1
|
Sharma S, Deep S. Inhibition of fibril formation by polyphenols: molecular mechanisms, challenges, and prospective solutions. Chem Commun (Camb) 2024; 60:6717-6727. [PMID: 38835221 DOI: 10.1039/d4cc00822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fibril formation is a key feature in neurodegenerative diseases like Alzheimer's, Parkinson's, and systemic amyloidosis. Polyphenols, found in plant-based foods, show promise in inhibiting fibril formation and disrupting disease progression. The ability of polyphenols to break the amyloid fibrils of many disease-linked proteins has been tested in numerous studies. Polyphenols have their distinctive mechanism of action. They behave differently on various events in the aggregation pathway. Their action also differs for different proteins. Some polyphenols only inhibit the formation of fibrils whereas others break the preformed fibrils. Some break the fibrils into smaller species, and some change them to other morphologies. This article delves into the intricate molecular mechanisms underlying the inhibitory effects of polyphenols on fibrillogenesis, shedding light on their interactions with amyloidogenic proteins and the disruption of fibril assembly pathways. However, addressing the challenges associated with solubility, stability, and bioavailability of polyphenols is crucial. The current strategies involve nanotechnology to improve the solubility and bioavailability, thus showing the potential to enhance the efficacy of polyphenols as therapeutics. Advancements in structural biology, computational modeling, and biophysics have provided insights into polyphenol-fibril interactions, offering hope for novel therapies for neurodegenerative diseases and amyloidosis.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
2
|
Xu Y, Filice CT, Leonenko Z. Protective effect of trehalose sugar on amyloid-membrane interactions using BLM electrophysiology. Biophys J 2024; 123:1690-1704. [PMID: 38751113 PMCID: PMC11213996 DOI: 10.1016/j.bpj.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by dementia and memory loss in the elderly population. The amyloid-β peptide (Aβ) is one of the main pathogenic factors in AD and is known to cause damage to neuronal cellular membranes. There is no cure currently available for AD, and new approaches, including preventive strategies, are highly desirable. In this work, we explore the possibility of protecting neuronal membranes from amyloid-induced damage with naturally existing sugar trehalose. Trehalose has been shown to protect plant cellular membranes in extreme conditions and modify Aβ misfolding. We hypothesize that trehalose can protect the neuronal membrane from amyloid toxicity. In this work, we studied the protective effect of trehalose against Aβ1-42-induced damage in model lipid membranes (DPPC/POPC/cholesterol) using atomic force microscopy and black lipid membrane electrophysiology. Our results demonstrate that Aβ1-42 damaged membranes and led to ionic current leakage across these membranes due to the formation of various defects and pores. The presence of trehalose reduced the ion current across membranes caused by Aβ1-42 peptide damage, thus efficiently protecting the membranes. These findings suggest that the trehalose sugar can potentially be useful in protecting neuronal membranes against amyloid toxicity in AD.
Collapse
Affiliation(s)
- Yue Xu
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada
| | - Carina Teresa Filice
- Department of Biology, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada; Department of Biology, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, Waterloo, ON, Canada.
| |
Collapse
|
3
|
Dolui S, Roy A, Pal U, Kundu S, Pandit E, N Ratha B, Pariary R, Saha A, Bhunia A, Maiti NC. Raman Spectroscopic Insights of Phase-Separated Insulin Aggregates. ACS PHYSICAL CHEMISTRY AU 2024; 4:268-280. [PMID: 38800728 PMCID: PMC11117687 DOI: 10.1021/acsphyschemau.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 05/29/2024]
Abstract
Phase-separated protein accumulation through the formation of several aggregate species is linked to the pathology of several human disorders and diseases. Our current investigation envisaged detailed Raman signature and structural intricacy of bovine insulin in its various forms of aggregates produced in situ at an elevated temperature (60 °C). The amide I band in the Raman spectrum of the protein in its native-like conformation appeared at 1655 cm-1 and indicated the presence of a high content of α-helical structure as prepared freshly in acidic pH. The disorder content (turn and coils) also was predominately present in both the monomeric and oligomeric states and was confirmed by the presence shoulder amide I maker band at ∼1680 cm-1. However, the band shifted to ∼1671 cm-1 upon the transformation of the protein solution into fibrillar aggregates as produced for a longer time of incubation. The protein, however, maintained most of its helical conformation in the oligomeric phase; the low-frequency backbone α-helical conformation signal at ∼935 cm-1 was similar to that of freshly prepared aqueous protein solution enriched in helical conformation. The peak intensity was significantly weak in the fibrillar aggregates, and it appeared as a good Raman signature to follow the phase separation and the aggregation behavior of insulin and similar other proteins. Tyrosine phenoxy moieties in the protein may maintained its H-bond donor-acceptor integrity throughout the course of fibril formation; however, it entered in more hydrophobic environment in its journey of fibril formation. In addition, it was noticed that oligomeric bovine insulin maintained the orientation/conformation of the disulfide bonds. However, in the fibrillar state, the disulfide linkages became more strained and preferred to maintain a single conformation state.
Collapse
Affiliation(s)
- Sandip Dolui
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anupam Roy
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shubham Kundu
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Esha Pandit
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Bhisma N Ratha
- Department
of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake,
Sector V, Kolkata 700091, India
| | - Ranit Pariary
- Department
of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake,
Sector V, Kolkata 700091, India
| | - Achintya Saha
- Department
of Chemical Technology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009, India
| | - Anirban Bhunia
- Department
of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake,
Sector V, Kolkata 700091, India
| | - Nakul C. Maiti
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
4
|
Ali A, Holman AP, Rodriguez A, Zhaliazka K, Osborne L, Kurouski D. Large Unilamellar Vesicles of Phosphatidic Acid Reduce the Toxicity of α-Synuclein Fibrils. Mol Pharm 2024; 21:1334-1341. [PMID: 38373398 PMCID: PMC10915799 DOI: 10.1021/acs.molpharmaceut.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
Parkinson's disease (PD) is a severe pathology that is caused by a progressive degeneration of dopaminergic neurons in substantia nigra pars compacta as well as other areas in the brain. These neurodegeneration processes are linked to the abrupt aggregation of α-synuclein (α-syn), a small protein that is abundant at presynaptic nerve termini, where it regulates cell vesicle trafficking. Due to the direct interactions of α-syn with cell membranes, a substantial amount of work was done over the past decade to understand the role of lipids in α-syn aggregation. However, the role of phosphatidic acid (PA), a negatively charged phospholipid with a small polar head, remains unclear. In this study, we examined the effect of PA large unilamellar vesicles (LUVs) on α-syn aggregation. We found that PA LUVs with 16:0, 18:0, and 18:1 FAs drastically reduced the toxicity of α-syn fibrils if were present in a 1:1 molar ratio with the protein. Our results also showed that the presence of these vehicles changed the rate of α-syn aggregation and altered the morphology and secondary structure of α-syn fibrils. These results indicate that PA LUVs can be used as a potential therapeutic strategy to reduce the toxicity of α-syn fibrils formed upon PD.
Collapse
Affiliation(s)
- Abid Ali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Aidan P. Holman
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Axell Rodriguez
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiryl Zhaliazka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Luke Osborne
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Sarkar D, Saha S, Krishnamoorthy J, Bhunia A. Application of singular value decomposition analysis: Insights into the complex mechanisms of amyloidogenesis. Biophys Chem 2024; 306:107157. [PMID: 38184980 DOI: 10.1016/j.bpc.2023.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Amyloidogenesis, with its multifaceted nature spanning from peptide self-assembly to membrane-mediated structural transitions, presents a significant challenge for the interdisciplinary scientific community. Here, we emphasize on how Singular Value Decomposition (SVD) can be employed to reveal hidden patterns and dominant modes of interaction that govern the complex process of amyloidogenesis. We first utilize SVD analysis on Circular Dichroism (CD) spectral datasets to identify the intermediate structural species emerging during peptide-membrane interactions and to determine binding constants more precisely than conventional methods. We investigate the monomer loss kinetics associated with peptide self-assembly using Nuclear Magnetic Resonance (NMR) dataset and determine the global kinetic parameters through SVD. Furthermore, we explore the seeded growth of amyloid fibrils by analyzing a time-dependent NMR dataset, shedding light on the kinetic intricacies of this process. Our analysis uncovers two distinct states in the aggregation of Aβ40 and pinpoints key residues responsible for this seeded growth. To strengthen our findings and enhance their robustness, we validate those using simulated data, thereby highlighting the physical interpretations derived from SVD. Overall, SVD analysis offers a model-free, global kinetic perspective, enabling the selection of optimal kinetic models. This study not only contributes valuable insights into the dynamics but also highlights the versatility of SVD in unravelling complex processes of amyloidogenesis.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, Sector V, Kolkata 700 091, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, Sector V, Kolkata 700 091, India
| | | | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, Sector V, Kolkata 700 091, India.
| |
Collapse
|
6
|
Nutini A. Amyloid oligomers and their membrane toxicity - A perspective study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:9-20. [PMID: 38211711 DOI: 10.1016/j.pbiomolbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Amyloidosis is a condition involving a disparate group of pathologies characterized by the extracellular deposition of insoluble fibrils composed of broken-down proteins. These proteins can accumulate locally, causing peculiar symptoms, or in a widespread way, involving many organs and. causing severe systemic failure. The damage that is created is related not only to the accumulation of. amyloid fibrils but above all to the precursor oligomers of the fibrils that manage to enter the cell in a very particular way. This article analyzes the current state of research related to the entry of these oligomers into the cell membrane and the theories related to their toxicity. The paper proposed here not only aims to review the contents in the literature but also proposes a new vision of amyloid toxicity. that could occur in a multiphase process catalyzed by the cell membrane itself. In this process, the denaturation of the lipid bilayer is followed by the stabilization of a pore through energetically favorable self-assembly processes which are achieved through particular oligomeric structures.
Collapse
Affiliation(s)
- Alessandro Nutini
- Biology and Biomechanics Dept - Centro Studi Attività Motorie, Italy.
| |
Collapse
|
7
|
Guo XY, Yi L, Yang J, An HW, Yang ZX, Wang H. Self-assembly of peptide nanomaterials at biointerfaces: molecular design and biomedical applications. Chem Commun (Camb) 2024; 60:2009-2021. [PMID: 38275083 DOI: 10.1039/d3cc05811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Self-assembly is an important strategy for constructing ordered structures and complex functions in nature. Based on this, people can imitate nature and artificially construct functional materials with novel structures through the supermolecular self-assembly pathway of biological interfaces. Among the many assembly units, peptide molecular self-assembly has received widespread attention in recent years. In this review, we introduce the interactions (hydrophobic interaction, hydrogen bond, and electrostatic interaction) between peptide nanomaterials and biological interfaces, summarizing the latest advancements in multifunctional self-assembling peptide materials. We systematically demonstrate the assembly mechanisms of peptides at biological interfaces, such as proteins and cell membranes, while highlighting their application potential and challenges in fields like drug delivery, antibacterial strategies, and cancer therapy.
Collapse
Affiliation(s)
- Xin-Yuan Guo
- College of Chemistry, Huazhong Agricultural University, Shizishan 1, Hongshan District, Wuhan, 430070, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Jia Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Zi-Xin Yang
- College of Chemistry, Huazhong Agricultural University, Shizishan 1, Hongshan District, Wuhan, 430070, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| |
Collapse
|
8
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Drajkowska A, Molski A. Aggregation and partitioning of amyloid peptide fragments in the presence of a lipid bilayer: A coarse grained molecular dynamics study. Biophys Chem 2023; 300:107051. [PMID: 37329644 DOI: 10.1016/j.bpc.2023.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Amyloidogenicity and toxicity of amyloid peptides have been linked to the peptide aggregation and interactions with lipid bilayers. In this work we used the coarse grained MARTINI model to study the aggregation and partitioning of amyloid peptide fragments Aβ(1-28) and Aβ(25-35) in the presence of a dipalmitoylphosphatidylcholine bilayer. We explored the peptide aggregation starting from three initial spatial arrangements where free monomers were placed in solution outside the membrane, at the membrane-solution interface, or in the membrane. We found that Aβ(1-28) and Aβ(25-35) interact with the bilayer quite differently. The Aβ(1-28) fragments show strong peptide-peptide and peptide-lipid interactions leading to irreversible aggregation where the aggregates stay confined to their initial spatial location. The Aβ(25-35) fragments show weaker peptide-peptide and peptide-lipid interaction leading to reversible aggregation and accumulation at the membrane-solution interface irrespective of their initial spatial arrangement. Those findings can be explained in terms of the shape of the potential of mean force for the single-peptide translocation across the membrane.
Collapse
Affiliation(s)
- Aleksandra Drajkowska
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Andrzej Molski
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
10
|
Robinson MJ, Newbury S, Singh K, Leonenko Z, Beazely MA. The Interplay Between Cholesterol and Amyloid-β on HT22 Cell Viability, Morphology, and Receptor Tyrosine Kinase Signaling. J Alzheimers Dis 2023; 96:1663-1683. [PMID: 38073391 DOI: 10.3233/jad-230753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND There is a lack of understanding in the molecular and cellular mechanisms of Alzheimer's disease that has hindered progress on therapeutic development. The focus has been on targeting toxic amyloid-β (Aβ) pathology, but these therapeutics have generally failed in clinical trials. Aβ is an aggregation-prone protein that has been shown to disrupt cell membrane structure in molecular biophysics studies and interfere with membrane receptor signaling in cell and animal studies. Whether the lipid membrane or specific receptors are the primary target of attack has not been determined. OBJECTIVE This work elucidates some of the interplay between membrane cholesterol and Aβ42 on HT22 neuronal cell viability, morphology, and platelet-derived growth factor (PDGF) signaling pathways. METHODS The effects of cholesterol depletion by methyl-β-cyclodextrin followed by treatment with Aβ and/or PDGF-AA were assessed by MTT cell viability assays, western blot, optical and AFM microscopy. RESULTS Cell viability studies show that cholesterol depletion was mildly protective against Aβ toxicity. Together cholesterol reduction and Aβ42 treatment compounded the disruption of the PDGFα receptor activation. Phase contrast optical microscopy and live cell atomic force microscopy imaging revealed that cytotoxic levels of Aβ42 caused morphological changes including cell membrane damage, cytoskeletal disruption, and impaired cell adhesion; cell damage was ameliorated by cellular cholesterol depletion. CONCLUSIONS Cholesterol depletion impacted the effects of Aβ42 on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Morgan J Robinson
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Sean Newbury
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Kartar Singh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Michael A Beazely
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
11
|
Bigi A, Cascella R, Chiti F, Cecchi C. Amyloid fibrils act as a reservoir of soluble oligomers, the main culprits in protein deposition diseases. Bioessays 2022; 44:e2200086. [DOI: 10.1002/bies.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2021] [Accepted: 08/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences Section of Biochemistry University of Florence Florence Italy
| |
Collapse
|
12
|
Rudajev V, Novotny J. Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer’s disease. Front Mol Neurosci 2022; 15:937056. [PMID: 36090253 PMCID: PMC9453481 DOI: 10.3389/fnmol.2022.937056] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that is one of the most devastating and widespread diseases worldwide, mainly affecting the aging population. One of the key factors contributing to AD-related neurotoxicity is the production and aggregation of amyloid β (Aβ). Many studies have shown the ability of Aβ to bind to the cell membrane and disrupt its structure, leading to cell death. Because amyloid damage affects different parts of the brain differently, it seems likely that not only Aβ but also the nature of the membrane interface with which the amyloid interacts, helps determine the final neurotoxic effect. Because cholesterol is the dominant component of the plasma membrane, it plays an important role in Aβ-induced toxicity. Elevated cholesterol levels and their regulation by statins have been shown to be important factors influencing the progression of neurodegeneration. However, data from many studies have shown that cholesterol has both neuroprotective and aggravating effects in relation to the development of AD. In this review, we attempt to summarize recent findings on the role of cholesterol in Aβ toxicity mediated by membrane binding in the pathogenesis of AD and to consider it in the broader context of the lipid composition of cell membranes.
Collapse
|
13
|
Mehta D, Singh H, Haridas V, Chaudhuri TK. Molecular Insights into the Inhibition of Dialysis-Related β2m Amyloidosis Orchestrated by a Bispidine Peptidomimetic Analogue. Biochemistry 2022; 61:1473-1484. [PMID: 35749234 DOI: 10.1021/acs.biochem.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dialysis-related amyloidosis (DRA) is considered an inescapable consequence of renal failure. Upon prolonged hemodialysis, it involves accumulation of toxic β2-microglobulin (β2m) amyloids in bones and joints. Current treatment methods are plagued with high cost, low specificity, and low capacity. Through our in vitro and in cellulo studies, we introduce a peptidomimetic-based approach to help develop future therapeutics against DRA. Our study reports the ability of a nontoxic, core-modified, bispidine peptidomimetic analogue "B(LVI)2" to inhibit acid-induced amyloid fibrillation of β2m (Hβ2m). Using thioflavin-T, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transmission electron microscopy analysis, we demonstrate that B(LVI)2 delays aggregation lag time of Hβ2m amyloid fibrillation and reduces the yield of Hβ2m amyloid fibrils in a dose-dependent manner. Our findings suggest a B(LVI)2-orchestrated alteration in the route of Hβ2m amyloid fibrillation resulting in the formation of noncytotoxic, morphologically distinct amyloid-like species. Circular dichroism data show gradual sequestration of Hβ2m species in a soluble nonamyloidogenic noncytotoxic conformation in the presence of B(LVI)2. Dynamic light scattering measurements indicate incompetence of Hβ2m species in the presence of B(LVI)2 to undergo amyloid-competent intermolecular associations. Overall, our study reports the antifibrillation property of a novel peptidomimetic with the potential to bring a paradigm shift in therapeutic approaches against DRA.
Collapse
Affiliation(s)
- Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
14
|
Ikura H, Endo J, Kitakata H, Moriyama H, Sano M, Fukuda K. Molecular Mechanism of Pathogenesis and Treatment Strategies for AL Amyloidosis. Int J Mol Sci 2022; 23:6336. [PMID: 35683015 PMCID: PMC9181426 DOI: 10.3390/ijms23116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
In amyloid light-chain (AL) amyloidosis, small B-cell clones (mostly plasma cell clones) present in the bone marrow proliferate and secrete unstable monoclonal free light chains (FLCs), which form amyloid fibrils that deposit in the interstitial tissue, resulting in organ injury and dysfunction. AL amyloidosis progresses much faster than other types of amyloidosis, with a slight delay in diagnosis leading to a marked exacerbation of cardiomyopathy. In some cases, the resulting heart failure is so severe that chemotherapy cannot be administered, and death sometimes occurs within a few months. To date, many clinical studies have focused on therapeutics, especially chemotherapy, to treat this disease. Because it is necessary to promptly lower FLC, the causative protein of amyloid, to achieve a hematological response, various anticancer agents targeting neoplastic plasma cells are used for the treatment of this disease. In addition, many basic studies using human specimens to elucidate the pathophysiology of AL have been conducted. Gene mutations associated with AL, the characteristics of amyloidogenic LC, and the structural specificity of amyloid fibrils have been clarified. Regarding the mechanism of cellular and tissue damage, the mass effect due to amyloid deposition, as well as the toxicity of pre-fibrillar LC, is gradually being elucidated. This review outlines the pathogenesis and treatment strategies for AL amyloidosis with respect to its molecular mechanisms.
Collapse
Affiliation(s)
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-City, Tokyo 160-8582, Japan; (H.I.); (H.K.); (H.M.); (M.S.); (K.F.)
| | | | | | | | | |
Collapse
|
15
|
Jaragh-Alhadad LA, Falahati M. Copper oxide nanoparticles promote amyloid-β-triggered neurotoxicity through formation of oligomeric species as a prelude to Alzheimer's diseases. Int J Biol Macromol 2022; 207:121-129. [PMID: 35259430 DOI: 10.1016/j.ijbiomac.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022]
Abstract
Protein oligomerization is involved in the progression of Alzheimer's disease (AD). In general, a particle that can accelerate protein oligomerization should be considered a toxic material. Several studies reported the progress of nanoparticles (NPs) such as copper oxide (CuO) in biomedical platforms, however, they may have the ability to promote the protein oligomerization process. Here, we aimed to study the effect of CuO NPs on amyloid β1-42 (Aβ1-42) oligomerization and relevant neurotoxicity. CuO NPs were synthesized by precipitation technique and characterized by several methods such as ThT, Congo red, CD spectroscopic methods, and TEM imaging. The outcomes indicated that the fabricated CuO NPs with a size of around 50 nm led to a remarkable acceleration in Aβ1-42 oligomerization in a concentration-dependent manner through shortening the nucleation step and promoting the fibrillization rate. Moreover, cellular assays revealed that Aβ1-42 oligomers aged with CuO NPs were more toxic than Aβ1-42 oligomers untreated against SH-SY5Y cells in triggering cell mortality, membrane leakage, oxidative stress, and apoptosis. In conclusion, this study provides important information about the adverse effects of CuO NPs against proteins in the central nervous system to promote the formation of cytotoxic oligomers.
Collapse
Affiliation(s)
- Laila Abdulmohsen Jaragh-Alhadad
- Department of Chemistry, College of Science, Kuwait University, Safat 13060, Kuwait; Cardiovascular and Metabolic Sciences Department, Learner Research Institute, Cleveland Clinic, OH 44195, USA.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands; Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cell Mol Life Sci 2022; 79:174. [PMID: 35244787 PMCID: PMC8897347 DOI: 10.1007/s00018-022-04166-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 12/18/2022]
Abstract
Protein misfolding is a general hallmark of protein deposition diseases, such as Alzheimer’s disease or Parkinson’s disease, in which different types of aggregated species (oligomers, protofibrils and fibrils) are generated by the cells. Despite widespread interest, the relationship between oligomers and fibrils in the aggregation process and spreading remains elusive. A large variety of experimental evidences supported the idea that soluble oligomeric species of different proteins might be more toxic than the larger fibrillar forms. Furthermore, the lack of correlation between the presence of the typical pathological inclusions and disease sustained this debate. However, recent data show that the β-sheet core of the α-Synuclein (αSyn) fibrils is unable to establish persistent interactions with the lipid bilayers, but they can release oligomeric species responsible for an immediate dysfunction of the recipient neurons. Reversibly, such oligomeric species could also contribute to pathogenesis via neuron-to-neuron spreading by their direct cell-to-cell transfer or by generating new fibrils, following their neuronal uptake. In this Review, we discuss the various mechanisms of cellular dysfunction caused by αSyn, including oligomer toxicity, fibril toxicity and fibril spreading.
Collapse
|
17
|
Lu Z, Wang Y, Zhang J, Mao A, Lang M. Rationally designed water-soluble AIE fluorescent polyester for the detection of oligomers based on the characteristics of HEWL amyloid fibrosis. Polym Chem 2022. [DOI: 10.1039/d2py00891b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
According to the fibrotic characteristics of HEWL, a water-soluble stimulus-responsive AIE polymer was designed and successfully used for oligomer detection.
Collapse
Affiliation(s)
- Zhimin Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yixiu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Junyong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Roterman I, Stapor K, Gądek K, Gubała T, Nowakowski P, Fabian P, Konieczny L. On the Dependence of Prion and Amyloid Structure on the Folding Environment. Int J Mol Sci 2021; 22:ijms222413494. [PMID: 34948291 PMCID: PMC8707753 DOI: 10.3390/ijms222413494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/22/2023] Open
Abstract
Currently available analyses of amyloid proteins reveal the necessity of the existence of radical structural changes in amyloid transformation processes. The analysis carried out in this paper based on the model called fuzzy oil drop (FOD) and its modified form (FOD-M) allows quantifying the role of the environment, particularly including the aquatic environment. The starting point and basis for the present presentation is the statement about the presence of two fundamentally different methods of organizing polypeptides into ordered conformations—globular proteins and amyloids. The present study shows the source of the differences between these two paths resulting from the specificity of the external force field coming from the environment, including the aquatic and hydrophobic one. The water environment expressed in the fuzzy oil drop model using the 3D Gauss function directs the folding process towards the construction of a micelle-like system with a hydrophobic core in the central part and the exposure of polarity on the surface. The hydrophobicity distribution of membrane proteins has the opposite characteristic: Exposure of hydrophobicity at the surface of the membrane protein with an often polar center (as in the case of ion channels) is expected. The structure of most proteins is influenced by a more or less modified force field generated by water through the appropriate presence of a non-polar (membrane-like) environment. The determination of the proportion of a factor different from polar water enables the assessment of the protein status by indicating factors favoring the structure it represents.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, 31-034 Kopernika 7, 30-688 Krakow, Poland
- Correspondence:
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Krzysztof Gądek
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Tomasz Gubała
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Piotr Nowakowski
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Piotr Fabian
- Department of Algorithmics and Software, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Leszek Konieczny
- Department of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Kopernika 7, 31-034 Krakow, Poland;
| |
Collapse
|
19
|
Ben-Zichri S, Malishev R, Oren O, Bloch DN, Taube R, Papo N, Jelinek R. Bcl-2-Homology-Only Proapoptotic Peptides Modulate β-Amyloid Aggregation and Toxicity. ACS Chem Neurosci 2021; 12:4554-4563. [PMID: 34806861 DOI: 10.1021/acschemneuro.1c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aggregation of the β-Amyloid (Aβ) peptide in brain tissues is the hallmark of Alzheimer's disease (AD). While Aβ is presumed to be insidiously involved in the disease's pathophysiology, concrete mechanisms accounting for the role of Aβ in AD are yet to be deciphered. While Aβ has been primarily identified in the extracellular space, the peptide also accumulates in cellular compartments such as mitochondria and lysosomes and impairs cellular functions. Here, we show that prominent proapoptotic peptides associated with the mitochondrial outer membrane, the Bcl-2-homology-only peptides BID, PUMA, and NOXA, exert significant and divergent effects upon aggregation, cytotoxicity, and membrane interactions of Aβ42, the main Aβ homolog. Interestingly, we show that BID and PUMA accelerated aggregation of Aβ42, reduced Aβ42-induced toxicity and mitochondrial disfunction, and inhibited Aβ42-membrane interactions. In contrast, NOXA exhibited opposite effects, reducing Aβ42 fibril formation, affecting more pronounced apoptotic effects and mitochondrial disfunction, and enhancing membrane interactions of Aβ42. The effects of BID, PUMA, and NOXA upon the Aβ42 structure and toxicity may be linked to its biological properties and affect pathophysiological features of AD.
Collapse
Affiliation(s)
- Shani Ben-Zichri
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ravit Malishev
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ofek Oren
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Daniel N. Bloch
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
20
|
Alpha-Synuclein and Cognitive Decline in Parkinson Disease. Life (Basel) 2021; 11:life11111239. [PMID: 34833115 PMCID: PMC8625417 DOI: 10.3390/life11111239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder in elderly people. It is characterized by the aggregation of misfolded alpha-synuclein throughout the nervous system. Aside from cardinal motor symptoms, cognitive impairment is one of the most disabling non-motor symptoms that occurs during the progression of the disease. The accumulation and spreading of alpha-synuclein pathology from the brainstem to limbic and neocortical structures is correlated with emerging cognitive decline in PD. This review summarizes the genetic and pathophysiologic relationship between alpha-synuclein and cognitive impairment in PD, together with potential areas of biomarker advancement.
Collapse
|
21
|
Singh A, Mallika TN, Gorain B, Yadav AK, Tiwari S, Flora S, Shukla R, Kesharwani P. Quantum dot: Heralding a brighter future in neurodegenerative disorders. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Diociaiuti M, Bonanni R, Cariati I, Frank C, D’Arcangelo G. Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. Int J Mol Sci 2021; 22:ijms22126435. [PMID: 34208561 PMCID: PMC8235680 DOI: 10.3390/ijms22126435] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
| | - Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
23
|
Cascella R, Cecchi C. Calcium Dyshomeostasis in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22094914. [PMID: 34066371 PMCID: PMC8124842 DOI: 10.3390/ijms22094914] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that is characterized by amyloid β-protein deposition in senile plaques, neurofibrillary tangles consisting of abnormally phosphorylated tau protein, and neuronal loss leading to cognitive decline and dementia. Despite extensive research, the exact mechanisms underlying AD remain unknown and effective treatment is not available. Many hypotheses have been proposed to explain AD pathophysiology; however, there is general consensus that the abnormal aggregation of the amyloid β peptide (Aβ) is the initial event triggering a pathogenic cascade of degenerating events in cholinergic neurons. The dysregulation of calcium homeostasis has been studied considerably to clarify the mechanisms of neurodegeneration induced by Aβ. Intracellular calcium acts as a second messenger and plays a key role in the regulation of neuronal functions, such as neural growth and differentiation, action potential, and synaptic plasticity. The calcium hypothesis of AD posits that activation of the amyloidogenic pathway affects neuronal Ca2+ homeostasis and the mechanisms responsible for learning and memory. Aβ can disrupt Ca2+ signaling through several mechanisms, by increasing the influx of Ca2+ from the extracellular space and by activating its release from intracellular stores. Here, we review the different molecular mechanisms and receptors involved in calcium dysregulation in AD and possible therapeutic strategies for improving the treatment.
Collapse
|
24
|
Pseudopeptide Amyloid Aggregation Inhibitors: In Silico, Single Molecule and Cell Viability Studies. Int J Mol Sci 2021; 22:ijms22031051. [PMID: 33494369 PMCID: PMC7865305 DOI: 10.3390/ijms22031051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is defined by pathology featuring amyloid-β (Aβ) deposition in the brain. Aβ monomers themselves are generally considered to be nontoxic, but misfold into β-sheets and aggregate to form neurotoxic oligomers. One suggested strategy to treat AD is to prevent the formation of toxic oligomers. The SG inhibitors are a class of pseudopeptides designed and optimized using molecular dynamics (MD) simulations for affinity to Aβ and experimentally validated for their ability to inhibit amyloid-amyloid binding using single molecule force spectroscopy (SMFS). In this work, we provide a review of our previous MD and SMFS studies of these inhibitors and present new cell viability studies that demonstrate their neuroprotective effects against Aβ(1-42) oligomers using mouse hippocampal-derived HT22 cells. Two of the tested SG inhibitors, predicted to bind Aβ in anti-parallel orientation, demonstrated neuroprotection against Aβ(1-42). A third inhibitor, predicted to bind parallel to Aβ, was not neuroprotective. Myristoylation of SG inhibitors, intended to enhance delivery across the blood-brain barrier (BBB), resulted in cytotoxicity. This is the first use of HT22 cells for the study of peptide aggregation inhibitors. Overall, this work will inform the future development of peptide aggregation inhibitors against Aβ toxicity.
Collapse
|
25
|
Gerbelli BB, Oliveira CLP, Silva ER, Hamley IW, Alves WA. Amyloid Formation by Short Peptides in the Presence of Dipalmitoylphosphatidylcholine Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14793-14801. [PMID: 33210929 DOI: 10.1021/acs.langmuir.0c02760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aggregation of two short peptides, [RF] and [RF]4 (where R = arginine and F = phenylalanine), at dipalmitoylphosphatidylcholine (DPPC) model membranes was investigated at the air-water interface using the Langmuir technique and vesicles in aqueous solutions. The molar ratio of the peptide and lipid components was varied to provide insights into the peptide-membrane interactions, which might be related to their cytotoxicity. Both peptides exhibited affinity to the DPPC membrane interface and rapidly adopted β-sheet-rich structures upon adsorption onto the surface of the zwitterionic membrane. Results from adsorption isotherm and small-angle X-ray scattering experiments showed changes in the structural and thermodynamic parameters of the membrane with increasing peptide concentration. Using atomic force microscopy, we showed the appearance of pores through the bilayer membranes and peptide aggregation at different interfaces, suggesting that the hydrophobic residues might have an effect on both pore size and layer structure, facilitating the membrane disruption and leading to different cytotoxicity effects.
Collapse
Affiliation(s)
- Barbara B Gerbelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | | | - Emerson R Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, U.K
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| |
Collapse
|
26
|
Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, LeForte K, Mannini B, Vendruscolo M, Limbocker R. Therapeutic Strategies to Reduce the Toxicity of Misfolded Protein Oligomers. Int J Mol Sci 2020; 21:ijms21228651. [PMID: 33212787 PMCID: PMC7696907 DOI: 10.3390/ijms21228651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The aberrant aggregation of proteins is implicated in the onset and pathogenesis of a wide range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Mounting evidence indicates that misfolded protein oligomers produced as intermediates in the aggregation process are potent neurotoxic agents in these diseases. Because of the transient and heterogeneous nature of these elusive aggregates, however, it has proven challenging to develop therapeutics that can effectively target them. Here, we review approaches aimed at reducing oligomer toxicity, including (1) modulating the oligomer populations (e.g., by altering the kinetics of aggregation by inhibiting, enhancing, or redirecting the process), (2) modulating the oligomer properties (e.g., through the size–hydrophobicity–toxicity relationship), (3) modulating the oligomer interactions (e.g., by protecting cell membranes by displacing oligomers), and (4) reducing oligomer toxicity by potentiating the protein homeostasis system. We analyze examples of these complementary approaches, which may lead to the development of compounds capable of preventing or treating neurodegenerative disorders associated with protein aggregation.
Collapse
Affiliation(s)
- Ryan P. Kreiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Aidan K. Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Natalie R. Block
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Jared E. Hollows
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Lam T. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Kathleen LeForte
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
| | - Benedetta Mannini
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK;
- Correspondence: (M.V.); (R.L.)
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (R.P.K.); (A.K.W.); (N.R.B.); (J.E.H.); (L.T.N.); (K.L.)
- Correspondence: (M.V.); (R.L.)
| |
Collapse
|
27
|
Mei N, Robinson M, Davis JH, Leonenko Z. Melatonin Alters Fluid Phase Coexistence in POPC/DPPC/Cholesterol Membranes. Biophys J 2020; 119:2391-2402. [PMID: 33157120 DOI: 10.1016/j.bpj.2020.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
The structure and biophysical properties of lipid membranes are important for cellular functions in health and disease. In Alzheimer's disease, the neuronal membrane is a target for toxic amyloid-β (Aβ). Melatonin is an important pineal gland hormone that has been shown to protect against Aβ toxicity in cellular and animal studies, but the molecular mechanism of this protection is not fully understood. Melatonin is a small membrane-active molecule that has been shown to interact with model lipid membranes and alter the membrane biophysical properties, such as membrane molecular order and dynamics. This effect of melatonin has been previously studied in simple model bilayers with one or two lipid components. To make it more relevant to neuronal membranes, we used a more complex ternary lipid mixture as our membrane model. In this study, we used 2H-NMR to investigate the effect of melatonin on the phase behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and cholesterol lipid membranes. We used deuterium-labeled POPC-d31 and DPPC-d62,separately to probe the changes in hydrocarbon chain order as a function of temperature and melatonin concentration. We find that POPC/DPPC/cholesterol at molar proportions of 3:3:2 is close to liquid-disordered/liquid-ordered phase separation and that melatonin can induce phase separation in these ternary mixtures by preferentially incorporating into the disordered phase and increasing its level of disorder. At 5 mol% melatonin, we observed phase separation in samples with POPC-d31, but not with DPPC-d62, whereas at 10 mol% melatonin, phase separation was observed in both samples with either POPC-d31 or DPPC-d62. These results indicate that melatonin can have a strong effect on membrane structure and physical properties, which may provide some clues to understanding how melatonin protects against Aβ, and that choice of chain perdeuteration is an important consideration from a technical point of view.
Collapse
Affiliation(s)
- Nanqin Mei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Morgan Robinson
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - James H Davis
- Department of Physics, University of Guelph, Guelph, Ontario, Canada.
| | - Zoya Leonenko
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
28
|
Collin F, Cerlati O, Couderc F, Lonetti B, Marty JD, Mingotaud AF. Multidisciplinary analysis of protein-lipid interactions and implications in neurodegenerative disorders. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Farrugia MY, Caruana M, Ghio S, Camilleri A, Farrugia C, Cauchi RJ, Cappelli S, Chiti F, Vassallo N. Toxic oligomers of the amyloidogenic HypF-N protein form pores in mitochondrial membranes. Sci Rep 2020; 10:17733. [PMID: 33082392 PMCID: PMC7575562 DOI: 10.1038/s41598-020-74841-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022] Open
Abstract
Studies on the amyloidogenic N-terminal domain of the E. coli HypF protein (HypF-N) have contributed significantly to a detailed understanding of the pathogenic mechanisms in neurodegenerative diseases characterised by the formation of misfolded oligomers, by proteins such as amyloid-β, α-synuclein and tau. Given that both cell membranes and mitochondria are increasingly recognised as key targets of oligomer toxicity, we investigated the damaging effects of aggregates of HypF-N on mitochondrial membranes. Essentially, we found that HypF-N oligomers characterised by high surface hydrophobicity (type A) were able to trigger a robust permeabilisation of mito-mimetic liposomes possessing cardiolipin-rich membranes and dysfunction of isolated mitochondria, as demonstrated by a combination of mitochondrial shrinking, lowering of mitochondrial membrane potential and cytochrome c release. Furthermore, using single-channel electrophysiology recordings we obtained evidence that the type A aggregates induced currents reflecting formation of ion-conducting pores in mito-mimetic planar phospholipid bilayers, with multi-level conductances ranging in the hundreds of pS at negative membrane voltages. Conversely, HypF-N oligomers with low surface hydrophobicity (type B) could not permeabilise or porate mitochondrial membranes. These results suggest an inherent toxicity of membrane-active aggregates of amyloid-forming proteins to mitochondria, and that targeting of oligomer-mitochondrial membrane interactions might therefore afford protection against such damage.
Collapse
Affiliation(s)
- Maria Ylenia Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Mario Caruana
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Stephanie Ghio
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Angelique Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | | | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Sara Cappelli
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| |
Collapse
|
30
|
Behl T, Kaur I, Fratila O, Brata R, Bungau S. Exploring the Potential of Therapeutic Agents Targeted towards Mitigating the Events Associated with Amyloid-β Cascade in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21207443. [PMID: 33050199 PMCID: PMC7589257 DOI: 10.3390/ijms21207443] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
One of the most commonly occurring neurodegenerative disorders, Alzheimer's disease (AD), encompasses the loss of cognitive and memory potential, impaired learning, dementia and behavioral defects, and has been prevalent since the 1900s. The accelerating occurrence of AD is expected to reach 65.7 million by 2030. The disease results in neural atrophy and disrupted inter-neuronal connections. Amongst multiple AD pathogenesis hypotheses, the amyloid beta (Aβ) cascade is the most relevant and accepted form of the hypothesis, which suggests that Aβ monomers are formed as a result of the cleavage of amyloid precursor protein (APP), followed by the conversion of these monomers to toxic oligomers, which in turn develop β-sheets, fibrils and plaques. The review targets the events in the amyloid hypothesis and elaborates suitable therapeutic agents that function by hindering the steps of plaque formation and lowering Aβ levels in the brain. The authors discuss treatment possibilities, including the inhibition of β- and γ-secretase-mediated enzymatic cleavage of APP, the immune response generating active immunotherapy and passive immunotherapeutic approaches targeting monoclonal antibodies towards Aβ aggregates, the removal of amyloid aggregates by the activation of enzymatic pathways or the regulation of Aβ circulation, glucagon-like peptide-1 (GLP-1)-mediated curbed accumulation and the neurotoxic potential of Aβ aggregates, bapineuzumab-mediated vascular permeability alterations, statin-mediated Aβ peptide degradation, the potential role of ibuprofen and the significance of natural drugs and dyes in hindering the amyloid cascade events. Thus, the authors aim to highlight the treatment perspective, targeting the amyloid hypothesis, while simultaneously emphasizing the need to conduct further investigations, in order to provide an opportunity to neurologists to develop novel and reliable treatment therapies for the retardation of AD progression.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
31
|
Ghosh P, De P. Modulation of Amyloid Protein Fibrillation by Synthetic Polymers: Recent Advances in the Context of Neurodegenerative Diseases. ACS APPLIED BIO MATERIALS 2020; 3:6598-6625. [DOI: 10.1021/acsabm.0c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
32
|
Highlighting the effect of amyloid beta assemblies on the mechanical properties and conformational stability of cell membrane. J Mol Graph Model 2020; 100:107670. [PMID: 32711259 DOI: 10.1016/j.jmgm.2020.107670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia, characterized by a progressive decline in cognitive function due to the abnormal aggregation and deposition of Amyloid beta (Aβ) fibrils in the brain of patients. In this context, the molecular mechanisms of protein misfolding and aggregation that are known to induce significant biophysical alterations in cells, including destabilization of plasma membranes, remain partially unclear. Physical interaction between the Aβ assemblies and the membrane leads to the disruption of the cell membrane in multiple ways including, surface carpeting, generation of transmembrane channels and detergent-like membrane dissolution. Understanding the impact of amyloidogenic protein in different stages of aggregation with the plasma membrane, plays a crucial role to fully elucidate the pathological mechanisms of AD. Within this framework, computer simulations represent a powerful tool able to shed lights on the interactions governing the structural influence of Aβ proteins on biological membrane. In this study, molecular dynamics (MD) simulations have been performed in order to characterize how POPC bilayer conformational and mechanical properties are affected by the interaction with Aβ11-42 peptide, oligomer and fibril.
Collapse
|
33
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
34
|
Doens D, Valdés-Tresanco ME, Vasquez V, Carreira MB, De La Guardia Y, Stephens DE, Nguyen VD, Nguyen VT, Gu J, Hegde ML, Larionov OV, Valiente PA, Lleonart R, Fernández PL. Hexahydropyrrolo[2,3- b]indole Compounds as Potential Therapeutics for Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4250-4263. [PMID: 31545596 DOI: 10.1021/acschemneuro.9b00297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly and has become a leading public health concern worldwide. It represents a huge economic and psychological burden to caregivers and families. The presence of extracellular amyloid beta (Aβ) plaques is one of the hallmarks of this neurodegenerative disorder. Amyloid plaques are comprised of aggregates of Aβ peptides, mainly Aβ42, originated by the cleavage of the amyloid precursor protein (APP). Aβ is a crucial target for the treatment of AD, but to date, no effective treatment for the clearance of Aβ has been found. We have identified four new hexahydropyrroloindoles (HPI) synthetic compounds that are able to inhibit the aggregation of Aβ42 and/or disaggregate the fibril. Docking experiments suggest that the nonpolar component of the interaction of compounds with Aβ42 contributes favorably to the binding free energy of each complex. Molecular dynamics simulations suggested fibril disaggregating activity of compounds 1 via interaction with hydrophobic moieties of the fibril. Consistently, compounds 1 and 2 were able to mitigate Aβ42 fibrils induced death in rat pheochromocytoma cells (PC 12). One of the compounds reduces the formation of Aβ aggregates in vivo and the paralysis associated with Aβ toxicity in Caenorhabditis elegans. Our study thus augments efforts for the identification and characterization of new agents that may help stop or delay the progression of AD.
Collapse
Affiliation(s)
- Deborah Doens
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge Edif #208, Panama 0843-01103, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
| | - Mario E. Valdés-Tresanco
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455, Vedado, La Habana, Cuba
| | - Velmarini Vasquez
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Maria Beatriz Carreira
- Centro de Neurociencias, INDICASAT-AIP, City of Knowledge Edif #208, Panama, 0843-01103, Panama
| | - Yila De La Guardia
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge Edif #208, Panama 0843-01103, Panama
| | - David E. Stephens
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Viet D. Nguyen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Vu T. Nguyen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Jianhua Gu
- AFM SEM Core, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Oleg V. Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Pedro A. Valiente
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455, Vedado, La Habana, Cuba
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge Edif #208, Panama 0843-01103, Panama
| | - Patricia L. Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge Edif #208, Panama 0843-01103, Panama
| |
Collapse
|
35
|
Cascella R, Perni M, Chen SW, Fusco G, Cecchi C, Vendruscolo M, Chiti F, Dobson CM, De Simone A. Probing the Origin of the Toxicity of Oligomeric Aggregates of α-Synuclein with Antibodies. ACS Chem Biol 2019; 14:1352-1362. [PMID: 31050886 PMCID: PMC7007184 DOI: 10.1021/acschembio.9b00312] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The
aggregation of α-synuclein, a protein involved in neurotransmitter
release at presynaptic terminals, is associated with a range of highly
debilitating neurodegenerative conditions, most notably Parkinson’s
disease. Intraneuronal inclusion bodies, primarily composed of α-synuclein
fibrils, are the major histopathological hallmarks of these disorders,
although small oligomeric assemblies are believed to play a crucial
role in neuronal impairment. We have probed the mechanism of neurotoxicity
of α-synuclein oligomers isolated in vitro using
antibodies targeting the N-terminal region of the protein and found
that the presence of the antibody resulted in a substantial reduction
of the damage induced by the aggregates when incubated with primary
cortical neurons and neuroblastoma cells. We observed a similar behavior in vivo using a strain of C. elegans overexpressing
α-synuclein, where the aggregation process itself is also partially
inhibited as a result of incubation with the antibodies. The similar
effects of the antibodies in reducing the toxicity of the aggregated
species formed in vitro and in vivo provide evidence for a common origin of cellular impairment induced
by α-synuclein aggregates.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Serene W. Chen
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, 50134 Florence, Italy
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Mehrazma B, Rauk A. Exploring Amyloid-β Dimer Structure Using Molecular Dynamics Simulations. J Phys Chem A 2019; 123:4658-4670. [PMID: 31082235 DOI: 10.1021/acs.jpca.8b11251] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major hallmark of Alzheimer's disease (AD) is the aggregation of amyloid-β peptides in the brains of people afflicted by the disease. The exact pathway to this catastrophic event is unknown. In this work, a total of 9.5 μs molecular dynamics simulations have been performed to investigate the structure and dynamics of the smallest form of toxic Aβ oligomers, i.e., the Aβ dimers. This study suggests that specific hydrophobic regions are vital in the aggregation process. Different possible structures for Aβ dimers are reported along with their relative binding affinity. These data may be used to design better Aβ-aggregation inhibitors. The diversity of the dimer structures suggests several aggregation pathways.
Collapse
Affiliation(s)
- Banafsheh Mehrazma
- Department of Chemistry , University of Calgary , Calgary AB , Canada T2N 1N4
| | - Arvi Rauk
- Department of Chemistry , University of Calgary , Calgary AB , Canada T2N 1N4
| |
Collapse
|
37
|
Oropesa-Nuñez R, Keshavan S, Dante S, Diaspro A, Mannini B, Capitini C, Cecchi C, Stefani M, Chiti F, Canale C. Toxic HypF-N Oligomers Selectively Bind the Plasma Membrane to Impair Cell Adhesion Capability. Biophys J 2019; 114:1357-1367. [PMID: 29590593 DOI: 10.1016/j.bpj.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
The deposition of fibrillar protein aggregates in human organs is the hallmark of several pathological states, including highly debilitating neurodegenerative disorders and systemic amyloidoses. It is widely accepted that small oligomers arising as intermediates in the aggregation process, released by fibrils, or growing in secondary nucleation steps are the cytotoxic entities in protein-misfolding diseases, notably neurodegenerative conditions. Increasing evidence indicates that cytotoxicity is triggered by the interaction between nanosized protein aggregates and cell membranes, even though little information on the molecular details of such interaction is presently available. In this work, we propose what is, to our knowledge, a new approach, based on the use of single-cell force spectroscopy applied to multifunctional substrates, to study the interaction between protein oligomers, cell membranes, and/or the extracellular matrix. We compared the interaction of single Chinese hamster ovary cells with two types of oligomers (toxic and nontoxic) grown from the N-terminal domain of the Escherichia coli protein HypF. We were able to quantify the affinity between both oligomer type and the cell membrane by measuring the mechanical work needed to detach the cells from the aggregates, and we could discriminate the contributions of the membrane lipid and protein fractions to such affinity. The fundamental role of the ganglioside GM1 in the membrane-oligomers interaction was also highlighted. Finally, we observed that the binding of toxic oligomers to the cell membrane significantly affects the functionality of adhesion molecules such as Arg-Gly-Asp binding integrins, and that this effect requires the presence of the negatively charged sialic acid moiety of GM1.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; DIBRIS Department, University of Genova, Genova, Italy
| | - Sandeep Keshavan
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; DIBRIS Department, University of Genova, Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Department of Physics, University of Genova, Genova, Italy.
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Capitini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Cristina Cecchi
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Massimo Stefani
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Department of Physics, University of Genova, Genova, Italy
| |
Collapse
|
38
|
Kumar V, Gour S, Verma N, Kumar S, Gadhave K, Mishra PM, Goyal P, Pandey J, Giri R, Yadav JK. The mechanism of phosphatidylcholine-induced interference of PAP (248-286) aggregation. J Pept Sci 2019; 25:e3152. [PMID: 30784133 DOI: 10.1002/psc.3152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
Abstract
Seminal amyloids are well known for their role in enhancing HIV infection. Among all the amyloidogenic peptides identified in human semen, PAP248-286 was found to be the most active and was termed as semen-derived enhancer of viral infection (SEVI). Although amyloidogenic nature of the peptide is mainly linked with enhancement of the viral infection, the most active physiological conformation of the aggregated peptide remains inconclusive. Lipids are known to modulate aggregation pathway of a variety of proteins and peptides and constitute one of the most abundant biomolecules in human semen. PAP248-286 significantly differs from the other known amyloidogenic peptides, including Aβ and IAPP, in terms of critical concentration, surface charge, fibril morphology, and structural transition during aggregation. Hence, in the present study, we aimed to assess the effect of a lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), on PAP248-286 aggregation and the consequent conformational outcomes. Our initial observation suggested that the presence of the lipid considerably influenced the aggregation of PAP248-286 . Further, ZDOCK and MD simulation studies of peptide multimerization have suggested that the hydrophobic residues at C-terminus are crucial for PAP248-286 aggregation and are anticipated to be major DOPC-interacting partners. Therefore, we further assessed the aggregation behaviour of C-terminal (PAP273-286 ) fragment of PAP248-286 and observed that DOPC possesses the ability to interfere with the aggregation behaviour of both the peptides used in the current study. Mechanistically, we propose that the presence of DOPC causes considerable inhibition of the peptide aggregation by interfering with the peptide's disordered state to β-sheet transition.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Shalini Gour
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Nidhi Verma
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Suman Kumar
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | | | - Pankaj Goyal
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Janmejay Pandey
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
39
|
Menadione sodium bisulfite inhibits the toxic aggregation of amyloid-β(1–42). Biochim Biophys Acta Gen Subj 2018; 1862:2226-2235. [DOI: 10.1016/j.bbagen.2018.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
40
|
Mehrazma B, Opare S, Petoyan A, Rauk A. d-Amino Acid Pseudopeptides as Potential Amyloid-Beta Aggregation Inhibitors. Molecules 2018; 23:E2387. [PMID: 30231520 PMCID: PMC6225248 DOI: 10.3390/molecules23092387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
A causative factor for neurotoxicity associated with Alzheimer's disease is the aggregation of the amyloid-β (Aβ) peptide into soluble oligomers. Two all d-amino acid pseudo-peptides, SGB1 and SGD1, were designed to stop the aggregation. Molecular dynamics (MD) simulations have been carried out to study the interaction of the pseudo-peptides with both Aβ13⁻23 (the core recognition site of Aβ) and full-length Aβ1⁻42. Umbrella sampling MD calculations have been used to estimate the free energy of binding, ∆G, of these peptides to Aβ13⁻23. The highest ∆Gbinding is found for SGB1. Each of the pseudo-peptides was also docked to Aβ1⁻42 and subjected up to seven microseconds of all atom molecular dynamics simulations. The resulting structures lend insight into how the dynamics of Aβ1⁻42 are altered by complexation with the pseudo-peptides and confirmed that SGB1 may be a better candidate for developing into a drug to prevent Alzheimer's disease.
Collapse
Affiliation(s)
- Banafsheh Mehrazma
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| | - Stanley Opare
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| | - Anahit Petoyan
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| | - Arvi Rauk
- Department of Chemistry, University of Calgary; Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
41
|
Dongmo Foumthuim CJ, Corazza A, Esposito G, Fogolari F. Molecular dynamics simulations of β2-microglobulin interaction with hydrophobic surfaces. MOLECULAR BIOSYSTEMS 2018; 13:2625-2637. [PMID: 29051937 DOI: 10.1039/c7mb00464h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrophobic surfaces are known to adsorb and unfold proteins, a process that has been studied only for a few proteins. Here we address the interaction of β2-microglobulin, a paradigmatic protein for the study of amyloidogenesis, with hydrophobic surfaces. A system with 27 copies of the protein surrounded by a model cubic hydrophobic box is studied by implicit solvent molecular dynamics simulations. Most proteins adsorb on the walls of the box without major distortions in local geometry, whereas free molecules maintain proper structures and fluctuations as observed in explicit solvent molecular dynamics simulations. The major conclusions from the simulations are as follows: (i) the adopted implicit solvent model is adequate to describe protein dynamics and thermodynamics; (ii) adsorption occurs readily and is irreversible on the simulated timescale; (iii) the regions most involved in molecular encounters and stable interactions with the walls are the same as those that are important in protein-protein and protein-nanoparticle interactions; (iv) unfolding following adsorption occurs at regions found to be flexible by both experiments and simulations; (v) thermodynamic analysis suggests a very large contribution from van der Waals interactions, whereas unfavorable electrostatic interactions are not found to contribute much to adsorption energy. Surfaces with different degrees of hydrophobicity may occur in vivo. Our simulations show that adsorption is a fast and irreversible process which is accompanied by partial unfolding. The results and the thermodynamic analysis presented here are consistent with and rationalize previous experimental work.
Collapse
|
42
|
Maïza A, Chantepie S, Vera C, Fifre A, Huynh MB, Stettler O, Ouidja MO, Papy-Garcia D. The role of heparan sulfates in protein aggregation and their potential impact on neurodegeneration. FEBS Lett 2018; 592:3806-3818. [PMID: 29729013 DOI: 10.1002/1873-3468.13082] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/29/2022]
Abstract
Neurodegenerative disorders, such as Alzheimer's, Parkinson's, and prion diseases, are directly linked to the formation and accumulation of protein aggregates in the brain. These aggregates, principally made of proteins or peptides that clamp together after acquisition of β-folded structures, also contain heparan sulfates. Several lines of evidence suggest that heparan sulfates centrally participate in the protein aggregation process. In vitro, they trigger misfolding, oligomerization, and fibrillation of amyloidogenic proteins, such as Aβ, tau, α-synuclein, prion protein, etc. They participate in the stabilization of protein aggregates, protect them from proteolysis, and act as cell-surface receptors for the cellular uptake of proteopathic seeds during their spreading. This review focuses attention on the importance of heparan sulfates in protein aggregation in brain disorders including Alzheimer's, Parkinson's, and prion diseases. The presence of these sulfated polysaccharides in protein inclusions in vivo and their capacity to trigger protein aggregation in vitro strongly suggest that they might play critical roles in the neurodegenerative process. Further advances in glyco-neurobiology will improve our understanding of the molecular and cellular mechanisms leading to protein aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Auriane Maïza
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Sandrine Chantepie
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Cecilia Vera
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Alexandre Fifre
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Minh Bao Huynh
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Olivier Stettler
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Mohand Ouidir Ouidja
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Dulce Papy-Garcia
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| |
Collapse
|
43
|
Oleuropein aglycone: A polyphenol with different targets against amyloid toxicity. Biochim Biophys Acta Gen Subj 2018; 1862:1432-1442. [DOI: 10.1016/j.bbagen.2018.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/29/2022]
|
44
|
Arad E, Bhunia SK, Jopp J, Kolusheva S, Rapaport H, Jelinek R. Lysine-Derived Carbon Dots for Chiral Inhibition of Prion Peptide Fibril Assembly. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Elad Arad
- Department of Chemistry; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Susanta Kumar Bhunia
- Department of Chemistry; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Jürgen Jopp
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Ilse Katz Institute (IKI) for Nanoscale Science and Technology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| |
Collapse
|
45
|
Sasahara K. Membrane-mediated amyloid deposition of human islet amyloid polypeptide. Biophys Rev 2018; 10:453-462. [PMID: 29204886 PMCID: PMC5899711 DOI: 10.1007/s12551-017-0351-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/14/2017] [Indexed: 01/01/2023] Open
Abstract
Amyloid deposition of human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is closely associated with type II diabetes mellitus. Accumulating evidence indicates that the membrane-mediated aggregation and subsequent deposition of hIAPP are linked to the dysfunction and death of insulin-producing pancreatic β-cells, but the molecular process of hIAPP deposition is poorly understood. In this review, I focus on recent in vitro studies utilizing model membranes to observe the membrane-mediated aggregation/deposition of hIAPP. Membrane surfaces can serve as templates for both hIAPP adsorption and aggregation. Using high-sensitivity surface analyzing/imaging techniques that can characterize the processes of hIAPP aggregation and deposition at the membrane surface, these studies provide valuable insights into the mechanism of membrane damage caused by amyloid deposition of the peptide.
Collapse
Affiliation(s)
- Kenji Sasahara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
46
|
Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, Chen Y, Huang K. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases: Mechanisms, contributors, and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1876-1888. [PMID: 29466701 DOI: 10.1016/j.bbamem.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
The toxic deposition of misfolded amyloidogenic proteins is associated with more than fifty protein misfolding diseases (PMDs), including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. Protein deposition is a multi-step process modulated by a variety of factors, in particular by membrane-protein interaction. The interaction results in permeabilization of biomembranes contributing to the cytotoxicity that leads to PMDs. Different biological and physiochemical factors, such as protein sequence, lipid composition, and chaperones, are known to affect the membrane-protein interaction. Here, we provide a comprehensive review of the mechanisms and contributing factors of the interaction between biomembranes and amyloidogenic proteins, and a summary of the therapeutic approaches to PMDs that target this interaction. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Yang Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ma
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan 430072, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
47
|
Oropesa-Nuñez R, Seghezza S, Dante S, Diaspro A, Cascella R, Cecchi C, Stefani M, Chiti F, Canale C. Interaction of toxic and non-toxic HypF-N oligomers with lipid bilayers investigated at high resolution with atomic force microscopy. Oncotarget 2018; 7:44991-45004. [PMID: 27391440 PMCID: PMC5216700 DOI: 10.18632/oncotarget.10449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/26/2016] [Indexed: 11/25/2022] Open
Abstract
Protein misfolded oligomers are considered the most toxic species amongst those formed in the process of amyloid formation and the molecular basis of their toxicity, although not completely understood, is thought to originate from the interaction with the cellular membrane. Here, we sought to highlight the molecular determinants of oligomer-membrane interaction by atomic force microscopy. We monitored the interaction between multiphase supported lipid bilayers and two types of HypF-N oligomers displaying different structural features and cytotoxicities. By our approach we imaged with unprecedented resolution the ordered and disordered lipid phases of the bilayer and different oligomer structures interacting with either phase. We identified the oligomers and lipids responsible for toxicity and, more generally, we established the importance of the membrane lipid component in mediating oligomer toxicity. Our findings support the importance of GM1 ganglioside in mediating the oligomer-bilayer interaction and support a mechanism of oligomer cytotoxicity involving bilayer destabilization by globular oligomers within GM1-rich ordered raft regions rather than by annular oligomers in the surrounding disordered membrane domains.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy.,DIBRIS Department, University of Genova, Genova, Italy
| | - Silvia Seghezza
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Physics, University of Genova, Genova, Italy
| | - Roberta Cascella
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Cristina Cecchi
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Massimo Stefani
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
48
|
Tenreiro S, Franssens V, Winderickx J, Outeiro TF. Yeast models of Parkinson's disease-associated molecular pathologies. Curr Opin Genet Dev 2018; 44:74-83. [PMID: 28232272 DOI: 10.1016/j.gde.2017.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
The aging of the human population is resulting in an increase in the number of people afflicted by neurodegenerative disorders such as Parkinson's disease (PD), creating tremendous socio-economic challenges. This requires the urgent for the development of effective therapies, and of tools for early diagnosis of the disease. However, our understanding of the molecular mechanisms underlying PD pathogenesis is still incomplete, hampering progress in those areas. In recent years, the progression made in genetics has considerably contributed to our knowledge, by identifying several novel PD genes. Furthermore, many cellular and animal models have proven their value to decipher pathways involved in PD development. In this review we highlight the value of the yeast Saccharomyces cerevisiae as a model for PD. This unicellular eukaryote has contributed to our understanding of the cellular mechanisms targeted by most important PD genes and offers an excellent tool for discovering novel players via powerful and informative high throughput screens that accelerate further validation in more complex models.
Collapse
Affiliation(s)
- Sandra Tenreiro
- CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Tiago Fleming Outeiro
- CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Department of Neurodegeneration and Restorative Research, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
49
|
De Santis A, La Manna S, Krauss IR, Malfitano AM, Novellino E, Federici L, De Cola A, Di Matteo A, D'Errico G, Marasco D. Nucleophosmin-1 regions associated with acute myeloid leukemia interact differently with lipid membranes. Biochim Biophys Acta Gen Subj 2018; 1862:967-978. [PMID: 29330024 DOI: 10.1016/j.bbagen.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Antonella De Cola
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Florence, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy.
| |
Collapse
|
50
|
Abstract
Attenuated total reflection FTIR (ATR-FTIR) has been used for decades to study protein secondary structures. More recently, it reveals also to be an exquisite and sensitive tool to study and discriminate amyloid aggregates. Based on the analysis of specific spectral features of β-sheet structures, we present here a detailed protocol to differentiate oligomers vs. fibrils. This protocol, applicable to all amyloid proteins, demonstrates the power of this inexpensive, rapid, and low protein material-demanding method.
Collapse
Affiliation(s)
- Jean-Marie Ruysschaert
- Faculty of Science, Laboratory of Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Vincent Raussens
- Faculty of Science, Laboratory of Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|