1
|
Kumar V, Stewart JH. Obesity, bone marrow adiposity, and leukemia: Time to act. Obes Rev 2024; 25:e13674. [PMID: 38092420 DOI: 10.1111/obr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024]
Abstract
Obesity has taken the face of a pandemic with less direct concern among the general population and scientific community. However, obesity is considered a low-grade systemic inflammation that impacts multiple organs. Chronic inflammation is also associated with different solid and blood cancers. In addition, emerging evidence demonstrates that individuals with obesity are at higher risk of developing blood cancers and have poorer clinical outcomes than individuals in a normal weight range. The bone marrow is critical for hematopoiesis, lymphopoiesis, and myelopoiesis. Therefore, it is vital to understand the mechanisms by which obesity-associated changes in BM adiposity impact leukemia development. BM adipocytes are critical to maintain homeostasis via different means, including immune regulation. However, obesity increases BM adiposity and creates a pro-inflammatory environment to upregulate clonal hematopoiesis and a leukemia-supportive environment. Obesity further alters lymphopoiesis and myelopoiesis via different mechanisms, which dysregulate myeloid and lymphoid immune cell functions mentioned in the text under different sequentially discussed sections. The altered immune cell function during obesity alters hematological malignancies and leukemia susceptibility. Therefore, obesity-induced altered BM adiposity, immune cell generation, and function impact an individual's predisposition and severity of leukemia, which should be considered a critical factor in leukemia patients.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Wei X, Zhang Y, Wang Z, He Y, Ju S, Fu J. Bone marrow adipocytes is a new player in supporting myeloma cells proliferation and survival in myeloma microenvironment. Transl Oncol 2024; 40:101856. [PMID: 38134840 PMCID: PMC10776777 DOI: 10.1016/j.tranon.2023.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple myeloma (MM) is a lethal B cell neoplasm characterized by clonal expansion of malignant plasma cells in the bone marrow and remains incurable due to disease relapse and drug resistance. Bone marrow adipocytes (BMAs) are emerging as playing active functions that can support myeloma cell growth and survival. The aim of this study is to investigate myeloma-mesenchymal stem cells (MSCs) interaction and the impact of such interactions on the pathogenesis of MM using in vitro co-culture assay. Here we provide evidence that MM cell up-regulated MSCs to express PPAR-γ and pushes MSCs differentiation toward adipocytes at the expense of osteoblasts in co-culture manner. The increased BMAs can effectively enhance MM cell to proliferation, migration, and chemoresistance via cell-cell contact and/or cytokines release regulated by PPAR-γ signal pathway. This effect was partially reversed in medium containing PPAR-γ antagonist G3335 and indicated that G3335 distorts the maturation of MSC-derived adipocytes and cytokines release by adipocytes through inhibition of PPAR-γ, a key transcriptional factor for the activation of adipogenesis, or cell to cell contact, or both. In meantime, we observed higher expression of adipocyte differentiation associated genes DLK1, DGAT1, FABP4, and FASN both in MSCs and MSC derived adipocytes, but the osteoblast differentiation-associated gene ALP was down regulated in MSCs. These finding mean that direct consequence of MM/MSC interaction that play a role in MM pathogenesis. Consistent with those in vitro results, our primary clinical observation also showed that bone marrow samples from MM patients had significantly higher bone adiposity in comparison with controls and the number of adipocytes decreased in those who were response to anti-MM therapy. Our finding suggested that BMAs may have an important contribution to MM progression, particularly in drugs resistant of MM cells, and plays an important contribution in MM bone disease and treatment failure, but more clinical studies are needed to confirm its role.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yangmin Zhang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Ziyan Wang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yuanning He
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Songguang Ju
- Institute of Biotechnology, Soochow University, Suzhou 215007, PR China
| | - Jinxiang Fu
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.
| |
Collapse
|
3
|
El-Masri BM, Leka B, Mustapha F, Gundesen MT, Hinge M, Lund T, Andersen TL, Diaz-delCastillo M, Jafari A. Bone marrow adipocytes provide early sign for progression from MGUS to multiple myeloma. Oncotarget 2024; 15:20-26. [PMID: 38227739 PMCID: PMC10791075 DOI: 10.18632/oncotarget.28548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Multiple Myeloma (MM) is the second most common hematological malignancy and is characterized by clonal expansion of malignant plasma cells in the bone marrow. In spite of recent advances in the field of MM, the disease has remained incurable. MM is preceded by a premalignant state known as monoclonal gammopathy of undetermined significance (MGUS), with a risk of progression to MM of 1% per year. Establishing a scalable approach that refines the identification of MGUS patients at high risk of progression to MM can transform the clinical management of the disease, improve the patient's quality of life, and will have significant socioeconomic implications. Here, we provide evidence that changes in the bone marrow adipose tissue (BMAT) provide an early sign for progression from MGUS to MM. We employed AI-assisted histological analysis of unstained bone marrow biopsies from MGUS subjects with or without progression to MM within 10 years (n = 24, n = 17 respectively). Although the BMAT fraction was not different between the two groups, bone marrow adipocyte (BMAd) density was decreased in MGUS patients who developed MM, compared to non-progressing MGUS patients. Importantly, the distribution profile for BMAd size and roundness was significantly different between the two groups, indicating a shift toward increased BMAd size and roundness in MGUS patients who developed MM. These early changes in the BMAT could serve as valuable early indicators for the transition from MGUS to MM, potentially enabling timely interventions and personalized treatment strategies. Finally, the AI-based approach for histological characterization of unstained bone marrow biopsies is cost-effective and fast, rendering its clinical implementation feasible.
Collapse
Affiliation(s)
- Bilal M. El-Masri
- Danish Spatial Imaging Consortium (DanSIC)
- Department of Clinical Research, Molecular Bone Histology (MBH) Lab, University of Southern Denmark, Odense, Denmark
| | - Benedeta Leka
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Fatima Mustapha
- Department of Forensic Medicine, Molecular Bone Histology (MBH) Lab, University of Aarhus, Aarhus, Denmark
| | | | - Maja Hinge
- Department of Hematology, Lillebaelt Hospital, Vejle, Denmark
| | - Thomas Lund
- Department of Hematology Odense University Hospital, Odense, Denmark
| | - Thomas L. Andersen
- Danish Spatial Imaging Consortium (DanSIC)
- Department of Clinical Research, Molecular Bone Histology (MBH) Lab, University of Southern Denmark, Odense, Denmark
- Department of Forensic Medicine, Molecular Bone Histology (MBH) Lab, University of Aarhus, Aarhus, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Marta Diaz-delCastillo
- Danish Spatial Imaging Consortium (DanSIC)
- Department of Forensic Medicine, Molecular Bone Histology (MBH) Lab, University of Aarhus, Aarhus, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Dally N, Baranes M, Akria L, Kashlikov M, Tarabia K, Sharabi-Nov A, Suriu C, Braester A. Ethnic disparities in presentation but not outcome in multiple myeloma patients: a multicenter retrospective study in Northern Israel. Leuk Lymphoma 2023; 64:2148-2155. [PMID: 37715316 DOI: 10.1080/10428194.2023.2251072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023]
Abstract
Several studies showed ethnic disparities in multiple myeloma (MM) incidence and prognosis. In order to compare prognosis and overall survival between different ethnic groups, a multicenter retrospective study was conducted in Northern Israel. A total of 145 patients suffering from MM were included (72% Jewish, and 28% Arabs) who were treated between 2008-2018. A difference was found in the stage of the disease at the time of diagnosis, patients of Arab origin were diagnosed at a more advanced stage (III), (53.7% vs. 33.7%, respectively). A mortality rate of 48.9% was found in the study, regardless of population ethnic origin. No significant differences in rates of MGUS, MM symptoms, treatments, or progression-free survival (PFS) and overall survival (OS) were observed between ethnic groups. This suggests that raising awareness of MM may result in an earlier diagnosis, especially among patients of Arab origin, preventing unnecessary suffering from these patients.
Collapse
Affiliation(s)
- Najib Dally
- Hematology Institute Ziv Medical Center, Safed, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Myriam Baranes
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Luiza Akria
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Hematology Institute the Galilee Medical Center, Naharia, Israel
| | | | | | - Adi Sharabi-Nov
- Hematology Institute Ziv Medical Center, Safed, Israel
- Tel-Hai Academic College, Kiryat Shmona, Israel
| | - Celia Suriu
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Hematology Institute the Galilee Medical Center, Naharia, Israel
| | - Andrei Braester
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Hematology Institute the Galilee Medical Center, Naharia, Israel
| |
Collapse
|
5
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
6
|
Gudgeon N, Giles H, Bishop EL, Fulton-Ward T, Escribano-Gonzalez C, Munford H, James-Bott A, Foster K, Karim F, Jayawardana D, Mahmood A, Cribbs AP, Tennant DA, Basu S, Pratt G, Dimeloe S. Uptake of long-chain fatty acids from the bone marrow suppresses CD8+ T-cell metabolism and function in multiple myeloma. Blood Adv 2023; 7:6035-6047. [PMID: 37276076 PMCID: PMC10582277 DOI: 10.1182/bloodadvances.2023009890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
T cells demonstrate impaired function in multiple myeloma (MM) but suppressive mechanisms in the bone marrow microenvironment remain poorly defined. We observe that bone marrow CD8+ T-cell function is decreased in MM compared with controls, and is also consistently lower within bone marrow samples than in matched peripheral blood samples. These changes are accompanied by decreased mitochondrial mass and markedly elevated long-chain fatty acid uptake. In vitro modeling confirmed that uptake of bone marrow lipids suppresses CD8+ T function, which is impaired in autologous bone marrow plasma but rescued by lipid removal. Analysis of single-cell RNA-sequencing data identified expression of fatty acid transport protein 1 (FATP1) in bone marrow CD8+ T cells in MM, and FATP1 blockade also rescued CD8+ T-cell function, thereby identifying this as a novel target to augment T-cell activity in MM. Finally, analysis of samples from cohorts of patients who had received treatment identified that CD8+ T-cell metabolic dysfunction resolves in patients with MM who are responsive to treatment but not in patients with relapsed MM, and is associated with substantial T-cell functional restoration.
Collapse
Affiliation(s)
- Nancy Gudgeon
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hannah Giles
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Emma L. Bishop
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Taylor Fulton-Ward
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Escribano-Gonzalez
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Haydn Munford
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anna James-Bott
- Nuffield Department of Orthopaedics, Botnar Research Centre, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit, University of Oxford, Oxford, United Kingdom
| | - Kane Foster
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Farheen Karim
- Clinical Haematology Unit, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom
| | - Dedunu Jayawardana
- Clinical Haematology Unit, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom
| | - Ansar Mahmood
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics, Botnar Research Centre, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit, University of Oxford, Oxford, United Kingdom
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Supratik Basu
- Clinical Haematology Unit, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, United Kingdom
| | - Guy Pratt
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Sarah Dimeloe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Diedrich C, Maksimos M, Azab AK. Fatty acid binding proteins in multiple myeloma. Trends Mol Med 2023:S1471-4914(23)00101-6. [PMID: 37321951 DOI: 10.1016/j.molmed.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Fatty acid binding proteins (FABPs) transport fatty acids (FA) into cells as an energy source, and their inhibition suppressed tumor proliferation in solid tumors. Multiple myeloma (MM) is a hematologic malignancy, known for disrupted protein metabolism including high proteasome activity, where proteasome inhibitors made a dramatic improvement in its treatment. Recent discovery found FABPs as a novel metabolic pathway in MM, which will have an impact on understanding the biology and on therapeutic application in MM.
Collapse
Affiliation(s)
- Camila Diedrich
- Department of Biomedical Engineering, University of Texas Southwestern, 5323 Harry Hines Blvd., Suite K2.304B, Dallas, TX 75390, USA
| | - Mina Maksimos
- Department of Biomedical Engineering, University of Texas Southwestern, 5323 Harry Hines Blvd., Suite K2.304B, Dallas, TX 75390, USA
| | - Abdel Kareem Azab
- Department of Biomedical Engineering, University of Texas Southwestern, 5323 Harry Hines Blvd., Suite K2.304B, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Panaroni C, Fulzele K, Mori T, Siu KT, Onyewadume C, Maebius A, Raje N. Multiple myeloma cells induce lipolysis in adipocytes and uptake fatty acids through fatty acid transporter proteins. Blood 2022; 139:876-888. [PMID: 34662370 PMCID: PMC8832479 DOI: 10.1182/blood.2021013832] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Adipocytes occupy 70% of the cellular volume within the bone marrow (BM) wherein multiple myeloma (MM) originates and resides. However, the nature of the interaction between MM cells and adipocytes remains unclear. Cancer-associated adipocytes support tumor cells through various mechanisms, including metabolic reprogramming of cancer cells. We hypothesized that metabolic interactions mediate the dependence of MM cells on BM adipocytes. Here we show that BM aspirates from precursor states of MM, including monoclonal gammopathy of undetermined significance and smoldering MM, exhibit significant upregulation of adipogenic commitment compared with healthy donors. In vitro coculture assays revealed an adipocyte-induced increase in MM cell proliferation in monoclonal gammopathy of undetermined significance/smoldering MM compared with newly diagnosed MM. Using murine MM cell/BM adipocyte coculture assays, we describe MM-induced lipolysis in adipocytes via activation of the lipolysis pathway. Upregulation of fatty acid transporters 1 and 4 on MM cells mediated the uptake of secreted free fatty acids (FFAs) by adjacent MM cells. The effect of FFAs on MM cells was dose dependent and revealed increased proliferation at lower concentrations vs induction of lipotoxicity at higher concentrations. Lipotoxicity occurred via the ferroptosis pathway. Exogenous treatment with arachidonic acid, a very-long-chain FFA, in a murine plasmacytoma model displayed a reduction in tumor burden. Taken together, our data reveal a novel pathway involving MM cell-induced lipolysis in BM adipocytes and suggest prevention of FFA uptake by MM cells as a potential target for myeloma therapeutics.
Collapse
Affiliation(s)
- Cristina Panaroni
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Keertik Fulzele
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Tomoaki Mori
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Ka Tat Siu
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
- Beam Therapeutics, Cambridge, MA
| | - Chukwuamaka Onyewadume
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Allison Maebius
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Noopur Raje
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
9
|
Cai Z, Tao Q, Scotti A, Yi P, Feng Y, Cai K. Early detection of increased marrow adiposity with age in rats using Z-spectral MRI at ultra-high field (7 T). NMR IN BIOMEDICINE 2022; 35:e4633. [PMID: 34658086 DOI: 10.1002/nbm.4633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nowadays, the drive towards high-field MRI is fueled by the pursuit of higher signal-to-noise ratio, spatial resolution, and imaging speed. However, high field strength is associated with field inhomogeneity, acceleration of T2 * decay, and increased chemical shift, which may pose challenges to conventional MRI for fat quantification in complex tissues such as bone marrow. With proton MRI spectroscopy (1 H-MRS), on the other hand, it is difficult to produce high resolution. As a novel alternative fat quantification method, high-resolution Z-spectral MRI (ZS-MRI) can achieve fat quantification by acquiring direct saturated images of both fat and water under the same TE , which may be less affected by T2 * decay and field inhomogeneity. PURPOSE To demonstrate ZS-MRI for marrow adipose tissue (MAT) quantification in rat's lumbar spine and the early detection of MAT changes with age. METHODS The accuracy of ZS-MRI for fat quantification at ultra-high-field MRI (7 T) was verified with MRS and conventional Dixon MRI in water-oil mixed phantoms with varying fat fraction (FF). Dixon MRI data were processed with iterative decomposition of water and fat with echo asymmetry and least-squares estimation. ZS-MRI was then used to longitudinally monitor the adiposity in the lumbar spine of young healthy rats at 13, 17, and 21 weeks to detect the early changes of FF with age in MAT. Hematoxylin-eosin staining of lumbar spines from separated rat groups was performed for verification. RESULTS In ex vivo phantom experiments, both Dixon MRI and ZS-MRI were well correlated with 1 H-MRS for the quantification of FF at 7 T (R > 0.99). Compared with Dixon MRI, ZS-MRI showed reduced image artifacts due to field inhomogeneity and presented better agreement with 1 H-MRS for the early detection of increased MAT due to age at 7 T (ZS-MRI R = 0.78 versus Dixon MRI R = 0.34). The increased MAT FF due to age was confirmed by histology. CONCLUSION ZS-MRI proves itself as an alternative fat quantification method for bone marrow in rats at 7 T.
Collapse
Affiliation(s)
- Zimeng Cai
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Quan Tao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Alessandro Scotti
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
| | - Kejia Cai
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Otley MOC, Sinal CJ. Adipocyte-Cancer Cell Interactions in the Bone Microenvironment. Front Endocrinol (Lausanne) 2022; 13:903925. [PMID: 35903271 PMCID: PMC9314873 DOI: 10.3389/fendo.2022.903925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/15/2022] [Indexed: 12/28/2022] Open
Abstract
When compared to adipocytes in other anatomical sites, the interaction of bone marrow resident adipocytes with the other cells in their microenvironment is less well understood. Bone marrow adipocytes originate from a resident, self-renewing population of multipotent bone marrow stromal cells which can also give rise to other lineages such as osteoblasts. The differentiation fate of these mesenchymal progenitors can be influenced to favour adipogenesis by several factors, including the administration of thiazolidinediones and increased age. Experimental data suggests that increases in bone marrow adipose tissue volume may make bone both more attractive to metastasis and conducive to cancer cell growth. Bone marrow adipocytes are known to secrete a variety of lipids, cytokines and bioactive signaling molecules known as adipokines, which have been implicated as mediators of the interaction between adipocytes and cancer cells. Recent studies have provided new insight into the impact of bone marrow adipose tissue volume expansion in regard to supporting and exacerbating the effects of bone metastasis from solid tumors, focusing on prostate, breast and lung cancer and blood cancers, focusing on multiple myeloma. In this mini-review, recent research developments pertaining to the role of factors which increase bone marrow adipose tissue volume, as well as the role of adipocyte secreted factors, in the progression of bone metastatic prostate and breast cancer are assessed. In particular, recent findings regarding the complex cross-talk between adipocytes and metastatic cells of both lung and prostate cancer are highlighted.
Collapse
|
11
|
Li Y, Zhang L, Xu T, Zhao X, Jiang X, Xiao F, Sun H, Wang L. Aberrant ENPP2 expression promotes tumor progression in multiple myeloma. Leuk Lymphoma 2021; 63:963-974. [PMID: 34847837 DOI: 10.1080/10428194.2021.2010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) has been recently linked to tumor development. However, its role in modulating multiple myeloma (MM) disease progression remains unclear. Here, we demonstrated that CD138+ cells isolated from MM patients presented with higher expression of ENPP2 compared with CD138- cells. Treatment of MM cells with IL-6 resulted in ENPP2 upregulation. ENPP2 overexpression promoted proliferation, inhibited apoptosis, increased lysophosphatidic acid (LPA) generation, and upregulated osteoclastogenesis mediator expression in MM cells. In contrast, ENPP2 inhibition induced apoptosis, suppressed proliferation and survival, decreased LPA generation and downregulated osteoclastogenesis mediator expression. In an MM xenograft mouse model, ENPP2 knockdown significantly reduced MM tumor burden by inhibiting cell proliferation and inducing apoptosis. Furthermore, ENPP2 knockdown decreased the levels of LPA, osteoclastogenesis mediators in sera of mice with MM. Our findings revealed the tumor-promoting role of ENPP2 in MM, thus providing new molecular evidence for targeting the ENPP2-LPA axis in MM therapy.
Collapse
Affiliation(s)
- Yuxiang Li
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China.,Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Tianxin Xu
- School of Nursing, Jilin University, Changchun, P. R. China
| | - Xia Zhao
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Xiaona Jiang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Huiyan Sun
- Central Laboratory, Hebei Yanda Medical Research Institute, Sanhe, P. R. China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China.,Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
12
|
Scheller EL, McGee-Lawrence ME, Lecka-Czernik B. Report From the 6 th International Meeting on Bone Marrow Adiposity (BMA2020). Front Endocrinol (Lausanne) 2021; 12:712088. [PMID: 34335478 PMCID: PMC8323480 DOI: 10.3389/fendo.2021.712088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
The 6th International Meeting on Bone Marrow Adiposity (BMA) entitled "Marrow Adiposity: Bone, Aging, and Beyond" (BMA2020) was held virtually on September 9th and 10th, 2020. The mission of this meeting was to facilitate communication and collaboration among scientists from around the world who are interested in different aspects of bone marrow adiposity in health and disease. The BMA2020 meeting brought together 198 attendees from diverse research and clinical backgrounds spanning fields including bone biology, endocrinology, stem cell biology, metabolism, oncology, aging, and hematopoiesis. The congress featured an invited keynote address by Ormond MacDougald and ten invited speakers, in addition to 20 short talks, 35 posters, and several training and networking sessions. This report summarizes and highlights the scientific content of the meeting and the progress of the working groups of the BMA society (http://bma-society.org/).
Collapse
Affiliation(s)
- Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Beata Lecka-Czernik
- Departments of Orthopaedic Surgery, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
| |
Collapse
|
13
|
Zhang Y, Zhang C, Wang J, Liu H, Wang M. Bone-Adipose Tissue Crosstalk: Role of Adipose Tissue Derived Extracellular Vesicles in Bone Diseases. J Cell Physiol 2021; 236:7874-7886. [PMID: 33993498 DOI: 10.1002/jcp.30414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
Bone is a metabolically active organ that undergoes constant remodeling throughout life. A failure of this process leads to pathological destructive bone diseases such as osteoporosis, rheumatoid arthritis, and osteoarthritis. Studies of the interplay between adipose tissue and bone system, have revealed that adipose tissue disorders (e.g. obesity) strongly influence the development of bone diseases. Adipokines secreted by adipose tissue play important roles in the crosstalk between bone and adipose tissue. Recently, extracellular vesicles (EVs) have been identified as a novel method of communication between different organs and have attracted increased attention in the field of bone remodeling process. Adipokines carried by EVs are known to play pivotal roles in bone remodeling processes including osteogenesis and osteoclastogenesis. In this review, we highlighted the role of adipose tissue derived EVs (EVs-AT) in the context of bone remodeling events and focused on the characteristics of EVs-AT and their components in the regulation of bone diseases. Moreover, we introduced the intriguing therapeutic application of EVs-AT in different pathological destructive bone diseases and proposed future directions for research on EVs-AT in bone diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Cheng Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jiasheng Wang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Hao Liu
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Muyao Wang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China.,Tianjin Clinical Research Center for Oral Diseases, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Celind J, Ohlsson C, Bygdell M, Martikainen J, Lewerin C, Kindblom JM. Childhood body mass index is associated with the risk of adult hematologic malignancies in men-The best Gothenburg cohort. Int J Cancer 2020; 147:2355-2362. [PMID: 32306396 DOI: 10.1002/ijc.33015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/07/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022]
Abstract
Hematologic malignancies are common and the incidence is increasing. Adult obesity has been associated with hematologic malignancies (HM), but the importance of body mass index (BMI) in childhood and during puberty has not been evaluated. The aim of the present study was to evaluate the relative contribution of BMI and height in childhood and during puberty for the risk of adult HM. 37 669 men born in 1946 to 1961 who had weight and height measured at 8 (childhood) and 20 (young adult age) years of age available from the BMI Epidemiology Study were included in the study. Pubertal BMI change was calculated as BMI at 20 years of age minus BMI at 8 years of age. Information on HM was retrieved from Swedish registers (459 cases of HM). Hazard ratios (HR) and 95% confidence intervals (CI) were estimated by Cox regressions. Childhood BMI (HR 1.11 per SD increase [95% CI 1.02-1.23]), but not pubertal BMI change, was associated with hematologic malignancies in a linear manner. Childhood BMI was, independent of childhood height, associated with the diagnostic entities Non-Hodgkin lymphoma (HR 1.14 [95% CI 1.00-1.30]) and its largest subgroup diffuse large B-cell lymphoma (HR 1.31 [95% CI 1.03-1.67]). Childhood height was associated with multiple myeloma (HR 1.30 [95% CI 1.04-1.64]) independent of childhood BMI. We conclude that childhood but not puberty is the critical developmental period regarding future risk of HM and we suggest that elevated childhood BMI is a determinant of Non-Hodgkin lymphoma and diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Jimmy Celind
- Centre for Bone and Arthritis Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| | - Maria Bygdell
- Centre for Bone and Arthritis Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jari Martikainen
- Bioinformatics Core Facility (MN), the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Catharina Lewerin
- Section of Hematology and Coagulation, Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Jenny M Kindblom
- Centre for Bone and Arthritis Research, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Pediatric Clinical Research Center, Gothenburg, Sweden
| |
Collapse
|
15
|
Imprinting of Mesenchymal Stromal Cell Transcriptome Persists even after Treatment in Patients with Multiple Myeloma. Int J Mol Sci 2020; 21:ijms21113854. [PMID: 32481768 PMCID: PMC7312921 DOI: 10.3390/ijms21113854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction. Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal expansion of malignant plasma cells (MM cells) in the bone-marrow (BM) compartment. BM mesenchymal stromal cells (MSC) from newly diagnosed MM patients were shown to be involved in MM pathogenesis and chemoresistance. The patients displayed a distinct transcriptome and were functionally different from healthy donors’ (HD) MSC. Our aim was to determine whether MM–MSC also contributed to relapse. Methods. We obtained and characterized patients’ MSC samples at diagnosis, two years after intensive treatment, without relapse and at relapse. Results. Transcriptomic analysis revealed differences in gene expression between HD and MM-MSC, whatever the stage of the disease. An easier differentiation towards adipogenesis at the expense of osteoblatogeneis was observed, even in patients displaying a complete response to treatment. Although their transcriptome was similar, we found that MSC from relapsed patients had an increased immunosuppressive ability, compared to those from patients in remission. Conclusion. We demonstrated that imprinting of MSC transcriptome demonstrated at diagnosis of MM, persisted even after the apparent disappearance of MM cells induced by treatment, suggesting the maintenance of a local context favorable to relapse.
Collapse
|
16
|
Maroni P. Leptin, Adiponectin, and Sam68 in Bone Metastasis from Breast Cancer. Int J Mol Sci 2020; 21:ijms21031051. [PMID: 32033341 PMCID: PMC7037668 DOI: 10.3390/ijms21031051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The most serious aspect of neoplastic disease is the spread of cancer cells to secondary sites. Skeletal metastases can escape detection long after treatment of the primary tumour and follow-up. Bone tissue is a breeding ground for many types of cancer cells, especially those derived from the breast, prostate, and lung. Despite advances in diagnosis and therapeutic strategies, bone metastases still have a profound impact on quality of life and survival and are often responsible for the fatal outcome of the disease. Bone and the bone marrow environment contain a wide variety of cells. No longer considered a passive filler, bone marrow adipocytes have emerged as critical contributors to cancer progression. Released by adipocytes, adipokines are soluble factors with hormone-like functions and are currently believed to affect tumour development. Src-associated in mitosis of 68 kDa (Sam68), originally discovered as a protein physically associated with and phosphorylated by c-Src during mitosis, is now recognised as an important RNA-binding protein linked to tumour onset and progression of disease. Sam68 also regulates splicing events and recent evidence reports that dysregulation of these events is a key step in neoplastic transformation and tumour progression. The present review reports recent findings on adipokines and Sam68 and their role in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Paola Maroni
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy
| |
Collapse
|
17
|
Mehdi SJ, Johnson SK, Epstein J, Zangari M, Qu P, Hoering A, van Rhee F, Schinke C, Thanendrarajan S, Barlogie B, Davies FE, Morgan GJ, Yaccoby S. Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes. Br J Haematol 2018; 184:578-593. [PMID: 30408155 DOI: 10.1111/bjh.15669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
Recent studies suggest that multiple myeloma (MM) induces proliferation and expansion of bone marrow (BM) mesenchymal stem cells (MSCs), but others showed that MM cells induce MSC senescence. To clarify the interaction between MM and MSCs, we exploited our established MSC gene signature to identify gene expression changes in myeloma MSCs and associated functional differences. Single MSCs from patients with MM had changes in expression of genes associated with cellular proliferation and senescence and a higher proportion of senescent cells and lower proliferative potential than those from age-matched healthy donors. Single MSCs from both sources heterogeneously express MSC genes associated with adipogenesis and osteoblastogenesis. We identified the gene encoding insulin-like growth factor-binding protein 2 (IGFBP2), an MSC gene commonly altered in high risk MM, as under-expressed. Morphologically, IGFBP2+ cells are underrepresented in MM BM compared to smouldering MM. Strong IGFBP2 and adiponectin co-expression was detected in a subset of small adipocytes. Co-culturing normal MSCs with myeloma cells suppressed MSC differentiation to adipocytes and osteoblasts, and reduced expression of IGFBP2 and adiponectin. Recombinant IGFBP2 blocked IGF1-mediated myeloma cell growth. Our data demonstrate that myeloma MSCs are less proliferative and that IGFBP2+ small adipocytes are a distinct mesenchymal cell population suppressed by myeloma.
Collapse
Affiliation(s)
- Syed J Mehdi
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarah K Johnson
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Joshua Epstein
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maurizio Zangari
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Pingping Qu
- Cancer Research and Biostatistics, Seattle, WA, USA
| | | | - Frits van Rhee
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Carolina Schinke
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Bart Barlogie
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Faith E Davies
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gareth J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shmuel Yaccoby
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|