1
|
de A Cruz M, Sousa KSJ, Avanzi IR, de Souza A, Martignago CCS, Delpupo FVB, Simões MC, Parisi JR, Assis L, De Oliveira F, Granito RN, Laakso EL, Renno A. In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1053-1066. [PMID: 39153015 DOI: 10.1007/s10126-024-10356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.
Collapse
Affiliation(s)
- Matheus de A Cruz
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Karolyne S J Sousa
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Ingrid R Avanzi
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil.
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Cintia C S Martignago
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Fernanda V B Delpupo
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Mariana C Simões
- Department of Physiotherapy, Metropolitan University of Santos - UNIMES, Santos, São Paulo, Brazil
| | - Julia R Parisi
- Department of Physiotherapy, Metropolitan University of Santos - UNIMES, Santos, São Paulo, Brazil
| | - Livia Assis
- Post-Graduate Program in Biomedical Engineering, Brasil University, São Paulo, São Paulo, Brazil
| | - Flávia De Oliveira
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Renata N Granito
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Eeva-Liisa Laakso
- Mater Research Institute, University of Queensland, South Brisbane, QLD, Australia
| | - Ana Renno
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| |
Collapse
|
2
|
Dai M, Lin X, Hua P, Wang S, Sun X, Tang C, Zhang C, Liu L. Antibacterial sequential growth factor delivery from alginate/gelatin methacryloyl microspheres for bone regeneration. Int J Biol Macromol 2024; 275:133557. [PMID: 38955293 DOI: 10.1016/j.ijbiomac.2024.133557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Autologous or allogeneic bone tissue grafts remain the mainstay of treatment for clinical bone defects. However, the risk of infection and donor scarcity in bone grafting pose challenges to the process. Therefore, the development of excellent biomaterial grafts is of great clinical importance for the repair of bone defects. In this study, we used gas-assisted microfluidics to construct double-cross-linked hydrogel microspheres with good biological function based on the ionic cross-linking of Cu2+ with alginate and photo-cross-linking of gelatin methacryloylamide (GelMA) by loading vascular endothelial growth factor (VEGF) and His-tagged bone morphogenetic protein-2 (BMP2) (AGMP@VEGF&BMP2). The Cu2+ component in the microspheres showed good antibacterial and drug-release behavior, whereas VEGF and BMP2 effectively promoted angiogenesis and bone tissue repair. In in vitro and in vivo experiments, the dual cross-linked hydrogel microspheres showed good biological function and biocompatibility. These results demonstrate that AGMP@VEGF&BMP2 microspheres could be used as a bone defect graft substitute to promote effective healing of bone defects and may be applied to other tissue engineering studies.
Collapse
Affiliation(s)
- Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiufei Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Peng Hua
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Simeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiaoliang Sun
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Chi Zhang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
3
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Negi D, Bhavya K, Pal D, Singh Y. Acemannan coated, cobalt-doped biphasic calcium phosphate nanoparticles for immunomodulation regulated bone regeneration. Biomater Sci 2024; 12:3672-3685. [PMID: 38864476 DOI: 10.1039/d4bm00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Biomaterials are used as scaffolds in bone regeneration to facilitate the restoration of bone tissues. The local immune microenvironment affects bone repair but the role of immune response in biomaterial-facilitated osteogenesis has been largely overlooked and it presents a major knowledge gap in the field. Nanomaterials that can modulate M1 to M2 macrophage polarization and, thus, promote bone repair are known. This study investigates a novel approach to accelerate bone healing by using acemannan coated, cobalt-doped biphasic calcium phosphate nanoparticles to promote osteogenesis and modulate macrophage polarization to provide a prohealing microenvironment for bone regeneration. Different concentrations of cobalt were doped in biphasic calcium phosphate nanoparticles, which were further coated with acemannan polymer and characterized. The nanoparticles showed >90% cell viability and enhanced cell proliferation along with osteogenic differentiation as demonstrated by the enhanced alkaline phosphatase activity and osteogenic calcium deposition. The morphology of MC3T3-E1 cells remained unchanged even after treatment with nanoparticles. Acemannan coated nanoparticles were also able to decrease the expression of M1 markers, iNOS, and CD68 and enhance the expression of M2 markers, CD206, CD163, and Arg-1 as indicated by RT-qPCR, flow cytometry, and ICC studies. The findings show that acemannan coated nanoparticles can create a supportive immune milieu by inducing and promoting the release of osteogenic markers, and by causing a reduction in inflammatory markers, thus helping in efficient bone regeneration. As per our knowledge, this is the first study showing the combined effect of acemannan and cobalt for bone regeneration using immunomodulation. The work presents a novel approach for enhancing osteogenesis and macrophage polarization, thus, offering a potent strategy for effective bone regeneration.
Collapse
Affiliation(s)
- Deepa Negi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Kumari Bhavya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India.
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140 001, Punjab, India
| |
Collapse
|
5
|
López-García S, Sánchez-Bautista S, García-Bernal D, Lozano A, Forner L, Sanz JL, Murcia L, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Premixed calcium silicate-based ceramic sealers promote osteogenic/cementogenic differentiation of human periodontal ligament stem cells: A microscopy study. Microsc Res Tech 2024; 87:1584-1597. [PMID: 38433562 DOI: 10.1002/jemt.24545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
To evaluate the effects of premixed calcium silicate based ceramic sealers on the viability and osteogenic/cementogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The materials evaluated were TotalFill BC Sealer (TFbc), AH Plus Bioceramic Sealer (AHPbc), and Neosealer Flo (Neo). Standardized discs and 1:1, 1:2, and 1:4 eluates of the tested materials were prepared. The following in vitro experiments were carried out: ion release, cell metabolic activity 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell migration, immunofluorescence experiment, cell attachment, gene expression, and mineralization assay. Statistical analyses were performed using one-way ANOVA followed by Tukey's post hoc test (p < .05). Increased Ca2+ release was detected in TFbc compared to AHPbc and Neo (*p < .05). Biological assays showed a discrete cell metabolic activity and cell migration in Neo-treated cell, whereas scanning electronic microscopy assay exhibited that TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc (***p < .001). All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells (***p < .001). Our results suggested that TFbc promotes cell differentiation, both by increasing the expression of key osteo/odontogenic genes and by promoting mineralization of the extracellular matrix, whereas this phenomenon was less evident in Neo and AHPbc. RESEARCH HIGHLIGHTS: TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc. All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells.
Collapse
Affiliation(s)
- Sergio López-García
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | | | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| | - Adrián Lozano
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Leopoldo Forner
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - José L Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, Murcia, Spain
| | - Francisco J Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| | - Ricardo E Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| |
Collapse
|
6
|
Ma Y, Lin Q, Wang X, Liu Y, Yu X, Ren Z, Zhang Y, Guo L, Wu X, Zhang X, Li P, Duan W, Wei X. Biomechanical properties of articular cartilage in different regions and sites of the knee joint: acquisition of osteochondral allografts. Cell Tissue Bank 2024; 25:633-648. [PMID: 38319426 PMCID: PMC11143059 DOI: 10.1007/s10561-024-10126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Osteochondral allograft (OCA) transplantation involves grafting of natural hyaline cartilage and supporting subchondral bone into the cartilage defect area to restore its biomechanical and tissue structure. However, differences in biomechanical properties and donor-host matching may impair the integration of articular cartilage (AC). This study analyzed the biomechanical properties of the AC in different regions of different sites of the knee joint and provided a novel approach to OCA transplantation. Intact stifle joints from skeletally mature pigs were collected from a local abattoir less than 8 h after slaughter. OCAs were collected from different regions of the joints. The patella and the tibial plateau were divided into medial and lateral regions, while the trochlea and femoral condyle were divided into six regions. The OCAs were analyzed and compared for Young's modulus, the compressive modulus, and cartilage thickness. Young's modulus, cartilage thickness, and compressive modulus of OCA were significantly different in different regions of the joints. A negative correlation was observed between Young's modulus and the proportion of the subchondral bone (r = - 0.4241, P < 0.0001). Cartilage thickness was positively correlated with Young's modulus (r = 0.4473, P < 0.0001) and the compressive modulus (r = 0.3678, P < 0.0001). During OCA transplantation, OCAs should be transplanted in the same regions, or at the closest possible regions to maintain consistency of the biomechanical properties and cartilage thickness of the donor and recipient, to ensure smooth integration with the surrounding tissue. A 7 mm depth achieved a higher Young's modulus, and may represent the ideal length.
Collapse
Affiliation(s)
- Yongsheng Ma
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Qitai Lin
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Xueding Wang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Yang Liu
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Xiangyang Yu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Zhiyuan Ren
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Yuanyu Zhang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Li Guo
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Xiaogang Wu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiangyu Zhang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Pengcui Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| | - Wangping Duan
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China.
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China.
| | - Xiaochun Wei
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, 030001, China
| |
Collapse
|
7
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine. Int J Nanomedicine 2024; 19:1303-1337. [PMID: 38348175 PMCID: PMC10860874 DOI: 10.2147/ijn.s446405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy. The discovery of enzymatic synthesis and regenerative activity of amorphous biosilica that builds the mineral skeleton of siliceous sponges formed the basis for the development of successful strategies for the treatment of osteochondral impairments in humans. In addition, the elucidation of the functional significance of a second regeneratively active inorganic material, namely inorganic polyphosphate (polyP) and its amorphous nanoparticles, present from sponges to humans, has pushed forward the development of innovative materials for both soft (skin, cartilage) and hard tissue (bone) repair. This energy-rich molecule exhibits a property not shown by any other biopolymer: the delivery of metabolic energy, even extracellularly, necessary for the ATP-dependent tissue regeneration. This review summarizes the latest developments in nanobiomaterials based on these two evolutionarily old, regeneratively active materials, amorphous silica and amorphous polyP, highlighting their specific, partly unique properties and mode of action, and discussing their possible applications in human therapy. The results of initial proof-of-concept studies on patients demonstrating complete healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
8
|
Harb SV, Kolanthai E, Backes EH, Beatrice CAG, Pinto LA, Nunes ACC, Selistre-de-Araújo HS, Costa LC, Seal S, Pessan LA. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds. Tissue Eng Regen Med 2024; 21:223-242. [PMID: 37856070 PMCID: PMC10825090 DOI: 10.1007/s13770-023-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Poly (lactic acid) (PLA) is a biodegradable polyester that has been exploited for a variety of biomedical applications, including tissue engineering. The incorporation of β-tricalcium phosphate (TCP) into PLA has imparted bioactivity to the polymeric matrix. METHODS We have modified a 90%PLA-10%TCP composite with SiO2 and MgO (1, 5 and 10 wt%), separately, to further enhance the material bioactivity. Filaments were prepared by extrusion, and scaffolds were fabricated using 3D printing technology associated with fused filament fabrication. RESULTS The PLA-TCP-SiO2 composites presented similar structural, thermal, and rheological properties to control PLA and PLA-TCP. In contrast, the PLA-TCP-MgO composites displayed absence of crystallinity, lower polymeric molecular weight, accelerated degradation ratio, and decreased viscosity within the 3D printing shear rate range. SiO2 and MgO particles were homogeneously dispersed within the PLA and their incorporation increased the roughness and protein adsorption of the scaffold, compared to a PLA-TCP scaffold. This favorable surface modification promoted cell proliferation, suggesting that SiO2 and MgO may have potential for enhancing the bio-integration of scaffolds in tissue engineering applications. However, high loads of MgO accelerated the polymeric degradation, leading to an acid environment that imparted the composite biocompatibility. The presence of SiO2 stimulated mesenchymal stem cells differentiation towards osteoblast; enhancing extracellular matrix mineralization, alkaline phosphatase (ALP) activity, and bone-related genes expression. CONCLUSION The PLA-10%TCP-10%SiO2 composite presented the most promising results, especially for bone tissue regeneration, due to its intense osteogenic behavior. PLA-10%TCP-10%SiO2 could be used as an alternative implant for bone tissue engineering application.
Collapse
Affiliation(s)
- Samarah V Harb
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Eduardo H Backes
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Cesar A G Beatrice
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Leonardo A Pinto
- Department of Materials Engineering (DEMa), Graduate Program in Materials Science and Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Ana Carolina C Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Heloisa S Selistre-de-Araújo
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Lidiane C Costa
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Luiz Antonio Pessan
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
9
|
Shimizu K, Nishi M, Sakate Y, Kawanami H, Bito T, Arima J, Leria L, Maldonado M. Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera. Nat Commun 2024; 15:181. [PMID: 38185711 PMCID: PMC10772126 DOI: 10.1038/s41467-023-44226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Metazoans use silicon traces but rarely develop extensive silica skeletons, except for the early-diverging lineage of sponges. The mechanisms underlying metazoan silicification remain incompletely understood, despite significant biotechnological and evolutionary implications. Here, the characterization of two proteins identified from hexactinellid sponge silica, hexaxilin and perisilin, supports that the three classes of siliceous sponges (Hexactinellida, Demospongiae, and Homoscleromorpha) use independent protein machineries to build their skeletons, which become non-homologous structures. Hexaxilin forms the axial filament to intracellularly pattern the main symmetry of the skeletal parts, while perisilin appears to operate in their thickening, guiding extracellular deposition of peripheral silica, as does glassin, a previously characterized hexactinellid silicifying protein. Distant hexaxilin homologs occur in some bilaterians with siliceous parts, suggesting putative conserved silicifying activity along metazoan evolution. The findings also support that ancestral Porifera were non-skeletonized, acquiring silica skeletons only after diverging into major classes, what reconciles molecular-clock dating and the fossil record.
Collapse
Affiliation(s)
- Katsuhiko Shimizu
- Platform for Community-based Research and Education, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8550, Japan.
| | - Michika Nishi
- Division of Agricultural Science, Graduate studies of Sustainability Science, Tottori University Graduate School, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Yuto Sakate
- Division of Agricultural Science, Graduate studies of Sustainability Science, Tottori University Graduate School, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Haruka Kawanami
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Tomohiro Bito
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Jiro Arima
- Department of Life Environmental Agriculture, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Minami, Tottori, 680-8553, Japan
| | - Laia Leria
- Sponge Ecobiology and Biotechnology Group, Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, 17300, Spain
| | - Manuel Maldonado
- Sponge Ecobiology and Biotechnology Group, Center for Advanced Studies of Blanes (CEAB, CSIC), Blanes, 17300, Spain.
| |
Collapse
|
10
|
Ki MR, Park KS, Abdelhamid MAA, Pack SP. Novel silicatein-like protein for biosilica production from Amphimedon queenslandica and its use in osteogenic composite fabrication. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Iqbal AKMA, Ismail NB. Mechanical Properties and Corrosion Behavior of Silica Nanoparticle Reinforced Magnesium Nanocomposite for Bio-Implant Application. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8164. [PMID: 36431652 PMCID: PMC9697372 DOI: 10.3390/ma15228164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this study, magnesium (Mg)-based nanocomposites reinforced with silica (SiO2) nanoparticles were developed using the powder metallurgy process, and their mechanical and corrosion behavior were assessed. Mg-alloy AZ31 served as the matrix material, and two different weight percentages of SiO2 nanoparticles were used as filler. According to the microstructural analysis, the composite generated a Mg2Si phase as a result of SiO2 dissociating during the sintering process. The microhardness of the Mg-alloy dramatically enhanced with the addition of 3% nanosilica, although the elastic modulus remained constant. Additionally, the outcomes demonstrated that the Mg2Si phase's development in the composite constrained the mechanism of deterioration and postponed the pace of degradation, which aided in enhancing the qualities of corrosion resistance. This nanocomposite might, thus, be thought of as a potential replacement for the traditional bio-implant materials.
Collapse
Affiliation(s)
- AKM Asif Iqbal
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Norfatihah Binti Ismail
- Faculty of Manufacturing and Mechatronic Engineering Technology, University Malaysia Pahang (UMP), Pekan 26600, Pahang, Malaysia
| |
Collapse
|
12
|
Martins E, Diogo GS, Pires R, Reis RL, Silva TH. 3D Biocomposites Comprising Marine Collagen and Silica-Based Materials Inspired on the Composition of Marine Sponge Skeletons Envisaging Bone Tissue Regeneration. Mar Drugs 2022; 20:718. [PMID: 36421996 PMCID: PMC9697685 DOI: 10.3390/md20110718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 10/10/2023] Open
Abstract
Ocean resources are a priceless repository of unique species and bioactive compounds with denouement properties that can be used in the fabrication of advanced biomaterials as new templates for supporting the cell culture envisaging tissue engineering approaches. The collagen of marine origin can be sustainably isolated from the underrated fish processing industry by-products, while silica and related materials can be found in the spicules of marine sponges and diatoms frustules. Aiming to address the potential of biomaterials composed from marine collagen and silica-based materials in the context of bone regeneration, four different 3D porous structure formulations (COL, COL:BG, COL:D.E, and COL:BS) were fabricated by freeze-drying. The skins of Atlantic cod (Gadus morhua) were used as raw materials for the collagen (COL) isolation, which was successfully characterized by SDS-PAGE, FTIR, CD, and amino acid analyses, and identified as a type I collagen, produced with a 1.5% yield and a preserved characteristic triple helix conformation. Bioactive glass 45S5 bioglass® (BG), diatomaceous earth (D.E.) powder, and biosilica (BS) isolated from the Axinella infundibuliformis sponge were chosen as silica-based materials, which were obtained as microparticles and characterized by distinct morphological features. The biomaterials revealed microporous structures, showing a porosity higher than 85%, a mean pore size range of 138-315 μm depending on their composition, with 70% interconnectivity which can be favorable for cell migration and ensure the needed nutrient supply. In vitro, biological assays were conducted by culturing L929 fibroblast-like cells, which confirmed not only the non-toxic nature of the developed biomaterials but also their capability to support cell adhesion and proliferation, particularly the COL:BS biomaterials, as observed by calcein-AM staining upon seven days of culture. Moreover, phalloidin and DAPI staining revealed well-spread cells, populating the entire construct. This study established marine collagen/silica biocomposites as potential scaffolds for tissue engineering, setting the basis for future studies, particularly envisaging the regeneration of non-load-bearing bone tissues.
Collapse
Affiliation(s)
- Eva Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Gabriela S. Diogo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Ricardo Pires
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| |
Collapse
|
13
|
Kırpat Konak BM, Bakar ME, Ahan RE, Özyürek EU, Dökmeci S, Şafak Şeker UÖ. A living material platform for the biomineralization of biosilica. Mater Today Bio 2022; 17:100461. [PMID: 36278145 PMCID: PMC9583595 DOI: 10.1016/j.mtbio.2022.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Nature has a vast array of biomineralization mechanisms. The commonly shared mechanism by many living organisms to form hardened tissues is the nucleation of mineral structures via proteins. Living materials, thanks to synthetic biology, are providing many opportunities to program cells for many functionalities. Here we have demonstrated a living material system for biosilicification. Silaffins are utilized to synthesize silicified cell walls by one of the most abundant organism groups called diatoms. The R5 peptide motif of the silaffins is known for its ability to precipitate silica in ambient conditions. Therefore, various studies have been conducted to implement the silicification activity of R5 in different application areas, such as regenerative medicine and tissue engineering. However, laborious protein purification steps are required prior to silica nanoparticle production in recombinant approaches. In this study, we aimed to engineer an alternative bacterial platform to achieve silicification using released and bacteria-intact forms of R5-attached fluorescent proteins (FP). Hence, we displayed R5-FP hybrids on the cell surface of E. coli via antigen 43 (Ag43) autotransporter system and managed to demonstrate heat-controllable release from the surface. We also showed that the bacteria cells displaying R5-FP can be used in silicification reactions. Lastly, considering the stimulating effect of silica on osteogenic differentiation, we treated human dental pulp stem cells (hDPSCs) with the silica aggregates formed via R5-FP hybrids. Earlier calcium crystal deposition around the hDPSCs was observed. We envision that our platform can serve as a faster and more economical alternative for biosilicification applications, including endodontics.
Collapse
Affiliation(s)
- Büşra Merve Kırpat Konak
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Mehmet Emin Bakar
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Recep Erdem Ahan
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Emel Uzunoğlu Özyürek
- Department of Endodontics, Dental Faculty, Hacettepe University, Ankara, 06100, Turkey
| | - Serap Dökmeci
- Department of Medical Biology, Medical Faculty, Hacettepe University, Ankara, 06100, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey,Corresponding author.
| |
Collapse
|
14
|
Zhou J, Nie Y, Jin C, Zhang JXJ. Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network. ACS Biomater Sci Eng 2022; 8:2258-2280. [PMID: 35377596 DOI: 10.1021/acsbiomaterials.1c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomaterials at nanoscale is a fast-expanding research field with which extensive studies have been conducted on understanding the interactions between cells and their surrounding microenvironments as well as intracellular communications. Among many kinds of nanoscale biomaterials, mesoporous fibrous structures are especially attractive as a promising approach to mimic the natural extracellular matrix (ECM) for cell and tissue research. Silica is a well-studied biocompatible, natural inorganic material that can be synthesized as morpho-genetically active scaffolds by various methods. This review compares silica nanofibers (SNFs) to other ECM materials such as hydrogel, polymers, and decellularized natural ECM, summarizes fabrication techniques for SNFs, and discusses different strategies of constructing ECM using SNFs. In addition, the latest progress on SNFs synthesis and biomimetic ECM substrates fabrication is summarized and highlighted. Lastly, we look at the wide use of SNF-based ECM scaffolds in biological applications, including stem cell regulation, tissue engineering, drug release, and environmental applications.
Collapse
Affiliation(s)
- Junhu Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
15
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
16
|
Schröder HC, Wang X, Neufurth M, Wang S, Tan R, Müller WEG. Inorganic Polymeric Materials for Injured Tissue Repair: Biocatalytic Formation and Exploitation. Biomedicines 2022; 10:biomedicines10030658. [PMID: 35327460 PMCID: PMC8945818 DOI: 10.3390/biomedicines10030658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Two biocatalytically produced inorganic biomaterials show great potential for use in regenerative medicine but also other medical applications: bio-silica and bio-polyphosphate (bio-polyP or polyP). Biosilica is synthesized by a group of enzymes called silicateins, which mediate the formation of amorphous hydrated silica from monomeric precursors. The polymeric silicic acid formed by these enzymes, which have been cloned from various siliceous sponge species, then undergoes a maturation process to form a solid biosilica material. The second biomaterial, polyP, has the extraordinary property that it not only has morphogenetic activity similar to biosilica, i.e., can induce cell differentiation through specific gene expression, but also provides metabolic energy through enzymatic cleavage of its high-energy phosphoanhydride bonds. This reaction is catalyzed by alkaline phosphatase, a ubiquitous enzyme that, in combination with adenylate kinase, forms adenosine triphosphate (ATP) from polyP. This article attempts to highlight the biomedical importance of the inorganic polymeric materials biosilica and polyP as well as the enzymes silicatein and alkaline phosphatase, which are involved in their metabolism or mediate their biological activity.
Collapse
Affiliation(s)
- Heinz C. Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (H.C.S.); (X.W.); (M.N.); (S.W.)
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (H.C.S.); (X.W.); (M.N.); (S.W.)
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (H.C.S.); (X.W.); (M.N.); (S.W.)
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (H.C.S.); (X.W.); (M.N.); (S.W.)
| | - Rongwei Tan
- Shenzhen Lando Biomaterials Co., Ltd., Building B3, Unit 2B-C, China Merchants Guangming Science Park, Guangming District, Shenzhen 518107, China;
| | - Werner E. G. Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (H.C.S.); (X.W.); (M.N.); (S.W.)
- Correspondence: ; Tel.: +49-6131-3925910
| |
Collapse
|
17
|
Kittel Y, Kuehne AJC, De Laporte L. Translating Therapeutic Microgels into Clinical Applications. Adv Healthc Mater 2022; 11:e2101989. [PMID: 34826201 DOI: 10.1002/adhm.202101989] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Microgels are crosslinked, water-swollen networks with a 10 nm to 100 µm diameter and can be modified chemically or biologically to render them biocompatible for advanced clinical applications. Depending on their intended use, microgels require different mechanical and structural properties, which can be engineered on demand by altering the biochemical composition, crosslink density of the polymer network, and the fabrication method. Here, the fundamental aspects of microgel research and development, as well as their specific applications for theranostics and therapy in the clinic, are discussed. A detailed overview of microgel fabrication techniques with regards to their intended clinical application is presented, while focusing on how microgels can be employed as local drug delivery materials, scavengers, and contrast agents. Moreover, microgels can act as scaffolds for tissue engineering and regeneration application. Finally, an overview of microgels is given, which already made it into pre-clinical and clinical trials, while future challenges and chances are discussed. This review presents an instructive guideline for chemists, material scientists, and researchers in the biomedical field to introduce them to the fundamental physicochemical properties of microgels and guide them from fabrication methods via characterization techniques and functionalization of microgels toward specific applications in the clinic.
Collapse
Affiliation(s)
- Yonca Kittel
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Alexander J. C. Kuehne
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Institute of Organic and Macromolecular Chemistry Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany
- Institute of Technical and Macromolecular Chemistry (ITMC) Polymeric Biomaterials RWTH University Aachen Worringerweg 2 52074 Aachen Germany
| | - Laura De Laporte
- DWI – Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
- Max Planck School‐Matter to Life (MtL) Jahnstraße 29 69120 Heidelberg Germany
- Advanced Materials for Biomedicine (AMB) Institute of Applied Medical Engineering (AME) Center for Biohybrid Medical Systems (CBMS) University Hospital RWTH 52074 Aachen Germany
| |
Collapse
|
18
|
Ki MR, Kim SH, Nguyen TKM, Son RG, Jun SH, Pack SP. BMP2-Mediated Silica Deposition: An Effective Strategy for Bone Mineralization. ACS Biomater Sci Eng 2022; 9:1823-1833. [PMID: 35090106 DOI: 10.1021/acsbiomaterials.1c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The combined use of an osteogenic factor, such as bone morphogenetic protein 2 (BMP2), with a bone scaffold was quite functional for the reconstruction of bone defects. Although many studies using BMP2 have been done, there is still a need to develop an efficient way to apply BMP2 in the bone scaffold. Here, we reported an interesting fact that BMP2 has a silica deposition ability in the presence of silicic acid and proposed that such an ability of BMP2 can effectively immobilize and transport itself by a kind of coprecipitation of BMP2 with a silica matrix. The presence of BMP2 in the resulting silica was proved by SEM and EDS and was visualized by FITC-labeled BMP2. The delivery efficacy of BMP2 of silica-entrapped BMP2 on osteoblast differentiation and mineralization using MC3T3 E1 preosteoblast cells was evaluated in vitro. The coprecipitated BMP2 with silica exhibited osteogenesis at a low concentration that was insufficient to give an osteoinductive signal as the free form. Expectedly, the silica-entrapped BMP2 exhibited thermal stability over free BMP2. When applied to bone graft substitution, e.g., hydroxyapatite granules (HA), silica-entrapped BMP 2 laden HA (BMP2@Si/HA) showed sustained BMP2 release, whereas free BMP2 adsorbed HA by a simple dipping method (BMP2/HA) displayed a burst release of BMP2 at an initial time. In the rat critical-size calvarial defect model, BMP2@Si/HA showed better bone regeneration than BMP2/HA by about 10%. The BMP2/silica hybrid deposited on a carrier surface via BMP2-mediated silica precipitation demonstrated an increase in the loading efficiency, a decrease in the burst release of BMP2, and an increase in bone regeneration. Taken together, the coprecipitated BMP2 with a silica matrix has the advantages of not only being able to immobilize BMP2 efficiently without compromising its function but also serving as a stable carrier for BMP2 delivery.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.,Institution of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| | - Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| | - Thi Khoa My Nguyen
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| | - Ryeo Gang Son
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| | - Sang Ho Jun
- Departmtnt of Oral and Maxillofacial Surgery, Korea University Anam Hospital, 73 Goryeodae-ro, Seoul 02841, Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| |
Collapse
|
19
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
20
|
Yun J, Jeong Y, Nam O, Yeo KB, Jo YK, Heo HR, Kim CS, Joo KI, Pack SP, Jin E, Cha HJ. Bone Graft Biomineral Complex Coderived from Marine Biocalcification and Biosilicification. ACS APPLIED BIO MATERIALS 2021; 4:6046-6055. [DOI: 10.1021/acsabm.1c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyoung Yun
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yeonsu Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Onyou Nam
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Ki Baek Yeo
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Yun Kee Jo
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Chang Sup Kim
- School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kye Il Joo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
21
|
Effect of Washing Treatment on the Textural Properties and Bioactivity of Silica/Chitosan/TCP Xerogels for Bone Regeneration. Int J Mol Sci 2021; 22:ijms22158321. [PMID: 34361087 PMCID: PMC8347756 DOI: 10.3390/ijms22158321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Silica/biopolymer hydrogel-based materials constitute very attractive platforms for various emerging biomedical applications, particularly for bone repair. The incorporation of calcium phosphates in the hybrid network allows for designing implants with interesting biological properties. Here, we introduce a synthesis procedure for obtaining silica–chitosan (CS)–tricalcium phosphate (TCP) xerogels, with CS nominal content varying from 4 to 40 wt.% and 10 to 20 wt.% TCP. Samples were obtained using the sol-gel process assisted with ultrasound probe, and the influence of ethanol or water as washing solvents on surface area, micro- and mesopore volume, and average pore size were examined in order to optimize their textural properties. Three washing solutions with different soaking conditions were tested: 1 or 7 days in absolute ethanol and 30 days in distilled water, resulting in E1, E7, and W30 washing series, respectively. Soaked samples were eventually dried by evaporative drying at air ambient pressure, and the formation of interpenetrated hybrid structures was suggested by Fourier transformed infrared (FTIR) spectroscopy. In addition the impact that both washing solvent and TCP content have on the biodegradation, in vitro bioactivity and osteoconduction of xerogels were explored. It was found that calcium and phosphate-containing ethanol-washed xerogels presented in vitro release of calcium (2–12 mg/L) and silicon ions (~60–75 mg/L) after one week of soaking in phosphate-buffered saline (PBS), as revealed by inductive coupled plasma (ICP) spectroscopy analysis. However, only the release of silicon was detected for water-washed samples. Besides, all the samples exhibited in vitro bioactivity in simulated body fluid (SBF), as well as enhanced in vitro cell growth and also significant focal adhesion development and maturation.
Collapse
|
22
|
Rabiee N, Khatami M, Jamalipour Soufi G, Fatahi Y, Iravani S, Varma RS. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater Sci Eng 2021; 7:3053-3068. [PMID: 34152742 DOI: 10.1021/acsbiomaterials.1c00475] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diatoms are unicellular microalga found in soil and almost every aquatic environment (marine and fresh water). Biogenic silica and diatoms are attractive for biotechnological and industrial applications, especially in the field of biomedicine, industrial/synthetic manufacturing processes, and biomedical/pharmaceutical sciences. Deposition of silica by diatoms allows them to create micro- or nanoscale structures which may be utilized in nanomedicine and especially in drug/gene delivery. Diatoms with their unique architectures, good thermal stability, suitable surface area, simple chemical functionalization/modification procedures, ease of genetic manipulations, optical/photonic characteristics, mechanical resistance, and eco-friendliness, can be utilized as smart delivery platforms. The micro- to nanoscale properties of the diatom frustules have garnered a great deal of attention for their application in diverse areas of nanotechnology and biotechnology, such as bioimaging/biosensing, biosensors, drug/gene delivery, photodynamic therapy, microfluidics, biophotonics, solar cells, and molecular filtrations. Additionally, the genetically engineered diatom microalgae-derived nanoporous biosilica have enabled the targeted anticancer drug delivery to neuroblastoma and B-lymphoma cells as well as the mouse xenograft model of neuroblastoma. In this perspective, current trends and recent advances related to the applications of diatoms for the synthesis of nanoparticles, gene/drug delivery, biosensing determinations, biofuel production, and remediation of heavy metals are deliberated, including the underlying significant challenges and future perspectives.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
23
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
24
|
Mun A, Simaan Yameen H, Edelbaum G, Seliktar D. Alginate hydrogel beads embedded with drug-bearing polycaprolactone microspheres for sustained release of paclobutrazol. Sci Rep 2021; 11:10877. [PMID: 34035364 PMCID: PMC8149846 DOI: 10.1038/s41598-021-90338-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years there has been a growing demand for the development of agrochemical controlled release (CR) technologies. In the present study, we aimed to create a novel agricultural CR device using two polymeric systems that have been predominantly employed in biomedical applications: beads of alginate hydrogel embedded with drug-bearing Polycaprolactone (PCL) microspheres. The combined device utilizes the advantages of each polymer type for biodegradation and controlled release of Paclobutrazol (PBZ), a common growth retardant in plants. Surface morphology of the alginate beads was characterized by scanning electron microscopy (SEM) and water immersion tests were performed for stability and controlled release measurements. Bioassays were performed both in accelerated laboratory conditions and in field conditions. The results showed a capability to control the size of PBZ-loaded PCL microspheres through modification of homogenization speed and emulsifier concentration. Enlargement of PCL microsphere size had an adverse effect on release of PBZ from the alginate device. The growth of oatmeal plants as a model system was affected by the controlled release of PBZ. The preliminary field experiment observed growth retardation during two consecutive rainy seasons, with results indicating a substantial benefit of the sustained growth inhibition through the controlled release formulation. The final product has the potential to be used as a carrier for different substances in the agrochemical industry.
Collapse
Affiliation(s)
- Alexandra Mun
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, 32000, Haifa, Israel.,Directorate of Defense Research & Development, IDF, Tel Aviv, Israel
| | - Haneen Simaan Yameen
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, 32000, Haifa, Israel
| | - Giora Edelbaum
- Directorate of Defense Research & Development, IDF, Tel Aviv, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
25
|
Song W, Li S, Tang Q, Chen L, Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review). Int J Mol Med 2021; 48:128. [PMID: 34013376 PMCID: PMC8136140 DOI: 10.3892/ijmm.2021.4961] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate-based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate-based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
26
|
Shafiei N, Nasrollahzadeh M, Iravani S. Green Synthesis of Silica and Silicon Nanoparticles and Their Biomedical and Catalytic Applications. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1904912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nasrin Shafiei
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Sugiura Y, Niitsu K, Saito Y, Endo T, Horie M. Inorganic process for wet silica-doping of calcium phosphate. RSC Adv 2021; 11:12330-12335. [PMID: 35423780 PMCID: PMC8696845 DOI: 10.1039/d1ra00288k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
Silica is not only a biocompatible trace element but also an essential element for bone formation and metabolism. Therefore, it is often doped into bioceramics such as calcium phosphate and calcium carbonate for enhancing biomaterial ability. Heretofore, organic silica materials are employed as silica sources, but the residual organic matter is a significant drawback in biomaterial applications. Therefore, in this study, we introduce a one-pot inorganic synthesis method for the formation of silica-doped octacalcium phosphate (OCP) using Na2SiO3 as the silica source. Silica was intercalated into the OCP unit lattice, replacing its hydrous layer structure, and then a layer-by-layer structure of apatite and silica was formed. Furthermore, by immersing the fabricated silica-doped OCP into suitable solutions, both silica-doped hydroxyapatite and carbonate apatite were fabricated through a one-step inorganic processes. We introduced a one-pot synthesis method for silica doping of calcium phosphate. Silica easily incorporated into OCP interlayer optimizing Na2SiO3 concentrations.![]()
Collapse
Affiliation(s)
- Yuki Sugiura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Kagawa 761-0395 Japan
| | - Kodai Niitsu
- Department of Material Science and Engineering, Kyoto University Kyoto 606-8501 Japan
| | - Yasuko Saito
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) Hiroshima 739-0046 Japan
| | - Takashi Endo
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) Hiroshima 739-0046 Japan
| | - Masanori Horie
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Kagawa 761-0395 Japan
| |
Collapse
|
28
|
Pulp tissue reaction to a self-adhesive, resin-based direct pulp capping material containing surface pre-reacted glass-ionomer filler. Dent Mater 2021; 37:972-982. [PMID: 33744000 DOI: 10.1016/j.dental.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effect of direct pulp capping using an experimental self-adhesive resin for direct pulp capping (SRD) containing silica and surface pre-reacted glass-ionomer (S-PRG) filler on pulpal healing and to monitor the dentin bridge formation in rat pulp 2-4 weeks after operation. METHODS Five types of SRDs (SRD-0: S-PRG fillers 0 wt%; SRD-1: S-PRG fillers 9.1 wt%; SRD-2: S-PRG fillers 18.4 wt%; SRD-3: S-PRG fillers 27.8 wt%; and SRD-6: S-PRG fillers 57.4 wt%) were prepared, and mineral trioxide aggregate (MTA) was used as control (n = 8). Direct pulp capping was performed on rats that were sacrificed for further evaluation 2 or 4 weeks after the operation. The pulp tissue disorganization (PTD), inflammatory cell infiltration (ICI), and reparative dentin formation were histopathologically evaluated; the data were statistically analyzed using the Kruskal-Wallis and the Mann-Whitney U tests. RESULTS The histopathological evaluation of SRD-1-treated test animals 2 weeks post-operation revealed inferior PTD and ICI when compared with that of MTA. Even 4 weeks after the operation in SRD-1- and SRD-2-treated rats, the PTD and ICI were inferior when compared with those of MTA. The dental specimens of SRD-0 and MTA showed orthodentin formation, whereas SRD-treated test animals showed osteodentin formation at a position slightly deeper than the site of the pulpal exposure. SIGNIFICANCE The reparative dentin formed by SRD-0 and MTA was genuine, whereas that formed by SRD-3 and SRD-6 was ossified and ectopic. SRD may have the potential to be utilized clinically as a direct pulp capping material.
Collapse
|
29
|
Abdelhamid MAA, Pack SP. Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications. Acta Biomater 2021; 120:38-56. [PMID: 32447061 DOI: 10.1016/j.actbio.2020.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
The rational design and controllable synthesis of functional silica-based materials have gained increased interest in a variety of biomedical and biotechnological applications due to their unique properties. The current review shows that marine organisms, such as siliceous sponges and diatoms, could be the inspiration for the fabrication of advanced biohybrid materials. Several biomolecules were involved in the molecular mechanism of biosilicification in vivo. Mimicking their behavior, functional silica-based biomaterials have been generated via biomimetic and bioinspired silicification in vitro. Additionally, several advanced technologies were developed for in vitro and in vivo immobilization of biomolecules with potential applications in biocatalysis, biosensors, bioimaging, and immunoassays. A thin silica layer could coat a single living cell or virus as a protective shell offering new opportunities in biotechnology and nanomedicine fields. Promising nanotechnologies have been developed for drug encapsulation and delivery in a targeted and controlled manner, in particular for poorly soluble hydrophobic drugs. Moreover, biomimetic silica, as a morphogenetically active biocompatible material, has been utilized in the field of bone regeneration and in the development of biomedical implantable devices. STATEMENT OF SIGNIFICANCE: In nature, silica-based biomaterials, such as diatom frustules and sponge spicules, with high mechanical and physical properties were created under biocompatible conditions. The fundamental knowledge underlying the molecular mechanisms of biosilica formation could inspire engineers and chemists to design novel hybrid biomaterials using molecular biomimetic strategies. The production of such biohybrid materials brings the biosilicification field closer to practical applications. This review starts with the biosilicification process of sponges and diatoms with recently updated researches. Then, this article covers recent advances in the design of silica-based biomaterials and their potential applications in the fields of biotechnology and nanomedicine, highlighting several promising technologies for encapsulation of functional proteins and living cells, drug delivery and the preparation of scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea.
| |
Collapse
|
30
|
Müller WEG, Ackermann M, Al-Nawas B, Righesso LAR, Muñoz-Espí R, Tolba E, Neufurth M, Schröder HC, Wang X. Amplified morphogenetic and bone forming activity of amorphous versus crystalline calcium phosphate/polyphosphate. Acta Biomater 2020; 118:233-247. [PMID: 33075552 DOI: 10.1016/j.actbio.2020.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023]
Abstract
Amorphous Ca-phosphate (ACP) particles stabilized by inorganic polyphosphate (polyP) were prepared by co-precipitation of calcium and phosphate in the presence of polyP (15% [w/w]). These hybrid nanoparticles showed no signs of crystallinity according to X-ray diffraction analysis, in contrast to the particles obtained at a lower (5% [w/w]) polyP concentration or to hydroxyapatite. The ACP/15% polyP particles proved to be a suitable matrix for cell growth and attachment and showed pronounced osteoblastic and vasculogenic activity in vitro. They strongly stimulated mineralization of the human osteosarcoma cell line SaOS-2, as well as cell migration/microvascularization, as demonstrated in the scratch assay and the in vitro angiogenesis tube forming assay. The possible involvement of an ATP gradient, generated by polyP during tube formation of human umbilical vein endothelial cells, was confirmed by ATP-depletion experiments. In order to assess the morphogenetic activity of the hybrid particles in vivo, experiments in rabbits using the calvarial bone defect model were performed. The particles were encapsulated in poly(d,l-lactide-co-glycolide) microspheres. In contrast, to crystalline Ca-phosphate (containing only 5% [w/w] polyP) or to crystalline β-tricalcium phosphate, amorphous ACP/15% polyP particles caused pronounced osteoinductive activity already after a six-week healing period. The synthesis of new bone tissue was accompanied by an intense vascularization and an increased expression of mineralization/vascularization marker genes. The data show that amorphous polyP-stabilized ACP, which combines osteoinductive activity with the ability to act as a precursor of hydroxyapatite formation both in vitro and in vivo, is a promising material for bone regeneration.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY.
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, 55099 Mainz, Germany
| | - Bilal Al-Nawas
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131 Mainz, GERMANY
| | - Leonardo A R Righesso
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131 Mainz, GERMANY
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, C/Catedràtic José Beltrán 2, 46980 Paterna, València, Spain
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| |
Collapse
|
31
|
Maldonado M, López-Acosta M, Beazley L, Kenchington E, Koutsouveli V, Riesgo A. Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges. SCIENCE ADVANCES 2020; 6:eaba9322. [PMID: 32832609 PMCID: PMC7439455 DOI: 10.1126/sciadv.aba9322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The biological utilization of dissolved silicon (DSi) influences ocean ecology and biogeochemistry. In the deep sea, hexactinellid sponges are major DSi consumers that remain poorly understood. Their DSi consumption departs from the Michaelis-Menten kinetics of shallow-water demosponges and appears particularly maladapted to incorporating DSi from the modest concentrations typical of the modern ocean. Why did sponges not adapt to the shrinking DSi availability that followed diatom expansion some 100 to 65 million years ago? We propose that sponges incorporate DSi combining passive (aquaglyceroporins) and active (ArsB) transporters, while only active transporters (SITs) operate in diatoms and choanoflagellates. Evolution of greater silicon transport efficiency appears constrained by the additional role of aquaglyceroporins in transporting essential metalloids other than silicon. We discuss the possibility that lower energy costs may have driven replacement of ancestral SITs by less efficient aquaglyceroporins, and discuss the functional implications of conservation of aquaglyceroporin-mediated DSi utilization in vertebrates.
Collapse
Affiliation(s)
- M. Maldonado
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Acceso Cala St. Francesc 14, Blanes 17300, Girona, Spain
| | - M. López-Acosta
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Acceso Cala St. Francesc 14, Blanes 17300, Girona, Spain
| | - L. Beazley
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth, NS, Canada
| | - E. Kenchington
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth, NS, Canada
| | - V. Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, SW7 5BD London, UK
| | - A. Riesgo
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, SW7 5BD London, UK
| |
Collapse
|
32
|
Du Z, Zhao Z, Liu H, Liu X, Zhang X, Huang Y, Leng H, Cai Q, Yang X. Macroporous scaffolds developed from CaSiO 3 nanofibers regulating bone regeneration via controlled calcination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111005. [PMID: 32487409 DOI: 10.1016/j.msec.2020.111005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/18/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023]
Abstract
Calcium silicate (CS) is envisioned as a good substrate for bone tissue engineering applications because it can provide bioactive ions like Ca2+ and Si4+ to promote bone regeneration. Calcination temperature is a critical factor in determining the crystallinity of CS ceramic, which subsequently influences its degradation and ion release behaviors. To investigate the effect of calcination temperature on the capacity of CS in inducing bone regeneration, CS nanofibers were fabricated via electrospinning of precursor sol-gel and subsequent sintering at 800 °C, 1000 °C or 1200 °C. As the calcination temperature was increased, the obtained CS nanofibers displayed higher crystallinity and slower degradation rate. The CS nanofibers calcined at 800 °C (800 m) would like to cause high pH (>9) in cell culture medium due to its rapid ion release rate, displaying adverse effect on cell viability. Among all the preparations, it was found the CS nanofibers calcined at 1000 °C (1000 m) demonstrated the strongest promotion effect on the osteogenic differentiation of bone marrow mesenchymal stromal cells. To facilitate in vivo implantation, the CS nanofibers were shaped into three-dimensional macroporous scaffolds and coated with gelatin to improve their mechanical stability. By implanting the scaffolds into rat calvarial defects, it was confirmed the scaffold made of CS nanofibers calcined at 1000 °C was able to enhance new bone formation more efficiently than the scaffolds made of CS nanofibers calcined at 800 °C or 1200 °C. To summarize, calcination temperature could be an effective and useful tool applied to produce CS bioceramic substrates with improved potential in enhancing osteogenesis by regulating their degradation and bioactive ion release behaviors.
Collapse
Affiliation(s)
- Zhiyun Du
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhenda Zhao
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, PR China
| | - Huanhuan Liu
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xue Liu
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xu Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, PR China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
33
|
Hamad Jaafari SAA, Athinarayanan J, Subbarayan Periasamy V, Alshatwi AA. Biogenic silica nanostructures derived from Sorghum bicolor induced osteogenic differentiation through BSP, BMP-2 and BMP-4 gene expression. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Xin T, Mao J, Liu L, Tang J, Wu L, Yu X, Gu Y, Cui W, Chen L. Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6840-6851. [PMID: 31999085 DOI: 10.1021/acsami.9b18496] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) and bioceramic are the widely used bioactive factors in treatment of bone defects, but these easily cause side effects because of uncontrollable local concentration. In this study, rhBMP-2 was grafted on the surface of mesoporous bioglass nanoparticles (MBGNs) with an amide bond and then photo-cross-linked together with methacrylate gelatin (GelMA); in this way, a GelMA/MBGNs-rhBMP-2 hydrogel membrane was fabricated to release rhBMP-2 in a controllable program during the early bone regeneration period and then release calcium and silicon ions to keep promoting osteogenesis instead of rhBMP-2 in a long term. In this way, rhBMP-2 can keep releasing for 4 weeks and then the ions keep releasing after 4 weeks; this process is matched to early and late osteogenesis procedures. In vitro study demonstrated that the early release of rhBMP-2 can effectively promote local cell osteogenic differentiation in a short period, and then, the inorganic ions can promote cell adhesion not only in the early stage but also keep promoting osteogenic differentiation for a long period. Finally, the GelMA/MBGNs-rhBMP-2 hydrogel shows a superior capacity in long-term osteogenesis and promoting bone tissue regeneration in rat calvarial critical size defect. This GelMA/MBGNs-rhBMP-2 hydrogel demonstrated a promising strategy for the controllable and safer use of bioactive factors such as rhBMP-2 in artificial periosteum to accelerate bone repairing.
Collapse
Affiliation(s)
- Tianwen Xin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute , Soochow University , Suzhou , Jiangsu 215007 , P. R. China
| | - Jiannan Mao
- Department of Orthopedics , The Affiliated Jiangyin Hospital of Southeast University Medical College , 163 Shoushan Road , Jiang Yin 214400 , China
| | - Lili Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute , Soochow University , Suzhou , Jiangsu 215007 , P. R. China
| | - Jincheng Tang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute , Soochow University , Suzhou , Jiangsu 215007 , P. R. China
| | - Liang Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute , Soochow University , Suzhou , Jiangsu 215007 , P. R. China
| | - Xiaohua Yu
- Shanghai Institute of Traumatology and Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , 197 Ruijin 2nd Road , Shanghai 200025 , P. R. China
| | - Yong Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute , Soochow University , Suzhou , Jiangsu 215007 , P. R. China
| | - Wenguo Cui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute , Soochow University , Suzhou , Jiangsu 215007 , P. R. China
- Shanghai Institute of Traumatology and Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , 197 Ruijin 2nd Road , Shanghai 200025 , P. R. China
| | - Liang Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute , Soochow University , Suzhou , Jiangsu 215007 , P. R. China
| |
Collapse
|
35
|
Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Fava F, Fabbri P, Taddei P, Prati C. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:341-361. [PMID: 31147007 DOI: 10.1016/j.msec.2019.04.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 01/24/2023]
Abstract
Polycaprolactone (PCL), dicalcium phosphate dihydrate (DCPD) and/or calcium silicates (CaSi) have been used to prepare highly porous scaffolds by thermally induced phase separation technique (TIPS). Three experimental mineral-doped formulations were prepared (PCL-10CaSi, PCL-5CaSi-5DCPD, PCL-10CaSi-10DCPD); pure PCL scaffolds constituted the control group. Scaffolds were tested for their chemical-physical and biological properties, namely thermal properties by differential scanning calorimetry (DSC), mechanical properties by quasi-static parallel-plates compression testing, porosity by a standard water-absorption method calcium release, alkalinizing activity, surface microchemistry and micromorphology by Environmental Scanning electronic Microscopy (ESEM), apatite-forming ability in Hank Balanced Saline Solution (HBSS) by Energy Dispersive X-ray Spectroscopy (EDX) and micro-Raman, and direct contact cytotoxicity. All mineral-doped scaffolds released calcium and alkalinized the soaking medium, which may favor a good biological (osteogenic) response. ESEM surface micromorphology analyses after soaking in HBSS revealed: pure PCL, PCL-10CaSi and PCL-10CaSi-10DCPD kept similar surface porosity percentages but different pore shape modifications. PCL-5CaSi-5DCPD revealed a significant surface porosity increase despite calcium phosphates nucleation (p < 0.05). Micro-Raman spectroscopy detected the formation of a B-type carbonated apatite (Ap) layer on the surface of PCL-10CaSi-10DCPD aged for 28 days in HBSS; a similar phase (but of lower thickness) formed also on PCL-5CaSi-5DCPD and PCL; the deposit formed on PCL-10CaSi was mainly composed of calcite. All PCL showed bulk open porosity higher than 94%; however, no relevant brittleness was observed in the materials, which retained the possibility to be handled without collapsing. The thermo-mechanical properties showed that the reinforcing and nucleating action of the inorganic fillers CaSi and DCPD improved viscoelastic properties of the scaffolds, as confirmed by the increased value of storage modulus and the slight increase in the crystallization temperature for all the biomaterials. A detrimental effect on the mechanical properties was observed in samples with the highest amount of inorganic particles (PCL-10CaSi-10DCPD). All the scaffolds showed absence of toxicity, in particular PCL-10CaSi-10DCPD. The designed scaffolds are biointeractive (release biologically relevant ions), nucleate apatite, possess high surface and internal open porosity and can be colonized by cells, creating a bone forming osteoblastic microenvironment and appearing interesting materials for bone regeneration purposes.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Fausto Zamparini
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Federica Chiellini
- BIOlab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Paola Taddei
- Biochemistry Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Götz W, Tobiasch E, Witzleben S, Schulze M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics 2019; 11:E117. [PMID: 30871062 PMCID: PMC6471146 DOI: 10.3390/pharmaceutics11030117] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
Bioinspired stem cell-based hard tissue engineering includes numerous aspects: The synthesis and fabrication of appropriate scaffold materials, their analytical characterization, and guided osteogenesis using the sustained release of osteoinducing and/or osteoconducting drugs for mesenchymal stem cell differentiation, growth, and proliferation. Here, the effect of silicon- and silicate-containing materials on osteogenesis at the molecular level has been a particular focus within the last decade. This review summarizes recently published scientific results, including material developments and analysis, with a special focus on silicon hybrid bone composites. First, the sources, bioavailability, and functions of silicon on various tissues are discussed. The second focus is on the effects of calcium-silicate biomineralization and corresponding analytical methods in investigating osteogenesis and bone formation. Finally, recent developments in the manufacturing of Si-containing scaffolds are discussed, including in vitro and in vivo studies, as well as recently filed patents that focus on the influence of silicon on hard tissue formation.
Collapse
Affiliation(s)
- Werner Götz
- Department of Orthodontics, Oral Biology Laboratory, School of Dentistry, Rheinische Wilhelms University of Bonn, Welschnonnenstr. 17, D-53111 Bonn, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Steffen Witzleben
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|
37
|
Tolba E, Wang X, Ackermann M, Neufurth M, Muñoz‐Espí R, Schröder HC, Müller WEG. In Situ Polyphosphate Nanoparticle Formation in Hybrid Poly(vinyl alcohol)/Karaya Gum Hydrogels: A Porous Scaffold Inducing Infiltration of Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801452. [PMID: 30693187 PMCID: PMC6343068 DOI: 10.1002/advs.201801452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/16/2018] [Indexed: 04/14/2023]
Abstract
The preparation and characterization of a porous hybrid cryogel based on the two organic polymers, poly(vinyl alcohol) (PVA) and karaya gum (KG), into which polyphosphate (polyP) nanoparticles have been incorporated, are described. The PVA/KG cryogel is prepared by intermolecular cross-linking of PVA via freeze-thawing and Ca2+-mediated ionic gelation of KG to form stable salt bridges. The incorporation of polyP as amorphous nanoparticles with Ca2+ ions (Ca-polyP-NP) is achieved using an in situ approach. The polyP constituent does not significantly affect the viscoelastic properties of the PVA/KG cryogel that are comparable to natural soft tissue. The exposure of the Ca-polyP-NP within the cryogel to medium/serum allows the formation of a biologically active polyP coacervate/protein matrix that stimulates the growth of human mesenchymal stem cells in vitro and provides the cells a suitable matrix for infiltration superior to the polyP-free cryogel. In vivo biocompatibility studies in rats reveal that already two to four weeks after implantation into muscle, the implant regions containing the polyP-KG/PVA material become replaced by initial granulation tissue, whereas the controls are free of any cells. It is proposed that the polyP-KG/PVA cryogel has the potential to become a promising implant material for soft tissue engineering/repair.
Collapse
Affiliation(s)
- Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
- Polymers and Pigments DepartmentNational Research CentreDokki12622GizaEgypt
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
| | - Maximilian Ackermann
- Institute of Functional and Clinical AnatomyUniversity Medical Center of the Johannes Gutenberg UniversityJohann Joachim Becher Weg 1355099MainzGermany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
| | - Rafael Muñoz‐Espí
- Institute of Materials Science (ICMUV)Universitat de ValènciaC/Catedràtic José Beltrán 246980PaternaValènciaSpain
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological ChemistryUniversity Medical Center of the Johannes Gutenberg UniversityDuesbergweg 655128MainzGermany
| |
Collapse
|
38
|
Burton CW, DiFeo Childs R, McClellan P, Yu Q, Bundy J, Gao M, Evans E, Landis W. Silica/polycaprolactone nanofiber scaffold variants for human periosteal cell growth. J Biomed Mater Res A 2019; 107:791-801. [DOI: 10.1002/jbm.a.36595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Phillip McClellan
- University of Akron; Akron Ohio
- Case Western Reserve University; Cleveland Ohio
| | - Qing Yu
- University of Akron; Akron Ohio
| | - Joshua Bundy
- University of Akron; Akron Ohio
- Indiana University; Bloomington Indiana
| | - Min Gao
- Kent State University; Kent Ohio
| | | | - William Landis
- University of Akron; Akron Ohio
- University of California, San Francisco; San Francisco California
| |
Collapse
|
39
|
Urie R, Ghosh D, Ridha I, Rege K. Inorganic Nanomaterials for Soft Tissue Repair and Regeneration. Annu Rev Biomed Eng 2018; 20:353-374. [PMID: 29621404 DOI: 10.1146/annurev-bioeng-071516-044457] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inorganic nanomaterials have witnessed significant advances in areas of medicine including cancer therapy, imaging, and drug delivery, but their use in soft tissue repair and regeneration is in its infancy. Metallic, ceramic, and carbon allotrope nanoparticles have shown promise in facilitating tissue repair and regeneration. Inorganic nanomaterials have been employed to improve stem cell engraftment in cellular therapy, material mechanical stability in tissue repair, electrical conductivity in nerve and cardiac regeneration, adhesion strength in tissue approximation, and antibacterial capacity in wound dressings. These nanomaterials have also been used to improve or replace common surgical materials and restore functionality to damaged tissue. We provide a comprehensive overview of inorganic nanomaterials in tissue repair and regeneration, and discuss their promise and limitations for eventual translation to the clinic.
Collapse
Affiliation(s)
- Russell Urie
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, USA;
| | - Deepanjan Ghosh
- Department of Biological Design, Arizona State University, Tempe, Arizona 85287-6106, USA
| | - Inam Ridha
- Department of Biomedical Engineering, Arizona State University, Tempe, Arizona 85287-6106, USA
| | - Kaushal Rege
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85287-6106, USA;
| |
Collapse
|
40
|
Nemoto A, Chosa N, Kyakumoto S, Yokota S, Kamo M, Noda M, Ishisaki A. Water-soluble factors eluated from surface pre-reacted glass-ionomer filler promote osteoblastic differentiation of human mesenchymal stem cells. Mol Med Rep 2018; 17:3448-3454. [PMID: 29257332 PMCID: PMC5802126 DOI: 10.3892/mmr.2017.8287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
Surface pre-reacted glass‑ionomer (S‑PRG)-containing dental materials, including composite and coating resins have been used for the restoration and/or prevention of dental cavities. S‑PRG is known to have the ability to release aluminum, boron, fluorine, silicon, and strontium ions. Aluminum ions are known to be inhibitors whereas boron, fluorine, silicon, and strontium ions are known to be promoters of mineralization, via osteoblasts. However, it remains to be clarified how an aqueous eluate obtained from S‑PRG containing these ions affects the ability of mesenchymal stem cells (MSCs), which are known to be present in dental pulp and bone marrow, to differentiate into osteogenic cell types. The present study demonstrated that 200‑ to 1,000‑fold‑diluted aqueous eluates obtained from S‑PRG significantly upregulated the mRNA expression level of the osteogenic differentiation marker alkaline phosphatase in human MSCs (hMSCs) without exhibiting the cytotoxic effect. In addition, the 500‑ to 1,000‑fold‑diluted aqueous eluates obtained from S‑PRG significantly and clearly promoted mineralization of the extracellular matrix of hMSCs. It was additionally demonstrated that hMSCs cultured on the cured resin composites containing S‑PRG fillers exhibited osteogenic differentiation in direct correlation with the weight percent of S‑PRG fillers. These results strongly suggested that aqueous eluates of S‑PRG fillers promoted hard tissue formation by hMSCs, implicating that resins containing S‑PRG may act as a useful biomaterial to cover accidental exposure of dental pulp.
Collapse
Affiliation(s)
- Akira Nemoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry, Iwate Medical University, Iwate 020-8505, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| | - Seiji Yokota
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| | - Masaharu Kamo
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| | - Mamoru Noda
- Division of Operative Dentistry and Endodontics, Department of Conservative Dentistry, Iwate Medical University, Iwate 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Iwate 028-3694, Japan
| |
Collapse
|
41
|
Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Aparicio C, Fava F, Fabbri P, Taddei P, Prati C. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:163-181. [DOI: 10.1016/j.msec.2017.08.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/14/2017] [Accepted: 08/10/2017] [Indexed: 01/13/2023]
|
42
|
Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res 2017; 5:17059. [PMID: 29285402 PMCID: PMC5738879 DOI: 10.1038/boneres.2017.59] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022] Open
Abstract
Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
- Jiangxi University of Science and Technology, Ganzhou, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Manchón A, Alkhraisat MH, Rueda-Rodriguez C, Pintado C, Prados-Frutos JC, Torres J, Lopez Cabarcos E. Silicon bioceramic loaded with vancomycin stimulates bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2017; 106:2307-2315. [PMID: 29098767 DOI: 10.1002/jbm.b.34040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 02/01/2023]
Abstract
Porous ceramics doped with silicon and pure β-TCP were analyzed in terms of internal microstructure, cell behavior, and the percentage of newly formed bone. Additionally the materials were tested to determine which of the two had better properties to load and release vancomycin hydrochloride. Internal pore distribution and porosity were determined through high pressure mercury porosimetry and the specific surface area was measured by the Brunauer Emmet-Teller method. The proliferation and viability of the human osteoblast-like cell line MG-63 was studied to validate both materials. The materials were tested on eight New Zealand rabbits which created defects, 10 mm in diameter, in the calvaria bone. After 8 and 12 weeks a histological and histomorphometric analysis was performed. Si-β-TCP showed a higher porosity and specific surface area. The cytocompatibility test revealed acceptable results in terms of proliferation and viability whereas the percentage of new bone was higher in Si-β-TCP with a two-time study being statistically significant with 12 weeks of healing (p < 0.05).The vancomycin loaded within the ceramic scaffolds were burst released and the material had the ability to inhibit bacterial growth. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2307-2315, 2018.
Collapse
Affiliation(s)
- Angel Manchón
- Department of Stomatology, Faculty of Health Sciences, URJC, 28922, Alcorcon-Madrid, Spain
| | - Mohammad H Alkhraisat
- Department of Physical-Chemistry II, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Carmen Rueda-Rodriguez
- Department of Physical-Chemistry II, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Concepción Pintado
- Departament of Microbiology II, Facultad de Farmacia, UCM, Madrid, Spain
| | - J C Prados-Frutos
- Department of Stomatology, Faculty of Health Sciences, URJC, 28922, Alcorcon-Madrid, Spain
| | - Jesus Torres
- Department of Stomatology, Faculty of Health Sciences, URJC, 28922, Alcorcon-Madrid, Spain
| | - Enrique Lopez Cabarcos
- Department of Physical-Chemistry II, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
44
|
Albert K, Huang XC, Hsu HY. Bio-templated silica composites for next-generation biomedical applications. Adv Colloid Interface Sci 2017; 249:272-289. [PMID: 28499603 DOI: 10.1016/j.cis.2017.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
Silica-based materials have extensive biomedical applications owing to their unique physical, chemical, and biological properties. Recently, increasing studies have examined the mechanisms involved in biosilicification to develop novel, fine-tunable, eco-friendly materials and/or technologies. In this review, we focus on recent developments in bio-templated silica synthesis and relevant applications in drug delivery systems, tissue engineering, and biosensing.
Collapse
Affiliation(s)
- Karunya Albert
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Xin-Chun Huang
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Hsin-Yun Hsu
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan; Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.
| |
Collapse
|
45
|
Patel R, Patel M, Kwak J, Iyer AK, Karpoormath R, Desai S, Rarh V. Polymeric microspheres: a delivery system for osteogenic differentiation. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rajkumar Patel
- School of Electrical and Computer Engineering; The University of Seoul; Seoul 02504 Korea
| | - Madhumita Patel
- Department of Chemistry and Nano Science; Ewha Womans University; Seodaemun-gu Seoul 120-750 South Korea
| | - Jeonghun Kwak
- School of Electrical and Computer Engineering; The University of Seoul; Seoul 02504 Korea
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-Bind) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health, Sciences; Wayne State University; 259 Mack Ave Detroit MI 48201 USA
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences; University of Kwa Zulu Natal; Durban 4000 Africa
| | - Shrojal Desai
- Global Infusion Systems R&D at Hospira; Chicago, IL USA
| | - Vimal Rarh
- Department of Chemistry, S.G.T.B. Khalsa College; University of Delhi; Delhi 110007 India
| |
Collapse
|
46
|
Mechanical characteristic and biological behaviour of implanted and restorative bioglasses used in medicine and dentistry: A systematic review. Dent Mater 2017; 33:702-712. [DOI: 10.1016/j.dental.2017.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/16/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
|
47
|
Cheng X, Zhu L, Zhang J, Yu J, Liu S, Lv F, Lin Y, Liu G, Peng B. Anti-osteoclastogenesis of Mineral Trioxide Aggregate through Inhibition of the Autophagic Pathway. J Endod 2017; 43:766-773. [PMID: 28292604 DOI: 10.1016/j.joen.2016.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/01/2016] [Accepted: 12/11/2016] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Mineral trioxide aggregate (MTA) regulates bone remodeling, particularly osteoclast differentiation. However, intracellular mechanisms underlying the anti-osteoclastogenesis of MTA remain unclear. This study aimed to evaluate the potential alterations of autophagic pathway during anti-osteoclastogenic effects by MTA in vitro and investigate their underlying mechanisms. METHODS Osteoclast precursors were treated with MTA extracts containing the receptor activator of nuclear factor-kappa B ligand (RANKL). Rapamycin was used to activate autophagy. RANKL-induced osteoclast differentiation was stained with tartrate-resistant acid phosphatase. Several specific autophagy features in osteoclast precursors were measured by using immunofluorescence, monodansylcadaverine, and transmission electron microscope. Autophagy-related proteins were investigated via Western blot analysis. The mRNA expression involved in autophagic and osteoclastic activities was detected with quantitative real-time polymerase chain reaction. RESULTS MTA extracts inhibited osteoclast differentiation via preventing the fusion of osteoclast precursors without cytotoxicity. MTA extracts interrupted RANKL-induced acidic vesicular organelle formation and autophagic vacuole appearance in osteoclast precursors. Moreover, autophagic genes and proteins stimulated with RANKL diminished with MTA extracts. Notably, autophagy activation through rapamycin promoted multinucleated osteoclasts formation and increased osteoclastic genes expression, which almost reversed MTA-mediated anti-osteoclastogenic effects. CONCLUSIONS MTA inhibited osteoclastogenesis for bone repair through attenuating the autophagic pathway.
Collapse
Affiliation(s)
- Xue Cheng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lingxin Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fengyuan Lv
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ying Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guojing Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
48
|
Noninvasive Measurement of Ear Cartilage Elasticity on the Cellular Level: A New Method to Provide Biomechanical Information for Tissue Engineering. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1147. [PMID: 28280656 PMCID: PMC5340471 DOI: 10.1097/gox.0000000000001147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/07/2016] [Indexed: 11/26/2022]
Abstract
Background: An important feature of auricular cartilage is its stiffness. To tissue engineer new cartilage, we need objective tools to provide us with the essential biomechanical information to mimic optimal conditions for chondrogenesis and extracellular matrix (ECM) development. In this study, we used an optomechanical sensor to investigate the elasticity of auricular cartilage ECM and tested whether sensitivity and measurement reproducibility of the sensor would be sufficient to accurately detect (subtle) differences in matrix compositions in healthy, diseased, or regenerated cartilage. Methods: As a surrogate model to different cartilage ECM compositions, goat ears (n = 9) were subjected to different degradation processes to remove the matrix components elastin and glycosaminoglycans. Individual ear samples were cut and divided into 3 groups. Group 1 served as control and was measured within 2 hours after animal death and at 24 and 48 hours, and groups 2 and 3 were measured after 24- and 48-h hyaluronidase or elastase digestion. Per sample, 9 consecutive measurements were taken ±300 μm apart. Results: Good reproducibility was seen between consecutive measurements with an overall interclass correlation coefficient average of 0.9 (0.81–0.98). Although degradation led to variable results, overall, a significant difference was seen between treatment groups after 48 hours (control, 4.2 MPa [±0.5] vs hyaluronidase, 2.0 MPa [±0.3], and elastase, 3.0 MPa [±0.4]; both P < 0.001). Conclusions: The optomechanical sensor system we used provided a fast and reliable method to perform measurements of cartilage ECM in a reverse tissue-engineering model. In future applications, this method seems feasible for the monitoring of changes in stiffness during the development of tissue-engineered auricular cartilage.
Collapse
|
49
|
Müller WE, Tolba E, Ackermann M, Neufurth M, Wang S, Feng Q, Schröder HC, Wang X. Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo. Acta Biomater 2017; 50:89-101. [PMID: 28017868 DOI: 10.1016/j.actbio.2016.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Here we describe the fabrication process of amorphous strontium-polyphosphate microparticles ("Sr-a-polyP-MP"). The effects of these particles on growth and gene expression were investigated with SaOS-2 cells as well as with human mesenchymal stem cells (MSC) and compared with those particles prepared of amorphous calcium-polyphosphate ("Ca-a-polyP-MP") and of strontium salt. The results revealed a markedly higher stimulation of growth of MSC by "Sr-a-polyP-MP" compared to "Ca-a-polyP-MP" and a significant increase in mineralization of SaOS-2 cells, as well as an enhanced upregulation of the expression of the genes encoding for alkaline phosphatase and the bone morphogenetic protein 2 (BMP-2), likewise performed with SaOS-2 cells. On the other hand, "Sr-a-polyP-MP" only slightly changes the expression of the osteocyte-specific sclerostin, a negative regulator of the canonical Wnt signaling pathway and an inhibitor of bone cell differentiation as well as of mineralization in SaOS-2 cells. In contrast, "Ca-a-polyP-MP" strongly increased the steady-state expression of the SOST (sclerostin) gene. In animal studies poly(d,l-lactide-co-glycolide (PLGA) microspheres, containing polyP particles, were implanted into critical-size calvarial defects in rats. The results show that the amorphous Sr-polyP-containing microspheres caused an increased healing/mineralization of the bone defect even after short implantation periods of 8-12weeks, if compared to the β-tri-calcium phosphate control as well as to Ca-polyP. It is proposed that "Sr-a-polyP-MP" might elicit suitable properties to be applied as a regeneratively active implant material for bone repair. STATEMENT OF SIGNIFICANCE In this manuscript, we fabricated amorphous strontium-polyphosphate microparticles ("Sr-a-polyP-MP") and studied their effects on bone mineral formation in vitro as well as in vivo. In vitro, those particles substantially increased the expression of the genes encoding for alkaline phosphatase, the bone morphogenetic protein 2 and the mineralization. In vivo, the "Sr-a-polyP-MP" packed into PLGA microspheres and implanted into critical-size calvarial defects in rats resulted in a speeded up of the healing/mineralization of the bone defect. Those properties qualify Sr-a-polyP as a suitable biomaterial for bone regenerative implants.
Collapse
|
50
|
Biocalcite and Carbonic Acid Activators. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017. [PMID: 28238040 DOI: 10.1007/978-3-319-51284-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Based on evolution of biomineralizing systems and energetic considerations, there is now compelling evidence that enzymes play a driving role in the formation of the inorganic skeletons from the simplest animals, the sponges, up to humans. Focusing on skeletons based on calcium minerals, the principle enzymes involved are the carbonic anhydrase (formation of the calcium carbonate-based skeletons of many invertebrates like the calcareous sponges, as well as deposition of the calcium carbonate bioseeds during human bone formation) and the alkaline phosphatase (providing the phosphate for bone calcium phosphate-hydroxyapatite formation). These two enzymes, both being involved in human bone formation, open novel not yet exploited targets for pharmacological intervention of human bone diseases like osteoporosis, using compounds that act as activators of these enzymes. This chapter focuses on carbonic anhydrases of biomedical interest and the search for potential activators of these enzymes, was well as the interplay between carbonic anhydrase-mediated calcium carbonate bioseed synthesis and metabolism of energy-rich inorganic polyphosphates. Beyond that, the combination of the two metabolic products, calcium carbonate and calcium-polyphosphate, if applied in an amorphous form, turned out to provide the basis for a new generation of scaffold materials for bone tissue engineering and repair that are, for the first time, morphogenetically active.
Collapse
|