentrations and serum biochemical parameters were tested, and bone histomorphometric analysis was performed. RESULTS CKD rats exhibited impaired renal function with anemia, secondary hyperparathyroidism and high-turnover ROD-induced significant bone loss. Roxadustat ameliorated renal anemia and attenuated the extreme increase in intact parathyroid hormone (iPTH) and fibroblast growth factor 23 (FGF23) in CKD rats. Bone histomorphometric analysis showed that roxadustat significantly alleviated bone loss and bone microarchitecture deterioration in CKD rats by increasing osteoblast activity and inhibiting osteoclast activity. We did not find that roxadustat had significant effects on bone metabolism in normal rats. CONCLUSION Roxadustat can improve ROD via dual regulation of bone remodeling. The use of roxadustat may be a promising strategy to treat osteoporotic bone disorders, such as ROD.
Collapse
Affiliation(s)
- Luyao Li
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Afang Li
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Liangying Gan
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
14
|
Zeng B, Wu X, Liang W, Huang X. Network pharmacology combined with molecular docking to explore the anti-osteoporosis mechanisms of β-ecdysone derived from medicinal plants. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
β-Ecdysone is a phytosteroid derived from multifarious medicinal plants, such as Achyranthes root (Achyranthes bidentata) and Tinospora cordifolia, possessing the potential anti-osteoporosis effect. However, the underlying mechanisms for β-ecdysone treating osteoporosis remain unclear. This study aims to explore the molecular mechanisms of β-ecdysone against osteoporosis by network pharmacology and molecular docking. First, the potential targets of β-ecdysone and osteoporosis were predicted by public databases. Protein interaction and functional enrichment analyses of potential targets were performed using the STRING and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases. Finally, hub targets were identified from network pharmacology, and their interaction with β-ecdysone was validated by molecular docking. Results showed that 47 potential targets were related to the mechanisms of β-ecdysone treating osteoporosis. Enrichment analyses revealed that the potential targets were mainly associated with steroid biosynthetic and metabolic processes, as well as HIF-1 and estrogen signaling pathways. By protein–protein interaction network analysis, top 10 hub targets were screened, including TNF, ALB, SRC, STAT3, MAPK3, ESR1, PPARG, CASP3, TLR4, and NR3C1. Molecular docking showed that β-ecdysone had good affinity with TLR4, TNF, and ESR1. Therefore, β-ecdysone might exert therapeutic effect on osteoporosis development via targeting TLR4, TNF, and ESR1 and regulating HIF-1 and estrogen pathways.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| | - Xudong Wu
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| | - Wenqing Liang
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| | - Xiaogang Huang
- Department of Articular, Zhoushan Hospital of Traditional Chinese Medicine , No. 355 Xinqiao Road, Dinghai District , Zhoushan 316000 , Zhejiang , China
| |
Collapse
|
15
|
Babu LK, Ghosh D. Looking at Mountains: Role of Sustained Hypoxia in Regulating Bone Mineral Homeostasis in Relation to Wnt Pathway and Estrogen. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-022-09283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Chen W, Jin X, Wang T, Bai R, Shi J, Jiang Y, Tan S, Wu R, Zeng S, Zheng H, Jia H, Li S. Ginsenoside Rg1 interferes with the progression of diabetic osteoporosis by promoting type H angiogenesis modulating vasculogenic and osteogenic coupling. Front Pharmacol 2022; 13:1010937. [PMID: 36467080 PMCID: PMC9712449 DOI: 10.3389/fphar.2022.1010937] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Ginsenoside Rg1 (Rg1) has been demonstrated to have antidiabetic and antiosteoporotic activities. The aim of this study was to investigate the protective effect of Rg1 against diabetic osteoporosis and the underlying mechanism. In vitro, we found that Rg1 increased the number of osteoprogenitors and alleviated high glucose (HG) induced apoptosis of osteoprogenitors by MTT assays and flow cytometry. qRT‒PCR and western blot analysis suggested that Rg1 can also promote the secretion of vascular endothelial growth factor (VEGF) by osteoprogenitors and promote the coupling of osteogenesis and angiogenesis. Rg1 can also promote the proliferation of human umbilical vein endothelial cells (HUVECs) cultured in high glucose, enhance the angiogenic ability of endothelial cells, and activate the Notch pathway to promote endothelial cells to secrete the osteogenesis-related factor Noggin to regulate osteogenesis, providing further feedback coupling of angiogenesis and osteogenesis. Therefore, we speculated that Rg1 may have similar effects on type H vessels. We used the Goto-Kakizaki (GK) rat model to perform immunofluorescence staining analysis on two markers of type H vessels, Endomucin (Emcn) and CD31, and the osteoblast-specific transcription factor Osterix, and found that Rg1 stimulates type H angiogenesis and bone formation. In vivo experiments also demonstrated that Rg1 promotes VEGF secretion, activates the Noggin/Notch pathway, increases the level of coupling between type H vessels and osteogenesis, and improves the bone structure of GK rats. All of these data reveal that Rg1 is a promising candidate drug for treating diabetic osteoporosis as a potentially bioactive molecule that promotes angiogenesis and osteointegration coupling.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyan Jin
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Ting Wang
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Rui Bai
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun Shi
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Yunxia Jiang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Simin Tan
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruijie Wu
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiqi Zeng
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongxiang Zheng
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongyang Jia
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Shuanglei Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
17
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
18
|
Cui Y, Li Z, Guo Y, Qi X, Yang Y, Jia X, Li R, Shi J, Gao W, Ren Z, Liu G, Ye Q, Zhang Z, Fu D. Bioinspired Nanovesicles Convert the Skeletal Endothelium-Associated Secretory Phenotype to Treat Osteoporosis. ACS NANO 2022; 16:11076-11091. [PMID: 35801837 DOI: 10.1021/acsnano.2c03781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, bone marrow endothelial cells (BMECs) were found to play an important role in regulating bone homeostasis. However, few studies utilized BMECs to treat bone metabolic diseases including osteoporosis. Here, we reported bioinspired nanovesicles (BNVs) prepared from human induced pluripotent stem cells-derived endothelial cells under hypoxia culture through an extrusion approach. Abundant membrane C-X-C motif chemokine receptor 4 conferred these BNVs bone-targeting ability and the endothelial homology facilitated the BMEC tropism. Due to their unique endogenous miRNA cargos, these BNVs re-educated BMECs to secret cytokines favoring osteogenesis and anti-inflammation. Owing to the conversion of secretory phenotype, the osteogenic differentiation of bone mesenchymal stem cells was facilitated, and the M1-macrophage-dominant pro-inflammatory microenvironment was ameliorated in osteoporotic bones. Taken together, this study proposed BMEC-targeting nanovesicles treating osteoporosis via converting the skeletal endothelium-associated secretory phenotype.
Collapse
Affiliation(s)
- Yongzhi Cui
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named Shanghai First People's Hospital), Shanghai 200080, China
| | - Zhongying Li
- Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Xiangbei Qi
- Department of Orthopaedics, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Yuehua Yang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named Shanghai First People's Hospital), Shanghai 200080, China
| | - Xiong Jia
- Department of Medical Treatment, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Rui Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jingyu Shi
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Weihang Gao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Zhengwei Ren
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named Shanghai First People's Hospital), Shanghai 200080, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dehao Fu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named Shanghai First People's Hospital), Shanghai 200080, China
| |
Collapse
|
19
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
20
|
Li L, Li A, Zhu L, Gan L, Zuo L. Roxadustat promotes osteoblast differentiation and prevents estrogen deficiency-induced bone loss by stabilizing HIF-1α and activating the Wnt/β-catenin signaling pathway. J Orthop Surg Res 2022; 17:286. [PMID: 35597989 PMCID: PMC9124388 DOI: 10.1186/s13018-022-03162-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background Osteoporosis is a very common skeletal disorder that increases the risk of fractures. However, the treatment of osteoporosis is challenging. Hypoxia-inducible factor-1α (HIF-1α) plays an important role in bone metabolism. Roxadustat is a novel HIF stabilizer, and its effects on bone metabolism remain unknown. This study aimed to investigate the effects of roxadustat on osteoblast differentiation and bone remodeling in an ovariectomized (OVX) rat model. Methods In vitro, primary mouse calvarial osteoblasts were treated with roxadustat. Alkaline phosphatase (ALP) activity and extracellular matrix mineralization were assessed. The mRNA and protein expression levels of osteogenic markers were detected. The effects of roxadustat on the HIF-1α and Wnt/β-catenin pathways were evaluated. Furthermore, osteoblast differentiation was assessed again after HIF-1α expression knockdown or inhibition of the Wnt/β-catenin pathway. In vivo, roxadustat was administered orally to OVX rats for 12 weeks. Then, bone histomorphometric analysis was performed. The protein expression levels of the osteogenic markers HIF-1α and β-catenin in bone tissue were detected. Results In vitro, roxadustat significantly increased ALP staining intensity, enhanced matrix mineralization and upregulated the expression of osteogenic markers at the mRNA and protein levels in osteoblasts compared with the control group. Roxadustat activated the HIF-1α and Wnt/β-catenin pathways. HIF-1α knockdown or Wnt/β-catenin pathway inhibition significantly attenuated roxadustat-promoted osteoblast differentiation. In vivo, roxadustat administration improved bone microarchitecture deterioration and alleviated bone loss in OVX rats by promoting bone formation and inhibiting bone resorption. Roxadustat upregulated the protein expression levels of the osteogenic markers, HIF-1α and β-catenin in the bone tissue of OVX rats. Conclusion Roxadustat promoted osteoblast differentiation and prevented bone loss in OVX rats. The use of roxadustat may be a new promising strategy to treat osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03162-w.
Collapse
Affiliation(s)
- Luyao Li
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Afang Li
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Li Zhu
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Liangying Gan
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
21
|
Maruoka H, Zhao S, Yoshino H, Abe M, Yamamoto T, Hongo H, Haraguchi-Kitakamae M, Nasoori A, Ishizu H, Nakajima Y, Omaki M, Shimizu T, Iwasaki N, Luiz de Freitas PH, Li M, Hasegawa T. Histochemical examination of blood vessels in murine femora with intermittent PTH administration. J Oral Biosci 2022; 64:329-336. [DOI: 10.1016/j.job.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|
22
|
Ferroptosis - A new target of osteoporosis. Exp Gerontol 2022; 165:111836. [DOI: 10.1016/j.exger.2022.111836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022]
|
23
|
Chicana B, Abbasizadeh N, Burns C, Taglinao H, Spencer JA, Manilay JO. Deletion of Vhl in Dmp1-Expressing Cells Causes Microenvironmental Impairment of B Cell Lymphopoiesis. Front Immunol 2022; 13:780945. [PMID: 35250971 PMCID: PMC8889104 DOI: 10.3389/fimmu.2022.780945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
The contributions of skeletal cells to the processes of B cell development in the bone marrow (BM) have not been completely described. The von-Hippel Lindau protein (VHL) plays a key role in cellular responses to hypoxia. Previous work showed that Dmp1-Cre;Vhl conditional knockout mice (VhlcKO), which deletes Vhl in subsets of mesenchymal stem cells, late osteoblasts and osteocytes, display dysregulated bone growth and reduction in B cells. Here, we investigated the mechanisms underlying the B cell defects using flow cytometry and high-resolution imaging. In the VhlcKO BM, B cell progenitors were increased in frequency and number, whereas Hardy Fractions B-F were decreased. VhlcKO Fractions B-C cells showed increased apoptosis and quiescence. Reciprocal BM chimeras confirmed a B cell-extrinsic source of the VhlcKO B cell defects. In support of this, VhlcKO BM supernatant contained reduced CXCL12 and elevated EPO levels. Intravital and ex vivo imaging revealed VhlcKO BM blood vessels with increased diameter, volume, and a diminished blood-BM barrier. Staining of VhlcKO B cells with an intracellular hypoxic marker indicated the natural existence of distinct B cell microenvironments that differ in local oxygen tensions and that the B cell developmental defects in VhlcKO BM are not initiated by hypoxia. Our studies identify novel mechanisms linking altered bone homeostasis with drastic BM microenvironmental changes that dysregulate B cell development.
Collapse
Affiliation(s)
- Betsabel Chicana
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Nastaran Abbasizadeh
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States.,Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Christian Burns
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States.,Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Hanna Taglinao
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Joel A Spencer
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States.,Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States.,Bioengineering Graduate Program, University of California, Merced, Merced, CA, United States
| | - Jennifer O Manilay
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| |
Collapse
|
24
|
Zhang L, Li M, Wang Z, Sun P, Wei S, Zhang C, Wu H, Bai H. Cardiovascular Risk After SARS-CoV-2 Infection Is Mediated by IL18/IL18R1/HIF-1 Signaling Pathway Axis. Front Immunol 2022; 12:780804. [PMID: 35069552 PMCID: PMC8766743 DOI: 10.3389/fimmu.2021.780804] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives Currently, cardiovascular risk associated with COVID-19 has been brought to people's attention, but the mechanism is not clear. The aim of this study is to elucidate the mechanisms based on multiple omics data. Methodology Weighted gene co-expression network analysis (WGCNA) was used to identify key pathways. Combination analysis with aneurysm and atherosclerosis related pathways, hypoxia induced factor-1 (HIF-1) signaling were identified as key pathways of the increased cardiovascular risk associated with COVID-19. ScMLnet algorithm based on scRNA-seq was used to explore the regulation of HIF-1 pathway by intercellular communication. Proteomic analysis was used to detect the regulatory mechanisms between IL18 and HIF-1 signaling pathway. Pseudo time locus analysis was used to study the regulation of HIF1 signaling pathway in macrophages and vascular smooth muscle cells (VSMC) phenotypic transformation. The Virtual Inference of protein-activity by Enriched Regulon (VIPER) analysis was used to study the activity of regulatory proteins. Epigenetic analysis based on methylation revealed epigenetic changes in PBMC after SARS-CoV-2 infection. Potential therapeutic compounds were explored by using Cmap algorithm. Results HIF-1 signaling pathway is a common key pathway for aneurysms, atherosclerosis and SARS-CoV-2 infection. Intercellular communication analysis showed that macrophage-derived interleukin-18 (IL-18) activates the HIF-1 signaling pathway through IL18R1. Proteomic analysis showed that IL18/IL18R1 promote NF-κB entry into the nucleus, and activated the HIF-1 signaling pathway. Macrophage-derived IL18 promoted the M1 polarization of macrophages and the syntactic phenotype transformation of VSMCs. MAP2K1 mediates the functional regulation of HIF-1 signaling pathway in various cell types. Epigenetic changes in PBMC after COVID-19 infection are characterized by activation of the type I interferon pathway. MEK inhibitors are the promising compounds for the treatment of HIF-1 overactivation. Conclusions The IL18/IL18R1/HIF1A axis is expected to be an therapeutic target for cardiovascular protection after SARS-CoV-2 infection. MEK inhibitors may be an choice for cardiovascular protection after SARS-COV-2 infection.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxing Li
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| |
Collapse
|
25
|
Chen K, Zhao J, Qiu M, Zhang L, Yang K, Chang L, Jia P, Qi J, Deng L, Li C. Osteocytic HIF-1α Pathway Manipulates Bone Micro-structure and Remodeling via Regulating Osteocyte Terminal Differentiation. Front Cell Dev Biol 2022; 9:721561. [PMID: 35118061 PMCID: PMC8804240 DOI: 10.3389/fcell.2021.721561] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
The activation of hypoxia-inducible factor 1α (HIF-1α) signaling has promising implications for the treatment of bone diseases such as osteoporosis and skeletal fractures. However, the effects of manipulating HIF-1α pathway on bone micro-structure and remodeling should be fully studied before the clinical application of therapeutics that interfere with the HIF-1α pathway. In this study, we found that osteocyte-specific HIF-1α pathway had critical role in manipulating bone mass accrual, bone material properties and micro-structures, including bone mineralization, bone collagen fiber formation, osteocyte/canalicular network, and bone remodeling. In addition, our results suggest that osteocyte-specific HIF-1α pathway regulates bone micro-structure and remodeling via impairing osteocyte differentiation and maturation.
Collapse
Affiliation(s)
- Kaizhe Chen
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian Zhao
- Department of Orthopedics, The Central Hospital of Taian, Shandong, China
| | - Minglong Qiu
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianfang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Yang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Leilei Chang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Jia
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Qi
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jin Qi, ; Lianfu Deng, ; Changwei Li, ,
| | - Lianfu Deng
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jin Qi, ; Lianfu Deng, ; Changwei Li, ,
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Jin Qi, ; Lianfu Deng, ; Changwei Li, ,
| |
Collapse
|
26
|
Kumar N, Saraber P, Ding Z, Kusumbe AP. Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Front Immunol 2021; 12:798211. [PMID: 34975909 PMCID: PMC8718446 DOI: 10.3389/fimmu.2021.798211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
The bones and joints in the skeletal system are composed of diverse cell types, including vascular niches, bone cells, connective tissue cells and mineral deposits and regulate whole-body homeostasis. The capacity of maintaining strength and generation of blood lineages lies within the skeletal system. Bone harbours blood and immune cells and their progenitors, and vascular cells provide several immune cell type niches. Blood vessels in bone are phenotypically and functionally diverse, with distinct capillary subtypes exhibiting striking changes with age. The bone vasculature has a special impact on osteogenesis and haematopoiesis, and dysregulation of the vasculature is associated with diverse blood and bone diseases. Ageing is associated with perturbed haematopoiesis, loss of osteogenesis, increased adipogenesis and diminished immune response and immune cell production. Endothelial and perivascular cells impact immune cell production and play a crucial role during inflammation. Here, we discuss normal and maladapted vascular niches in bone during development, homeostasis, ageing and bone diseases such as rheumatoid arthritis and osteoarthritis. Further, we discuss the role of vascular niches during bone malignancy.
Collapse
Affiliation(s)
| | | | | | - Anjali P. Kusumbe
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Tissue and Tumor Microenvironments Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Swanson WB, Omi M, Zhang Z, Nam HK, Jung Y, Wang G, Ma PX, Hatch NE, Mishina Y. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials 2021; 272:120769. [PMID: 33798961 DOI: 10.1016/j.biomaterials.2021.120769] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Craniosynostosis is a debilitating birth defect characterized by the premature fusion of cranial bones resulting from premature loss of stem cells located in suture tissue between growing bones. Mesenchymal stromal cells in long bone and the cranial suture are known to be multipotent cell sources in the appendicular skeleton and cranium, respectively. We are developing biomaterial constructs to maintain stemness of the cranial suture cell population towards an ultimate goal of diminishing craniosynostosis patient morbidity. Recent evidence suggests that physical features of synthetic tissue engineering scaffolds modulate cell and tissue fate. In this study, macroporous tissue engineering scaffolds with well-controlled spherical pores were fabricated by a sugar porogen template method. Cell-scaffold constructs were implanted subcutaneously in mice for up to eight weeks then assayed for mineralization, vascularization, extracellular matrix composition, and gene expression. Pore size differentially regulates cell fate, where sufficiently large pores provide an osteogenic niche adequate for bone formation, while sufficiently small pores (<125 μm in diameter) maintain stemness and prevent differentiation. Cell-scaffold constructs cultured in vitro followed the same pore size-controlled differentiation fate. We therefore attribute the differential cell and tissue fate to scaffold pore geometry. Scaffold pore size regulates mesenchymal cell fate, providing a novel design motif to control tissue regenerative processes and develop mesenchymal stem cell niches in vivo and in vitro through biophysical features.
Collapse
Affiliation(s)
- W Benton Swanson
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Maiko Omi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Younghun Jung
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Gefei Wang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Materials Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA; Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Insights into the mechanism of vascular endothelial cells on bone biology. Biosci Rep 2021; 41:227494. [PMID: 33403387 PMCID: PMC7816070 DOI: 10.1042/bsr20203258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In the skeletal system, blood vessels not only function as a conduit system for transporting gases, nutrients, metabolic waste, or cells but also provide multifunctional signal molecules regulating bone development, regeneration, and remodeling. Endothelial cells (ECs) in bone tissues, unlike in other organ tissues, are in direct contact with the pericytes of blood vessels, resulting in a closer connection with peripheral connective tissues. Close-contact ECs contribute to osteogenesis and osteoclastogenesis by secreting various cytokines in the paracrine or juxtacrine pathways. An increasing number of studies have revealed that extracellular vesicles (EVs) derived from ECs can directly regulate maturation process of osteoblasts and osteoclasts. The different pathways focus on targets at different distances, forming the basis of the intimate spatial and temporal link between bone tissue and blood vessels. Here, we provide a systematic review to elaborate on the function of ECs in bone biology and its underlying mechanisms based on three aspects: paracrine, EVs, and juxtacrine. This review proposes the possibility of a therapeutic strategy targeting blood vessels, as an adjuvant treatment for bone disorders.
Collapse
|
29
|
Yi L, Ju Y, He Y, Yin X, Xu Y, Weng T. Intraperitoneal injection of Desferal® alleviated the age-related bone loss and senescence of bone marrow stromal cells in rats. Stem Cell Res Ther 2021; 12:45. [PMID: 33413663 PMCID: PMC7791659 DOI: 10.1186/s13287-020-02112-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background Age-related bone loss plays a vital role in the development of osteoporosis and osteoporotic fracture. Bone marrow stromal cell (BMSC) senescence is highly associated with osteoporosis and limits the application of BMSCs in regenerative medicine. Hypoxia is an essential component for maintaining the normal physiology of BMSCs. We have reported that activation of hypoxia-induced factor by deletion of von Hippel-Lindau gene in osteochondral progenitor cells protected mice from aging-induced bone loss. However, whether pharmacologically manipulation of hypoxic niche would attenuate age-related bone loss and dysfunction of BMSCs is not well understood. Methods Twelve-month-old Sprague-Dawley rats were used as an aged model and were intraperitoneally injected with Desferal® (20, 60 mg/kg weight or vehicle), three times a week for a continuous 8-week period. Two-month-old young rats were set as a reference. After 8 weeks, micro-CT and HE staining were performed to determine the effect of Desferal® on bone loss. In order to investigate the effects of Desferal® on BMSC senescence, 12-month-old rats were treated with high-dose Desferal® (60 mg/kg weight) daily for 10 days. BMSCs were isolated and evaluated using CCK-8 assay, colony-forming cell assay, cell differentiation assay, laser confocal for reactive oxygen species (ROS) level, senescence-associated β-galactosidase (SA-β-gal) staining, and molecular expression test for stemness/senescence-associated genes. Results Micro-CT and HE staining showed that high-dose Desferal® significantly prevented bone loss in aged rats. Compared with vehicle group, the ex vivo experiments showed that short-term Desferal® administration could promote the potential of BMSC growth (proliferation and colony formation ability) and improve the rebalance of osteogenic and adipogenic differentiation, as well as rejuvenate senescent BMSCs (ROS level and SA-β-gal staining) and revise the expression of stemness/senescence-associated genes. The potential of BMSCs from 12M-H-Desferal® group at least partly revised to the level close to 2-month-old group. Conclusions The current study suggested that Desferal®, an iron-chelating agent, could alleviate age-related bone loss in middle-aged rats. Meanwhile, we found that short-term intraperitoneal injection of Desferal® partly rejuvenate BMSCs from aged rats. Overall, we demonstrated a novel role of Desferal® in rejuvenating aged BMSCs and preventing age-related bone loss. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02112-9.
Collapse
Affiliation(s)
- Lingxian Yi
- Department of Orthopaedics, Fourth medical center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 10048, People's Republic of China.,Critical Care Medicine Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Yue Ju
- Department of Orthopaedics, Fourth medical center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 10048, People's Republic of China.,Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang, China
| | - Ying He
- Department of Orthopaedics, Fourth medical center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 10048, People's Republic of China
| | - Xiushan Yin
- Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang, China
| | - Ye Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, People's Republic of China
| | - Tujun Weng
- Department of Orthopaedics, Fourth medical center of PLA General Hospital, No. 51 Fucheng Road, Beijing, 10048, People's Republic of China.
| |
Collapse
|
30
|
Guo Q, Yang J, Chen Y, Jin X, Li Z, Wen X, Xia Q, Wang Y. Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment. Eur J Pharmacol 2020; 884:173394. [PMID: 32730833 DOI: 10.1016/j.ejphar.2020.173394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Angiogenesis is essential for bone formation during skeletal development. HIF-1α and the HIF-responsive gene VEGF (vascular endothelial growth factor) are reported to be a key mechanism for coupling osteogenesis and angiogenesis. Salidroside (SAL), a major biologically active compound of Rhodiola rosea L., possesses diverse pharmacological effects. However, whether SAL can protect against bone loss via the HIF-1α/VEGF pathway, specifically by inducing angiogenesis-osteogenesis coupling in vivo, remains unknown. Therefore, in the present study, we employed primary human umbilical vein endothelial cells (HUVECs) and the permanent EA.hy926 human endothelial cell line to determine the cellular and molecular effects of SAL on vascular endothelial cells and the HIF-1α-VEGF signalling pathway in the coupling of angiogenesis-osteogenesis. The in vitro study revealed that the HUVECs and EA.hy926 cells treated with conditioned medium from osteoblast cells (MG-63 cells) treated with SAL or treated directly with SAL showed enhanced proliferation, migration and capillary structure formation. However, supplementation with an anti-VEGF antibody during the treatment of endothelial cells (ECs) significantly reversed the pro-angiogenic effect of SAL. Moreover, SAL upregulated HIF-1α expression and increased its transcriptional activity, consequently upregulating VEGF expression at the mRNA and protein levels. In addition, our in vivo analysis demonstrated that SAL can stimulate endothelial sprouting from metatarsal bones. Thus, our mechanistic study demonstrated that the pro-angiogenic effects of SAL involve HIF-1α-VEGF signalling by coordinating the coupling of angiogenesis-osteogenesis in the bone environment. Therefore, we have discovered an ideal molecule that simultaneously enhances angiogenesis and osteogenesis and thereby accelerates bone healing.
Collapse
Affiliation(s)
- Qiaoyun Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Jing Yang
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Yumeng Chen
- College of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Jin
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Zongmin Li
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China; Department of Clinical Laboratory, Shanghai Crops Hospital of Chinese People's Armed Police Forces, Shanghai, China
| | - Xiaochang Wen
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China
| | - Qun Xia
- Department of Orthopaedics, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, 300309, China.
| |
Collapse
|
31
|
Che J, Yang J, Zhao B, Zhang G, Wang L, Peng S, Shang P. The Effect of Abnormal Iron Metabolism on Osteoporosis. Biol Trace Elem Res 2020; 195:353-365. [PMID: 31473898 DOI: 10.1007/s12011-019-01867-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
Abstract
Iron is one of the important trace elements in life activities. Abnormal iron metabolism increases the incidence of many skeletal diseases, especially for osteoporosis. Iron metabolism plays a key role in the bone homeostasis. Disturbance of iron metabolism not only promotes osteoclast differentiation and apoptosis of osteoblasts but also inhibits proliferation and differentiation of osteoblasts, which eventually destroys the balance of bone remodeling. The strength and density of bone can be weakened by the disordered iron metabolism, which increases the incidence of osteoporosis. Clinically, compounds or drugs that regulate iron metabolism are used for the treatment of osteoporosis. The goal of this review summarizes the new progress on the effect of iron overload or deficiency on osteoporosis and the mechanism of disordered iron metabolism on osteoporosis. Explaining the relationship of iron metabolism with osteoporosis may provide ideas for clinical treatment and development of new drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Luyao Wang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China.
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
32
|
Zhao Y, Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann N Y Acad Sci 2020; 1474:5-14. [PMID: 32242943 DOI: 10.1111/nyas.14348] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 02/05/2023]
Abstract
Blood vessels serve as a versatile transport system and play crucial roles in organ development, regeneration, and stem cell behavior. In the skeletal system, certain capillaries support perivascular stem cells or osteoprogenitor cells and thereby regulate bone formation. Recent studies reported that a specialized capillary subtype, termed type H vessels, is shown to couple angiogenesis and osteogenesis in rodents and humans. They can be distinguished by specific cell surface markers, as the endothelial cells in the metaphysis and endosteum highly express the junctional protein CD31 and the sialoglycoprotein endomucin. Here, we provide an overview of the role of type H vessels in bone homeostasis and summarize their linkage with various cytokines to control bone cell behavior and bone formation. We also discuss the potential clinical application for bone disorders by targeting these specific vessels according to their physiological and pathobiological settings.
Collapse
Affiliation(s)
- Yifan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Fouad-Elhady EA, Aglan HA, Hassan RE, Ahmed HH, Sabry GM. Modulation of bone turnover aberration: A target for management of primary osteoporosis in experimental rat model. Heliyon 2020; 6:e03341. [PMID: 32072048 PMCID: PMC7011045 DOI: 10.1016/j.heliyon.2020.e03341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a skeletal degenerative disease characterised by abnormal bone turnover with scant bone formation and overabundant bone resorption. The present approach was intended to address the potency of nanohydroxyapatite (nHA), chitosan/hydroxyapatite nanocomposites (nCh/HA) and silver/hydroxyapatite nanoparticles (nAg/HA) to modulate bone turnover deviation in primary osteoporosis induced in the experimental model. Characterisation techniques such as TEM, zeta-potential, FT-IR and XRD were used to assess the morphology, the physical as well as the chemical features of the prepared nanostructures. The in vivo experiment was conducted on forty-eight adult female rats, randomised into 6 groups (8 rats/group), (1) gonad-intact, (2) osteoporotic group, (3) osteoporotic + nHA, (4) osteoporotic + nCh/HA, (5) osteoporotic + nAg/HA and (6) osteoporotic + alendronate (ALN). After three months of treatment, serum sclerostin (SOST), bone alkaline phosphatase (BALP) and bone sialoprotein (BSP) levels were quantified using ELISA. Femur bone receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and cathepsin K (CtsK) mRNA levels were evaluated by quantitative RT-PCR. Moreover, alizarin red S staining was applied to determine the mineralisation intensity of femur bone. Findings in the present study indicated that treatment with nHA, nCh/HA or nAg/HA leads to significant repression of serum SOST, BALP and BSP levels parallel to a significant down-regulation of RANKL and CtsK gene expression levels. On the other side, significant enhancement in the calcification intensity of femur bone has been noticed. The outcomes of this experimental setting ascertained the potentiality of nHA, nCh/HA and nAg/HA as promising nanomaterials in attenuating the excessive bone turnover in the primary osteoporotic rat model. The mechanisms behind the efficacy of the investigated nanostructures involved the obstacle of serum and tissue indices of bone resorption besides the strengthening of bone mineralisation.
Collapse
Affiliation(s)
- Enas A Fouad-Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Gilane M Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
34
|
Fu R, Lv WC, Xu Y, Gong MY, Chen XJ, Jiang N, Xu Y, Yao QQ, Di L, Lu T, Wang LM, Mo R, Wu ZQ. Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis. Nat Commun 2020; 11:460. [PMID: 31974363 PMCID: PMC6978338 DOI: 10.1038/s41467-019-14076-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/11/2019] [Indexed: 02/08/2023] Open
Abstract
Recent interest in the control of bone metabolism has focused on a specialized subset of CD31hiendomucinhi vessels, which are reported to couple angiogenesis with osteogenesis. However, the underlying mechanisms that link these processes together remain largely undefined. Here we show that the zinc-finger transcription factor ZEB1 is predominantly expressed in CD31hiendomucinhi endothelium in human and mouse bone. Endothelial cell-specific deletion of ZEB1 in mice impairs CD31hiendomucinhi vessel formation in the bone, resulting in reduced osteogenesis. Mechanistically, ZEB1 deletion reduces histone acetylation on Dll4 and Notch1 promoters, thereby epigenetically suppressing Notch signaling, a critical pathway that controls bone angiogenesis and osteogenesis. ZEB1 expression in skeletal endothelium declines in osteoporotic mice and humans. Administration of Zeb1-packaged liposomes in osteoporotic mice restores impaired Notch activity in skeletal endothelium, thereby promoting angiogenesis-dependent osteogenesis and ameliorating bone loss. Pharmacological reversal of the low ZEB1/Notch signaling may exert therapeutic benefit in osteoporotic patients by promoting angiogenesis-dependent bone formation. An endothelial cell subtype, expressing endomucin and CD31, has been reported to couple angiogenesis with osteogenesis. Here, the authors show that loss of ZEB1 in these cells epigenetically suppresses Notch signaling, leading to impaired angiogenesis and osteogenesis, and that Zeb1 delivery via liposomes ameliorates bone loss in osteoporotic mice
Collapse
Affiliation(s)
- Rong Fu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wen-Cong Lv
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ying Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mu-Yun Gong
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiao-Jie Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Nan Jiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Xu
- Department of Orthopedic Surgery, Digital Medicine Institute, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, 210006, China
| | - Qing-Qiang Yao
- Department of Orthopedic Surgery, Digital Medicine Institute, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, 210006, China
| | - Lei Di
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ming Wang
- Department of Orthopedic Surgery, Digital Medicine Institute, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, 210006, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
35
|
Ye T, He F, Lu L, Miao H, Sun D, Zhang M, Yang H, Zhang J, Qiu J, Zhao H, Ma Z, Yu S. The effect of oestrogen on mandibular condylar cartilage via hypoxia-inducible factor-2α during osteoarthritis development. Bone 2020; 130:115123. [PMID: 31678498 DOI: 10.1016/j.bone.2019.115123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
Oestrogen and hypoxia inducible factor-2α (HIF2α) are key regulators in the pathogenesis of osteoarthritis (OA). However, the cellular interaction between oestrogen and HIF2α in articular cartilage during OA process remains unknown. Our previous study has revealed that high-physiological level of oestrogen aggravates the degradation of condylar cartilage in the early stage of temporomandibular joint osteoarthritis (TMJ OA). Here, we hypothesize that HIF2α involves the effect of oestrogen on mandibular condylar cartilage in the progression of TMJ OA. Our experiment in vivo found that the degeneration of condylar cartilage caused by unilateral anterior crossbite (UAC) model, characterized by obvious degenerative morphology, loss of cartilage extracellular matrix, up-regulation of TNF-α, HIF2α and its' down-stream OA-related cytokines (MMP-13, VEGF and Col X), could be alleviated by lack of oestrogen while aggravated by high level of oestrogen in rats. Meanwhile, our in vitro study found that 17β-estradiol stimulation resulted in the loss of extracellular matrix, increased expression of TNF-α, IL-1, HIF2α and its' down-stream OA-related cytokines (MMP-13, VEGF and Col X) in primary condylar chondrocytes via oestrogen receptor beta (ERβ), which could be reversed by ER antagonist, selective estrogen receptor modulators (SERMs) and HIF2α translation inhibitor. Our results reveal that high level of oestrogen can aggravate the degenerative changes of mandibular condylar cartilage, while lack of oestrogen can alleviate it via oestrogen-ERβ-HIF2α pathway during TMJ OA progression.
Collapse
Affiliation(s)
- Tao Ye
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Feng He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Lei Lu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Hui Miao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Dongliang Sun
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Military Health Team of 61213 Troops of the Chinese People's Liberation Army, Linfei, Shanxi 041000, PR China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Hongxu Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jun Qiu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Haidan Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Zhaofeng Ma
- Department of Stomatology, Shunyi Hospital, Capital Medical University, Beijing 101300, PR China.
| | - Shibin Yu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
36
|
Ding Z, Zhou M, Zhou Z, Zhang W, Jiang X, Lu X, Zuo B, Lu Q, Kaplan DL. Injectable Silk Nanofiber Hydrogels for Sustained Release of Small-Molecule Drugs and Vascularization. ACS Biomater Sci Eng 2019; 5:4077-4088. [PMID: 33448809 DOI: 10.1021/acsbiomaterials.9b00621] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Strategies to control neovascularization in damaged tissues remain a key issue in regenerative medicine. Unlike most reported desferrioxamine (DFO)-loaded systems where DFO demonstrates a burst release, here we attain zero-order release behavior above 40 days. This outcome was achieved by blending DFO with silk nanofibers with special hydrophilic-hydrophobic properties. The special silk nanofibers showed strong physical binding capacity with DFO, avoiding chemical cross-linking. Using these new biomaterials in vivo in a rat wound model suggested that the DFO-loaded silk nanofiber hydrogel systems stimulated angiogenesis by the sustained release of DFO, but also facilitated cell migration and tissue ingrowth. These features resulted in faster formation of a blood vessel network in the wounds, as well improved healing when compared to the free DFO system. The DFO-loaded systems are also suitable for the regeneration of other tissues, such as nerve and bone, suggesting universality in the biomedical field.
Collapse
Affiliation(s)
| | - Mingliang Zhou
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | | | - Wenjie Zhang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai JiaoTong University, School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | | | | | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
37
|
Controlling hypoxia-inducible factor-2α is critical for maintaining bone homeostasis in mice. Bone Res 2019; 7:14. [PMID: 31098335 PMCID: PMC6513851 DOI: 10.1038/s41413-019-0054-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pathological bone loss is caused by an imbalance between bone formation and resorption. The bone microenvironments are hypoxic, and hypoxia-inducible factor (HIF) is known to play notable roles in bone remodeling. However, the relevant functions of HIF-2α are not well understood. Here, we have shown that HIF-2α deficiency in mice enhances bone mass through its effects on the differentiation of osteoblasts and osteoclasts. In vitro analyses revealed that HIF-2α inhibits osteoblast differentiation by targeting Twist2 and stimulates RANKL-induced osteoclastogenesis via regulation of Traf6. In addition, HIF-2α appears to contribute to the crosstalk between osteoblasts and osteoclasts by directly targeting RANKL in osteoprogenitor cells. Experiments performed with osteoblast- and osteoclast-specific conditional knockout mice supported a role of HIF-2α in this crosstalk. HIF-2α deficiency alleviated ovariectomy-induced bone loss in mice, and specific inhibition of HIF-2α with ZINC04179524 significantly blocked RANKL-mediated osteoclastogenesis. Collectively, our results suggest that HIF-2α functions as a catabolic regulator in bone remodeling, which is critical for the maintenance of bone homeostasis.
Collapse
|
38
|
The Effect of Exercise on the Prevention of Osteoporosis and Bone Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8171897. [PMID: 31139653 PMCID: PMC6500645 DOI: 10.1155/2019/8171897] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Physical activity or appropriate exercise prevents the development of osteoporosis. However, the exact mechanism remains unclear although it is well accepted that exercise or mechanical loading regulates the hormones, cytokines, signaling pathways, and noncoding RNAs in bone. Accumulating evidence has shown that bone is a highly vascularized tissue, and dysregulation of vasculature is associated with many bone diseases such as osteoporosis or osteoarthritis. In addition, exercise or mechanical loading regulates bone vascularization in bone microenvironment via the modulation of angiogenic mediators, which play a crucial role in maintaining skeletal health. This review discusses the effects of exercise and its underlying mechanisms for osteoporosis prevention, as well as an angiogenic and osteogenic coupling in response to exercise.
Collapse
|
39
|
Chicana B, Donham C, Millan AJ, Manilay JO. Wnt Antagonists in Hematopoietic and Immune Cell Fate: Implications for Osteoporosis Therapies. Curr Osteoporos Rep 2019; 17:49-58. [PMID: 30835038 PMCID: PMC6715281 DOI: 10.1007/s11914-019-00503-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW We reviewed the current literature on the roles of the Wnt antagonists sclerostin (Sost) and sclerostin-containing domain protein 1 (Sostdc1) on bone homeostasis, the relationship of the hypoxia-inducible factor (Hif) and von Hippel-Lindau (Vhl) pathways on Sost expression, and how changes in bone induced by depletion of Sost, Sostdc1, and Vhl affect hematopoietic cells. RECENT FINDINGS B cell development is adversely affected in Sost-knockout mice and is more severely affected in Vhl-knockout mice. Inflammation in the Sost-/- bone microenvironment could alter hematopoietic stem cell behavior. Sostdc1-/- mice display defects in natural killer cell development and cytotoxicity. Depletion of Sost and Sostdc1 have effects on immune cell function that warrant investigation in patients receiving Wnt antagonist-depleting therapies for treatment of bone diseases. Additional clinical applications for manipulation of Wnt antagonists include cancer immunotherapies, stem cell transplantation, and directed differentiation to immune lineages.
Collapse
Affiliation(s)
- Betsabel Chicana
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Cristine Donham
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Alberto J Millan
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Jennifer O Manilay
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA.
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
40
|
Guo C, Yang K, Yan Y, Yan D, Cheng Y, Yan X, Qian N, Zhou Q, Chen B, Jiang M, Zhou H, Li C, Wang F, Qi J, Xu X, Deng L. SF-deferoxamine, a bone-seeking angiogenic drug, prevents bone loss in estrogen-deficient mice. Bone 2019; 120:156-165. [PMID: 30385424 DOI: 10.1016/j.bone.2018.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 11/29/2022]
Abstract
Deferoxamine (DFO) possesses a good chelating capability and is therefore used for the clinical treatment of ion deposition diseases. Increasing evidence shows that DFO can inhibit the activity of proline hydroxylase (PHD) by chelating iron, resulting in hypoxia-induced factor (HIF) signaling activation and angiogenesis promotion. However, clinical evidence indicates that a high concentration of DFO could be biotoxic due to its enrichment in related organs. Thus, we established a new compound by conjugating DFO with the bone-seeking agent iminodiacetic acid (IDA); the new agent is called SF-DFO, and we verified its promotion of HIF activation and tube formation in vivo. After confirming the bone-seeking property of SF-DFO in the femur and vertebra of both male and female mice and comparing it to that of DFO, we analyzed the protective effect of DFO and SF-DFO in an ovariectomized (OVX) mouse model. The serum CTX-I level revealed no influence of DFO and SF-DFO on osteoclast activity, but the blood vessels and osteoblasts in the metaphysis were more abundant after SF-DFO treatment, which resulted in a greater protective effect against trabecular bone loss compared to the DFO group. Additionally, the cortical parameters and bone strength performance were identical between the DFO and SF-DFO groups. However, the diffuse inflammatory response in the liver and spleen that occurred after DFO injection was not observed in the SF-DFO group. Thus, with reduced biotoxicity and an equivalent bone-seeking capability, SF-DFO may be a better choice for the prevention of vascular degradation-induced osteoporosis.
Collapse
Affiliation(s)
- Changjun Guo
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Department of Orthopedics, Rui Jin North Hospital, Shanghai Jiao Tong University School of Medicine, 999 Xiwang Road, Shanghai 201801, China
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yufei Yan
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Dongming Yan
- National Shanghai Center for New Drug Safety Evaluation and Research, 199 Guoshoujing Road, China (Shanghai) Pilot Free Trade Zone, Shanghai 201203, China
| | - Yifan Cheng
- National Shanghai Center for New Drug Safety Evaluation and Research, 199 Guoshoujing Road, China (Shanghai) Pilot Free Trade Zone, Shanghai 201203, China
| | - Xueming Yan
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Niandong Qian
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Qi Zhou
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Bo Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Min Jiang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Jin Qi
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Xiangyang Xu
- Department of Orthopedics, Rui Jin North Hospital, Shanghai Jiao Tong University School of Medicine, 999 Xiwang Road, Shanghai 201801, China; Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW We reviewed recent literature on oxygen sensing in osteogenic cells and its contribution to development of a skeletal phenotype, the coupling of osteogenesis with angiogenesis and integration of hypoxia into canonical Wnt signaling, and opportunities to manipulate oxygen sensing to promote skeletal repair. RECENT FINDINGS Oxygen sensing in osteocytes can confer a high bone mass phenotype in murine models; common and unique targets of HIF-1α and HIF-2α and lineage-specific deletion of oxygen sensing machinery suggest differentia utilization and requirement of HIF-α proteins in the differentiation from mesenchymal stem cell to osteoblast to osteocyte; oxygen-dependent but HIF-α-independent signaling may contribute to observed skeletal phenotypes. Manipulating oxygen sensing machinery in osteogenic cells influences skeletal phenotype through angiogenesis-dependent and angiogenesis-independent pathways and involves HIF-1α, HIF-2α, or both proteins. Clinically, an FDA-approved iron chelator promotes angiogenesis and osteogenesis, thereby enhancing the rate of fracture repair.
Collapse
Affiliation(s)
- Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
42
|
Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacol Ther 2018; 191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
|
43
|
Vrtačnik P, Zupan J, Mlakar V, Kranjc T, Marc J, Kern B, Ostanek B. Epigenetic enzymes influenced by oxidative stress and hypoxia mimetic in osteoblasts are differentially expressed in patients with osteoporosis and osteoarthritis. Sci Rep 2018; 8:16215. [PMID: 30385847 PMCID: PMC6212423 DOI: 10.1038/s41598-018-34255-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/03/2018] [Indexed: 01/21/2023] Open
Abstract
Epigenetic mechanisms including posttranslational histone modifications and DNA methylation are emerging as important determinants of bone homeostasis. With our case-control study we aimed to identify which chromatin-modifying enzymes could be involved in the pathology of postmenopausal osteoporosis and osteoarthritis while co-regulated by estrogens, oxidative stress and hypoxia. Gene expression of HAT1, KAT5, HDAC6, MBD1 and DNMT3A affected by oxidative stress and hypoxia in an in vitro qPCR screening step performed on an osteoblast cell line was analysed in trabecular bone tissue samples from 96 patients. Their expression was significantly reduced in patients with postmenopausal osteoporosis and osteoarthritis as compared to autopsy controls and significantly correlated with bone mineral density and several bone histomorphometry-derived parameters of bone quality and quantity as well as indicators of oxidative stress, RANK/RANKL/OPG system and angiogenesis. Furthermore, oxidative stress increased DNA methylation levels at the RANKL and OPG promoters while decreasing histone acetylation levels at these two genes. Our study is the first to show that higher expression of HAT1, HDAC6 and MBD1 is associated with superior quantity as well as quality of the bone tissue having a more favourable trabecular structure.
Collapse
Affiliation(s)
- Peter Vrtačnik
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Vid Mlakar
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Tilen Kranjc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Barbara Kern
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
44
|
Cheng Q, Lin S, Bi B, Jiang X, Shi H, Fan Y, Lin W, Zhu Y, Yang F. Bone Marrow-derived Endothelial Progenitor Cells Are Associated with Bone Mass and Strength. J Rheumatol 2018; 45:1696-1704. [PMID: 30173148 DOI: 10.3899/jrheum.171226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Blood vessels of bone are thought to influence osteogenesis of bone. No clinical studies have determined whether angiogenesis is related to bone mass and gene expression of growth factors. We compared bone marrow endothelial progenitor cells (EPC), which control angiogenesis of bone in postmenopausal women incurring fragility fracture, with osteoporosis or traumatic fracture with normal bone mass (COM). METHODS Bone specimens were obtained from age-matched women with osteoporosis or COM. Mononuclear cells were isolated and EPC were detected by flow cytometry. The expression levels of specific genes were measured. Bone mineral density (BMD) was determined, and serum markers of bone turnover also were measured. Differences between OP and COM were assessed with Student t test or Mann-Whitney U test, and correlations were determined using Spearman's correlation. RESULTS Compared with COM, patients with OP had significantly lower levels of serum osteocalcin, procollagen type-1 N-terminal propeptide, and 25-hydroxy vitamin D, as well as decreased BMD of total hip and femoral neck and fewer bone marrow EPC. Expression levels of vascular endothelial growth factor, angiopoietin-1 (Ang-1), angiopoietin 2 (Ang-2), and the osteoblast-specific genes runt-related transcription factor 2 (RUNX2) and osterix in bone were significantly lower in OP than in COM. We determined that mature EPC were correlated positively with BMD of the femoral neck and total hip, gene expression of Ang-1, RUNX2, and CD31, and negatively with gene expression of receptor activator of nuclear factor-κB ligand and Ang-2. CONCLUSION Our results demonstrate correlations of bone marrow EPC with bone mass and gene expression of growth factors, which support a hypothesis of crosstalk between angiogenesis and osteogenesis in bone health.
Collapse
Affiliation(s)
- Qun Cheng
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China. .,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article.
| | - Shangjin Lin
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Bo Bi
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Xin Jiang
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Hongli Shi
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Yongqian Fan
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Weilong Lin
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Yuefeng Zhu
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| | - Fengjian Yang
- From the Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; the Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; and the Central Laboratory, Huadong Hospital, affiliated to Fudan University, Shanghai, China.,Q. Cheng, MD, PhD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; S. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; B. Bi, MD, PhD, Central Lab, Huadong Hospital, affiliated to Fudan University; X. Jiang, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; H. Shi, MD, Department of Osteoporosis and Bone Disease, Huadong Hospital, affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute; Y. Fan, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; W. Lin, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; Y. Zhu, MD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University; F. Yang, MD, PhD, Department of Orthopedics, Huadong Hospital, affiliated to Fudan University. Qun Cheng and Shangjin Lin are co-first authors of this article
| |
Collapse
|
45
|
Watson EC, Adams RH. Biology of Bone: The Vasculature of the Skeletal System. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031559. [PMID: 28893838 DOI: 10.1101/cshperspect.a031559] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood vessels are essential for the distribution of oxygen, nutrients, and immune cells, as well as the removal of waste products. In addition to this conventional role as a versatile conduit system, the endothelial cells forming the innermost layer of the vessel wall also possess important signaling capabilities and can control growth, patterning, homeostasis, and regeneration of the surrounding organ. In the skeletal system, blood vessels regulate developmental and regenerative bone formation as well as hematopoiesis by providing vascular niches for hematopoietic stem cells. Here we provide an overview of blood vessel architecture, growth and properties in the healthy, aging, and diseased skeletal system.
Collapse
Affiliation(s)
- Emma C Watson
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| |
Collapse
|
46
|
Yuan H, Xiao L, Min W, Yuan W, Lu S, Huang G. Bu-Shen-Tong-Luo decoction prevents bone loss via inhibition of bone resorption and enhancement of angiogenesis in ovariectomy-induced osteoporosis of rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:228-238. [PMID: 29317302 DOI: 10.1016/j.jep.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gathering three ancient formulas, traditional Chinese medicine Bu-Shen-Tong-Luo decoction (BSTLD) has been used to treat postmenopausal osteoporosis (PMO) at the Jiangsu Province Hospital of Chinese Medicine for decades. However, the effect of BSTLD on angiogenesis and bone resorption as well as its possible mechanism are still unknown. AIM OF THE STUDY This study was aimed to evaluate the preventive effect of BSTLD on ovariectomy-induced bone loss and vasculature disorder, and to investigate the possible bone protection mechanism of BSTLD in inhibiting bone resorption by enhancing angiogenesis signaling in ovariectomy-induced osteoporosis of rats. MATERIALS AND METHODS The animal experiment was divided into five groups. Rats underwent either sham surgery with intact ovaries (SHAM, n = 10) or bilateral ovariectomy (OVX, n = 40). OVX rats were randomly divided into four groups and gavaged by water (vehicle, 12 mL/kg, n = 10), BSTLD (6 g/kg, n = 10), BSTLD (12 g/kg, n = 10) and 17β-estradiol (E2, 100 μg/kg, n = 10) daily for 12 weeks, respectively. The bone loss and microstructure of the distal femur were observed using micro-computed tomography (μCT). The biomechanical parameters of the femur were detected using three-point bending tests. The distribution of osteoclasts and endothelial cells were analyzed by immunohistochemistry. The mRNA and protein levels of angiogenesis-related hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF), as well as osteoclast activation-related signaling calcitonin receptor (CALCR), cathepsin K (CTSK), receptor activator of NF-κB ligand (RANKL), osteoprotegerin (OPG), and β-catenin were assayed by RT-PCR or Western blot. RESULTS BSTLD protected trabecular bone mass density and trabecular bone microstructure from ovariectomy-induced osteoporosis in rats. BSTLD significantly reduced mRNA and protein levels of calcitonin receptor and CTSK in femoral metaphysis and inhibited bone resorption in ovariectomized rats. Furthermore, BSTLD stabilized HIF-1α activity and subsequently increased VEGF expression to enhance angiogenesis and modulated RANKL/OPG signaling in this animal model. CONCLUSIONS These results demonstrated that BSTLD reduced osteoclasts activation and bone resorption in ovariectomy-induced osteoporosis. Bone protection by BSTLD may be associated with its stimulation of HIF-1α/VEGF angiogenesis signaling and suppression of RANKL/OPG ratio. This study may provide evidence that BSTLD treats postmenopausal osteoporosis, especially with micro-circulation complication.
Collapse
Affiliation(s)
- Han Yuan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Linyan Xiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Wen Min
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Wenchao Yuan
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Guicheng Huang
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| |
Collapse
|
47
|
Salamanna F, Borsari V, Contartese D, Nicoli Aldini N, Fini M. Link between estrogen deficiency osteoporosis and susceptibility to bone metastases: A way towards precision medicine in cancer patients. Breast 2018; 41:42-50. [PMID: 30007267 DOI: 10.1016/j.breast.2018.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 01/18/2023] Open
Abstract
Different fields of cancer management consider bone health to be of increasing clinical importance for patients: 1) presence of bone metastases in many solid tumors, 2) use of bone-targeted treatments in the reduction of bone metastasis, 3) effects of cancer treatment on reproductive hormones, critical for normal bone remodeling maintenance. Additionally, bone microenvironment is further complicated by the decline of ovarian sex steroid production and by the related increase in inflammatory factors linked to menopause, which result in accelerated bone loss and increased risk of osteoporosis (OP). Similarly, cancers and metastasis to bone showed a close relationship with sex hormones (particularly estrogen). Thus, these findings raise a question: Could pre-existing estrogen deficiency OP promote and/or influence cancer cell homing and tumor growth in bone? Although some preclinical and clinical evidence exists, it is mandatory to understand this aspect that would be relevant in the clinical theatre, where physicians need to understand the treatments available to reduce the risk of skeletal disease in cancer patients. This descriptive systematic review summarizes preclinical and clinical studies dealing with bimodal interactions between pre-existing estrogen deficiency OP and bone metastasis development and provides evidence supporting differences in tumor growth and colonization between healthy and OP status. Few studies evaluated the impact of estrogen deficiency OP on the susceptibility to bone metastases. Therefore, implementing biological knowledge, could help researchers and clinicians to have a better comprehension of the importance of pre- and post-menopausal bone microenvironment and its clinical implications for precision medicine in cancer patients.
Collapse
Affiliation(s)
- F Salamanna
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - V Borsari
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy.
| | - D Contartese
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - N Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - M Fini
- Laboratory of Biomechanics and Technology Innovation, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| |
Collapse
|
48
|
Niu X, Chen Y, Qi L, Liang G, Wang Y, Zhang L, Qu Y, Wang W. Hypoxia regulates angeogenic-osteogenic coupling process via up-regulating IL-6 and IL-8 in human osteoblastic cells through hypoxia-inducible factor-1α pathway. Cytokine 2018; 113:117-127. [PMID: 29934049 DOI: 10.1016/j.cyto.2018.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
Abstract
Inappropriate angiogenesis and osteogenesis are considered as the crucial factors of osteoporotic fracture. Hypoxia is a primary driving force for regulating the angiogenic-osteogenic coupling process. Our recent results indicated that hypoxia could improve angiogenesis as well as differentiation and activity of osteoblastic cells via up-regulating VEGF through HIF-1α pathway. Here we demonstrated that in human osteoblastic MG-63, U2-OS and Saos-2 cells, besides VEGF, the other two pro-angiogenic factors IL-6 and IL-8 were also up-regulated by hypoxia and CoCl2 (a mimic of hypoxia). Mechanism studies indicated overexpression of HIF-1α (generated from transfection with a plasmid encoding sense HIF-1α) markedly increased the levels of IL-6 and IL-8 in osteoblastic cells. Furthermore, a luciferase reporter assay was performed using the reporter vector containing the IL-6 or IL-8 promoter sequence to illustrate observably increased activity of hypoxia-induced IL-6 and IL-8 promoter caused by overexpression of HIF-1α. Additionally, chromatin immune-precipitation analysis showed hypoxia increased the DNA binding ability of HIF-1α to IL-6 or IL-8 promoter. Analysis in vitro by MTT test and Boyden chamber assay showed exogenous IL-6 and IL-8 (a relatively short period of treatment with recombinant IL-6 or IL-8 equivalent to the autocrine levels) could significantly promote the proliferation of human osteoblastic, endothelial and monocytic cells, as well as the migration of human endothelial cells. Taken together, these results indicate that IL-6 and IL-8 in osteoblastic cells may also contribute to the angiogenic-osteogenic coupling process via HIF-1α pathway. Besides VEGF, IL-6- or IL-8-targeted adjunctive therapy maybe a new strategy to improve the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiulong Niu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin 300162, China; Department of Infectious Diseases, Pingjin Hospital, Tianjin 300162, China
| | - Yumeng Chen
- College of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lin Qi
- Department of Pharmacy, Pingjin Hospital, Tianjin 300162, China
| | - Guoqing Liang
- Department of Cardiovascular Medicine, Pingjin Hospital, Tianjin 300162, China
| | - Yue Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin 300162, China; Department of Pathogenic Biology and Immunology, Logistics University of Chinese People's Armed Police Forces, Tianjin 300309, China; Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China.
| | - Lipeng Zhang
- Department of Surgery, The Second Hospital of Beijing Municipal Corps, Chinese People's Armed Police Forces, Beijing 100037, China
| | - Ye Qu
- Department of Pathogenic Biology and Immunology, Logistics University of Chinese People's Armed Police Forces, Tianjin 300309, China
| | - Wenliang Wang
- Department of Orthopaedics, Pingjin Hospital, Tianjin 300162, China
| |
Collapse
|
49
|
Zhu S, He H, Gao C, Luo G, Xie Y, Wang H, Tian L, Chen X, Yu X, He C. Ovariectomy-induced bone loss in TNFα and IL6 gene knockout mice is regulated by different mechanisms. J Mol Endocrinol 2018; 60:185-198. [PMID: 29339399 DOI: 10.1530/jme-17-0218] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/15/2018] [Indexed: 02/05/2023]
Abstract
We examined the effects of tumor necrosis factor-α (TNFα) and interleukin-6 (IL6) gene knockout in preserving the bone loss induced by ovariectomy (OVX) and the mechanisms involved in bone metabolism. Twenty female wild-type (WT), TNFα-knockout (TNFα-/-) or IL6-knockout (IL6-/-) mice aged 12 weeks were sham-operated (SHAM) or subjected to OVX and killed after 4 weeks. Bone mass and skeletal microarchitecture were determined using micro-CT. Bone marrow stromal cells (BMSCs) from all three groups (WT, TNFα-/- and IL6-/-) were induced to differentiate into osteoblasts or osteoclasts and treated with 17-β-estradiol. Bone metabolism was assessed by histological analysis, serum analyses and qRT-PCR. OVX successfully induced a high turnover in all mice, but a repair effect was observed in TNFα-/- and IL6-/- mice. The ratio of femoral trabecular bone volume to tissue volume, trabecular number and trabecular thickness were significantly decreased in WT mice subjected to OVX, but increased in TNFα-/- mice (1.62, 1.34, 0.27-fold respectively; P < 0.01) and IL6-/- mice (1.34, 0.80, 0.22-fold respectively; P < 0.01). Furthermore, we observed a 29.6% increase in the trabecular number in TNFα-/- mice when compared to the IL6-/- mice. Both, TNFα-/- and IL6-/- BMSCs exhibited decreased numbers of TRAP-positive cells and an increase in ALP-positive cells, with or without E2 treatment (P < 0.05). While the knockout of TNFα or IL6 significantly upregulated mRNA expressions of osteoblast-related genes (Runx2 and Col1a1) and downregulated osteoclast-related mRNA for TRAP, MMP9 and CTSK in vivo and in vitro, TNFα knockout appeared to have roles beyond IL6 knockout in upregulating Col1a1 mRNA expression and downregulating mRNA expressions of WNT-related genes (DKK1 and Sost) and TNF-related activation-induced genes (TRAF6). TNFα seemed to be more potentially invasive in inhibiting bone formation and enhancing TRAF6-mediated osteoclastogenesis than IL6, implying that the regulatory mechanisms of TNFα and IL6 in bone metabolism may be different.
Collapse
Affiliation(s)
- Siyi Zhu
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
- Rehabilitation Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University, Chengdu, China
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongchen He
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
| | - Chengfei Gao
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
- Rehabilitation Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and ReconstructionSichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Guojing Luo
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xie
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiming Wang
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
- Rehabilitation Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Chen
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
- Rehabilitation Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and ReconstructionSichuan University-The Hong Kong Polytechnic University, Chengdu, China
| |
Collapse
|
50
|
Xie Z, Weng S, Li H, Yu X, Lu S, Huang K, Wu Z, Bai B, Boodhun V, Yang L. Teriparatide promotes healing of critical size femur defect through accelerating angiogenesis and degradation of β-TCP in OVX osteoporotic rat model. Biomed Pharmacother 2017; 96:960-967. [DOI: 10.1016/j.biopha.2017.11.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
|