1
|
Isaac SL, Mohd Hashim A, Faizal Wong FW, Mohamed Akbar MA, Wan Ahmad Kamil WNI. A Review on Bacteriocin Extraction Techniques from Lactic Acid Bacteria. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10384-3. [PMID: 39432230 DOI: 10.1007/s12602-024-10384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Lactic acid bacteria (LAB) are widely known for the production of secondary metabolites such as organic acids and other bioactive compounds such as bacteriocins. Finding a broad application in food and healthcare, bacteriocins have received increased attention due to their inherent antimicrobial properties. However, the extraction of bacteriocins is often plagued with low yields due to the complexity of the extraction processes and the diversity of bacteriocins themselves. Here, we review the current knowledge related to bacteriocin extraction on the different extraction techniques for isolating bacteriocins from LAB. The advantages and disadvantages of each technique will also be critically appraised, taking into account factors such as extraction efficiency, scalability and cost-effectiveness. This review aims to guide researchers and professionals in selecting the most suitable approach for bacteriocin extraction from LAB by illuminating the respective advantages and limitations of various extraction techniques.
Collapse
Grants
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
- 19764 Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme (FRGS/1/2021/STG01/UPM/02/7)
Collapse
Affiliation(s)
- Sharleen Livina Isaac
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Muhamad Afiq Mohamed Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Mukherjee P, Mazumder A. Macromolecular crowding has opposite effects on two critical sub-steps of transcription initiation. FEBS Lett 2024; 598:1022-1033. [PMID: 38479985 PMCID: PMC7615953 DOI: 10.1002/1873-3468.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Transcription initiation, the first step in gene expression, has been studied extensively in dilute buffer, a condition which fails to consider the crowded environment in live cells. Recent reports indicate the kinetics of promoter escape is altered in crowded conditions for a consensus bacterial promoter. Here, we use a real-time fluorescence enhancement assay to study the kinetics of unwound bubble formation and promoter escape for three separate promoters. We find that the effect of crowding on transcription initiation is complex, with lower rates of unwound bubble formation, higher rates of promoter escape, and large variations depending on promoter identity. Based on our results, we suggest that altered conditions of crowding inside a live cell can trigger global changes.
Collapse
Affiliation(s)
- Pratip Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad, India
| | - Abhishek Mazumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
3
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
4
|
Zou Z, Wei J, Chen Y, Kang Y, Shi H, Yang F, Shi Z, Chen S, Zhou Y, Sepich-Poore C, Zhuang X, Zhou X, Jiang H, Wen Z, Jin P, Luo C, He C. FMRP phosphorylation modulates neuronal translation through YTHDF1. Mol Cell 2023; 83:4304-4317.e8. [PMID: 37949069 PMCID: PMC10872974 DOI: 10.1016/j.molcel.2023.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.
Collapse
Affiliation(s)
- Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Yantao Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunhee Kang
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hailing Shi
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Fan Yang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zhuoyue Shi
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Caraline Sepich-Poore
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoming Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hualiang Jiang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Psychiatry and Behavioral Sciences, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Cheng Luo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Lee SM, Balakrishnan HK, Doeven EH, Yuan D, Guijt RM. Chemical Trends in Sample Preparation for Nucleic Acid Amplification Testing (NAAT): A Review. BIOSENSORS 2023; 13:980. [PMID: 37998155 PMCID: PMC10669371 DOI: 10.3390/bios13110980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Nucleic acid amplification testing facilitates the detection of disease through specific genomic sequences and is attractive for point-of-need testing (PONT); in particular, the early detection of microorganisms can alert early response systems to protect the public and ecosystems from widespread outbreaks of biological threats, including infectious diseases. Prior to nucleic acid amplification and detection, extensive sample preparation techniques are required to free nucleic acids and extract them from the sample matrix. Sample preparation is critical to maximize the sensitivity and reliability of testing. As the enzymatic amplification reactions can be sensitive to inhibitors from the sample, as well as from chemicals used for lysis and extraction, avoiding inhibition is a significant challenge, particularly when minimising liquid handling steps is also desirable for the translation of the assay to a portable format for PONT. The reagents used in sample preparation for nucleic acid testing, covering lysis and NA extraction (binding, washing, and elution), are reviewed with a focus on their suitability for use in PONT.
Collapse
Affiliation(s)
- Soo Min Lee
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Hari Kalathil Balakrishnan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Egan H. Doeven
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Dan Yuan
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Rosanne M. Guijt
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
6
|
Posey AE, Ross KA, Bagheri M, Lanum EN, Khan MA, Jennings CE, Harwig MC, Kennedy NW, Hilser VJ, Harden JL, Hill RB. The variable domain from dynamin-related protein 1 promotes liquid-liquid phase separation that enhances its interaction with cardiolipin-containing membranes. Protein Sci 2023; 32:e4787. [PMID: 37743569 PMCID: PMC10578129 DOI: 10.1002/pro.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" important for regulation. For the mitochondrial fission dynamin, dynamin-related protein 1, a regulatory role for the variable domain (VD) is demonstrated by gain- and loss-of-function mutations, yet the basis for this is unclear. Here, the isolated VD is shown to be intrinsically disordered and undergo a cooperative transition in the stabilizing osmolyte trimethylamine N-oxide. However, the osmolyte-induced state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, which appears to promote phase separation. Since dynamin-related protein 1 is found assembled into discrete punctate structures on the mitochondrial surface, the inference from the present work is that these structures might arise from a condensed state involving the VD that may enable rapid tuning of mechanoenzyme assembly necessary for fission.
Collapse
Affiliation(s)
- Ammon E. Posey
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
- Present address:
Department of Biomedical EngineeringWashington UniversitySt. LouisMissouriUSA
| | - Kyle A. Ross
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Mehran Bagheri
- Department of PhysicsUniversity of OttawaOttawaOntarioUSA
| | - Elizabeth N. Lanum
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Misha A. Khan
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | - Megan C. Harwig
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Nolan W. Kennedy
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Vincent J. Hilser
- Program in Molecular BiophysicsJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - R. Blake Hill
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
7
|
Stecher K, Krieger F, Schleeger M, Kiefhaber T. Local and Large-Scale Conformational Dynamics in Unfolded Proteins and IDPs. I. Effect of Solvent Viscosity and Macromolecular Crowding. J Phys Chem B 2023; 127:8095-8105. [PMID: 37722681 PMCID: PMC10544011 DOI: 10.1021/acs.jpcb.3c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Protein/solvent interactions largely influence protein dynamics, particularly motions in unfolded and intrinsically disordered proteins (IDPs). Here, we apply triplet-triplet energy transfer (TTET) to investigate the coupling of internal protein motions to solvent motions by determining the effect of solvent viscosity (η) and macromolecular crowding on the rate constants of loop formation (kc) in several unfolded polypeptide chains including IDPs. The results show that the viscosity dependence of loop formation depends on amino acid sequence, loop length, and co-solute size. Below a critical size (rc), co-solutes exert a maximum effect, indicating that under these conditions microviscosity experienced by chain motions matches macroviscosity of the solvent. rc depends on chain stiffness and reflects the length scale of the chain motions, i.e., it is related to the persistence length. Above rc, the effect of solvent viscosity decreases with increasing co-solute size. For co-solutes typically used to mimic cellular environments, a scaling of kc ∝ η-0.1 is observed, suggesting that dynamics in unfolded proteins are only marginally modulated in cells. The effect of solvent viscosity on kc in the small co-solute limit (below rc) increases with increasing chain length and chain flexibility. Formation of long and very flexible loops exhibits a kc ∝ η-1 viscosity dependence, indicating full solvent coupling. Shorter and less flexible loops show weaker solvent coupling with values as low as kc ∝ η-0.75 ± 0.02. Coupling of formation of short loops to solvent motions is very little affected by amino acid sequence, but solvent coupling of long-range loop formation is decreased by side chain sterics.
Collapse
Affiliation(s)
- Karin Stecher
- Chemistry
Department, Technische Universität
München, Lichtenbergstrasse 4, Garching D-85747, Germany
| | - Florian Krieger
- Biozentrum
der Universität Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Michael Schleeger
- Abteilung
Proteinbiochemie, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| | - Thomas Kiefhaber
- Abteilung
Proteinbiochemie, Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle (Saale) 06120, Germany
| |
Collapse
|
8
|
Knab E, Davis CM. Chemical interactions modulate λ 6-85 stability in cells. Protein Sci 2023; 32:e4698. [PMID: 37313657 PMCID: PMC10288553 DOI: 10.1002/pro.4698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Because steric crowding is most effective when the crowding agent is similar in size to the molecule that it acts upon and the average macromolecule inside cells is much larger than a small protein or peptide, steric crowding is not predicted to affect their folding inside cells. On the other hand, chemical interactions should perturb in-cell structure and stability because they arise from interactions between the surface of the small protein or peptide and its environment. Indeed, previous in vitro measurements of the λ-repressor fragment, λ6-85 , in crowding matrices comprised of Ficoll or protein crowders support these predictions. Here, we directly quantify the in-cell stability of λ6-85 and distinguish the contribution of steric crowding and chemical interactions to its stability. Using a FRET-labeled λ6-85 construct, we find that the fragment is stabilized by 5°C in-cells compared to in vitro. We demonstrate that this stabilization cannot be explained by steric crowding because, as anticipated, Ficoll has no effect on λ6-85 stability. We find that the in-cell stabilization arises from chemical interactions, mimicked in vitro by mammalian protein extraction reagent (M-PER™). Comparison between FRET values in-cell and in Ficoll confirms that U-2 OS cytosolic crowding is reproduced at macromolecule concentrations of 15% w/v. Our measurements validate the cytomimetic of 15% Ficoll and 20% M-PER™ that we previously developed for protein and RNA folding studies. However, because the in-cell stability of λ6-85 is reproduced by 20% v/v M-PER™ alone, we predict that this simplified mixture could be a useful tool to predict the in-cell behaviors of other small proteins and peptides.
Collapse
Affiliation(s)
- Edward Knab
- Department of ChemistryYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
9
|
Posey AE, Bagheri M, Ross KA, Lanum EN, Khan MA, Jennings CM, Harwig MC, Kennedy NW, Hilser VJ, Harden JL, Hill RB. The variable domain from the mitochondrial fission mechanoenzyme Drp1 promotes liquid-liquid phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542732. [PMID: 37398258 PMCID: PMC10312466 DOI: 10.1101/2023.05.29.542732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" (VD) important for regulation. For the mitochondrial fission dynamin, Drp1, a regulatory role for the VD is demonstrated by mutations that can elongate, or fragment, mitochondria. How the VD encodes inhibitory and stimulatory activity is unclear. Here, isolated VD is shown to be intrinsically disordered (ID) yet undergoes a cooperative transition in the stabilizing osmolyte TMAO. However, the TMAO stabilized state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, raising the possibility that phase separation may enable rapid tuning of Drp1 assembly necessary for fission.
Collapse
|
10
|
Hu YY, Liu XL, Yao HD, Jiang YL, Li K, Chen MQ, Wang P, Zhang JP. PEG effects on excitonic properties of LH2 from Rhodobacter sphaeroides 2.4.1 in different environments. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
11
|
Effect of electrolytes on the sol-gel phase transitions in a Pluronic F127/carboxymethyl cellulose aqueous system: phase map, rheology and NMR self-diffusion study. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. A genetically encoded BRET-based SARS-CoV-2 M pro protease activity sensor. Commun Chem 2022; 5:117. [PMID: 36187754 PMCID: PMC9516532 DOI: 10.1038/s42004-022-00731-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
The main protease, Mpro, is critical for SARS-CoV-2 replication and an appealing target for designing anti-SARS-CoV-2 agents. Therefore, there is a demand for the development of improved sensors to monitor its activity. Here, we report a pair of genetically encoded, bioluminescence resonance energy transfer (BRET)-based sensors for detecting Mpro proteolytic activity in live cells as well as in vitro. The sensors were generated by sandwiching peptides containing the Mpro N-terminal autocleavage sites, either AVLQSGFR (short) or KTSAVLQSGFRKME (long), in between the mNeonGreen and NanoLuc proteins. Co-expression of the sensors with Mpro in live cells resulted in their cleavage while mutation of the critical C145 residue (C145A) in Mpro completely abrogated their cleavage. Additionally, the sensors recapitulated the inhibition of Mpro by the well-characterized pharmacological agent GC376. Further, in vitro assays with the BRET-based Mpro sensors revealed a molecular crowding-mediated increase in the rate of Mpro activity and a decrease in the inhibitory potential of GC376. The sensors developed here will find direct utility in studies related to drug discovery targeting the SARS-CoV-2 Mpro and functional genomics application to determine the effect of sequence variation in Mpro.
Collapse
Affiliation(s)
- Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Saad Rasool
- Division of Genomics and Precision Medicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - S. M. Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| |
Collapse
|
13
|
Isogai Y, Imamura H, Sumi T, Shirai T. Improvement of Protein Solubility in Macromolecular Crowding during Myoglobin Evolution. Biochemistry 2022; 61:1543-1547. [PMID: 35674519 DOI: 10.1021/acs.biochem.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inside of living cells is crowded by extremely high concentrations of biomolecules, and thus globular proteins should have been developed to increase their solubility under such crowding conditions during organic evolution. The O2-storage protein myoglobin (Mb) is known to be expressed in myocytes of diving mammals in much larger quantities than those of land mammals. We have previously resurrected ancient whale and pinniped Mbs and experimentally demonstrated that the diving animal Mbs have evolved to maintain high solubility under the crowding conditions or to increase their tolerance against macromolecular precipitants, rather than solubility in a dilute buffer solution. However, the detail of chemical mechanisms of the precipitant tolerance remains unclear. Here, we investigated pH dependence of the precipitant tolerance (β, slope of the solubility against precipitant concentration) of extant Mbs and plotted the β values, as well as those of ancestral Mbs, against their surface net charges (ZMb). The results demonstrated that the precipitant tolerance was approximated by the square of ZMb, that is, β = aZMb2 + b, in which a and b are constants. This effect of ZMb against the precipitation is not predicted by a classical excluded volume theory that gives constant β for Mbs but can be explained by electrostatic repulsion between Mb molecules. The present study elucidates how Mb molecules have evolved to increase their in vivo solubility and shows the physiological significance of either neutral or basic isoelectric points (pI) of the natural Mbs, rather than acidic pI.
Collapse
Affiliation(s)
- Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Hiroshi Imamura
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
14
|
Shih PY, Fang YL, Shankar S, Lee SP, Hu HT, Chen H, Wang TF, Hsia KC, Hsueh YP. Phase separation and zinc-induced transition modulate synaptic distribution and association of autism-linked CTTNBP2 and SHANK3. Nat Commun 2022; 13:2664. [PMID: 35562389 PMCID: PMC9106668 DOI: 10.1038/s41467-022-30353-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Many synaptic proteins form biological condensates via liquid-liquid phase separation (LLPS). Synaptopathy, a key feature of autism spectrum disorders (ASD), is likely relevant to the impaired phase separation and/or transition of ASD-linked synaptic proteins. Here, we report that LLPS and zinc-induced liquid-to-gel phase transition regulate the synaptic distribution and protein-protein interaction of cortactin-binding protein 2 (CTTNBP2), an ASD-linked protein. CTTNBP2 forms self-assembled condensates through its C-terminal intrinsically disordered region and facilitates SHANK3 co-condensation at dendritic spines. Zinc binds the N-terminal coiled-coil region of CTTNBP2, promoting higher-order assemblies. Consequently, it leads to reduce CTTNBP2 mobility and enhance the stability and synaptic retention of CTTNBP2 condensates. Moreover, ASD-linked mutations alter condensate formation and synaptic retention of CTTNBP2 and impair mouse social behaviors, which are all ameliorated by zinc supplementation. Our study suggests the relevance of condensate formation and zinc-induced phase transition to the synaptic distribution and function of ASD-linked proteins. Autism impacts synapses. This study reports that autism-linked mutations of CTTNBP2 regulate phase separation to control synaptic enrichment of that protein. A zinc-induced liquid-to-gel transition improves synaptic retention of CTTNBP2 and SHANK3.
Collapse
Affiliation(s)
- Pu-Yun Shih
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Yu-Lun Fang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sahana Shankar
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Hsin Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Undergraduate Program in Neuroscience, John Hopkins University, Baltimore, USA
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC. .,Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC. .,Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
15
|
Rivas G, Minton A. Influence of Nonspecific Interactions on Protein Associations: Implications for Biochemistry In Vivo. Annu Rev Biochem 2022; 91:321-351. [PMID: 35287477 DOI: 10.1146/annurev-biochem-040320-104151] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular interior is composed of a variety of microenvironments defined by distinct local compositions and composition-dependent intermolecular interactions. We review the various types of nonspecific interactions between proteins and between proteins and other macromolecules and supramolecular structures that influence the state of association and functional properties of a given protein existing within a particular microenvironment at a particular point in time. The present state of knowledge is summarized, and suggestions for fruitful directions of research are offered. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain;
| | - Allen Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
16
|
Fuentes-Lemus E, Reyes JS, Gamon LF, López-Alarcón C, Davies MJ. Effect of macromolecular crowding on protein oxidation: Consequences on the rate, extent and oxidation pathways. Redox Biol 2021; 48:102202. [PMID: 34856437 PMCID: PMC8640551 DOI: 10.1016/j.redox.2021.102202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/02/2022] Open
Abstract
Biological systems are heterogeneous and crowded environments. Such packed milieus are expected to modulate reactions both inside and outside the cell, including protein oxidation. In this work, we explored the effect of macromolecular crowding on the rate and extent of oxidation of Trp and Tyr, in free amino acids, peptides and proteins. These species were chosen as they are readily oxidized and contribute to damage propagation. Dextran was employed as an inert crowding agent, as this polymer decreases the fraction of volume available to other (macro)molecules. Kinetic analysis demonstrated that dextran enhanced the rate of oxidation of free Trp, and peptide Trp, elicited by AAPH-derived peroxyl radicals. For free Trp, the rates of oxidation were 15.0 ± 2.1 and 30.5 ± 3.4 μM min-1 without and with dextran (60 mg mL-1) respectively. Significant increases were also detected for peptide-incorporated Trp. Dextran increased the extent of Trp consumption (up to 2-fold) and induced short chain reactions. In contrast, Tyr oxidation was not affected by the presence of dextran. Studies on proteins, using SDS-PAGE and LC-MS, indicated that oxidation was also affected by crowding, with enhanced amino acid loss (45% for casein), chain reactions and altered extents of oligomer formation. The overall effects of dextran-mediated crowding were however dependent on the protein structure. Overall, these data indicate that molecular crowding, as commonly encountered in biological systems affect the rates, and extents of oxidation, and particularly of Trp residues, illustrating the importance of appropriate choice of in vitro systems to study biological oxidations.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Juan Sebastián Reyes
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luke F Gamon
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - Camilo López-Alarcón
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| |
Collapse
|
17
|
Oeller M, Sormanni P, Vendruscolo M. An open-source automated PEG precipitation assay to measure the relative solubility of proteins with low material requirement. Sci Rep 2021; 11:21932. [PMID: 34753962 PMCID: PMC8578320 DOI: 10.1038/s41598-021-01126-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/18/2021] [Indexed: 02/02/2023] Open
Abstract
The solubility of proteins correlates with a variety of their properties, including function, production yield, pharmacokinetics, and formulation at high concentrations. High solubility is therefore a key requirement for the development of protein-based reagents for applications in life sciences, biotechnology, diagnostics, and therapeutics. Accurate solubility measurements, however, remain challenging and resource intensive, which limits their throughput and hence their applicability at the early stages of development pipelines, when long-lists of candidates are typically available in minute amounts. Here, we present an automated method based on the titration of a crowding agent (polyethylene glycol, PEG) to quantitatively assess relative solubility of proteins using about 200 µg of purified material. Our results demonstrate that this method is accurate and economical in material requirement and costs of reagents, which makes it suitable for high-throughput screening. This approach is freely-shared and based on a low cost, open-source liquid-handling robot. We anticipate that this method will facilitate the assessment of the developability of proteins and make it substantially more accessible.
Collapse
Affiliation(s)
- Marc Oeller
- grid.5335.00000000121885934Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Pietro Sormanni
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK.
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Hirakawa T, Walinda E, Morimoto D, Sugase K. Rigorous analysis of the interaction between proteins and low water-solubility drugs by qNMR-aided NMR titration experiments. Phys Chem Chem Phys 2021; 23:21484-21488. [PMID: 34569579 DOI: 10.1039/d1cp03175a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Drugs are designed and validated based on physicochemical data on their interactions with target proteins. For low water-solubility drugs, however, quantitative analysis is practically impossible without accurate estimation of precipitation. Here we combined quantitative NMR with NMR titration experiments to rigorously quantify the interaction of the low water-solubility drug pimecrolimus with its target protein FKBP12. Notably, the dissociation constants estimated with and without consideration of precipitation differed by more than tenfold. Moreover, the method enabled us to quantitate the FKBP12-pimecrolimus interaction even under a crowded condition established using the protein crowder BSA. Notably, the FKBP12-pimecrolimus interaction was slightly hampered under the crowded environment, which is explained by transient association of BSA with the drug molecules. Collectively, the described method will contribute to both quantifying the binding properties of low water-solubility drugs and to elucidating the drug behavior in complex crowded solutions including living cells.
Collapse
Affiliation(s)
- Takuya Hirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan.
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan.
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan.
| |
Collapse
|
19
|
Odahara T, Odahara Y. Association of protein–detergent particles in the presence of polymers comprised of different degrees of polymerization of oxyethylene subunits. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Kim R, Radhakrishnan ML. Macromolecular crowding effects on electrostatic binding affinity: Fundamental insights from theoretical, idealized models. J Chem Phys 2021; 154:225101. [PMID: 34241219 DOI: 10.1063/5.0042082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The crowded cellular environment can affect biomolecular binding energetics, with specific effects depending on the properties of the binding partners and the local environment. Often, crowding effects on binding are studied on particular complexes, which provide system-specific insights but may not provide comprehensive trends or a generalized framework to better understand how crowding affects energetics involved in molecular recognition. Here, we use theoretical, idealized molecules whose physical properties can be systematically varied along with samplings of crowder placements to understand how electrostatic binding energetics are altered through crowding and how these effects depend on the charge distribution, shape, and size of the binding partners or crowders. We focus on electrostatic binding energetics using a continuum electrostatic framework to understand effects due to depletion of a polar, aqueous solvent in a crowded environment. We find that crowding effects can depend predictably on a system's charge distribution, with coupling between the crowder size and the geometry of the partners' binding interface in determining crowder effects. We also explore the effect of crowder charge on binding interactions as a function of the monopoles of the system components. Finally, we find that modeling crowding via a lowered solvent dielectric constant cannot account for certain electrostatic crowding effects due to the finite size, shape, or placement of system components. This study, which comprehensively examines solvent depletion effects due to crowding, complements work focusing on other crowding aspects to help build a holistic understanding of environmental impacts on molecular recognition.
Collapse
Affiliation(s)
- Rachel Kim
- Department of Chemistry, Wellesley College, Wellesley, Massachusetts 02481, USA
| | | |
Collapse
|
21
|
Modeling protein association from homogeneous to mixed environments: A reaction-diffusion dynamics approach. J Mol Graph Model 2021; 107:107936. [PMID: 34139641 DOI: 10.1016/j.jmgm.2021.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
Protein-protein association in vivo occur in a crowded and complex environment. Theoretical models based on hard-core repulsion predict stabilization of the product under crowded conditions. Soft interactions, on the contrary, can either stabilize or destabilize the product formation. Here we modeled protein association in presence of crowders of varying size, shape, interaction potential and used different mixing parameters for constituent crowders to study the influence on the association reaction. It was found that size is a more dominant factor in crowder-induced stabilization than the shape. Furthermore, in a mixture of crowders having different sizes but identical interaction potential, the change of free energy is additive of the free energy changes produced by individual crowders. However, the free energy change is not additive if two crowders of same size interact via different interaction potentials. These findings provide a systematic understanding of crowding influences in heterogeneous medium.
Collapse
|
22
|
Davis CM, Gruebele M. Cellular Sticking Can Strongly Reduce Complex Binding by Speeding Dissociation. J Phys Chem B 2021; 125:3815-3823. [PMID: 33826329 DOI: 10.1021/acs.jpcb.1c00950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While extensive studies have been carried out to determine protein-RNA binding affinities, mechanisms, and dynamics in vitro, such studies do not take into consideration the effect of the many weak nonspecific interactions in a cell filled with potential binding partners. Here we experimentally tested the role of the cellular environment on affinity and binding dynamics between a protein and RNA in living U-2 OS cells. Our model system is the spliceosomal protein U1A and its binding partner SL2 of the U1 snRNA. The binding equilibrium was perturbed by a laser-induced temperature jump and monitored by Förster resonance energy transfer. The apparent binding affinity in live cells was reduced by up to 2 orders of magnitude compared to in vitro. The measured in-cell dissociation rate coefficients were up to 2 orders of magnitude larger, whereas no change in the measured association rate coefficient was observed. The latter is not what would be anticipated due to macromolecular crowding or nonspecific sticking of the uncomplexed U1A and SL2 in the cell. A quantitative model fits our experimental results, with the major cellular effect being that U1A and SL2 sticking to cellular components are capable of binding, just not as strongly as the free complex. This observation suggests that high binding affinities measured or designed in vitro are necessary for proper binding in vivo, where competition with many nonspecific interactions exists, especially for strongly interacting species with high charge or large hydrophobic surface areas.
Collapse
|
23
|
Mateos B, Bernardo-Seisdedos G, Dietrich V, Zalba N, Ortega G, Peccati F, Jiménez-Osés G, Konrat R, Tollinger M, Millet O. Cosolute modulation of protein oligomerization reactions in the homeostatic timescale. Biophys J 2021; 120:2067-2077. [PMID: 33794151 PMCID: PMC8204390 DOI: 10.1016/j.bpj.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Protein oligomerization processes are widespread and of crucial importance to understand degenerative diseases and healthy regulatory pathways. One particular case is the homo-oligomerization of folded domains involving domain swapping, often found as a part of the protein homeostasis in the crowded cytosol, composed of a complex mixture of cosolutes. Here, we have investigated the effect of a plethora of cosolutes of very diverse nature on the kinetics of a protein dimerization by domain swapping. In the absence of cosolutes, our system exhibits slow interconversion rates, with the reaction reaching the equilibrium within the average protein homeostasis timescale (24-48 h). In the presence of crowders, though, the oligomerization reaction in the same time frame will, depending on the protein's initial oligomeric state, either reach a pure equilibrium state or get kinetically trapped into an apparent equilibrium. Specifically, when the reaction is initiated from a large excess of dimer, it becomes unsensitive to the effect of cosolutes and reaches the same equilibrium populations as in the absence of cosolute. Conversely, when the reaction starts from a large excess of monomer, the reaction during the homeostatic timescale occurs under kinetic control, and it is exquisitely sensitive to the presence and nature of the cosolute. In this scenario (the most habitual case in intracellular oligomerization processes), the effect of cosolutes on the intermediate conformation and diffusion-mediated encounters will dictate how the cellular milieu affects the domain-swapping reaction.
Collapse
Affiliation(s)
- Borja Mateos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain; Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, Vienna, Austria
| | - Ganeko Bernardo-Seisdedos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Valentin Dietrich
- Center of Molecular Biosciences and Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Nicanor Zalba
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Francesca Peccati
- Computational Chemistry Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Gonzalo Jiménez-Osés
- Computational Chemistry Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, Vienna, Austria
| | - Martin Tollinger
- Center of Molecular Biosciences and Institute of Organic Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance, Parque Tecnológico de Bizkaia, Derio, Spain.
| |
Collapse
|
24
|
Megalathan A, Wijesinghe KM, Ranson L, Dhakal S. Single-Molecule Analysis of Nanocircle-Embedded I-Motifs under Crowding. J Phys Chem B 2021; 125:2193-2201. [PMID: 33629846 DOI: 10.1021/acs.jpcb.0c09640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytosine (C)-rich regions of single-stranded DNA or RNA can fold into a tetraplex structure called i-motifs, which are typically stable under acidic pHs due to the need for protons to stabilize C-C interactions. While new studies have shown evidence for the formation of i-motifs at neutral and even physiological pH, it is not clear whether i-motifs can stably form in cells where DNA experiences topological constraint and crowding. Similarly, several studies have shown that a molecularly crowded environment promotes the formation of i-motifs at physiological pH; however, whether the intracellular crowding counteracts the topological destabilization of i-motifs is yet to be investigated. In this manuscript, using fluorescence resonance energy transfer (FRET)-based single-molecule analyses of human telomeric (hTel) i-motifs embedded in nanocircles as a proof-of-concept platform, we investigated the overall effects of crowding and topological constraint on the i-motif behavior. The smFRET analysis of the nanoassembly showed that the i-motif remains folded at pH 5.5 but unfolds at higher pHs. However, in the presence of a crowder (30% PEG 6000), i-motifs are formed at physiological pH overcoming the topological constraint imposed by the DNA nanocircles. Analysis of FRET-time traces show that the hTel sequence primarily assumes the folded state at pH ≤7.0 under crowding, but it undergoes slow conformational transitions between the folded and unfolded states at physiological pH. Our demonstration that the i-motif can form under cell-mimic crowding and topologically constrained environments may provide new insights into the potential biological roles of i-motifs and also into the design and development of i-motif-based biosensors, therapy, and other nanotechnological applications.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Leslie Ranson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
25
|
Wilcox XE, Chung CB, Slade KM. Macromolecular crowding effects on the kinetics of opposing reactions catalyzed by alcohol dehydrogenase. Biochem Biophys Rep 2021; 26:100956. [PMID: 33665382 PMCID: PMC7905371 DOI: 10.1016/j.bbrep.2021.100956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/01/2022] Open
Abstract
In order to better understand how the complex, densely packed, heterogeneous milieu of a cell influences enzyme kinetics, we exposed opposing reactions catalyzed by yeast alcohol dehydrogenase (YADH) to both synthetic and protein crowders ranging from 10 to 550 kDa. The results reveal that the effects from macromolecular crowding depend on the direction of the reaction. The presence of the synthetic polymers, Ficoll and dextran, decrease Vmax and Km for ethanol oxidation. In contrast, these crowders have little effect or even increase these kinetic parameters for acetaldehyde reduction. This increase in Vmax is likely due to excluded volume effects, which are partially counteracted by viscosity hindering release of the NAD+ product. Macromolecular crowding is further complicated by the presence of a depletion layer in solutions of dextran larger than YADH, which diminishes the hindrance from viscosity. The disparate effects from 25 g/L dextran or glucose compared to 25 g/L Ficoll or sucrose reveals that soft interactions must also be considered. Data from binary mixtures of glucose, dextran, and Ficoll support this “tuning” of opposing factors. While macromolecular crowding was originally proposed to influence proteins mainly through excluded volume effects, this work compliments the growing body of evidence revealing that other factors, such as preferential hydration, chemical interactions, and the presence of a depletion layer also contribute to the overall effect of crowding. Yeast alcohol dehydrogenase reduction of acetaldehyde is enhanced by crowding. Crowding effects on YADH kinetics depend on the direction of the reaction. Crowders like dextran can be used as a tool to elucidate enzyme mechanism. Excluded volume optimizes YADH hydride transfer; viscosity hinders product release. The presence of a depletion layer with large crowders mitigates their effects.
Collapse
Affiliation(s)
- Xander E Wilcox
- Department of Chemistry, University of California at Davis, CA, 95616, USA
| | - Charmaine B Chung
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney St, Geneva, NY, 14456, USA
| | - Kristin M Slade
- Department of Chemistry, Hobart and William Smith Colleges, 300 Pulteney St, Geneva, NY, 14456, USA
| |
Collapse
|
26
|
Stadmiller SS, Pielak GJ. Protein-complex stability in cells and in vitro under crowded conditions. Curr Opin Struct Biol 2020; 66:183-192. [PMID: 33285342 DOI: 10.1016/j.sbi.2020.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 11/29/2022]
Abstract
Biology is beginning to appreciate the effects of the crowded and complex intracellular environment on the equilibrium thermodynamics and kinetics of protein folding. The next logical step involves the interactions between proteins. We review quantitative, wet-experiment based efforts aimed at understanding how and why high concentrations of small molecules, synthetic polymers, biologically relevant cosolutes and the interior of living cells affect the energetics of protein-protein interactions. We then address popular theories used to explain the effects and suggest expeditious paths for a more methodical integration of experiment and simulation.
Collapse
Affiliation(s)
- Samantha S Stadmiller
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-3290, USA; Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Stadmiller SS, Aguilar JS, Parnham S, Pielak GJ. Protein–Peptide Binding Energetics under Crowded Conditions. J Phys Chem B 2020; 124:9297-9309. [DOI: 10.1021/acs.jpcb.0c05578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Samantha S. Stadmiller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jhoan S. Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stuart Parnham
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
28
|
Soleja N, Irfan, Mohsin M. Ratiometric imaging of flux dynamics of cobalt with an optical sensor. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Suen KM, Braukmann F, Butler R, Bensaddek D, Akay A, Lin CC, Milonaitytė D, Doshi N, Sapetschnig A, Lamond A, Ladbury JE, Miska EA. DEPS-1 is required for piRNA-dependent silencing and PIWI condensate organisation in Caenorhabditis elegans. Nat Commun 2020; 11:4242. [PMID: 32843637 PMCID: PMC7447803 DOI: 10.1038/s41467-020-18089-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/18/2020] [Indexed: 12/13/2022] Open
Abstract
Membraneless organelles are sites for RNA biology including small non-coding RNA (ncRNA) mediated gene silencing. How small ncRNAs utilise phase separated environments for their function is unclear. We investigated how the PIWI-interacting RNA (piRNA) pathway engages with the membraneless organelle P granule in Caenorhabditis elegans. Proteomic analysis of the PIWI protein PRG-1 reveals an interaction with the constitutive P granule protein DEPS-1. DEPS-1 is not required for piRNA biogenesis but piRNA-dependent silencing: deps-1 mutants fail to produce the secondary endo-siRNAs required for the silencing of piRNA targets. We identify a motif on DEPS-1 which mediates a direct interaction with PRG-1. DEPS-1 and PRG-1 form intertwining clusters to build elongated condensates in vivo which are dependent on the Piwi-interacting motif of DEPS-1. Additionally, we identify EDG-1 as an interactor of DEPS-1 and PRG-1. Our study reveals how specific protein-protein interactions drive the spatial organisation and piRNA-dependent silencing within membraneless organelles.
Collapse
Affiliation(s)
- Kin Man Suen
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Fabian Braukmann
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Richard Butler
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Dalila Bensaddek
- Laboratory for Quantitative Proteomics, Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
- Bioscience Core labs, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Alper Akay
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Chi-Chuan Lin
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - Dovilė Milonaitytė
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - Neel Doshi
- University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0SP, UK
| | | | - Angus Lamond
- Laboratory for Quantitative Proteomics, Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - John Edward Ladbury
- School of Molecular and Cellular Biology, University of Leeds, LC Miall Building, Leeds, LS2 9JT, UK
| | - Eric Alexander Miska
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
30
|
Raina N, Singh AK, Hassan MI, Ahmad F, Islam A. Concentration dependent effect of ethylene glycol on the structure and stability of holo α-lactalbumin: Characterization of intermediate state amidst soft interactions. Int J Biol Macromol 2020; 164:2151-2161. [PMID: 32735932 DOI: 10.1016/j.ijbiomac.2020.07.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
The interior of the cell is crowded with different kinds of biological molecules with varying sizes, shapes and compositions which may affect physiological processes especially protein folding, protein conformation and protein stability. To understand the consequences of such a crowded environment, pH-induced unfolding of holo alpha-lactalbumin (holo α-LA) was studied in the presence of ethylene glycol (EG). The effect of EG on the folding and stability of holo α-LA in aqueous solution was investigated using several spectroscopic techniques. The results indicate that stabilization/destabilization of holo α-LA by EG is concentration- and pH-dependent. Low concentration of EG stabilizes the protein at pH near its pI. From the results of far-UV CD, UV-visible and ANS fluorescence, intermediate state (MG state) was characterized in the presence of high concentration of ethylene glycol. The results invoke a new mechanism for the formation of MG state identical to active component of BAMLET. MG state of holo α-LA has a direct implication to cancer therapy. MG state of α-LA in complex with specific type of lipid is a novel class of protein-based anti-cancer complexes that incorporate oleic acid and deliver it to the cancer cells.
Collapse
Affiliation(s)
- Neha Raina
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
31
|
Davis CM, Gruebele M. Cytoskeletal Drugs Modulate Off-Target Protein Folding Landscapes Inside Cells. Biochemistry 2020; 59:2650-2659. [PMID: 32567840 DOI: 10.1021/acs.biochem.0c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The dynamic cytoskeletal network of microtubules and actin filaments can be disassembled by drugs. Cytoskeletal drugs work by perturbing the monomer-polymer equilibrium, thus changing the size and number of macromolecular crowders inside cells. Changes in both crowding and nonspecific surface interactions ("sticking") following cytoskeleton disassembly can affect the protein stability, structure, and function directly or indirectly by changing the fluidity of the cytoplasm and altering the crowding and sticking of other macromolecules in the cytoplasm. The effect of cytoskeleton disassembly on protein energy landscapes inside cells has yet to be observed. Here we have measured the effect of several cytoskeletal drugs on the folding energy landscape of two FRET-labeled proteins with different in vitro sensitivities to macromolecular crowding. Phosphoglycerate kinase (PGK) was previously shown to be more sensitive to crowding, whereas variable major protein-like sequence expressed (VlsE) was previously shown to be more sensitive to sticking. The in-cell effects of drugs that depolymerize either actin filaments (cytochalasin D and latrunculin B) or microtubules (nocodazole and vinblastine) were compared. The crowding sensor protein CrH2-FRET verified that cytoskeletal drugs decrease the extent of crowding inside cells despite also reducing the overall cell volume. The decreased compactness and folding stability of PGK could be explained by the decreased extent of crowding induced by these drugs. VlsE's opposite response to the drugs shows that depolymerization of the cytoskeleton also changes sticking in the cellular milieu. Our results demonstrate that perturbation of the monomer-polymer cytoskeletal equilibrium, for example, during natural cell migration or stresses from drug treatment, has off-target effects on the energy landscapes of proteins in the cell.
Collapse
|
32
|
Influence of crowding agents on the dynamics of a multidomain protein in its denatured state: a solvation approach. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:289-305. [PMID: 32399581 DOI: 10.1007/s00249-020-01435-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
It is now well appreciated that the crowded intracellular environment significantly modulates an array of physiological processes including protein folding-unfolding, aggregation, and dynamics to name a few. In this work we have studied the dynamics of domain I of the protein human serum albumin (HSA) in its urea-induced denatured states, in the presence of a series of commonly used macromolecular crowding agents. HSA was labeled at Cys-34 (a free cysteine) in domain I with the fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN) to act as a solvation probe. In partially denatured states (2-6 M urea), lower crowder concentrations (~ < 125 g/L) induced faster dynamics, while the dynamics became slower beyond 150 g/L of crowders. We propose that this apparent switch in dynamics is an evidence of a crossover from soft (enthalpic) to hard-core (entropic) interactions between the protein and crowder molecules. That soft interactions are also important for the crowders used here was further confirmed by the appreciable shift in the wavelength of the emission maximum of BADAN, in particular for PEG8000 and Ficoll 70 at concentrations where the excluded volume effect is not dominant.
Collapse
|
33
|
Davis CM, Deutsch J, Gruebele M. An in vitro mimic of in-cell solvation for protein folding studies. Protein Sci 2020; 29:1060-1068. [PMID: 31994240 DOI: 10.1002/pro.3833] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
Ficoll, an inert macromolecule, is a common in vitro crowder, but by itself it does not reproduce in-cell stability or kinetic trends for protein folding. Lysis buffer, which contains ions, glycerol as a simple kosmotrope, and mimics small crowders with hydrophilic/hydrophobic patches, can reproduce sticking trends observed in cells but not the crowding. We previously suggested that the proper combination of Ficoll and lysis buffer could reproduce the opposite in-cell folding stability trend of two proteins: variable major protein-like sequence expressed (VlsE) is destabilized in eukaryotic cells and phosphoglycerate kinase (PGK) is stabilized. Here, to discover a well-characterized solvation environment that mimics in-cell stabilities for these two very differently behaved proteins, we conduct a two-dimensional scan of Ficoll (0-250 mg/ml) and lysis buffer (0-75%) mixtures. Contrary to our previous expectation, we show that mixtures of Ficoll and lysis buffer have a significant nonadditive effect on the folding stability. Lysis buffer enhances the stabilizing effect of Ficoll on PGK and inhibits the stabilizing effect of Ficoll on VlsE. We demonstrate that a combination of 150 mg/ml Ficoll and 60% lysis buffer can be used as an in vitro mimic to account for both crowding and non-steric effects on PGK and VlsE stability and folding kinetics in the cell. Our results also suggest that this mixture is close to the point where phase separation will occur. The simple mixture proposed here, based on commercially available reagents, could be a useful tool to study a variety of cytoplasmic protein interactions, such as folding, binding and assembly, and enzymatic reactions. SIGNIFICANCE STATEMENT: The complexity of the in-cell environment is difficult to reproduce in the test tube. Here we validate a mimic of cellular crowding and sticking interactions in a test tube using two proteins that are differently impacted by the cell: one is stabilized and the other is destabilized. This mimic is a starting point to reproduce cellular effects on a variety of protein and biomolecular interactions, such as folding and binding.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jonathan Deutsch
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Martin Gruebele
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
34
|
Arjunan SNV, Miyauchi A, Iwamoto K, Takahashi K. pSpatiocyte: a high-performance simulator for intracellular reaction-diffusion systems. BMC Bioinformatics 2020; 21:33. [PMID: 31996129 PMCID: PMC6990473 DOI: 10.1186/s12859-019-3338-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022] Open
Abstract
Background Studies using quantitative experimental methods have shown that intracellular spatial distribution of molecules plays a central role in many cellular systems. Spatially resolved computer simulations can integrate quantitative data from these experiments to construct physically accurate models of the systems. Although computationally expensive, microscopic resolution reaction-diffusion simulators, such as Spatiocyte can directly capture intracellular effects comprising diffusion-limited reactions and volume exclusion from crowded molecules by explicitly representing individual diffusing molecules in space. To alleviate the steep computational cost typically associated with the simulation of large or crowded intracellular compartments, we present a parallelized Spatiocyte method called pSpatiocyte. Results The new high-performance method employs unique parallelization schemes on hexagonal close-packed (HCP) lattice to efficiently exploit the resources of common workstations and large distributed memory parallel computers. We introduce a coordinate system for fast accesses to HCP lattice voxels, a parallelized event scheduler, a parallelized Gillespie’s direct-method for unimolecular reactions, and a parallelized event for diffusion and bimolecular reaction processes. We verified the correctness of pSpatiocyte reaction and diffusion processes by comparison to theory. To evaluate the performance of pSpatiocyte, we performed a series of parallelized diffusion runs on the RIKEN K computer. In the case of fine lattice discretization with low voxel occupancy, pSpatiocyte exhibited 74% parallel efficiency and achieved a speedup of 7686 times with 663552 cores compared to the runtime with 64 cores. In the weak scaling performance, pSpatiocyte obtained efficiencies of at least 60% with up to 663552 cores. When executing the Michaelis-Menten benchmark model on an eight-core workstation, pSpatiocyte required 45- and 55-fold shorter runtimes than Smoldyn and the parallel version of ReaDDy, respectively. As a high-performance application example, we study the dual phosphorylation-dephosphorylation cycle of the MAPK system, a typical reaction network motif in cell signaling pathways. Conclusions pSpatiocyte demonstrates good accuracies, fast runtimes and a significant performance advantage over well-known microscopic particle methods in large-scale simulations of intracellular reaction-diffusion systems. The source code of pSpatiocyte is available at https://spatiocyte.org.
Collapse
Affiliation(s)
| | - Atsushi Miyauchi
- Research Organization for Information Science and Technology, Chuo, Kobe, Japan
| | - Kazunari Iwamoto
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Koichi Takahashi
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| |
Collapse
|
35
|
Basak S, Sengupta S, Chattopadhyay K. Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells. Biophys Rev 2019; 11:851-872. [PMID: 31444739 PMCID: PMC6957588 DOI: 10.1007/s12551-019-00580-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 01/24/2023] Open
Abstract
In order to maintain cellular function, biomolecules like protein, DNA, and RNAs have to diffuse to the target spaces within the cell. Changes in the cytosolic microenvironment or in the nucleus during the fulfillment of these cellular processes affect their mobility, folding, and stability thereby impacting the transient or stable interactions with their adjacent neighbors in the organized and dynamic cellular interior. Using classical Brownian motion to elucidate the diffusion behavior of these biomolecules is hard considering their complex nature. The understanding of biomolecular diffusion inside cells still remains elusive due to the lack of a proper model that can be extrapolated to these cases. In this review, we have comprehensively addressed the progresses in this field, laying emphasis on the different aspects of anomalous diffusion in the different biochemical reactions in cell interior. These experiment-based models help to explain the diffusion behavior of biomolecules in the cytosolic and nuclear microenvironment. Moreover, since understanding of biochemical reactions within living cellular system is our main focus, we coupled the experimental observations with the concept of sub-diffusion from in vitro to in vivo condition. We believe that the pairing between the understanding of complex behavior and structure-function paradigm of biological molecules would take us forward by one step in order to solve the puzzle around diseases caused by cellular dysfunction.
Collapse
Affiliation(s)
- Sujit Basak
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Sombuddha Sengupta
- Protein Folding and Dynamics Lab, Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Lab, Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| |
Collapse
|
36
|
Kim DM, Yao X, Vanam RP, Marlow MS. Measuring the effects of macromolecular crowding on antibody function with biolayer interferometry. MAbs 2019; 11:1319-1330. [PMID: 31401928 PMCID: PMC6748605 DOI: 10.1080/19420862.2019.1647744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biotherapeutic proteins are commonly dosed at high concentrations into the blood, which is an inherently complex, crowded solution with substantial protein content. The effects of macromolecular crowding may lead to an appreciable level of non-specific hetero-association in this physiological environment. Therefore, developing a method to characterize the diverse consequences of non-specific interactions between proteins under such non-ideal, crowded conditions, which deviate substantially from those commonly employed for in vitro characterization, is vital to achieving a more complete picture of antibody function in a biological context. In this study, we investigated non-specific interactions between human serum albumin (HSA) and two monoclonal antibodies (mAbs) by static light scattering and determined these interactions are both ionic strength-dependent and mAb-dependent. Using biolayer interferometry (BLI), we assessed the effect of HSA on antigen binding by mAbs, demonstrating that these non-specific interactions have a functional impact on mAb:antigen interactions, particularly at low ionic strength. While this effect is mitigated at physiological ionic strength, our in vitro data support the notion that HSA in the blood may lead to non-specific interactions with mAbs in vivo, with a potential impact on their interactions with antigen. Furthermore, the BLI method offers a high-throughput advantage compared to orthogonal techniques such as analytical ultracentrifugation and is amenable to a greater variety of solution conditions compared to nuclear magnetic resonance spectroscopy. Our study demonstrates that BLI is a viable technology for examining the impact of non-specific interactions on specific biologically relevant interactions, providing a direct method to assess binding events in crowded conditions.
Collapse
Affiliation(s)
- Dorothy M Kim
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Xiao Yao
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Ram P Vanam
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Michael S Marlow
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA.,Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc ., Ridgefield , CT , USA
| |
Collapse
|
37
|
Soleja N, Manzoor O, Khan P, Mohsin M. Engineering genetically encoded FRET-based nanosensors for real time display of arsenic (As 3+) dynamics in living cells. Sci Rep 2019; 9:11240. [PMID: 31375744 PMCID: PMC6677752 DOI: 10.1038/s41598-019-47682-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Arsenic poisoning has been a major concern that causes severe toxicological damages. Therefore, intricate and inclusive understanding of arsenic flux rates is required to ascertain the cellular concentration and establish the carcinogenetic mechanism of this toxicant at real time. The lack of sufficiently sensitive sensing systems has hampered research in this area. In this study, we constructed a fluorescent resonance energy transfer (FRET)-based nanosensor, named SenALiB (Sensor for Arsenic Linked Blackfoot disease) which contains a metalloregulatory arsenic-binding protein (ArsR) as the As3+ sensing element inserted between the FRET pair enhanced cyan fluorescent protein (ECFP) and Venus. SenALiB takes advantage of the ratiometic FRET readout which measures arsenic with high specificity and selectivity. SenALiB offers rapid detection response, is stable to pH changes and provides highly accurate, real-time optical readout in cell-based assays. SenALiB-676n with a binding constant (Kd) of 0.676 × 10−6 M is the most efficient affinity mutant and can be a versatile tool for dynamic measurement of arsenic concentration in both prokaryotes and eukaryotes in vivo in a non-invasive manner.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ovais Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
38
|
Haridasan N, Kannam SK, Mogurampelly S, Sathian SP. Rotational Diffusion of Proteins in Nanochannels. J Phys Chem B 2019; 123:4825-4832. [DOI: 10.1021/acs.jpcb.9b00895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Navaneeth Haridasan
- Micro and Nanoscale Transport Lab, Applied Mechanics Department, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sridhar Kumar Kannam
- Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- School of Sciences, RMIT University, Melbourne, Victoria 3001, Australia
| | - Santosh Mogurampelly
- Institute for Computational Molecular Science, Temple University, Philadelphia 19122, United States
- Department of Physics, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
| | - Sarith P Sathian
- Micro and Nanoscale Transport Lab, Applied Mechanics Department, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
39
|
Larimi MG, Mayse LA, Movileanu L. Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions. ACS NANO 2019; 13:4469-4477. [PMID: 30925041 PMCID: PMC6482057 DOI: 10.1021/acsnano.9b00008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Molecular crowding, a ubiquitous feature of the cellular environment, has significant implications in the kinetics and equilibrium of biopolymer interactions. In this study, a single charged polypeptide is exposed to competing forces that drive it into a transmembrane protein pore versus forces that pull it outside. Using single-molecule electrophysiology, we provide compelling experimental evidence that the kinetic details of the polypeptide-pore interactions are substantially affected by high concentrations of less-penetrating polyethylene glycols (PEGs). At a polymer concentration above a critical value, the presence of these neutral macromolecular crowders increases the rate constant of association but decreases the rate constant of dissociation, resulting in a stronger polypeptide-pore interaction. Moreover, a larger-molecular weight PEG exhibits a lower rate constant of association but a higher rate constant of dissociation than those values corresponding to a smaller-molecular weight PEG. These outcomes are in accord with a lower diffusion constant of the polypeptide and higher depletion-attraction forces between the polypeptide and transmembrane protein pore under crowding and confinement conditions.
Collapse
Affiliation(s)
- Motahareh Ghahari Larimi
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Lauren Ashley Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
40
|
Abstract
This study reports the first experimental evidence of using DNA as a polymeric additive to enhance protein crystallization. Using three kinds of DNA with different molecular weights—calf DNA, salmon DNA, and herring DNA—this study showed an improvement in the success rate of lysozyme crystallization, as compared to control experiments, especially at low lysozyme concentration. The improvement of crystallization is particularly significant in the presence of calf DNA with the highest molecular weight. Calf DNA also speeds up the induction time of lysozyme crystallization and increases the number of crystals per drop. We hypothesized the effect of DNA on protein crystallization may be due to the combination of excluded volume effect, change of water’s surface tension, and the water competition effect. This work confirms predications of the potential use of DNA as a polymeric additive to enhance protein crystallization, potentially applied to systems with limited protein available or difficult to crystallize.
Collapse
|
41
|
Colizzi F, Hospital A, Zivanovic S, Orozco M. Predicting the Limit of Intramolecular Hydrogen Bonding with Classical Molecular Dynamics. Angew Chem Int Ed Engl 2019; 58:3759-3763. [DOI: 10.1002/anie.201810922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/17/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Sanja Zivanovic
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
- Departament de Bioquímica i Biomedicina, Facultat de BiologiaUniversitat de Barcelona Avgda Diagonal 647 Barcelona 08028 Spain
| |
Collapse
|
42
|
Colizzi F, Hospital A, Zivanovic S, Orozco M. Predicting the Limit of Intramolecular Hydrogen Bonding with Classical Molecular Dynamics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Sanja Zivanovic
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
- Departament de Bioquímica i Biomedicina, Facultat de BiologiaUniversitat de Barcelona Avgda Diagonal 647 Barcelona 08028 Spain
| |
Collapse
|
43
|
Parray ZA, Ahamad S, Ahmad F, Hassan MI, Islam A. First evidence of formation of pre-molten globule state in myoglobin: A macromolecular crowding approach towards protein folding in vivo. Int J Biol Macromol 2018; 126:1288-1294. [PMID: 30586590 DOI: 10.1016/j.ijbiomac.2018.12.170] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023]
Abstract
Myoglobin is known to show formation of intermediate states under various environmental conditions, in spite of that, this is the first evidence of formation pre-molten globule (PMG) in myoglobin. Polyethylene glycol (PEG) of various molecular sizes shows assorted effects on different proteins. Out of too short and too long PEGs, only PEGs of optimal size interact with proteins leading to change in protein structure that form intermediate state. We are the first one to report the formation of PMG in a protein in the presence of a crowding agent. The PEG-induced intermediate state was characterized by various techniques like absorption, fluorescence, near- and far-UV circular dichroism spectroscopy, ANS binding, and dynamic light scattering measurements to be PMG. Isothermal titration calorimetry and docking studies were further carried out to delineate the mechanism of formation of PMG in myoglobin in physiological conditions. The intermediate formed due to interaction of PEG with myoglobin has physiological implications which are essential to unravel the mystery to solve the massively complicated problems involved in the proper folding of proteins in vivo. Further, outcomes from this study are expected to gain mechanistic insights on the native structure and functions of proteins under in vivo conditions.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shahzaib Ahamad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
44
|
Esadze A, Stivers JT. Facilitated Diffusion Mechanisms in DNA Base Excision Repair and Transcriptional Activation. Chem Rev 2018; 118:11298-11323. [PMID: 30379068 DOI: 10.1021/acs.chemrev.8b00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preservation of the coding potential of the genome and highly regulated gene expression over the life span of a human are two fundamental requirements of life. These processes require the action of repair enzymes or transcription factors that efficiently recognize specific sites of DNA damage or transcriptional regulation within a restricted time frame of the cell cycle or metabolism. A failure of these systems to act results in accumulated mutations, metabolic dysfunction, and disease. Despite the multifactorial complexity of cellular DNA repair and transcriptional regulation, both processes share a fundamental physical requirement that the proteins must rapidly diffuse to their specific DNA-binding sites that are embedded within the context of a vastly greater number of nonspecific DNA-binding sites. Superimposed on the needle-in-the-haystack problem is the complex nature of the cellular environment, which contains such high concentrations of macromolecules that the time frame for diffusion is expected to be severely extended as compared to dilute solution. Here we critically review the mechanisms for how these proteins solve the needle-in-the-haystack problem and how the effects of cellular macromolecular crowding can enhance facilitated diffusion processes. We restrict the review to human proteins that use stochastic, thermally driven site-recognition mechanisms, and we specifically exclude systems involving energy cofactors or circular DNA clamps. Our scope includes ensemble and single-molecule studies of the past decade or so, with an emphasis on connecting experimental observations to biological function.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| |
Collapse
|
45
|
Guseman AJ, Perez Goncalves GM, Speer SL, Young GB, Pielak GJ. Protein shape modulates crowding effects. Proc Natl Acad Sci U S A 2018; 115:10965-10970. [PMID: 30301792 PMCID: PMC6205421 DOI: 10.1073/pnas.1810054115] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein-protein interactions are usually studied in dilute buffered solutions with macromolecule concentrations of <10 g/L. In cells, however, the macromolecule concentration can exceed 300 g/L, resulting in nonspecific interactions between macromolecules. These interactions can be divided into hard-core steric repulsions and "soft" chemical interactions. Here, we test a hypothesis from scaled particle theory; the influence of hard-core repulsions on a protein dimer depends on its shape. We tested the idea using a side-by-side dumbbell-shaped dimer and a domain-swapped ellipsoidal dimer. Both dimers are variants of the B1 domain of protein G and differ by only three residues. The results from the relatively inert synthetic polymer crowding molecules, Ficoll and PEG, support the hypothesis, indicating that the domain-swapped dimer is stabilized by hard-core repulsions while the side-by-side dimer shows little to no stabilization. We also show that protein cosolutes, which interact primarily through nonspecific chemical interactions, have the same small effect on both dimers. Our results suggest that the shape of the protein dimer determines the influence of hard-core repulsions, providing cells with a mechanism for regulating protein-protein interactions.
Collapse
Affiliation(s)
- Alex J Guseman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | - Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gregory B Young
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
46
|
Kozlowski R, Ragupathi A, Dyer RB. Characterizing the Surface Coverage of Protein-Gold Nanoparticle Bioconjugates. Bioconjug Chem 2018; 29:2691-2700. [PMID: 30004227 PMCID: PMC6093776 DOI: 10.1021/acs.bioconjchem.8b00366] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Functional enzyme-nanoparticle bioconjugates are increasingly important in biomedical and biotechnology applications such as drug delivery and biosensing. Optimization of the function of such bioconjugates requires careful control and characterization of their structures and activity, but current methods are inadequate for this purpose. A key shortcoming of existing approaches is the lack of an accurate method for quantitating protein content of bioconjugates for low (monolayer) surface coverages. In this study, an integrated characterization methodology for protein-gold nanoparticle (AuNP) bioconjugates is developed, with a focus on site-specific attachment and surface coverage of protein on AuNPs. Single-cysteine-containing mutants of dihydrofolate reductase are covalently attached to AuNPs with diameters of 5, 15, and 30 nm, providing a range of surface curvature. Site-specific attachment to different regions of the protein surface is investigated, including attachment to a flexible loop versus a rigid α helix. Characterization methods include SDS-PAGE, UV-vis spectrophotometry, dynamic light scattering, and a novel fluorescence-based method for accurate determination of low protein concentration on AuNPs. An accurate determination of both protein and AuNP concentration in conjugate samples allows for the calculation of the surface coverage. We find that surface coverage is related to the surface curvature of the AuNP, with a higher surface coverage observed for higher surface curvature. The combination of these characterization methods is important for understanding the functionality of protein-AuNP bioconjugates, particularly enzyme activity.
Collapse
Affiliation(s)
- Rachel Kozlowski
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ashwin Ragupathi
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
47
|
Davis CM, Gruebele M. Non-Steric Interactions Predict the Trend and Steric Interactions the Offset of Protein Stability in Cells. Chemphyschem 2018; 19:2290-2294. [PMID: 29877016 DOI: 10.1002/cphc.201800534] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 01/15/2023]
Abstract
Although biomolecules evolved to function in the cell, most biochemical assays are carried out in vitro. In-cell studies highlight how steric and non-steric interactions modulate protein folding and interactions. VlsE and PGK present two extremes of chemical behavior in the cell: the extracellular protein VlsE is destabilized in eukaryotic cells, whereas the cytoplasmic protein PGK is stabilized. VlsE and PGK are benchmarks in a systematic series of solvation environments to distinguish contributions from non-steric and steric interactions to protein stability, compactness, and folding rate by comparing cell lysate, a crowding agent, ionic buffer and lysate buffer with in-cell results. As anticipated, crowding stabilizes proteins, causes compaction, and can speed folding. Protein flexibility determines its sensitivity to steric interactions or crowding. Non-steric interactions alone predict in-cell stability trends, while crowding provides an offset towards greater stabilization. We suggest that a simple combination of lysis buffer and Ficoll is an effective new in vitro mimic of the intracellular environment on protein folding and stability.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Chemistry and Department of Physics, University of Illinois at Urbana-Champaign Urbana, Illinois, 61801, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana, Illinois, 61801, United States.,Department of Chemistry and Department of Physics, University of Illinois at Urbana-Champaign Urbana, Illinois, 61801, United States
| |
Collapse
|
48
|
Majumdar BB, Ebbinghaus S, Heyden M. Macromolecular crowding effects in flexible polymer solutions. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618400060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biological environments are often “crowded” due to high concentrations (300–400[Formula: see text]g/L) of macromolecules. Computational modeling approaches like Molecular Dynamics (MD), rigid-body Brownian Dynamics and Monte Carlo simulations have recently emerged, which allow to study the effects macromolecular crowding at a microscopic level and to provide complementary information to experiments. Here, we use a recently introduced multiple-conformation Monte Carlo (mcMC) approach in order to study the influence of intermolecular interactions on the structural equilibrium of flexible polyethylene glycol (PEG) polymers under self-crowding conditions. The large conformational space accessible to PEG polymers allows us to evaluate the general applicability of the mcMC approach, which describes the intramolecular degrees of freedom by a finite-size ensemble of discrete conformations. Despite the simplicity of the approach, we show that influences of intermolecular interactions on the intramolecular free energy surface can be described qualitatively using mcMC. By varying the magnitude of distinct terms in the intermolecular potential, we can further study the compensating effects of repulsive and nonspecific attractive intermolecular interactions, which favor compact and extended polymer states, respectively. We use our simulation results to derive an analytical model that describes the effects of intermolecular interactions on the stability of PEG polymer conformations as a function of the radius of gyration and the corresponding solvent accessible surface. We use this model to confirm the role of molecular surfaces for attractive interactions that can counteract excluded volume effects. Extrapolation of the model further allows for the analysis of scenarios that are not easily accessible to direct simulations as described here.
Collapse
Affiliation(s)
- Bibhab Bandhu Majumdar
- Theoretische Chemie, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, Technical University, Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, 551 E. University Dr., Tempe, AZ 85281, USA
| |
Collapse
|
49
|
Biswas S, Kundu J, Mukherjee SK, Chowdhury PK. Mixed Macromolecular Crowding: A Protein and Solvent Perspective. ACS OMEGA 2018; 3:4316-4330. [PMID: 30023892 PMCID: PMC6044960 DOI: 10.1021/acsomega.7b01864] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
In the living cell, biomolecules perform their respective functions in the presence of not only one type of macromolecules but rather in the presence of various macromolecules with different shapes and sizes. In this study, we have investigated the effects of five single macromolecular crowding agents, Dextran 6, Dextran 40, Dextran 70, Ficoll 70, and PEG 8000 and their binary mixtures on the modulation in the domain separation of human serum albumin using a Förster resonance energy transfer-based approach and the translational mobility of a small fluorescent probe fluorescein isothiocyanate (FITC) using fluorescence correlation spectroscopy (FCS). Our observations suggest that mixed crowding induces greater cooperativity in the domain movement as compared to the components of the mixtures. Thermodynamic analyses of the same provide evidence of crossovers from enthalpy-based interactions to effects dominated by hard-sphere potential. When compared with those obtained for individual crowders, both domain movements and FITC diffusion studies show significant deviations from ideality, with an ideal solution being considered to be that arising from the sum of the contributions of those obtained in the presence of individual crowding agents. Considering the fact that domain movements are local (on the order of a few angstroms) in nature while translational movements span much larger lengthscales, our results imply that the observed deviation from simple additivity exists at several possible levels or lengthscales in such mixtures. Moreover, the nature and the type of deviation not only depend on the identities of the components of the crowder mixtures but are also influenced by the particular face of the serum protein (either the domain I-II or the domain II-III face) that the crowders interact with, thus providing further insights into the possible existence of microheterogeneities in such solutions.
Collapse
|
50
|
Guseman AJ, Speer SL, Perez Goncalves GM, Pielak GJ. Surface Charge Modulates Protein-Protein Interactions in Physiologically Relevant Environments. Biochemistry 2018; 57:1681-1684. [PMID: 29473738 PMCID: PMC5977980 DOI: 10.1021/acs.biochem.8b00061] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions are fundamental to biology yet are rarely studied under physiologically relevant conditions where the concentration of macromolecules can exceed 300 g/L. These high concentrations cause cosolute-complex contacts that are absent in dilute buffer. Understanding such interactions is important because they organize the cellular interior. We used 19F nuclear magnetic resonance, the dimer-forming A34F variant of the model protein GB1, and the cosolutes bovine serum albumin (BSA) and lysozyme to assess the effects of repulsive and attractive charge-charge dimer-cosolute interactions on dimer stability. The interactions were also manipulated via charge-change variants and by changing the pH. Charge-charge repulsions between BSA and GB1 stabilize the dimer, and the effects of lysozyme indicate a role for attractive interactions. The data show that chemical interactions can regulate the strength of protein-protein interactions under physiologically relevant crowded conditions and suggest a mechanism for tuning the equilibrium thermodynamics of protein-protein interactions in cells.
Collapse
Affiliation(s)
- Alex J. Guseman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shannon L. Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerardo M. Perez Goncalves
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|