1
|
Rasmi Y, Mosa OF, Alipour S, Heidari N, Javanmard F, Golchin A, Gholizadeh-Ghaleh Aziz S. Significance of Cardiac Troponins as an Identification Tool in COVID-19 Patients Using Biosensors: An Update. Front Mol Biosci 2022; 9:821155. [PMID: 35281265 PMCID: PMC8912935 DOI: 10.3389/fmolb.2022.821155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly developed as a global health emergency. Respiratory diseases are significant causes of morbidity and mortality in these patients with a spectrum of different diseases, from asymptomatic subclinical infection to the progression of severe pneumonia and subsequent acute respiratory distress syndrome. Individuals with cardiovascular disease are more likely to become infected with SARS-CoV-2 and develop severe symptoms. Hence, patients with underlying cardiovascular disease mortality rate are over three times. Furthermore, note that patients with a history of cardiovascular disease are more likely to have higher cardiac biomarkers, especially cardiac troponins, than infected patients, especially those with severe disease, making these patients more susceptible to cardiac damage caused by SARS-2-CoV. Biomarkers are important in decision-making to facilitate the efficient allocation of resources. Viral replication in the heart muscle can lead to a cascade of inflammatory processes that lead to fibrosis and, ultimately, cardiac necrosis. Elevated troponin may indicate damage to the heart muscle and may predict death. After the first Chinese analysis, increased cardiac troponin value was observed in a significant proportion of patients, suggesting that myocardial damage is a possible pathogenic mechanism leading to severe disease and death. However, the prognostic performance of troponin and whether its value is affected by different comorbidities present in COVID-19 patients are not known. This review aimed to assess the diagnostic value of troponin to offer insight into pathophysiological mechanisms and reported new assessment methods, including new biosensors for troponin in patients with COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Osama F Mosa
- Public Health Department, Health Sciences College at Lieth, Umm Al Qura University, Mecca, Saudi Arabia
- Biochemistry Department, Bukhara State Medical Institute Named After Abu Ali ibn Sino, Bukhara, Uzbekistan
| | - Shahriar Alipour
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Heidari
- Department of Clinical Biochemistry, Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farzaneh Javanmard
- Department of Pathology, Urmia University of Medical Science, Urmia, Iran
| | - Ali Golchin
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Schmidt W, Cammarato A. The actin 'A-triad's' role in contractile regulation in health and disease. J Physiol 2019; 598:2897-2908. [PMID: 30770548 DOI: 10.1113/jp276741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Striated muscle contraction is regulated by Ca2+ -dependent modulation of myosin cross-bridge binding to F-actin by the thin filament troponin (Tn)-tropomyosin (Tm) complex. In the absence of Ca2+ , Tn binds to actin and constrains Tm to an azimuthal location where it sterically occludes myosin binding sites along the thin filament surface. This limits force production and promotes muscle relaxation. In addition to Tn-actin interactions, inhibitory Tm positioning requires associations between other thin filament constituents. For example, the actin 'A-triad', composed of residues K326, K328 and R147, forms numerous, highly favourable electrostatic contacts with Tm that are critical for establishing its inhibitory azimuthal binding position. Here, we review recent findings, including the identification and interrogation of modifications within and proximal to the A-triad that are associated with disease and/or altered muscle behaviour, which highlight the surface feature's role in F-actin-Tm interactions and contractile regulation.
Collapse
Affiliation(s)
- William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| |
Collapse
|
3
|
Gregorich ZR, Patel JR, Cai W, Lin Z, Heurer R, Fitzsimons DP, Moss RL, Ge Y. Deletion of Enigma Homologue from the Z-disc slows tension development kinetics in mouse myocardium. J Gen Physiol 2019; 151:670-679. [PMID: 30642915 PMCID: PMC6504290 DOI: 10.1085/jgp.201812214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Enigma Homologue (ENH) is a component of the Z-disc, a structure that anchors actin filaments in the contractile unit of muscle, the sarcomere. Cardiac-specific ablation of ENH protein expression causes contractile dysfunction that ultimately culminates in dilated cardiomyopathy. However, whether ENH is involved in the regulation of myocardial contractility is unknown. To determine if ENH is required for the mechanical activity of cardiac muscle, we analyze muscle mechanics of isolated trabeculae from the hearts of ENH +/+ and ENH -/- mice. We detected no differences in steady-state mechanical properties but show that when muscle fibers are allowed to relax and then are restretched, the rate at which tension redevelops is depressed in ENH -/- mouse myocardium relative to that in ENH +/+ myocardium. SDS-PAGE analysis demonstrated that the expression of β-myosin heavy chain is increased in ENH -/- mouse myocardium, which could partially, but not completely, account for the depression in tension redevelopment kinetics. Using top-down proteomics analysis, we found that the expression of other thin/thick filament regulatory proteins is unaltered, although the phosphorylation of a cardiac troponin T isoform, cardiac troponin I, and myosin regulatory light chain is decreased in ENH -/- mouse myocardium. Nevertheless, these alterations are very small and thus insufficient to explain slowed tension redevelopment kinetics in ENH -/- mouse myocardium. These data suggest that the ENH protein influences tension redevelopment kinetics in mouse myocardium, possibly by affecting cross-bridge cycling kinetics. Previous studies also indicate that ablation of specific Z-disc proteins in myocardium slows contraction kinetics, which could also be a contributing factor in this study.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI
| | - Jitandrakumar R Patel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,University of Wisconsin-Madison Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,Human Proteomics Program, University of Wisconsin-Madison, Madison, WI
| | - Rachel Heurer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Daniel P Fitzsimons
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI .,University of Wisconsin-Madison Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI.,Human Proteomics Program, University of Wisconsin-Madison, Madison, WI
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI .,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI.,University of Wisconsin-Madison Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI.,Human Proteomics Program, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
4
|
Reda SM, Chandra M. Cardiomyopathy mutation (F88L) in troponin T abolishes length dependency of myofilament Ca 2+ sensitivity. J Gen Physiol 2018; 150:809-819. [PMID: 29776992 PMCID: PMC5987878 DOI: 10.1085/jgp.201711974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 04/24/2018] [Indexed: 01/14/2023] Open
Abstract
The F88L mutation in cardiac troponin T (TnTF88L) is associated with hypertrophic cardiomyopathy. Reda and Chandra reveal that it abolishes length-mediated increase in myofilament Ca2+ sensitivity and attenuates cooperative mechanisms governing length-dependent activation. Recent clinical studies have revealed a new hypertrophic cardiomyopathy–associated mutation (F87L) in the central region of human cardiac troponin T (TnT). However, despite its implication in several incidences of sudden cardiac death in young and old adults, whether F87L is associated with cardiac contractile dysfunction is unknown. Because the central region of TnT is important for modulating the muscle length–mediated recruitment of new force-bearing cross-bridges (XBs), we hypothesize that the F87L mutation causes molecular changes that are linked to the length-dependent activation of cardiac myofilaments. Length-dependent activation is important because it contributes significantly to the Frank–Starling mechanism, which enables the heart to vary stroke volume as a function of changes in venous return. We measured steady-state and dynamic contractile parameters in detergent-skinned guinea pig cardiac muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnTWT) or the guinea pig analogue (TnTF88L) of the human mutation at two different sarcomere lengths (SLs): short (1.9 µm) and long (2.3 µm). TnTF88L increases pCa50 (−log [Ca2+]free required for half-maximal activation) to a greater extent at short SL than at long SL; for example, pCa50 increases by 0.25 pCa units at short SL and 0.17 pCa units at long SL. The greater increase in pCa50 at short SL leads to the abolishment of the SL-dependent increase in myofilament Ca2+ sensitivity (ΔpCa50) in TnTF88L fibers, ΔpCa50 being 0.10 units in TnTWT fibers but only 0.02 units in TnTF88L fibers. Furthermore, at short SL, TnTF88L attenuates the negative impact of strained XBs on force-bearing XBs and augments the magnitude of muscle length–mediated recruitment of new force-bearing XBs. Our findings suggest that the TnTF88L-mediated effects on cardiac thin filaments may lead to a negative impact on the Frank–Starling mechanism.
Collapse
Affiliation(s)
- Sherif M Reda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
5
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
6
|
Gollapudi SK, Reda SM, Chandra M. Omecamtiv Mecarbil Abolishes Length-Mediated Increase in Guinea Pig Cardiac Myofiber Ca 2+ Sensitivity. Biophys J 2017; 113:880-888. [PMID: 28834724 DOI: 10.1016/j.bpj.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/19/2017] [Accepted: 07/05/2017] [Indexed: 01/14/2023] Open
Abstract
Omecamtiv mecarbil (OM) is a pharmacological agent that augments cardiac contractile function by enhancing myofilament Ca2+ sensitivity. Given that interventions that increase myofilament Ca2+ sensitivity have the potential to alter length-dependent activation (LDA) of cardiac myofilaments, we tested the influence of OM on this fundamental property of the heart. This is significant not only because LDA is prominent in cardiac muscle but also because it contributes to the Frank-Starling law, a mechanism by which the heart increases stroke volume in response to an increase in venous return. We measured steady-state and dynamic contractile indices in detergent-skinned guinea pig (Cavia porcellus) cardiac muscle fibers in the absence and presence of 0.3 and 3.0 μM OM at two different sarcomere lengths (SLs), short SL (1.9 μm) and long SL (2.3 μm). Myofilament Ca2+ sensitivity, as measured by pCa50 (-log of [Ca2+]free concentration required for half-maximal activation), increased significantly at both short and long SLs in OM-treated fibers when compared to untreated fibers; however, the magnitude of increase in pCa50 was twofold greater at short SL than at long SL. A consequence of this greater increase in pCa50 at short SL was that pCa50 did not increase any further at long SL, suggesting that OM abolished the SL dependency of pCa50. Furthermore, the SL dependency of rate constants of cross-bridge distortion dynamics (c) and force redevelopment (ktr) was abolished in 0.3-μM-OM-treated fibers. The negative impact of OM on the SL dependency of pCa50, c, and ktr was also observed in 3.0-μM-OM-treated fibers, indicating that cooperative mechanisms linked to LDA were altered by the OM-mediated effects on cardiac myofilaments.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, Washington
| | - Sherif M Reda
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, Washington.
| |
Collapse
|
7
|
Mickelson AV, Chandra M. Hypertrophic cardiomyopathy mutation in cardiac troponin T (R95H) attenuates length-dependent activation in guinea pig cardiac muscle fibers. Am J Physiol Heart Circ Physiol 2017; 313:H1180-H1189. [PMID: 28842439 DOI: 10.1152/ajpheart.00369.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023]
Abstract
The central region of cardiac troponin T (TnT) is important for modulating the dynamics of muscle length-mediated cross-bridge recruitment. Therefore, hypertrophic cardiomyopathy mutations in the central region may affect cross-bridge recruitment dynamics to alter myofilament Ca2+ sensitivity and length-dependent activation of cardiac myofilaments. Given the importance of the central region of TnT for cardiac contractile dynamics, we studied if hypertrophic cardiomyopathy-linked mutation (TnTR94H)-induced effects on contractile function would be differently modulated by sarcomere length (SL). Recombinant wild-type TnT (TnTWT) and the guinea pig analog of the human R94H mutation (TnTR95H) were reconstituted into detergent-skinned cardiac muscle fibers from guinea pigs. Steady-state and dynamic contractile measurements were made at short and long SLs (1.9 and 2.3 µm, respectively). Our results demonstrated that TnTR95H increased pCa50 (-log of free Ca2+ concentration) to a greater extent at short SL; TnTR95H increased pCa50 by 0.11 pCa units at short SL and 0.07 pCa units at long SL. The increase in pCa50 associated with an increase in SL from 1.9 to 2.3 µm (ΔpCa50) was attenuated nearly twofold in TnTR95H fibers; ΔpCa50 was 0.09 pCa units for TnTWT fibers but only 0.05 pCa units for TnTR95H fibers. The SL dependency of rate constants of cross-bridge distortion dynamics and tension redevelopment was also blunted by TnTR95H Collectively, our observations on the SL dependency of pCa50 and rate constants of cross-bridge distortion dynamics and tension redevelopment suggest that mechanisms underlying the length-dependent activation cardiac myofilaments are attenuated by TnTR95HNEW & NOTEWORTHY Mutant cardiac troponin T (TnTR95H) differently affects myofilament Ca2+ sensitivity at short and long sarcomere length, indicating that mechanisms underlying length-dependent activation are altered by TnTR95H TnTR95H enhances myofilament Ca2+ sensitivity to a greater extent at short sarcomere length, thus attenuating the length-dependent increase in myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Alexis V Mickelson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
8
|
Veltri T, Landim-Vieira M, Parvatiyar MS, Gonzalez-Martinez D, Dieseldorff Jones KM, Michell CA, Dweck D, Landstrom AP, Chase PB, Pinto JR. Hypertrophic Cardiomyopathy Cardiac Troponin C Mutations Differentially Affect Slow Skeletal and Cardiac Muscle Regulation. Front Physiol 2017; 8:221. [PMID: 28473771 PMCID: PMC5397416 DOI: 10.3389/fphys.2017.00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Mutations in TNNC1-the gene encoding cardiac troponin C (cTnC)-that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca2+-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca2+ sensitivity of force development in cardiac preparations. In the current study, an increase in Ca2+ sensitivity of isometric force was only observed for the C84Y mutant when reconstituted in soleus fibers. Incorporation of cTnC C84Y in bovine masseter myofibrils reduced the ATPase activity at saturating [Ca2+], whereas, incorporation of cTnC D145E increased the ATPase activity at inhibiting and saturating [Ca2+]. We also tested whether reconstitution of cardiac fibers with troponin complexes containing the cTnC mutants and slow skeletal troponin I (ssTnI) could emulate the slow skeletal functional phenotype. Reconstitution of cardiac fibers with troponin complexes containing ssTnI attenuated the Ca2+ sensitization of isometric force when cTnC A8V and D145E were present; however, it was enhanced for C84Y. In summary, although the A8V and D145E mutants are present in both muscle types, their functional phenotype is more prominent in cardiac muscle than in slow skeletal muscle, which has implications for the protein-protein interactions within the troponin complex. The C84Y mutant warrants further investigation since it drastically alters the properties of both muscle types and may account for the earlier clinical onset in the proband.
Collapse
Affiliation(s)
- Tiago Veltri
- Department of Biomedical Sciences, Florida State University College of MedicineTallahassee, FL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of MedicineTallahassee, FL, USA
| | - Michelle S. Parvatiyar
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiami, FL, USA
| | - David Gonzalez-Martinez
- Department of Biomedical Sciences, Florida State University College of MedicineTallahassee, FL, USA
| | | | - Clara A. Michell
- Department of Biomedical Sciences, Florida State University College of MedicineTallahassee, FL, USA
| | - David Dweck
- Department of Biomedical Sciences, Florida State University College of MedicineTallahassee, FL, USA
| | - Andrew P. Landstrom
- Section of Pediatric Cardiology, Department of Pediatrics, Baylor College of MedicineHouston, TX, USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State UniversityTallahassee, FL, USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of MedicineTallahassee, FL, USA
| |
Collapse
|
9
|
Mamidi R, Gresham KS, Li J, Stelzer JE. Cardiac myosin binding protein-C Ser 302 phosphorylation regulates cardiac β-adrenergic reserve. SCIENCE ADVANCES 2017; 3:e1602445. [PMID: 28345052 PMCID: PMC5345928 DOI: 10.1126/sciadv.1602445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/02/2017] [Indexed: 05/22/2023]
Abstract
Phosphorylation of cardiac myosin binding protein-C (MyBP-C) modulates cardiac contractile function; however, the specific roles of individual serines (Ser) within the M-domain that are targets for β-adrenergic signaling are not known. Recently, we demonstrated that significant accelerations in in vivo pressure development following β-agonist infusion can occur in transgenic (TG) mouse hearts expressing phospho-ablated Ser282 (that is, TGS282A) but not in hearts expressing phospho-ablation of all three serines [that is, Ser273, Ser282, and Ser302 (TG3SA)], suggesting an important modulatory role for other Ser residues. In this regard, there is evidence that Ser302 phosphorylation may be a key contributor to the β-agonist-induced positive inotropic responses in the myocardium, but its precise functional role has not been established. Thus, to determine the in vivo and in vitro functional roles of Ser302 phosphorylation, we generated TG mice expressing nonphosphorylatable Ser302 (that is, TGS302A). Left ventricular pressure-volume measurements revealed that TGS302A mice displayed no accelerations in the rate of systolic pressure rise and an inability to maintain systolic pressure following dobutamine infusion similar to TG3SA mice, implicating Ser302 phosphorylation as a critical regulator of enhanced systolic performance during β-adrenergic stress. Dynamic strain-induced cross-bridge (XB) measurements in skinned myocardium isolated from TGS302A hearts showed that the molecular basis for impaired β-adrenergic-mediated enhancements in systolic function is due to the absence of protein kinase A-mediated accelerations in the rate of cooperative XB recruitment. These results demonstrate that Ser302 phosphorylation regulates cardiac contractile reserve by enhancing contractile responses during β-adrenergic stress.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kenneth S. Gresham
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Corresponding author.
| |
Collapse
|
10
|
L71F mutation in rat cardiac troponin T augments crossbridge recruitment and detachment dynamics against α-myosin heavy chain, but not against β-myosin heavy chain. J Muscle Res Cell Motil 2016; 37:215-223. [PMID: 27975185 DOI: 10.1007/s10974-016-9460-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
The N-terminal extension of human cardiac troponin T (TnT), which modulates myofilament Ca2+ sensitivity, contains several hypertrophic cardiomyopathy (HCM)-causing mutations including S69F. However, the functional consequence of S69F mutation is unknown. The human analog of S69F in rat TnT is L71F (TnTL71F). Because the functional consequences due to structural changes in the N-terminal extension are influenced by the type of myosin heavy chain (MHC) isoform, we hypothesized that the TnTL71F-mediated effect would be differently modulated by α- and β-MHC isoforms. TnTL71F and wild-type rat TnT were reconstituted into de-membranated muscle fibers from normal (α-MHC) and propylthiouracil-treated rat hearts (β-MHC) to measure steady-state and dynamic contractile parameters. The magnitude of the TnTL71F-mediated attenuation of Ca2+-activated maximal tension was greater in α- than in β-MHC fibers. For example, TnTL71F attenuated maximal tension by 31% in α-MHC fibers but only by 10% in β-MHC fibers. Furthermore, TnTL71F reduced myofilament Ca2+ sensitivity by 0.11 pCa units in α-MHC fibers but only by 0.05 pCa units in β-MHC fibers. TnTL71F augmented rate constants of crossbridge recruitment and crossbridge detachment dynamics in α-MHC fibers but not in β-MHC fibers. Collectively, our data demonstrate that TnTL71F induces greater contractile deficits against α-MHC than against β-MHC background.
Collapse
|
11
|
Gollapudi SK, Chandra M. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain. Front Physiol 2016; 7:443. [PMID: 27757084 PMCID: PMC5047882 DOI: 10.3389/fphys.2016.00443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/20/2016] [Indexed: 11/13/2022] Open
Abstract
Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant-such as myofilament Ca2+ sensitivity-is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT), which is known to modulate crossbridge (XB) recruitment dynamics in a myosin heavy chain (MHC)-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W) of the human DCM mutation (R131W), we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC) and transgenic mice (β-MHC). TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units) than in β-MHC fiber bundles (0.08 pCa units). Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| |
Collapse
|
12
|
Michael JJ, Gollapudi SK, Chandra M. Interplay between the effects of a Protein Kinase C phosphomimic (T204E) and a dilated cardiomyopathy mutation (K211Δ or R206W) in rat cardiac troponin T blunts the magnitude of muscle length-mediated crossbridge recruitment against the β-myosin heavy chain background. J Muscle Res Cell Motil 2016; 37:83-93. [PMID: 27411801 DOI: 10.1007/s10974-016-9448-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/05/2016] [Indexed: 11/26/2022]
Abstract
Failing hearts of dilated cardiomyopathy (DCM)-patients reveal systolic dysfunction and upregulation of several Protein Kinase C (PKC) isoforms. Recently, we demonstrated that the functional effects of T204E, a PKC phosphomimic of cardiac troponin T (TnT), were differently modulated by α- and β-myosin heavy chain (MHC) isoforms. Therefore, we hypothesized that the interplay between the effects of T204E and a DCM-linked mutation (K211Δ or R206W) in TnT would modulate contractile parameters linked-to systolic function in an MHC-dependent manner. To test our hypothesis, five TnT variants (wildtype, K211Δ, K211Δ + T204E, R206W, and R206W + T204E) were generated and individually reconstituted into demembranated cardiac muscle fibers from normal (α-MHC) and propylthiouracil-treated (β-MHC) rats. Steady-state and mechano-dynamic measurements were performed on reconstituted fibers. Myofilament Ca(2+) sensitivity (pCa50) was decreased by both K211Δ and R206W to a greater extent in α-MHC fibers (~0.15 pCa units) than in β-MHC fibers (~0.06 pCa units). However, T204E exacerbated the attenuating influence of both mutants on pCa50 only in β-MHC fibers. Moreover, the magnitude of muscle length (ML)-mediated crossbridge (XB) recruitment was decreased by K211Δ + T204E (~47 %), R206W (~34 %), and R206W + T204E (~36 %) only in β-MHC fibers. In relevance to human hearts, which predominantly express β-MHC, our data suggest that the interplay between the effects of DCM mutations, PKC phosphomimic in TnT, and β-MHC lead to systolic dysfunction by attenuating pCa50 and the magnitude of ML-mediated XB recruitment.
Collapse
Affiliation(s)
- John Jeshurun Michael
- Department of Integrative Physiology and Neuroscience, Washington State University, 205 Veterinary Biomedical Research Building, Pullman, WA, 99164-7620, USA
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, 205 Veterinary Biomedical Research Building, Pullman, WA, 99164-7620, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, 205 Veterinary Biomedical Research Building, Pullman, WA, 99164-7620, USA.
| |
Collapse
|
13
|
Michael JJ, Chandra M. Interplay Between the Effects of Dilated Cardiomyopathy Mutation (R206L) and the Protein Kinase C Phosphomimic (T204E) of Rat Cardiac Troponin T Are Differently Modulated by α- and β-Myosin Heavy Chain Isoforms. J Am Heart Assoc 2016; 5:e002777. [PMID: 27001966 PMCID: PMC4943253 DOI: 10.1161/jaha.115.002777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background We hypothesized that the functional effects of R206L—a rat analog of the dilated cardiomyopathy (DCM) mutation R205L in human cardiac troponin T (TnT)—were differently modulated by myosin heavy chain (MHC) isoforms and T204E, a protein kinase C (PKC) phosphomimic of TnT. Our hypothesis was based on two observations: (1) α‐ and β‐MHC differentially influence the functional effects of TnT; and (2) PKC isoforms capable of phosphorylating TnT are upregulated in failing human hearts. Methods and Results We generated 4 recombinant TnT variants: wild type; R206L; T204E; and R206L+T204E. Functional effects of the TnT variants were tested in cardiac muscle fibers (minimum 14 per group) from normal (α‐MHC) and propylthiouracil‐treated rats (β‐MHC) using steady‐state and dynamic contractile measurements. Notably, in α‐MHC fibers, Ca2+‐activated maximal tension was attenuated by R206L (≈32%), T204E (≈63%), and R206L+T204E (≈64%). In β‐MHC fibers, maximal tension was unaffected by R206L, but was attenuated by T204E (≈33%) and R206L+T204E (≈40%). Thus, β‐MHC differentially counteracted the attenuating effects of the TnT variants on tension. However, in β‐MHC fibers, R206L+T204E attenuated tension to a greater extent when compared to T204E alone. In β‐MHC fibers, R206L+T204E attenuated the magnitude of the length‐mediated recruitment of new cross‐bridges (≈28%), suggesting that the Frank‐Starling mechanism was impaired. Conclusions Our findings are the first (to our knowledge) to demonstrate that the functional effects of a DCM‐linked TnT mutation are not only modulated by MHC isoforms, but also by the pathology‐associated post‐translational modifications of TnT.
Collapse
Affiliation(s)
- John Jeshurun Michael
- Department of Integrative Physiology and Neuroscience Washington State University, Pullman, WA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience Washington State University, Pullman, WA
| |
Collapse
|
14
|
Mamidi R, Gresham KS, Verma S, Stelzer JE. Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation. Front Physiol 2016; 7:38. [PMID: 26913007 PMCID: PMC4753332 DOI: 10.3389/fphys.2016.00038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is an important regulator of contractile function, however, its contributions to length-dependent changes in cross-bridge (XB) kinetics is unknown. Therefore, we performed mechanical experiments to quantify contractile function in detergent-skinned ventricular preparations isolated from wild-type (WT) hearts, and hearts expressing non-phosphorylatable cMyBP-C [Ser to Ala substitutions at residues Ser273, Ser282, and Ser302 (i.e., 3SA)], at sarcomere length (SL) 1.9 μm or 2.1μm, prior and following protein kinase A (PKA) treatment. Steady-state force generation measurements revealed a blunting in the length-dependent increase in myofilament Ca(2+)-sensitivity of force generation (pCa50) following an increase in SL in 3SA skinned myocardium compared to WT skinned myocardium. Dynamic XB behavior was assessed at submaximal Ca(2+)-activations by imposing an acute rapid stretch of 2% of initial muscle length, and measuring both the magnitudes and rates of resultant phases of force decay due to strain-induced XB detachment and delayed force rise due to recruitment of additional XBs with increased SL (i.e., stretch activation). The magnitude (P2) and rate of XB detachment (k rel) following stretch was significantly reduced in 3SA skinned myocardium compared to WT skinned myocardium at short and long SL, and prior to and following PKA treatment. Furthermore, the length-dependent acceleration of k rel due to decreased SL that was observed in WT skinned myocardium was abolished in 3SA skinned myocardium. PKA treatment accelerated the rate of XB recruitment (k df) following stretch at both SL's in WT but not in 3SA skinned myocardium. The amplitude of the enhancement in force generation above initial pre-stretch steady-state levels (P3) was not different between WT and 3SA skinned myocardium at any condition measured. However, the magnitude of the entire delayed force phase which can dip below initial pre-stretch steady-state levels (Pdf) was significantly lower in 3SA skinned myocardium under all conditions, in part due to a reduced magnitude of XB detachment (P2) in 3SA skinned myocardium compared to WT skinned myocardium. These findings demonstrate that cMyBP-C phospho-ablation regulates SL- and PKA-mediated effects on XB kinetics in the myocardium, which would be expected to contribute to the regulation of the Frank-Starling mechanism.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Sujeet Verma
- Department of Horticultural Science, Institute of Food and Agricultural Sciences Gulf Coast Research and Education Center, University of Florida Wimauma, FL, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
15
|
Gollapudi SK, Chandra M. The effect of cardiomyopathy mutation (R97L) in mouse cardiac troponin T on the muscle length-mediated recruitment of crossbridges is modified divergently by α- and β-myosin heavy chain. Arch Biochem Biophys 2016; 601:105-12. [PMID: 26792537 DOI: 10.1016/j.abb.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/28/2015] [Accepted: 01/08/2016] [Indexed: 01/19/2023]
Abstract
Hypertrophic cardiomyopathy mutations in cardiac troponin T (TnT) lead to sudden cardiac death. Augmented myofilament Ca(2+) sensitivity is a common feature in TnT mutants, but such observations fail to provide a rational explanation for severe cardiac phenotypes. To better understand the mutation-induced effect on the cardiac phenotype, it is imperative to determine the effects on dynamic contractile features such as the muscle length (ML)-mediated activation against α- and β-myosin heavy chain (MHC) isoforms. α- and β-MHC are not only differentially expressed in rodent and human hearts, but they also modify ML-mediated activation differently. Mouse analog of human TnTR94L (TnTR97L) or wild-type TnT was reconstituted into de-membranated muscle fibers from normal (α-MHC) and transgenic (β-MHC) mouse hearts. TnTR97L augmented myofilament Ca(2+) sensitivity by a similar amount in α- and β-MHC fibers. However, TnTR97L augmented the negative impact of strained crossbridges on other crossbridges (γ) by 22% in α-MHC fibers, but attenuated γ by 21% in β-MHC fibers. TnTR97L decreased the magnitude of ML-mediated recruitment of crossbridges (ER) by 37% in α-MHC fibers, but increased ER by 35% in β-MHC fibers. We provide a mechanistic basis for the TnTR97L-induced effects in α- and β-MHC fibers and discuss the relevance to human hearts.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, WA, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience (IPN), Washington State University, Pullman, WA, USA.
| |
Collapse
|
16
|
ADP-stimulated contraction: A predictor of thin-filament activation in cardiac disease. Proc Natl Acad Sci U S A 2015; 112:E7003-12. [PMID: 26621701 DOI: 10.1073/pnas.1513843112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diastolic dysfunction is general to all idiopathic dilated (IDCM) and hypertrophic cardiomyopathy (HCM) patients. Relaxation deficits may result from increased actin-myosin formation during diastole due to altered tropomyosin position, which blocks myosin binding to actin in the absence of Ca(2+). We investigated whether ADP-stimulated force development (without Ca(2+)) can be used to reveal changes in actin-myosin blockade in human cardiomyopathy cardiomyocytes. Cardiac samples from HCM patients, harboring thick-filament (MYH7mut, MYBPC3mut) and thin-filament (TNNT2mut, TNNI3mut) mutations, and IDCM were compared with sarcomere mutation-negative HCM (HCMsmn) and nonfailing donors. Myofilament ADP sensitivity was higher in IDCM and HCM compared with donors, whereas it was lower for MYBPC3. Increased ADP sensitivity in IDCM, HCMsmn, and MYH7mut was caused by low phosphorylation of myofilament proteins, as it was normalized to donors by protein kinase A (PKA) treatment. Troponin exchange experiments in a TNNT2mut sample corrected the abnormal actin-myosin blockade. In MYBPC3trunc samples, ADP sensitivity highly correlated with cardiac myosin-binding protein-C (cMyBP-C) protein level. Incubation of cardiomyocytes with cMyBP-C antibody against the actin-binding N-terminal region reduced ADP sensitivity, indicative of cMyBP-C's role in actin-myosin regulation. In the presence of Ca(2+), ADP increased myofilament force development and sarcomere stiffness. Enhanced sarcomere stiffness in sarcomere mutation-positive HCM samples was irrespective of the phosphorylation background. In conclusion, ADP-stimulated contraction can be used as a tool to study how protein phosphorylation and mutant proteins alter accessibility of myosin binding on actin. In the presence of Ca(2+), pathologic [ADP] and low PKA-phosphorylation, high actin-myosin formation could contribute to the impaired myocardial relaxation observed in cardiomyopathies.
Collapse
|
17
|
Sequeira V, van der Velden J. Historical perspective on heart function: the Frank-Starling Law. Biophys Rev 2015; 7:421-447. [PMID: 28510104 DOI: 10.1007/s12551-015-0184-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
More than a century of research on the Frank-Starling Law has significantly advanced our knowledge about the working heart. The Frank-Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank-Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank-Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We "revive" a century of scientific research on the heart's fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank-Starling mechanism. It is the authors' personal beliefs that much can be gained by understanding the Frank-Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,ICIN- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
18
|
Chandra V, Gollapudi SK, Chandra M. Rat cardiac troponin T mutation (F72L)-mediated impact on thin filament cooperativity is divergently modulated by α- and β-myosin heavy chain isoforms. Am J Physiol Heart Circ Physiol 2015; 309:H1260-70. [PMID: 26342069 DOI: 10.1152/ajpheart.00519.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022]
Abstract
The primary causal link between disparate effects of human hypertrophic cardiomyopathy (HCM)-related mutations in troponin T (TnT) and α- and β-myosin heavy chain (MHC) isoforms on cardiac contractile phenotype remains poorly understood. Given the divergent impact of α- and β-MHC on the NH2-terminal extension (44-73 residues) of TnT, we tested if the effects of the HCM-linked mutation (TnTF70L) were differentially altered by α- and β-MHC. We hypothesized that the emergence of divergent thin filament cooperativity would lead to contrasting effects of TnTF70L on contractile function in the presence of α- and β-MHC. The rat TnT analog of the human F70L mutation (TnTF72L) or the wild-type rat TnT (TnTWT) was reconstituted into demembranated muscle fibers from normal (α-MHC) and propylthiouracil-treated (β-MHC) rat hearts to measure steady-state and dynamic contractile function. TnTF72L-mediated effects on tension, myofilament Ca(2+) sensitivity, myofilament cooperativity, rate constants of cross-bridge (XB) recruitment dynamics, and force redevelopment were divergently modulated by α- and β-MHC. TnTF72L increased the rate of XB distortion dynamics by 49% in α-MHC fibers but had no effect in β-MHC fibers; these observations suggest that TnTF72L augmented XB detachment kinetics in α-MHC, but not β-MHC, fibers. TnTF72L increased the negative impact of strained XBs on the force-bearing XBs by 39% in α-MHC fibers but had no effect in β-MHC fibers. Therefore, TnTF72L leads to contractile changes that are linked to dilated cardiomyopathy in the presence of α-MHC. On the other hand, TnTF72L leads to contractile changes that are linked to HCM in the presence of β-MHC.
Collapse
Affiliation(s)
- Vikram Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
19
|
In situ time-resolved FRET reveals effects of sarcomere length on cardiac thin-filament activation. Biophys J 2015; 107:682-693. [PMID: 25099807 DOI: 10.1016/j.bpj.2014.05.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
During cardiac thin-filament activation, the N-domain of cardiac troponin C (N-cTnC) binds to Ca(2+) and interacts with the actomyosin inhibitory troponin I (cTnI). The interaction between N-cTnC and cTnI stabilizes the Ca(2+)-induced opening of N-cTnC and is presumed to also destabilize cTnI-actin interactions that work together with steric effects of tropomyosin to inhibit force generation. Recently, our in situ steady-state FRET measurements based on N-cTnC opening suggested that at long sarcomere length, strongly bound cross-bridges indirectly stabilize this Ca(2+)-sensitizing N-cTnC-cTnI interaction through structural effects on tropomyosin and cTnI. However, the method previously used was unable to determine whether N-cTnC opening depends on sarcomere length. In this study, we used time-resolved FRET to monitor the effects of cross-bridge state and sarcomere length on the Ca(2+)-dependent conformational behavior of N-cTnC in skinned cardiac muscle fibers. FRET donor (AEDANS) and acceptor (DDPM)-labeled double-cysteine mutant cTnC(T13C/N51C)AEDANS-DDPM was incorporated into skinned muscle fibers to monitor N-cTnC opening. To study the structural effects of sarcomere length on N-cTnC, we monitored N-cTnC opening at relaxing and saturating levels of Ca(2+) and 1.80 and 2.2-μm sarcomere length. Mg(2+)-ADP and orthovanadate were used to examine the structural effects of noncycling strong-binding and weak-binding cross-bridges, respectively. We found that the stabilizing effect of strongly bound cross-bridges on N-cTnC opening (which we interpret as transmitted through related changes in cTnI and tropomyosin) become diminished by decreases in sarcomere length. Additionally, orthovanadate blunted the effect of sarcomere length on N-cTnC conformational behavior such that weak-binding cross-bridges had no effect on N-cTnC opening at any tested [Ca(2+)] or sarcomere length. Based on our findings, we conclude that the observed sarcomere length-dependent positive feedback regulation is a key determinant in the length-dependent Ca(2+) sensitivity of myofilament activation and consequently the mechanism underlying the Frank-Starling law of the heart.
Collapse
|
20
|
Gollapudi SK, Tardiff JC, Chandra M. The functional effect of dilated cardiomyopathy mutation (R144W) in mouse cardiac troponin T is differently affected by α- and β-myosin heavy chain isoforms. Am J Physiol Heart Circ Physiol 2015; 308:H884-93. [PMID: 25681424 DOI: 10.1152/ajpheart.00528.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
Abstract
Given the differential impact of α- and β-myosin heavy chain (MHC) isoforms on how troponin T (TnT) modulates contractile dynamics, we hypothesized that the effects of dilated cardiomyopathy (DCM) mutations in TnT would be altered differently by α- and β-MHC. We characterized dynamic contractile features of normal (α-MHC) and transgenic (β-MHC) mouse cardiac muscle fibers reconstituted with a mouse TnT analog (TnTR144W) of the human DCM R141W mutation. TnTR144W did not alter maximal tension but attenuated myofilament Ca(2+) sensitivity (pCa50) to a similar extent in α- and β-MHC fibers. TnTR144W attenuated the speed of cross-bridge (XB) distortion dynamics (c) by 24% and the speed of XB recruitment dynamics (b) by 17% in α-MHC fibers; however, both b and c remained unaltered in β-MHC fibers. Likewise, TnTR144W attenuated the rates of XB detachment (g) and tension redevelopment (ktr) only in α-MHC fibers. TnTR144W also decreased the impact of strained XBs on the recruitment of new XBs (γ) by 30% only in α-MHC fibers. Because c, b, g, ktr, and γ are strongly influenced by thin filament-based cooperative mechanisms, we conclude that the TnTR144W- and β-MHC-mediated changes in the thin filament interact to produce a less severe functional phenotype, compared with that brought about by TnTR144W and α-MHC. These observations provide a basis for lower mortality rates of humans (β-MHC) harboring the TnTR141W mutant compared with transgenic mouse studies. Our findings strongly suggest that some caution is necessary when extrapolating data from transgenic mouse studies to human hearts.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and
| | - Jil C Tardiff
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and
| |
Collapse
|
21
|
Mamidi R, Gresham KS, Stelzer JE. Length-dependent changes in contractile dynamics are blunted due to cardiac myosin binding protein-C ablation. Front Physiol 2014; 5:461. [PMID: 25520665 PMCID: PMC4251301 DOI: 10.3389/fphys.2014.00461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/10/2014] [Indexed: 12/29/2022] Open
Abstract
Enhanced cardiac contractile function with increased sarcomere length (SL) is, in part, mediated by a decrease in the radial distance between myosin heads and actin. The radial disposition of myosin heads relative to actin is modulated by cardiac myosin binding protein-C (cMyBP-C), suggesting that cMyBP-C contributes to the length-dependent activation (LDA) in the myocardium. However, the precise roles of cMyBP-C in modulating cardiac LDA are unclear. To determine the impact of cMyBP-C on LDA, we measured isometric force, myofilament Ca2+-sensitivity (pCa50) and length-dependent changes in kinetic parameters of cross-bridge (XB) relaxation (krel), and recruitment (kdf) due to rapid stretch, as well as the rate of force redevelopment (ktr) in response to a large slack-restretch maneuver in skinned ventricular multicellular preparations isolated from the hearts of wild-type (WT) and cMyBP-C knockout (KO) mice, at SL's 1.9 μm or 2.1 μm. Our results show that maximal force was not significantly different between KO and WT preparations but length-dependent increase in pCa50 was attenuated in the KO preparations. pCa50 was not significantly different between WT and KO preparations at long SL (5.82 ± 0.02 in WT vs. 5.87 ± 0.02 in KO), whereas pCa50 was significantly different between WT and KO preparations at short SL (5.71 ± 0.02 in WT vs. 5.80 ± 0.01 in KO; p < 0.05). The ktr, measured at half-maximal Ca2+-activation, was significantly accelerated at short SL in WT preparations (8.74 ± 0.56 s−1 at 1.9 μm vs. 5.71 ± 0.40 s−1 at 2.1 μm, p < 0.05). Furthermore, krel and kdf were accelerated by 32% and 50%, respectively at short SL in WT preparations. In contrast, ktr was not altered by changes in SL in KO preparations (8.03 ± 0.54 s−1 at 1.9 μm vs. 8.90 ± 0.37 s−1 at 2.1 μm). Similarly, KO preparations did not exhibit length-dependent changes in krel and kdf. Collectively, our data implicate cMyBP-C as an important regulator of LDA via its impact on dynamic XB behavior due to changes in SL.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
22
|
Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy. PLoS One 2014; 9:e109066. [PMID: 25268244 PMCID: PMC4182639 DOI: 10.1371/journal.pone.0109066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022] Open
Abstract
Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosinslow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8–9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and invivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While invitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, invivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced invitro muscle force might be related to alterations occuring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness invitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function invivo. These results clearly point out that invitro alterations are muscle-dependent and do not necessarily translate into similar changes invivo.
Collapse
|
23
|
Instability in the central region of tropomyosin modulates the function of its overlapping ends. Biophys J 2014; 105:2104-13. [PMID: 24209855 DOI: 10.1016/j.bpj.2013.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/20/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022] Open
Abstract
The causal link between disparate tropomyosin (Tm) functions and the structural instability in Tm is unknown. To test the hypothesis that the structural instability in the central region of Tm modulates the function of the overlapping ends of contiguous Tm dimers, we used transgenic mice (Tm(DM)) that expressed a mutant α-Tm in the heart; S229E and H276N substitutions induce structural instability in the central region and the overlapping ends of Tm, respectively. In addition, two mouse cardiac troponin T mutants (TnT(1-44Δ) and TnT(45-74Δ)) that have a divergent effect on the overlapping ends of Tm were employed. The S229E-induced instability in the central region of Tm(DM) altered the overlapping ends of Tm(DM), thereby it negated the attenuating effect of H276N on Ca(2+)-activated maximal tension. The rate of cross-bridge detachment (g) decreased in Tm(DM)+TnT(WT) and Tm(H276N)+TnT(WT) fibers but increased in Tm(DM)+TnT(45-74Δ) fibers; however, TnT(45-74Δ) did not alter g, demonstrating that S229E in Tm(DM) had divergent effects on g. The S229E substitution in Tm(DM) ablated the H276N-induced desensitization of myofilament Ca(2+) sensitivity in Tm(DM)+TnT(1-44Δ) fibers. To our knowledge, novel findings from this study show that the structural instability in the central region of Tm modifies cardiac contractile function via its effect on the overlapping ends of contiguous Tm.
Collapse
|
24
|
Katrukha IA. Human cardiac troponin complex. Structure and functions. BIOCHEMISTRY (MOSCOW) 2014; 78:1447-65. [DOI: 10.1134/s0006297913130063] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Changeux JP. 50 years of allosteric interactions: the twists and turns of the models. Nat Rev Mol Cell Biol 2013; 14:819-29. [DOI: 10.1038/nrm3695] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Mamidi R, Chandra M. Divergent effects of α- and β-myosin heavy chain isoforms on the N terminus of rat cardiac troponin T. ACTA ACUST UNITED AC 2013; 142:413-23. [PMID: 24043862 PMCID: PMC3787779 DOI: 10.1085/jgp.201310971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Divergent effects of α– and β–myosin heavy chain (MHC) isoforms on contractile behavior arise mainly because of their impact on thin filament cooperativity. The N terminus of cardiac troponin T (cTnT) also modulates thin filament cooperativity. Our hypothesis is that the impact of the N terminus of cTnT on thin filament activation is modulated by a shift from α- to β-MHC isoform. We engineered two recombinant proteins by deleting residues 1–43 and 44–73 in rat cTnT (RcTnT): RcTnT1–43Δ and RcTnT44–73Δ, respectively. Dynamic and steady-state contractile parameters were measured at sarcomere length of 2.3 µm after reconstituting proteins into detergent-skinned muscle fibers from normal (α-MHC) and propylthiouracil-treated (β-MHC) rat hearts. α-MHC attenuated Ca2+-activated maximal tension (∼46%) in RcTnT1–43Δ fibers. In contrast, β-MHC decreased tension only by 19% in RcTnT1–43Δ fibers. Both α- and β-MHC did not affect tension in RcTnT44–73Δ fibers. The instantaneous muscle fiber stiffness measurements corroborated the divergent impact of α- and β-MHC on tension in RcTnT1–43Δ fibers. pCa50 (-log of [Ca2+]free required for half-maximal activation) decreased significantly by 0.13 pCa units in α-MHC + RcTnT1–43Δ fibers but remained unaltered in β-MHC + RcTnT1–43Δ fibers, demonstrating that β-MHC counteracted the attenuating effect of RcTnT1–43Δ on myofilament Ca2+ sensitivity. β-MHC did not alter the sudden stretch–mediated recruitment of new cross-bridges (ER) in RcTnT1–43Δ fibers, but α-MHC attenuated ER by 36% in RcTnT1–43Δ fibers. The divergent impact of α- and β-MHC on how the N terminus of cTnT modulates contractile dynamics has implications for heart disease; alterations in cTnT and MHC are known to occur via changes in isoform expression or mutations.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | | |
Collapse
|
27
|
Chen LP, Zhang J, Wei XL, Chen N, Huang CX, Xu MX, Wang WM, Wang HL. Megalobrama amblycephala cardiac troponin T variants: molecular cloning, expression and response to nitrite. Gene 2013; 527:558-64. [PMID: 23816406 DOI: 10.1016/j.gene.2013.05.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022]
Abstract
Cardiac troponin T (TNNT2), as a member of troponin superfamily, plays important roles during early cardiogenesis, and contraction and relaxation of myocardial cells. In this study, two alternatively spliced variants of Megalobrama amblycephala TNNT2 were identified showing a difference of 19 amino acids in the N-terminal hypervariable region. The longer cDNA (TNNT2-1) was 1,118 bp, encoding 284 amino acid residues, contained conserved central tropomyosin-binding region, cardiac specific signal and C-terminal segments except the N-terminal hypervariable region. The TNNT2 transcripts first appeared at 16 hours post-fertilization (hpf) peaking at 28 hpf (onset of heartbeat). In addition, strong expression of TNNT2 was found in the cardiac muscle. After nitrite exposure, the increased TNNT2 expression levels in the heart indicated that nitrite might induce cardiac injury. Results of semi-quantitative RT-PCR indicated that the two alternatively spliced variants existed in early development stages since their first appearance at 16 hpf and heart, spleen, headkiney of M. amblycephala. The shorter transcript (TNNT2-2) was proved to be dominant in the embryos and heart of M. amblycephala, furthermore, the increase of TNNT2 expression level in the heart after nitrite exposure was mainly caused by TNNT2-2.
Collapse
Affiliation(s)
- Li Ping Chen
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mamidi R, Michael JJ, Muthuchamy M, Chandra M. Interplay between the overlapping ends of tropomyosin and the N terminus of cardiac troponin T affects tropomyosin states on actin. FASEB J 2013; 27:3848-59. [PMID: 23748972 DOI: 10.1096/fj.13-232363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The functional significance of the molecular swivel at the head-to-tail overlapping ends of contiguous tropomyosin (Tm) dimers in striated muscle is unknown. Contractile measurements were made in muscle fibers from transgenic (TG) mouse hearts that expressed a mutant α-Tm (Tm(H276N)). We also reconstituted mouse cardiac troponin T (McTnT) N-terminal deletion mutants, McTnT(1-44Δ) and McTnT(45-74Δ), into muscle fibers from Tm(H276N). For controls, we used the wild-type (WT) McTnT because altered effects could be correlated with the mutant forms of McTnT. Tm(H276N) slowed crossbridge (XB) detachment rate (g) by 19%. McTnT(1-44Δ) attenuated Ca(2+)-activated maximal tension against Tm(WT) (36%) and Tm(H276N) (38%), but sped g only against Tm(H276N) by 35%. The rate of tension redevelopment decreased (17%) only in McTnT(1-44Δ) + Tm(H276N) fibers. McTnT(45-74Δ) attenuated tension (19%) and myofilament Ca(2+) sensitivity (pCa50=5.93 vs. 6.00 in the control fibers) against Tm(H276N), but not against Tm(WT) background. Thus, altered XB cycling kinetics decreased the fraction of strongly bound XBs in McTnT(1-44Δ) + Tm(H276N) fibers, whereas diminished thin-filament cooperativity attenuated tension in McTnT(45-74Δ) + Tm(H276N) fibers. In summary, our study is the first to show that the interplay between the N terminus of cTnT and the overlapping ends of contiguous Tm effectuates different states of Tm on the actin filament.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA
| | | | | | | |
Collapse
|
29
|
A study of tropomyosin's role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil 2013; 34:295-310. [PMID: 23700264 DOI: 10.1007/s10974-013-9343-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Tropomyosin (Tm) is the key regulatory component of the thin-filament and plays a central role in the cardiac muscle's cooperative activation mechanism. Many mutations of cardiac Tm are related to hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and left ventricular noncompaction (LVNC). Using the thin-filament extraction/reconstitution technique, we are able to incorporate various Tm mutants and protein isoforms into a muscle fiber environment to study their roles in Ca(2+) regulation, cross-bridge kinetics, and force generation. The thin-filament reconstitution technique poses several advantages compared to other in vitro and in vivo methods: (1) Tm mutants and isoforms are placed into the real muscle fiber environment to exhibit their effect on a level much higher than simple protein complexes; (2) only the primary and immediate effects of Tm mutants are studied in the thin-filament reconstituted myocardium; (3) lethal mutants of Tm can be studied without causing a problem; and (4) inexpensive. In transgenic models, various secondary effects (myocyte disarray, ECM fibrosis, altered protein phosphorylation levels, etc.) also affect the performance of the myocardium, making it very difficult to isolate the primary effect of the mutation. Our studies on Tm have demonstrated that: (1) Tm positively enhances the hydrophobic interaction between actin and myosin in the "closed state", which in turn enhances the isometric tension; (2) Tm's seven periodical repeats carry distinct functions, with the 3rd period being essential for the tension enhancement; (3) Tm mutants lead to HCM by impairing the relaxation on one hand, and lead to DCM by over inhibition of the AM interaction on the other hand. Ca(2+) sensitivity is affected by inorganic phosphate, ionic strength, and phosphorylation of constituent proteins; hence it may not be the primary cause of the pathogenesis. Here, we review our current knowledge regarding Tm's effect on the actomyosin interaction and the early molecular pathogenesis of Tm mutation related to HCM, DCM, and LVNC.
Collapse
|
30
|
Cheng Y, Wan X, McElfresh TA, Chen X, Gresham KS, Rosenbaum DS, Chandler MP, Stelzer JE. Impaired contractile function due to decreased cardiac myosin binding protein C content in the sarcomere. Am J Physiol Heart Circ Physiol 2013; 305:H52-65. [PMID: 23666674 DOI: 10.1152/ajpheart.00929.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in cardiac myosin binding protein C (MyBP-C) are a common cause of familial hypertrophic cardiomyopathy (FHC). The majority of MyBP-C mutations are expected to reduce MyBP-C expression; however, the consequences of MyBP-C deficiency on the regulation of myofilament function, Ca²⁺ homeostasis, and in vivo cardiac function are unknown. To elucidate the effects of decreased MyBP-C expression on cardiac function, we employed MyBP-C heterozygous null (MyBP-C+/-) mice presenting decreases in MyBP-C expression (32%) similar to those of FHC patients carrying MyBP-C mutations. The levels of MyBP-C phosphorylation were reduced 53% in MyBP-C+/- hearts compared with wild-type hearts. Skinned myocardium isolated from MyBP-C+/- hearts displayed decreased cross-bridge stiffness at half-maximal Ca²⁺ activations, increased steady-state force generation, and accelerated rates of cross-bridge recruitment at low Ca²⁺ activations (<15% and <25% of maximum, respectively). Protein kinase A treatment abolished basal differences in rates of cross-bridge recruitment between MyBP-C+/- and wild-type myocardium. Intact ventricular myocytes from MyBP-C+/- hearts displayed abnormal sarcomere shortening but unchanged Ca²⁺ transient kinetics. Despite a lack of left ventricular hypertrophy, MyBP-C+/- hearts exhibited elevated end-diastolic pressure and decreased peak rate of LV pressure rise, which was normalized following dobutamine infusion. Furthermore, electrocardiogram recordings in conscious MyBP-C+/- mice revealed prolonged QRS and QT intervals, which are known risk factors for cardiac arrhythmia. Collectively, our data show that reduced MyBP-C expression and phosphorylation in the sarcomere result in myofilament dysfunction, contributing to contractile dysfunction that precedes compensatory adaptations in Ca²⁺ handling, and chamber remodeling. Perturbations in mechanical and electrical activity in MyBP-C+/- mice could increase their susceptibility to cardiac dysfunction and arrhythmia.
Collapse
Affiliation(s)
- Y Cheng
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sequeira V, Wijnker PJM, Nijenkamp LLAM, Kuster DWD, Najafi A, Witjas-Paalberends ER, Regan JA, Boontje N, Ten Cate FJ, Germans T, Carrier L, Sadayappan S, van Slegtenhorst MA, Zaremba R, Foster DB, Murphy AM, Poggesi C, Dos Remedios C, Stienen GJM, Ho CY, Michels M, van der Velden J. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res 2013; 112:1491-505. [PMID: 23508784 DOI: 10.1161/circresaha.111.300436] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE High-myofilament Ca(2+) sensitivity has been proposed as a trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) on the basis of in vitro and transgenic mice studies. However, myofilament Ca(2+) sensitivity depends on protein phosphorylation and muscle length, and at present, data in humans are scarce. OBJECTIVE To investigate whether high myofilament Ca(2+) sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick and thin filament proteins. METHODS AND RESULTS Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca(2+) sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA) targets compared with donors. After exogenous PKA treatment, myofilament Ca(2+) sensitivity was similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. CONCLUSIONS High-myofilament Ca(2+) sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via posttranslational modifications other than PKA hypophosphorylation or altered protein-protein interactions, and represents a common pathomechanism in HCM.
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The tropomyosin binding region of cardiac troponin T modulates crossbridge recruitment dynamics in rat cardiac muscle fibers. J Mol Biol 2013; 425:1565-81. [PMID: 23357173 DOI: 10.1016/j.jmb.2013.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 11/22/2022]
Abstract
The cardiac muscle comprises dynamically interacting components that use allosteric/cooperative mechanisms to yield unique heart-specific properties. An essential protein in this allosteric/cooperative mechanism is cardiac muscle troponin T (cTnT), the central region (CR) and the T2 region of which differ significantly from those of fast skeletal muscle troponin T (fsTnT). To understand the biological significance of such sequence heterogeneity, we replaced the T1 or T2 domain of rat cTnT (RcT1 or RcT2) with its counterpart from rat fsTnT (RfsT1or RfsT2) to generate RfsT1-RcT2 and RcT1-RfsT2 recombinant proteins. In addition to contractile function measurements, dynamic features of RfsT1-RcT2- and RcT1-RfsT2-reconstituted rat cardiac muscle fibers were captured by fitting the recruitment-distortion model to the force response of small-amplitude (0.5%) muscle length changes. RfsT1-RcT2 fibers showed a 40% decrease in tension and a 44% decrease in ATPase activity, but RcT1-RfsT2 fibers were unaffected. The magnitude of length-mediated increase in crossbridge (XB) recruitment (E0) decreased by ~33% and the speed of XB recruitment (b) increased by ~100% in RfsT1-RcT2 fibers. Our data suggest the following: (1) the CR of cTnT modulates XB recruitment dynamics; (2) the N-terminal end region of cTnT has a synergistic effect on the ability of the CR to modulate XB recruitment dynamics; (3) the T2 region is important for tuning the Ca(2+) regulation of cardiac thin filaments. The combined effects of CR-tropomyosin interactions and the modulating effect of the N-terminal end of cTnT on CR-tropomyosin interactions may lead to the emergence of a unique property that tunes contractile dynamics to heart rates.
Collapse
|
33
|
Mamidi R, Mallampalli SL, Wieczorek DF, Chandra M. Identification of two new regions in the N-terminus of cardiac troponin T that have divergent effects on cardiac contractile function. J Physiol 2012. [PMID: 23207592 DOI: 10.1113/jphysiol.2012.243394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract Cardiac troponin T (cTnT) has a highly acidic extended N-terminus, the physiological role of which remains poorly understood. To decipher the physiological role of this unique region, we deleted specific regions within the N-terminus of mouse cTnT (McTnT) to create McTnT1-44 and McTnT45-74 proteins. Contractile function and dynamic force-length measurements were made after reconstituting the McTnT deletion proteins into detergent-skinned cardiac papillary fibres harvested from non-transgenic mice that expressed α-tropomyosin (Tm). To further understand how the functional effects of the N-terminus of cTnT are modulated by Tm isoforms, McTnT deletion proteins were reconstituted into detergent-skinned cardiac papillary fibres harvested from transgenic mice that expressed both α- and β-Tm. McTnT1-44, but not McTnT45-74, attenuated maximal activation of the thin filament. Myofilament Ca(2+) sensitivity, as measured by pCa50 (-log of [Ca(2+)]free required for half-maximal activation), decreased in McTnT1-44 (α-Tm) fibres. The desensitizing effect of McTnT1-44 on pCa50 was ablated in β-Tm fibres. McTnT45-74 enhanced pCa50 in both α- and β-Tm fibres, with β-Tm having a bigger effect. The Hill coefficient of tension development was significantly attenuated by McTnT45-74, suggesting an effect on thin-filament cooperativity. The rate of cross-bridge (XB) detachment and the strained XB-mediated impact on other XBs were augmented by McTnT1-44 in β-Tm fibres. The magnitude of the length-mediated recruitment of XBs was attenuated by McTnT1-44 in β-Tm fibres. Our data demonstrate that the 1-44 region of McTnT is essential for maximal activation, whereas the cardiac-specific 45-74 region of McTnT is essential for augmenting cooperativity. Moreover, our data show that α- and β-Tm isoforms have divergent effects on McTnT deletion mutant's ability to modulate cardiac thin-filament activation and Ca(2+) sensitivity. Our results not only provide the first explicit evidence for the existence of two distinct functional regions within the N-terminus of cTnT, but also offer mechanistic insights into the divergent physiological roles of these regions in mediating cardiac contractile activation.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA-99164, USA.
| | | | | | | |
Collapse
|
34
|
Tuning the calcium sensitivity of cardiac muscle. Biophys J 2012; 103:849-50. [PMID: 23009833 DOI: 10.1016/j.bpj.2012.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/24/2022] Open
|