1
|
Regulating quantal size of neurotransmitter release through a GPCR voltage sensor. Proc Natl Acad Sci U S A 2020; 117:26985-26995. [PMID: 33046653 DOI: 10.1073/pnas.2005274117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Current models emphasize that membrane voltage (Vm) depolarization-induced Ca2+ influx triggers the fusion of vesicles to the plasma membrane. In sympathetic adrenal chromaffin cells, activation of a variety of G protein coupled receptors (GPCRs) can inhibit quantal size (QS) through the direct interaction of G protein Giβγ subunits with exocytosis fusion proteins. Here we report that, independently from Ca2+, Vm (action potential) per se regulates the amount of catecholamine released from each vesicle, the QS. The Vm regulation of QS was through ATP-activated GPCR-P2Y12 receptors. D76 and D127 in P2Y12 were the voltage-sensing sites. Finally, we revealed the relevance of the Vm dependence of QS for tuning autoinhibition and target cell functions. Together, membrane voltage per se increases the quantal size of dense-core vesicle release of catecholamine via Vm → P2Y12(D76/D127) → Giβγ → QS → myocyte contractility, offering a universal Vm-GPCR signaling pathway for its functions in the nervous system and other systems containing GPCRs.
Collapse
|
2
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Welle TM, Alanis K, Colombo ML, Sweedler JV, Shen M. A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes. Chem Sci 2018; 9:4937-4941. [PMID: 29938020 PMCID: PMC5994989 DOI: 10.1039/c8sc01131a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Extra-synaptic exocytosis is an essential component of cellular communication. A knowledge gap exists in the exocytosis of the non-redox active transmitter acetylcholine. Using the nano-interface between two immiscible electrolyte solutions and scanning electrochemical microscopy (SECM), a high resolution spatiotemporal study of acetylcholine exocytosis is shown from an individual neuronal soma. The nanoelectrode was positioned ∼140 nm away from the release sites on the soma using an SECM. The quantitative study enables the obtaining of key information related to cellular communication, including extracellular concentration of the neurotransmitter, cellular permeability, Ca2+ dependence on somatic release, vesicle density, number of molecules released and the release dynamics. Measurements were achieved with a high signal to noise ratio of 6-19. The released neurotransmitter with a concentration of 2.7 (±1.0) μM was detected at the nanoelectrodes with radii of 750 nm to 860 nm.
Collapse
Affiliation(s)
- Theresa M Welle
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| | - Kristen Alanis
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| | - Michelle L Colombo
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| | - Mei Shen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Matthews Avenue , Urbana , IL 61801 , USA . ; Tel: +1-217-265-6290
| |
Collapse
|
4
|
Pecze L, Blum W, Schwaller B. Routes of Ca2+ Shuttling during Ca2+ Oscillations: FOCUS ON THE ROLE OF MITOCHONDRIAL Ca2+ HANDLING AND CYTOSOLIC Ca2+ BUFFERS. J Biol Chem 2015; 290:28214-28230. [PMID: 26396196 PMCID: PMC4653679 DOI: 10.1074/jbc.m115.663179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 01/29/2023] Open
Abstract
In some cell types, Ca2+ oscillations are strictly dependent on Ca2+ influx across the plasma membrane, whereas in others, oscillations also persist in the absence of Ca2+ influx. We observed that, in primary mesothelial cells, the plasmalemmal Ca2+ influx played a pivotal role. However, when the Ca2+ transport across the plasma membrane by the “lanthanum insulation method” was blocked prior to the induction of the serum-induced Ca2+ oscillations, mitochondrial Ca2+ transport was found to be able to substitute for the plasmalemmal Ca2+ exchange function, thus rendering the oscillations independent of extracellular Ca2+. However, in a physiological situation, the Ca2+-buffering capacity of mitochondria was found not to be essential for Ca2+ oscillations. Moreover, brief spontaneous Ca2+ changes were observed in the mitochondrial Ca2+ concentration without apparent changes in the cytosolic Ca2+ concentration, indicating the presence of a mitochondrial autonomous Ca2+ signaling mechanism. In the presence of calretinin, a Ca2+-buffering protein, the amplitude of cytosolic spikes during oscillations was decreased, and the amount of Ca2+ ions taken up by mitochondria was reduced. Thus, the increased calretinin expression observed in mesothelioma cells and in certain colon cancer might be correlated to the increased resistance of these tumor cells to proapoptotic/pronecrotic signals. We identified and characterized (experimentally and by modeling) three Ca2+ shuttling pathways in primary mesothelial cells during Ca2+ oscillations: Ca2+ shuttled between (i) the endoplasmic reticulum (ER) and mitochondria, (ii) the ER and the extracellular space, and (iii) the ER and cytoplasmic Ca2+ buffers.
Collapse
Affiliation(s)
- László Pecze
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland.
| | - Walter Blum
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| | - Beat Schwaller
- Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Shen M, Colombo ML. Electrochemical nanoprobes for the chemical detection of neurotransmitters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:7095-7105. [PMID: 26327927 PMCID: PMC4551492 DOI: 10.1039/c5ay00512d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neurotransmitters, acting as chemical messengers, play an important role in neurotransmission, which governs many functional aspects of nervous system activity. Electrochemical probes have proven a very useful technique to study neurotransmission, especially to quantify and qualify neurotransmitters. With the emerging interests in probing neurotransmission at the level of single cells, single vesicles, as well as single synapses, probes that enable detection of neurotransmitters at the nanometer scale become vitally important. Electrochemical nanoprobes have been successfully employed in nanometer spatial resolution imaging of single nanopores of Si membrane and single Au nanoparticles, providing both topographical and chemical information, thus holding great promise for nanometer spatial study of neurotransmission. Here we present the current state of electrochemical nanoprobes for chemical detection of neurotransmitters, focusing on two types of nanoelectrodes, i.e. carbon nanoelectrode and nano-ITIES pipet electrode.
Collapse
Affiliation(s)
- Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| | - Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, USA. Tel: +1 (217) 300 3587
| |
Collapse
|
6
|
Colombo ML, Sweedler JV, Shen M. Nanopipet-Based Liquid-Liquid Interface Probes for the Electrochemical Detection of Acetylcholine, Tryptamine, and Serotonin via Ionic Transfer. Anal Chem 2015; 87:5095-100. [PMID: 25877788 PMCID: PMC4483307 DOI: 10.1021/ac504151e] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanoscale interface between two immiscible electrolyte solutions (ITIES) provides a unique analytical platform for the detection of ionic species of biological interest such as neurotransmitters and neuromodulators, especially those that are otherwise difficult to detect directly on a carbon electrode without electrode modification. We report the detection of acetylcholine, serotonin, and tryptamine on nanopipet electrode probes with sizes ranging from a radius of ≈7 to 35 nm. The transfer of these analytes across a 1,2-dichloroethane/water interface was studied by cyclic voltammetry and amperometry. Well-defined sigmoidal voltammograms were observed on the nanopipet electrodes within the potential window of artificial seawater for acetylcholine and tryptamine. The half wave transfer potential, E1/2, of acetylcholine, tryptamine, and serotonin were found to be -0.11, -0.25, and -0.47 V vs E(1/2,TEA) (term is defined later in experimental), respectively. The detection was linear in the range of 0.25-6 mM for acetylcholine and of 0.5-10 mM for tryptamine in artificial seawater. Transfer of serotonin was linear in the range of 0.15-8 mM in LiCl solution. The limit of detection for serotonin in LiCl on a radius ≈21 nm nanopipet electrode was 77 μM, for acetylcholine on a radius ≈7 nm nanopipet electrode was 205 μM, and for tryptamine on a radius ≈19 nm nanopipet electrode was 86 μM. Nanopipet-supported ITIES probes have great potential to be used in nanometer spatial resolution measurements for the detection of neurotransmitters.
Collapse
Affiliation(s)
- Michelle L. Colombo
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Caricati-Neto A, Padín JF, Silva-Junior ED, Fernández-Morales JC, de Diego AMG, Jurkiewicz A, García AG. Novel features on the regulation by mitochondria of calcium and secretion transients in chromaffin cells challenged with acetylcholine at 37°C. Physiol Rep 2013; 1:e00182. [PMID: 24744861 PMCID: PMC3970745 DOI: 10.1002/phy2.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/01/2013] [Indexed: 01/14/2023] Open
Abstract
From experiments performed at room temperature, we know that the buffering of Ca2+ by mitochondria contributes to the shaping of the bulk cytosolic calcium transient ([Ca2+]c) and secretion transients of chromaffin cells stimulated with depolarizing pulses. We also know that the mitochondrial Ca2+ transporters and the release of catecholamine are faster at 37°C with respect to room temperature. Therefore, we planned this investigation to gain further insight into the contribution of mitochondrial Ca2+ buffering to the shaping of [Ca2+]c and catecholamine release transients, using some novel experimental conditions that have not been yet explored namely: (1) perifusion of bovine chromaffin cells (BCCs) with saline at 37°C and their repeated challenging with the physiological neurotransmitter acetylcholine (ACh); (2) separate blockade of mitochondrial Ca2+ uniporter (mCUP) with Ru360 or the mitochondrial Na+/Ca2+ exchanger (mNCX) with CGP37157; (3) full blockade of the mitochondrial Ca2+ cycling (mCC) by the simultaneous inhibition of the mCUP and the mNCX. Ru360 caused a pronounced delay of [Ca2+]c clearance and augmented secretion. In contrast, CGP37157 only caused a tiny delay of [Ca2+]c clearance and a mild decrease in secretion. The mCC resulting in continued Ca2+ uptake and its release back into the cytosol was interrupted by combined Ru360 + CGP37157 (Ru/CGP), the protonophore carbonyl cyanide‐p‐trifluoromethoxyphenylhydrazone, or combined oligomycin + rotenone (O/R); these three treatments caused a mild but sustained elevation of basal [Ca2+]c that, however, was not accompanied by a parallel increase in basal secretion. Nevertheless, all treatments caused a pronounced augmentation of ACh‐induced secretion, with minor changes of the ACh‐induced [Ca2+]c transients. Combined Ru/CGP did not alter the resting membrane potential in current‐clamped cells. Additionally, Ru/CGP did not increase basal [Ca2+]c near subplasmalemmal sites and caused a mild decrease in the size of the readily releasable vesicle pool. Our results provide new functional features in support of the view that in BCCs there are two subpopulations of mitochondria, M1 underneath the plasmalemma nearby exocytotic sites and M2 at the core cell nearby vesicle transport sites. While M1 serves to shape the ACh‐elicited exocytotic response through its efficient Ca2+ removal by the mCUP, M2 shapes the lower [Ca2+]c elevations required for new vesicle supply to the exocytotic machinery, from the large reserve vesicle pool at the cell core. The mCUP of the M1 pool seems to play a more prominent role in controlling the ACh responses, in comparison with the mNCX. Regulation by mitochondria of exocytosis at 37°C.
Collapse
Affiliation(s)
- Afonso Caricati-Neto
- Departamento de Farmacología, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juan-Fernando Padín
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, Madrid, 28029, Spain ; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029Madrid, Spain
| | - Edilson-Dantas Silva-Junior
- Departamento de Farmacología, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José-Carlos Fernández-Morales
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, Madrid, 28029, Spain ; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029Madrid, Spain
| | - Antonio-Miguel G de Diego
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, Madrid, 28029, Spain ; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029Madrid, Spain
| | - Aron Jurkiewicz
- Departamento de Farmacología, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Antonio G García
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, Madrid, 28029, Spain ; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029Madrid, Spain ; Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, C/Diego de León, 62, Madrid, 28006, Spain
| |
Collapse
|
8
|
Raveh A, Valitsky M, Shani L, Coorssen JR, Blank PS, Zimmerberg J, Rahamimoff R. Observations of calcium dynamics in cortical secretory vesicles. Cell Calcium 2012; 52:217-25. [PMID: 22831912 PMCID: PMC3433649 DOI: 10.1016/j.ceca.2012.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 11/15/2022]
Abstract
Calcium (Ca(2+)) dynamics were evaluated in fluorescently labeled sea urchin secretory vesicles using confocal microscopy. 71% of the vesicles examined exhibited one or more transient increases in the fluorescence signal that was damped in time. The detection of transient increases in signal was dependent upon the affinity of the fluorescence indicator; the free Ca(2+) concentration in the secretory vesicles was estimated to be in the range of ∼10 to 100 μM. Non-linear stochastic analysis revealed the presence of extra variance in the Ca(2+) dependent fluorescence signal. This noise process increased linearly with the amplitude of the Ca(2+) signal. Both the magnitude and spatial properties of this noise process were dependent upon the activity of vesicle p-type (Ca(v)2.1) Ca(2+) channels. Blocking the p-type Ca(2+) channels with ω-agatoxin decreased signal variance, and altered the spatial noise pattern within the vesicle. These fluorescence signal properties are consistent with vesicle Ca(2+) dynamics and not simply due to obvious physical properties such as gross movement artifacts or pH driven changes in Ca(2+) indicator fluorescence. The results suggest that the free Ca(2+) content of cortical secretory vesicles is dynamic; this property may modulate the exocytotic fusion process.
Collapse
Affiliation(s)
- Adi Raveh
- Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Valitsky
- Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Liora Shani
- Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jens R. Coorssen
- Department of Molecular Physiology, School of Medicine, College of Health and Science, and Molecular Medicine Research Group, University of Western Sydney, Campbelltown, Australia
| | - Paul S. Blank
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Rami Rahamimoff
- Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
9
|
Cytosolic organelles shape calcium signals and exo–endocytotic responses of chromaffin cells. Cell Calcium 2012; 51:309-20. [DOI: 10.1016/j.ceca.2011.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023]
|
10
|
Álvarez J. Calcium dynamics in the secretory granules of neuroendocrine cells. Cell Calcium 2012; 51:331-7. [DOI: 10.1016/j.ceca.2011.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/22/2011] [Accepted: 12/04/2011] [Indexed: 01/29/2023]
|
11
|
Raouafi N, Bahri J, Sahli R, Boujlel K. Redox-responsive probes for selective chelation of bivalent cations. QSCIENCE CONNECT 2012. [DOI: 10.5339/connect.2012.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract
N,N-disubstituted bis(furanyl-2-methyl)aminoanilines are new electrochemically-active probes for cations relying on the phenylenediamine moiety as an electroactive transducer and the difuranylamino group as an ionophore site. The electrochemical investigations, by means of cyclic and Osteryoung square wave voltammetries (CV and SWV, respectively), showed that these compounds are able to bind Mg2+, Ca2+, Ni2+ and Zn2+ cations with strong affinities. The addition of catalytic amounts of trifluoromethanesulfonic acid (TfOH) was found necessary to achieve rapid cation complexation. The electroactive redox features of the probes were drastically modified when the ionophore site was bonded to the cations. The anodic potential shifts of the oxidation peaks were between 905 and 1030 mV depending on the cations. The electrochemical investigations suggested the formation of a 1:2 stoichiometric complex: [M(L)
2]2+, M=Mg, Ca, Ni and Zn. These probes were found to be selective of Ca2+ and chelates, with strong preference for Ca2+ even in presence of others cations (Ca2+> Mg2+, Ca2+> Ni2+ and Ni2+> Zn2+). UV-visible spectrophotometric studies also showed blue shifts of the absorption bands comprising between 5 and 29 nm ligands when the metal ions were added to the solution, which confirmed the complexes formation.
Collapse
Affiliation(s)
- Noureddine Raouafi
- University of Tunis El-Manar,
Faculty of Sciences of Tunis, Department of Chemistry, Tunis, Tunisia
| | - Janet Bahri
- University of Tunis El-Manar,
Faculty of Sciences of Tunis, Department of Chemistry, Tunis, Tunisia
| | - Rihab Sahli
- University of Tunis El-Manar,
Faculty of Sciences of Tunis, Department of Chemistry, Tunis, Tunisia
| | - Khaled Boujlel
- University of Tunis El-Manar,
Faculty of Sciences of Tunis, Department of Chemistry, Tunis, Tunisia
| |
Collapse
|
12
|
Borges R, Domínguez N, Estévez-Herrera J, Pereda D, Machado JD. Vesicular Ca(2+) mediates granule motion and exocytosis. Cell Calcium 2012; 51:338-41. [PMID: 22222091 DOI: 10.1016/j.ceca.2011.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
Secretory vesicles of chromaffin cells are acidic organelles that maintain an increasing pH gradient towards the cytosol (5.5 vs. 7.3) that is mediated by V-ATPase activity. This gradient is primarily responsible for the accumulation of large concentrations of amines and Ca(2+), although the mechanisms mediating Ca(2+) uptake and release from granules, and the physiological relevance of these processes, remain unclear. The presence of a vesicular matrix appears to create a bi-compartmentalised medium in which the major fractions of solutes, including catecholamines, nucleotides and Ca(2+), are strongly associated with vesicle proteins, particularly chromogranins. This association appears to be favoured at acidic pH values. It has been demonstrated that disrupting the pH gradient of secretory vesicles reduces their rate of exocytosis and promotes the leakage of vesicular amines and Ca(2+), dramatically increasing the movement of secretory vesicles and triggering exocytosis. In this short review, we will discuss the data available that highlights the importance of pH in regulating the association between chromogranins, vesicular amines and Ca(2+). We will also address the potential role of vesicular Ca(2+) in two major processes in secretory cells, vesicle movement and exocytosis.
Collapse
Affiliation(s)
- Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain.
| | | | | | | | | |
Collapse
|
13
|
Machado JD, Camacho M, Alvarez J, Borges R. On the role of intravesicular calcium in the motion and exocytosis of secretory organelles. Commun Integr Biol 2011; 2:71-3. [PMID: 19704891 DOI: 10.4161/cib.7467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/20/2008] [Indexed: 11/19/2022] Open
Abstract
Secretory vesicles of sympathetic neurons and chromaffin granules maintain a pH gradient towards the cytosol (5.5 vs. 7.2) promoted by the V-ATPase activity. This gradient of pH is mainly responsible for the accumulation of amines. The secretory vesicles contain large amounts of total Ca(2+), but the free intragranular [Ca(2+)], the mechanisms for Ca(2+) uptake and release from the granules and their physiological relevance regarding exocytosis are still matters of debate.We have recently shown that disruption of the pH gradient of secretory vesicles slowed down exocytosis. Fluorimetric measurements, using the dye Oregon green BAPTA-2, showed that the V-ATPase inhibitor bafilomycin A1 directly released Ca(2+) from freshly isolated vesicles. Accordingly, vesicle alkalinization released Ca(2+) from the granules to the cytosol, measured with fura-2 in intact chromaffin cells. Using TIRFM in cells overexpressing the EGFP-labeled synaptobrevin (VAMP2-EGFP) protein, we have then shown that the Ca(2+) released from the vesicles to the cytosol in the presence of bafilomycin, dramatically increased the granule motion of chromaffin- or PC12-derived granules, and triggered exocytosis (measured by amperometry).We conclude that the gradient of pH of secretory vesicles might be involved in the homeostatic regulation of the local cytosolic Ca(2+) around the vesicles and in two of the major functions of secretory cells, vesicle motion and exocytosis.1.
Collapse
Affiliation(s)
- José D Machado
- Unidad de Farmacología; Facultad de Medicina; Universidad de La Laguna Tenerife; La Laguna, Spain
| | | | | | | |
Collapse
|
14
|
Cans AS, Ewing AG. Highlights of 20 years of electrochemical measurements of exocytosis at cells and artificial cells. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1369-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Yoo SH. Role of secretory granules in inositol 1,4,5-trisphosphate-dependent Ca(2+) signaling: from phytoplankton to mammals. Cell Calcium 2010; 50:175-83. [PMID: 21176957 DOI: 10.1016/j.ceca.2010.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 01/20/2023]
Abstract
The majority of secretory cell calcium is stored in secretory granules that serve as the major IP(3)-dependent intracellular Ca(2+) store. Even in unicellular phytoplankton secretory granules are responsible for the IP(3)-induced Ca(2+) release that triggers exocytosis. The number of secretory granules in the cell is directly related not only to the magnitude of IP(3)-induced Ca(2+) release, which accounts for the majority of the IP(3)-induced cytoplasmic Ca(2+) release in neuroendocrine cells, but also to the IP(3) sensitivity of the cytoplasmic IP(3) receptor (IP(3)R)/Ca(2+) channels. Moreover, secretory granules contain the highest IP(3)R concentrations and the largest amounts of IP(3)Rs in any subcellular organelles in neuroendocrine cells. Secretory granules from phytoplankton to mammals contain large amounts of polyanionic molecules, chromogranins being the major molecules in mammals, in addition to acidic intragranular pH and high Ca(2+) concentrations. The polyanionic molecules undergo pH- and Ca(2+)-dependent conformational changes that serve as a molecular basis for condensation-decondensation phase transitions of the intragranular matrix. Likewise, chromogranins undergo pH- and Ca(2+)-dependent conformational changes with increased exposure of the structure and increased interactions with Ca(2+) and other granule components at acidic pH. The unique physico-chemical properties of polyanionic molecules appear to be at the center of biogenesis, and physiological functions of secretory granules in living organisms from primitive to advanced species.
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon 400-712, Republic of Korea.
| |
Collapse
|
16
|
SantoDomingo J, Fonteriz RI, Lobatón CD, Montero M, Moreno A, Alvarez J. Ca2+ dynamics in the secretory vesicles of neurosecretory PC12 and INS1 cells. Cell Mol Neurobiol 2010; 30:1267-74. [PMID: 21088885 DOI: 10.1007/s10571-010-9572-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
Abstract
We have investigated the dynamics of the free [Ca(2+)] inside the secretory granules of neurosecretory PC12 and INS1 cells using a low-Ca(2+)-affinity aequorin chimera fused to synaptobrevin-2. The steady-state secretory granule [Ca(2+)] ([Ca(2+)](SG)] was around 20-40 μM in both cell types, about half the values previously found in chromaffin cells. Inhibition of SERCA-type Ca(2+) pumps with thapsigargin largely blocked Ca(2+) uptake by the granules in Ca(2+)-depleted permeabilized cells, and the same effect was obtained when the perfusion medium lacked ATP. Consistently, the SERCA-type Ca(2+) pump inhibitor benzohydroquinone induced a rapid release of Ca(2+) from the granules both in intact and permeabilized cells, suggesting that the continuous activity of SERCA-type Ca(2+) pumps is essential to maintain the steady-state [Ca(2+)](SG). Both inositol 1,4,5-trisphosphate (InsP(3)) and caffeine produced a rapid Ca(2+) release from the granules, suggesting the presence of InsP(3) and ryanodine receptors in the granules. The response to high-K(+) depolarization was different in both cell types, a decrease in [Ca(2+)](SG) in PC12 cells and an increase in [Ca(2+)](SG) in INS1 cells. The difference may rely on the heterogeneous response of different vesicle populations in each cell type. Finally, increasing the glucose concentration triggered a decrease in [Ca(2+)](SG) in INS1 cells. In conclusion, our data show that the secretory granules of PC12 and INS1 cells take up Ca(2+) through SERCA-type Ca(2+) pumps and can release it through InsP(3) and ryanodine receptors, supporting the hypothesis that secretory granule Ca(2+) may be released during cell stimulation and contribute to secretion.
Collapse
Affiliation(s)
- Jaime SantoDomingo
- Instituto de Biología y Genética Molecular, Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Ramón y Cajal, 7, 47005 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Yoo SH, Huh YH, Hur YS. Inositol 1,4,5-trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins. Cell Mol Neurobiol 2010; 30:1155-61. [PMID: 21046461 DOI: 10.1007/s10571-010-9564-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/02/2010] [Indexed: 09/29/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP(3))-mediated intracellular Ca(2+) releases in secretory cells play vital roles in controlling not only the intracellular Ca(2+) concentrations but also the Ca(2+)-dependent exocytotic processes. Of intracellular organelles that release Ca(2+) in response to IP(3), secretory granules stand out as the most prominent organelle and are responsible for the majority of IP(3)-dependent Ca(2+) releases in the cytoplasm of chromaffin cells. Bovine chromaffin granules were the first granules that demonstrated the IP(3)-mediated Ca(2+) release as well as the presence of the IP(3) receptor (IP(3)R) in granule membranes. Secretory granules contain all three (type 1, 2, and 3) IP(3)R isoforms, and 58-69% of total cellular IP(3)R isoforms are expressed in bovine chromaffin granules. Moreover, secretory granules contain large amounts (2-4 mM) of chromogranins and secretogranins; chromogranins A and B, and secretogranin II being the major species. Chromogranins A and B, and secretogranin II are high-capacity, low-affinity Ca(2+) binding proteins, binding 30-93 mol of Ca(2+)/mol of protein with dissociation constants of 1.5-4.0 mM. Due to this high Ca(2+) storage properties of chromogranins secretory granules contain ~40 mM Ca(2+). Furthermore, chromogranins A and B directly interact with the IP(3)Rs and modulate the IP(3)R/Ca(2+) channels, i.e., increasing the open probability and the mean open time of the channels 8- to 16-fold and 9- to 42-fold, respectively. Coupled chromogranins change the IP(3)R/Ca(2+) channels to a more ordered, release-ready state, whereby making the IP(3)R/Ca(2+) channels significantly more sensitive to IP(3).
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon 400-712, Korea.
| | | | | |
Collapse
|
18
|
Bioanalytical tools for single-cell study of exocytosis. Anal Bioanal Chem 2010; 397:3281-304. [PMID: 20521141 DOI: 10.1007/s00216-010-3843-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/08/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
Regulated exocytosis is a fundamental biological process used to deliver chemical messengers for cell-cell communication via membrane fusion and content secretion. A plethora of cell types employ this chemical-based communication to achieve crucial functions in many biological systems. Neurons in the brain and platelets in the circulatory system are representative examples utilizing exocytosis for neurotransmission and blood clotting. Single-cell studies of regulated exocytosis in the past several decades have greatly expanded our knowledge of this critical process, from vesicle/granule transport and docking at the early stages of exocytosis to membrane fusion and to eventual chemical messenger secretion. Herein, four main approaches that have been widely used to study single-cell exocytosis will be highlighted, including total internal reflection fluorescence microscopy, capillary electrophoresis, single-cell mass spectrometry, and microelectrochemistry. These techniques are arranged in the order following the route of a vesicle/granule destined for secretion. Within each section, the basic principles and experimental strategies are reviewed and representative examples are given revealing critical spatial, temporal, and chemical information of a secretory vesicle/granule at different stages of its lifetime. Lastly, an analytical chemist's perspective on potential future developments in this exciting field is discussed.
Collapse
|
19
|
Yoo SH. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 2009; 24:653-64. [PMID: 19837865 DOI: 10.1096/fj.09-132456] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Of all the intracellular organelles, secretory granules contain by far the highest calcium concentration; secretory granules of typical neuroendocrine chromaffin cells contain approximately 40 mM Ca(2+) and occupy approximately 20% cell volume, accounting for >60% of total cellular calcium. They also contain the majority of cellular inositol 1,4,5-trisphosphate receptors (IP(3)Rs) in addition to the presence of >2 mM of chromogranins A and B that function as high-capacity, low-affinity Ca(2+) storage proteins. Chromogranins A and B also interact with the IP(3)Rs and activate the IP(3)R/Ca(2+) channels. In experiments with both neuroendocrine PC12 and nonneuroendocrine NIH3T3 cells, in which the number of secretory granules present was changed by either suppression or induction of secretory granule formation, secretory granules were demonstrated to account for >70% of the IP(3)-induced Ca(2+) releases in the cytoplasm. Moreover, the IP(3) sensitivity of secretory granule IP(3)R/Ca(2+) channels is at least approximately 6- to 7-fold more sensitive than those of the endoplasmic reticulum, thus enabling secretory granules to release Ca(2+) ahead of the endoplasmic reticulum. Further, there is a direct correlation between the number of secretory granules and the IP(3) sensitivity of cytoplasmic IP(3)R/Ca(2+) channels and the increased ratio of IP(3)-induced cytoplasmic Ca(2+) release, highlighting the importance of secretory granules in the IP(3)-dependent Ca(2+) signaling. Given that secretory granules are present in all secretory cells, these results presage critical roles of secretory granules in the control of cytoplasmic Ca(2+) concentrations in other secretory cells.-Yoo, S. H. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca(2+) signaling in the cytoplasm of neuroendocrine cells.
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon 400-712, Korea.
| |
Collapse
|
20
|
Monitoring of vesicular exocytosis from single cells using micrometer and nanometer-sized electrochemical sensors. Anal Bioanal Chem 2009; 394:17-32. [PMID: 19274456 DOI: 10.1007/s00216-009-2703-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/07/2009] [Accepted: 02/10/2009] [Indexed: 02/05/2023]
Abstract
Communication between cells by release of specific chemical messengers via exocytosis plays crucial roles in biological process. Electrochemical detection based on ultramicroelectrodes (UMEs) has become one of the most powerful techniques in real-time monitoring of an extremely small number of released molecules during very short time scales, owing to its intrinsic advantages such as fast response, excellent sensitivity, and high spatiotemporal resolution. Great successes have been achieved in the use of UME methods to obtain quantitative and kinetic information about released chemical messengers and to reveal the molecular mechanism in vesicular exocytosis. In this paper, we review recent developments in monitoring exocytosis by use of UMEs-electrochemical-based techniques including electrochemical detection using micrometer and nanometer-sized sensors, scanning electrochemical microscopy (SECM), and UMEs implemented in lab-on-a-chip (LOC) microsystems. These advances are of great significance in obtaining a better understanding of vesicular exocytosis and chemical communications between cells, and will facilitate developments in many fields, including analytical chemistry, biological science, and medicine. Furthermore, future developments in electrochemical probing of exocytosis are also proposed.
Collapse
|
21
|
Santodomingo J, Vay L, Camacho M, Hernández-Sanmiguel E, Fonteriz RI, Lobatón CD, Montero M, Moreno A, Alvarez J. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules. Eur J Neurosci 2009; 28:1265-74. [PMID: 18973554 DOI: 10.1111/j.1460-9568.2008.06440.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The secretory granules constitute one of the less well-known compartments in terms of Ca2+ dynamics. They contain large amounts of total Ca2+, but the free intragranular [Ca2+] ([Ca2+]SG), the mechanisms for Ca2+ uptake and release from the granules and their physiological significance regarding exocytosis are still matters of debate. We used in the present work an aequorin chimera targeted to the granules to investigate [Ca2+]SG homeostasis in bovine adrenal chromaffin cells. We found that most of the intracellular aequorin chimera is present in a compartment with 50-100 microM Ca2+. Ca2+ accumulation into this compartment takes place mainly through an ATP-dependent mechanism, namely, a thapsigargin-sensitive Ca2+-ATPase. In addition, fast Ca2+ release was observed in permeabilized cells after addition of inositol 1,4,5-trisphosphate (InsP3) or caffeine, suggesting the presence of InsP3 and ryanodine receptors in the vesicular membrane. Stimulation of intact cells with the InsP3-producing agonist histamine or with caffeine also induced Ca2+ release from the vesicles, whereas acetylcholine or high-[K+] depolarization induced biphasic changes in vesicular[Ca2+], suggesting heterogeneous responses of different vesicle populations, some of them releasing and some taking up Ca2+during stimulation. In conclusion, our data show that chromaffin cell secretory granules have the machinery required for rapid uptake and release of Ca2+, and this strongly supports the hypothesis that granular Ca2+ may contribute to its own secretion.
Collapse
Affiliation(s)
- Jaime Santodomingo
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Ramón y Cajal, 7, E-47005 Valladolid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ley C, Lacombat F, Plaza P, Martin MM, Leray I, Valeur B. Femtosecond to Subnanosecond Multistep Calcium Photoejection from a Crown Ether-Linked Merocyanine. Chemphyschem 2009; 10:276-81. [DOI: 10.1002/cphc.200800612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Amatore C, Arbault S, Guille M, Lemaître F. Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chem Rev 2008; 108:2585-621. [DOI: 10.1021/cr068062g] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Amatore C, Genovese D, Maisonhaute E, Raouafi N, Schöllhorn B. Electrochemically Driven Release of Picomole Amounts of Calcium Ions with Temporal and Spatial Resolution. Angew Chem Int Ed Engl 2008; 47:5211-4. [DOI: 10.1002/anie.200705274] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Amatore C, Genovese D, Maisonhaute E, Raouafi N, Schöllhorn B. Electrochemically Driven Release of Picomole Amounts of Calcium Ions with Temporal and Spatial Resolution. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Camacho M, Machado JD, Alvarez J, Borges R. Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells. J Biol Chem 2008; 283:22383-9. [PMID: 18562320 DOI: 10.1074/jbc.m800552200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretory vesicles of sympathetic neurons and chromaffin granules maintain a pH gradient toward the cytosol (pH 5.5 versus 7.2) promoted by the V-ATPase activity. This gradient of pH is also responsible for the accumulation of amines and Ca2+ because their transporters use H+ as the counter ion. We have recently shown that alkalinization of secretory vesicles slowed down exocytosis, whereas acidification caused the opposite effect. In this paper, we measure the alkalinization of vesicular pH, caused by the V-ATPase inhibitor bafilomycin A1, by total internal reflection fluorescence microscopy in cells overexpressing the enhanced green fluorescent protein-labeled synaptobrevin (VAMP2-EGFP) protein. The disruption of the vesicular gradient of pH caused the leak of Ca2+, measured with fura-2. Fluorimetric measurements, using the dye Oregon green BAPTA-2, showed that bafilomycin directly released Ca2+ from freshly isolated vesicles. The Ca2+ released from vesicles to the cytosol dramatically increased the granule motion of chromaffin- or PC12-derived granules and triggered exocytosis (measured by amperometry). We conclude that the gradient of pH of secretory vesicles might be involved in the homeostatic regulation of cytosolic Ca2+ and in two of the major functions of secretory cells, vesicle motion and exocytosis.
Collapse
Affiliation(s)
- Marcial Camacho
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna Tenerife, E-38071 La Laguna, Spain
| | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Villanueva M, Wightman RM. Facilitation of quantal release induced by a D1-like receptor on bovine chromaffin cells. Biochemistry 2007; 46:3881-7. [PMID: 17338553 PMCID: PMC2516551 DOI: 10.1021/bi602661p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopaminergic receptors are found on bovine adrenal chromaffin cells and have been implicated in the facilitation of an inward calcium current [Artalejo et al., (1990) Nature 348, 239-242] that could enhance release. However, previous studies using incubations of long duration (minutes) with dopaminergic receptor antagonists have found instead an inhibition of catecholamine release. In this work we used brief (subsecond) chemical depolarizing stimuli to reexamine the role of dopaminergic receptors on exocytosis from bovine adrenal chromaffin cells. Responses to consecutive depolarizing stimuli were compared using amperometry to monitor vesicular release events and intracellular fura-2 to examine Ca2+ dynamics within individual cells. Restoration of intracellular Ca2+ levels to their initial values following exposure to 60 mM K+ was found to be prolonged unless the exposure was brief (0.5 s) and the cells were maintained at 37 degrees C. However, with these optimum conditions, a second stimulation evoked more exocytotic events than the first. This effect was blocked by SCH-23390, a D1 antagonist, in a dose dependent fashion, but not by raclopride, a D2 antagonist. The D1 agonist, SKF-38393, enhanced the number of exocytotic events as did prior exposure of the cell to epinephrine. Taken together, the data indicate that released catecholamines can enhance their own release by interaction with a D1-like receptor on bovine adrenal chromaffin cells.
Collapse
Affiliation(s)
- Melissa Villanueva
- Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
30
|
Manning Fox JE, Karaman G, Wheeler MB. Alkali pH directly activates ATP-sensitive K+ channels and inhibits insulin secretion in beta-cells. Biochem Biophys Res Commun 2006; 350:492-7. [PMID: 17011513 DOI: 10.1016/j.bbrc.2006.09.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/19/2006] [Indexed: 11/20/2022]
Abstract
Glucose stimulation of pancreatic beta-cells is reported to lead to sustained alkalization, while extracellular application of weak bases is reported to inhibit electrical activity and decrease insulin secretion. We hypothesize that beta-cell K(ATP) channel activity is modulated by alkaline pH. Using the excised patch-clamp technique, we demonstrate a direct stimulatory action of alkali pH on recombinant SUR1/Kir6.2 channels due to increased open probability. Bath application of alkali pH similarly activates native islet beta-cell K(ATP) channels, leading to an inhibition of action potentials, and hyperpolarization of membrane potential. In situ pancreatic perfusion confirms that these cellular effects of alkali pH are observable at a functional level, resulting in decreases in both phase 1 and phase 2 glucose-stimulated insulin secretion. Our data are the first to report a stimulatory effect of a range of alkali pH on K(ATP) channel activity and link this to downstream effects on islet beta-cell function.
Collapse
Affiliation(s)
- Jocelyn E Manning Fox
- Department of Physiology, 3352 Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, Ont., Canada.
| | | | | |
Collapse
|